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Abstract

Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient
times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in dif-
ferent parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorgan-
isms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the
positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants.
In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal
plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing
plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs
depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different
methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeropon-
ics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of
medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmaco-

logical, medical, and cosmetic interest.

Keywords Arbuscular mycorrhiza fungi - Medicinal plants - Secondary metabolites - Hydroponics - Aeroponics - Hairy

root cultures

Introduction

Medicinal plants have been a valuable source of therapeutic
agents to treat various ailments and diseases such as diar-
rhea, fever, colds, and malaria since ancient times (Dambisya
and Tindimwebwa 2003; Ghiaee et al. 2014; Mathens and
Bellanger 2010; Titanji et al. 2008). Nowadays, they also
represent a source for the development of new drugs to cure
important diseases such as cancer (Newman and Cragg 2007;
Beik et al. 2020). Their therapeutic value often is attributed
to the presence and richness of active compounds belonging
to the secondary metabolism, such as alkaloids, flavonoids,
terpenoids, and phenolics (Hussein and El-Anssary 2018).
Today, up to 80% of people in developing countries are
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totally dependent on herbal drugs for their primary health-
care (Ekor 2014), and over 25% of prescribed medicines in
developed countries have been derived from plants collected
in the wild (Hamilton 2004).

Numerous methods, such as isolation from plants and
other natural sources, synthetic chemistry, combinatorial
chemistry, and molecular modeling, have been used for drug
discovery (Ley and Baxendale 2002; Geysen et al. 2003;
Lombardino and Lowe 2004). However, natural products,
and particularly medicinal plants, remain an important
source of new drugs, new drug leads, and new chemical
entities (Newman et al. 2000, 2003; Butler 2004) because of
their cultural acceptability, high compatibility, and adapta-
bility with the human body compared to synthetic chemicals
(Garg et al. 2021). According to the International Union for
Conservation of Nature and the World Wildlife Fund (Chen
et al. 2016), an estimate of as many as 80,000 flowering
plant species are used for medicinal purposes. For several
thousands of plants worldwide, the activity or composi-
tion in bioactive compounds remains poorly documented,
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requiring further in-depth analysis to fully exploit their
medicinal potential (Ali 2019).

In nature, plants are associated with an overwhelming
number of beneficial microorganisms (e.g., endophytic or
symbiotic bacteria and fungi) that play a significant role
in plant health, development, and productivity, and in the
modulation of metabolite synthesis (Berendsen et al. 2012;
Panke-Buisse et al. 2015; Mendes et al. 2011; Castrillo et al.
2017; de Vries et al. 2020; Brader et al. 2014; Compant et al.
2021). Among these are the arbuscular mycorrhizal fungi
(AMF), a ubiquitous group of soil microorganisms, forming
symbiosis with more than 70% of vascular plants (Brundrett
and Tedersoo 2018). Arbuscular mycorrhizas are character-
ized by the formation of finely branched structures called
arbuscules within root cortical cells of host plants (Coleman
et al. 2004), which are the site of bidirectional transport, i.e.,
minerals from the fungal cell to the plant cell and carbon
compounds in the opposite direction.

The establishment of the AMF symbiosis requires rec-
ognition between the two partners. Lipochitooligosaccha-
rides, the so-called Myc factors, are perceived by the plant
in response to signaling molecules (i.e., strigolactones)
released by the roots (Akiyama and Hayashi 2006). After
reciprocal recognition, AMF hyphae form a hyphopodium
on the root epidermis and colonize the root cortex. At the
same time, fungal hyphae spread into the surrounding soil
as an extensive extraradical mycelium, representing 9 to
55% of the total soil microbial biomass (Olsson et al. 1999).
This dense extraradical mycelium considerably enhances the
access of roots to water and mineral nutrients (e.g., P, N, K,
Ca, S, Zn, Cu), often increasing plant biomass (Smith and
Read 2008; Bowles et al. 2016) and quality of crops (Baum
etal. 2015; Bona et al. 2016; Noceto et al. 2021). Moreover,
this extraradical mycelium modifies the soil structure (Chen
et al. 2018), which improves soil quality and fertility (Zou
et al. 2016; Thirkell et al. 2017). AMF also are well known
to improve plant resistance or tolerance to stress conditions,
such as drought, salinity, nutrient deprivation, extreme tem-
peratures, heavy metals, pests, and diseases (Ahanger et al.
2014; Salam et al. 2017; Porcel et al. 2012; Cicatelli et al.
2014). In addition to these benefits, they also quantitatively
and qualitatively could affect the production of secondary
metabolites produced by their hosts (Ahanger et al. 2014;
Salam et al. 2017; Porcel et al. 2012; Cicatelli et al. 2014;
Kaur and Suseela 2020).

Taber and Trappe (1982) were the first to document the pres-
ence of AMF in a medicinal plant (in their study conducted
on ginger growing in the Fiji Islands and Hawaii). Since then,
most medicinal plants were found capable of associating with
mycorrhizal fungi (Chen et al. 2014). Recently, single or com-
binations of AMF have been inoculated to various medicinal
plants to investigate their impact on plant biomass as well as on
phytochemical constituents in seeds, fruits, leaves, shoots, and
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roots (e.g., Rydlova et al. 2016; Kapoor et al. 2004; Selvaraj
et al. 2009; Dave et al. 2011; Zubek et al. 2012). The major-
ity of studies revealed that AMF were able to enhance plant
biomass as well as to promote the accumulation of several
active compounds. For example, Lazzara et al. (2017) reported
an increased above- and belowground biomass in Hypericum
perforatum associated with a mixture of nine different AMF
species. Interestingly, the concentrations of pseudohypericin and
hypericin, two anthraquinone derivatives that exhibit important
photodynamic, antiviral, antiretroviral, antibacterial, antipsori-
atic, antidepressant, and antitumoral biological activities (Zubek
et al. 2012; Bombardelli and Morazzoni 1995; Gadzovska
et al. 2005; Guedes and Eriksson 2005), were increased by
166.8 and 279.2% in the AMF-colonized plants as compared to
non-mycorrhizal controls (Lazzara et al. 2017). Howeyver, these
results should not obviate other studies in which no effects on
biomass were reported. For instance, Nell et al. (2010) found
that AMF colonization decreased the biomass of rhizomes
and roots of Valeriana officinalis, while significantly increas-
ing the levels of sesquiterpenic acids. Another study by Engel
et al. (2016) reported an increased content of rosmarinic acid
and lithospermic acid A isomer (two phenolic compounds) in
Melissa officinalis, while both compounds were diminished in
Majorana hortensis, in the presence of three mixtures of AMF.
More recently, Duc et al. (2021) showed that a mixture of dif-
ferent AMF species improved the salt stress tolerance of Eclipta
prostrata, inducing major changes in polyphenol profile.

In this publication, we provide a thorough review of the liter-
ature on AMF mediation of secondary metabolites production in
medicinal plants. We also review the different methods that are
used to increase/stabilize the production of secondary metabo-
lites. Indeed, the quantity and quality of secondary metabolites
obtained from plants grown in natural habitats are critically
influenced by various abiotic and biotic stresses (e.g., drought,
extreme temperatures, and pathogen attack). This results in high
variability of bioactive substances and influences the metabolic
pathways responsible for the accumulation of the related natural
compounds (Dayani and Sabzalian 2017; Giurgiu et al. 2017,
Ramakrishna and Ravishankar 2011). Therefore, we addition-
ally review the most widely used methods of cultivation (i.e.,
greenhouse, hydroponics, aeroponics, in vitro and hairy root
cultures (HRCs)) of medicinal plants, and we investigate their
possible application to AMF to further increase the quantity and
quality of secondary metabolites produced.

Effect of AMF on growth and secondary
metabolite production of medicinal plants

Since the pioneer work of Wei and Wang (1989, 1991),
reporting the positive effect of AMF inoculation of Datura
stramonium and Schizonepeta tenuifolia on the production of
active compounds, numerous studies have been conducted.
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The literature focusing on AMF in medicinal plants involves
81 plant species belonging to 28 families (Table 1). These
medicinal plants present different characteristics to be stud-
ied with AMF: important medicinal herbs to treat certain
disease such as Artemisia annua producing artemisin to
treat malaria in developing countries (Domokos et al. 2018);
important condiment plants such as Allium sativum in India
(Borde et al. 2009); rare plant species difficult to culture
such as Arnica montana (Jurkiewicz et al. 2011); aromatic
plants to produce essential oil widely used in the pharma-
ceutical, cosmetic, and food industries such as most plant
species from the Apiaceae (Anethum graveolens and Cori-
andrum sativum (Rydlova et al. 2016)) and the Lamiaceae
(Origanum vulgare (Karagiannidis et al. 2012)); and health
foods such as Dioscorea spp. yam (Lu et al. 2015). For the
majority of these plants, studies were focused on the effects
of AMF on biomass increase and production of bioactive
compounds simultaneously (45 studies) or only focused on
bioactive compound production (30 studies). For a few other
studies, the attention was focused on AMF community com-
position (four studies) or on the effects of AMF on plant
growth under different conditions (15 studies) (Table 1).
Among the AMF species tested, Funneliformis mosseae' is
the most investigated one (25 studies), followed by Rhizo-
phagus intraradices (16), Claroideoglomus etunicatum (14),
Rhizophagus fasciculatus (14), Rhizophagus irregularis and
Rhizophagus clarus (six studies each), and Gigaspora mar-
garita (five studies) (Table 1). Only a few medicinal plant
species were inoculated with AMF present in the soil native
to those plants, while the vast majority were inoculated with
commercial inoculants.

A direct relationship has been highlighted between the
biomass of AMF-colonized plants and the concentration of
secondary metabolites for several medicinal plants, such
as Chlorophytum borivilianum, Dioscorea spp., Gymnema
sylvestre, Glycyrrhiza uralensis, Libidibia ferrea, Ocimum
basilicum, Satureja macrostema, and Salvia miltiorrhiza
(Dave et al. 2011; Lu et al. 2015; Zimare et al. 2013; Chen
et al. 2017; Silvia et al. 2014; Zolfaghari et al. 2013; Carredn-
Abud et al. 2015; Yang et al. 2017). Conversely, in Cynara
cardunculus colonized by R. intraradices and F. mosseae, a
significant increase in yield was noticed, but the concentra-
tions of phenolics decreased (Colonna et al. 2016). Other
studies conducted with Hypericum perforatum inoculated
with R. intraradices or a mixture of Funneliformis constric-
tum, Funneliformis geosporum, F. mosseae, and R. intrara-
dices reported no increase in shoot biomass, while in Vale-
riana officinalis inoculated with R. intraradices or a mixture
of six AMF species (F. mosseae, R. intraradices, Glomus

! The species names of AMF shown in this review follow the current
nomenclature and not that of the original publications.

cladoideum, Rhizoglomus microaggregatum, Funneliformis
caledonium, and C. etunicatum) a negative effect on rhizome
and root biomass was noticed (Zubek et al. 2012; Nell et al.
2010). However, an increased concentration of active com-
pounds (e.g., hypericin and pseudohypericin and sesquiter-
penic acids, respectively) was noticed for both plants (Zubek
et al. 2012; Nell et al. 2010).

Another beneficial aspect of AMF is their capability to
improve plant nutrient uptake (Bowles et al. 2016), influ-
encing directly or indirectly the concentration of secondary
metabolites (Yamawaki et al. 2013). For instance, F. mos-
seae improved shoot and root biomass, root system architec-
ture, and flavonoid accumulation in Glycyrrhiza uralensis
growing under P-deficient nutrient conditions (Chen et al.
2017).

A number of studies also have reported enhanced sur-
vival and increased growth of micropropagated medicinal
plants at the transfer stage from in vitro to ex vivo condi-
tions (Rai 2001). For instance, with F. mosseae, the survival
rate of micropropagated Spilanthes acmella and Glycyrrhiza
glabra plantlets was 100%, and plant growth and develop-
ment were improved under glasshouse and greenhouse con-
ditions (Yadav et al. 2012, 2013) while in the absence of
AMF, the survival rate was only 60-70%. Similarly, height
and fresh weight of shoots, roots, and seeds of Scutelleria
integrifolia seedlings inoculated with C. etunicatum were
significantly increased in pots following micropropagation
(Joshee et al. 2007).

These studies clearly evidenced the potential of using
AMF inoculants for improving the yield of raw materials
(e.g., roots, shoots) of medicinal plants, thus potentially
increasing the quantity of active compounds.

Different groups of secondary metabolites whose produc-
tion was enhanced by AMF inoculation are detailed below.

Alkaloids

Alkaloids are nitrogen-containing organic compounds
produced by plants constitutively or in response to pests,
diseases, or other external stimuli (Jan et al. 2021). They
are found in different organs of important medicinal plants
(Table 1) and are characterized by a diverse array of phar-
macological properties including analgesia, local anesthesia,
cardiac stimulation, respiratory stimulation and relaxation,
vasoconstriction, muscle relaxation, antineoplastic, and
hypertensive and hypotensive properties (Hussein and El-
Anssary 2018).

Since Wei and Wang (1989) first observed that AMF
symbiosis can increase the total content of hyoscyamine
and scopolamine in Datura stramonium, numerous studies
have reported a positive role of AMF in the accumulation
of alkaloids. For example, a positive correlation was found
between AMF colonization (a mixture of R. intraradices

@ Springer
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and G. margarita) of Castanospermum australe tree and
the castanospermine content (which was reported to inhibit
the HIV virus) of leaves (Abu-Zeyad et al. 1999). The con-
tents of some commonly used “heat-clearing” herb com-
pounds, such as berberine, jatrorrhizine, and palmatine,
were increased in seedlings of Phellodendron amurense
inoculated with AMF (Fan et al. 2006). Other active com-
pounds were increased in the presence of AMF: trigonel-
line in roots and leaves of Prosopis laevigata colonized by
Gigaspora rosea under in vitro conditions; colchicine in
tubers of Gloriosa superba colonized by F. mosseae growing
under glasshouse conditions, and scopolamine in leaves of
Eclipta prostrata colonized by a mixture of C. etunicatum,
Claroideoglomus claroideum, F. mosseae, F. geosporum,
R. irregularis, and Rhizoglomus microaggregatum growing
in climate chamber conditions (Rojas-Andrade et al. 2003;
Pandey et al. 2014; Vo et al. 2019).

Terpenoids

The largest and most diverse group of secondary metabolites
are terpenoids, which are primary constituents of essential
oils (Cox-Georgian et al. 2019). Essential oils are volatile
lipophilic mixtures of secondary metabolites, consisting
mostly of monoterpenes, sesquiterpenes, and phenylpropa-
noids, which often are used as flavors and fragrances, as
antimicrobials and antioxidants, and as medicines (Deans
and Waterman 1993).

Several studies have reported an AMF impact on the pro-
duction of essential oils by medicinal and aromatic plants
(Table 1). For instance, the production of these compounds
was increased in Corianderum sativum, Trachyspermum
ammi, Atractylodes lancea, Inula ensifolia, Artemisia umbel-
liformis, Plectranthus amboinicus, Satureja macrostema,
Salvia officinalis, Origanum vulgare and Origanum onites,
Thymus daenensis, Thymus vulgaris, and Foeniculum vul-
gare colonized by AMF (Rydlové et al. 2016; Kapoor et al.
2002; Liang et al. 2018; Zubek et al. 2010; Binet et al.
2011; Merlin et al. 2020; Carre6n-Abud et al. 2015; Sete
da Cruz et al. 2019; Karagiannidis et al. 2012; Arpanahi
et al. 2020; Machiani et al. 2021; Kapoor et al. 2004). The
content of artemisinin, an important sesquiterpene lactone
compound found in Artemisia annua and well known for
its effects on malaria and more recently on cancer (Krishna
et al. 2008), was increased in leaves of plants colonized by
F. mosseae or a combination of Glomus macrocarpum and
R. fasciculatus or Diversispora epigaea and R. irregularis
grown in pots or under field conditions (Huang et al. 2011;
Chaudhary et al. 2008; Domokos et al. 2018). The forskolin
content, a diterpene extensively used to treat heart diseases,
glaucoma, asthma, and certain types of cancers (Kavitha
et al. 2010), was significantly increased in roots of Coleus

forskohlii inoculated with Glomus bagyarajii growing under
greenhouse conditions (Sailo and Bagyaraj 2005). Similarly,
Singh et al. (2013) reported an increased content of forskolin
in tubers of Coleus forskohlii associated with R. fasciculatus
growing under organic field conditions.

Researchers also have studied the impact of AMF sym-
biosis on medicinal plants derived from tissue cultures. An
example is the increased content of the essential oil car-
vacrol, a phenolic monoterpenoid with antimicrobial, anti-
oxidant, and anticancer activities (Sharifi-Rad et al. 2018)
in micropropagated Origanum vulgare subsp. hirtum after
association with the AMF Septoglomus viscosum (Morone
Fortunato and Avato 2008).

Phenolics

Phenolics represent a wide group of compounds, sharing
one or more phenol groups (Hussein and El-Anssary 2018),
among which are flavonoids, curcuminoids, coumarins,
tannins, stilbenes, lignans, phenolic acids, and quinones
(Cosme et al. 2020).

Arbuscular mycorrhizal fungi have been shown to increase
the content of phenols in medicinal plants (Table 1). For
instance, the production of formononetin (an antimicrobial,
antioxidant, antilipidemic, antidiabetic, antitumor, and neu-
roprotective compound) (Vishnuvathan et al. 2016), was
increased in Medicago sativa grown in the presence of R. int-
raradices (Volpin et al. 1994). The production of curcumin
(an anti-inflammatory, antioxidant, anticancer, antiseptic,
antiplasmodial, astringent, digestive, diuretic compound)
was increased by circa 26% in Curcuma longa colonized by
AMF species belonging to the genera Glomus/Rhizophagus,
Gigaspora, and Acaulospora sp., under greenhouse conditions
(Dutta and Neog 2016). The concentration of total tannins,
used to treat tonsillitis, pharyngitis, hemorrhoids, and skin
eruptions (Britannica 2021), was increased by 40% in the fruits
of Libidibia ferrea inoculated with Acaulospora longula under
field conditions (Santos et al. 2020). Additionally, the concen-
trations of cichoric acid in Echinacea purpurea colonized by
R. intraradices (Araim et al. 2009) and p-hydroxybenzoic acid
and rutin in Viola tricolor colonized by R. irregularis (Zubek
et al. 2015), and the total content of flavonoids in Libidibia fer-
rea colonized by Gigaspora albida and gallic acid in Valeriana
Jjatamansi colonized by a consortium of three different isolates
of R. intraradices spp. (Silvia et al. 2014; Jugran et al. 2015)
were increased by the AMF symbiosis.

Saponins
Saponins are characterized by a polycyclic aglycone moi-

ety with either a steroid (steroidal saponins) or triterpenoid
(triterpenoidal saponins) attached to a carbohydrate unit (a
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monosaccharide or oligosaccharide chain) (Hussein and
El-Anssary 2018). Among these compounds, a few have
demonstrated pharmacological properties, such as antitu-
mor, sedative, expectorant, analgesic, and anti-inflammatory
(Hussein and El-Anssary 2018). Arbuscular mycorrhizal
fungi were reported to enhance the production of saponins
in medicinal plants (Table 1). For instance, the content of
glycyrrhizic acid, a triterpenoid saponin used to alleviate
bronchitis, gastritis, and jaundice (Pastorino et al. 2018), was
increased by 0.38-1.07-fold and by 1.34-1.43-fold after 4
and 30 months, respectively, in Glycyrrhiza glabra (liquo-
rice) plants colonized by F. mosseae and D. epigaea alone or
in combination, grown in sand under greenhouse conditions
(Liu et al. 2007). Similarly, Johny et al. (2021) reported an
increase of glycyrrhizic acid concentration in Glycyrrhiza
glabra inoculated with C. etunicatum under greenhouse
conditions.

Other chemical compounds

Hypericin and pseudohypericin are naphthodianthrones
(anthraquinone derivatives) mainly extracted from Hyperi-
cum species (Ayan and Cirak 2008). They have many phar-
maceutical properties, such as sedatives, antiseptics, and
antispasmodics (Baytop 1999). Zubek et al. (2012) reported
an increased content of hypericin and pseudohypericin in
Hypericum perforatum colonized by R. intraradices alone
or by a mixture of F. constrictum, F. geosporum, F. mosseae,
and R. intraradices, under greenhouse conditions.

Withaferin-A, a steroidal lactone, traditionally used
in ayurvedic medicine (Mirjalili et al. 2009), has a wide range
of pharmacological activities including cardioprotective, anti-
inflammatory, immuno-modulatory, anti-angiogenesis, anti-
metastasis, and anti-carcinogenic properties. Johny et al.
(2021) reported that association between the medicinal plant
Withania somnifera and R. irregularis increased the concen-
tration of withaferin-A as compared to non-inoculated plants
under greenhouse conditions.

It should be noted, however, that AMF showed a neu-
tral or decreased effect on the production of certain sec-
ondary metabolites. For example, Nell et al. (2010) found
that F. mosseae has no effect on the total concentrations of
phenolic and rosmarinic acid in the roots of Salvia offici-
nalis; and Geneva et al. (2010) showed that R. intraradices
decreased total phenol and flavonoid contents in the leaves
of Salvia officinalis. Similarly, Zubek et al. (2010) reported
significant differences in the effectiveness of different AMF
species tested in Inula ensifolia. An increased production
of thymol derivatives was found in plant roots inoculated
with Rhizophagus clarus, while a decreased production
of these metabolites was reported in roots inoculated with
R. intraradices under greenhouse conditions (Zubek et al.

@ Springer

2010). Moreover, changes in secondary metabolite compo-
sition have been observed in medicinal plants inoculated
with AMF. For instance, Geneva et al. (2010) observed a
modified composition of essential oils and promotion of the
relative quantities of bornylacetate, 1,8-cineole, a-thujones,
and p-thujones in Salvia officinalis associated with R. intra-
radices. Similarly, Artemisia umbelliformis inoculated with
an alpine microbial community containing Planticonsortium
tenue (formerly Glomus tenue), R. intraradices, G. claroi-
deum/etunicatum, and a new Acaulospora species showed
a significant increase of E-ocimene concomitant with a
decrease of E-2-decenal and (E, E)-2-4-decadienal (Binet
et al. 2011). Therefore, the selection of the most effective
AMEF strains for improving the accumulation of desirable
active compounds needs to be taken into account.

Effect of AMF on biomass and production
of secondary metabolites in medicinal plants
under biotic and abiotic stress conditions

Drought, salinity, heavy metals, pests, and diseases can
impact plant growth, reducing their biomass (Hashem et al.
2014; Alwhibi et al. 2017) and consequently affecting the
production of secondary metabolites. Arbuscular mycor-
rhizal fungi can increase the tolerance/resistance of plants
against those abiotic and biotic stresses, potentially influenc-
ing secondary metabolites production (Hashem et al. 2018).

Several studies have shown that AMF symbiosis can
improve the growth and secondary metabolite production
of medicinal plants under water deficit conditions. For
example, a recent study by Machiani et al. (2021) showed
that inoculation with F. mosseae significantly improved bio-
mass and essential oil content (mainly thymol, p-cymene
and y-terpinene) of Thymus vulgaris plants grown in a 2-year
field experiment in intercropping with soybean under water
deficit conditions. Similarly, Mirzaie et al. (2020) reported
that inoculation with F. mosseae significantly increased
geranial and f-pinene (both belong to oxygenated monoter-
penes essential oils) yields of Cymbopogon citratus grown
in a greenhouse pot experiment under moderate water stress
conditions (50% field capacity).

Salt stress stimulates the accumulation of phenolic com-
pounds in plants as a general defense mechanism to stress
(Parvaiz and Satyawati 2008). Intriguingly, this abiotic stress
is a principal elicitor influencing synthesis of compounds in
many herbs (e.g., cinnamic, gallic, and rosmarinic acids in
Thymus vulgaris; glycyrrhizin in Glycyrrhiza glabra; quinic,
gallic, and protocatechuic acids in Polygonum equisetiforme)
(Bistgani et al. 2019; Behdad et al. 2020; Boughalleb et al.
2020). A recent study by Amanifar and Toghranegar (2020)
reported that moderate salt stress stimulated higher produc-
tion of valerenic acid in Valeriana officinalis than a situation
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without salt stress. Interestingly, this increase was significant
when the plants were colonized by F. mosseae. Duc et al.
(2021) found that a mixture of six AMF species (C. etunica-
tum, C. claroideum, F. mosseae, F. geosporum, Rhizoglomus
microaggregatum, and R. intraradices) increased the toler-
ance of Eclipta prostrata under moderate salt stress in a
pot experiment under controlled conditions, inducing major
changes in its polyphenol profile.

Minerals, such as cadmium (Cd) and zinc (Zn), also
were reported to impact secondary metabolite production in
medicinal plants colonized by AMF. For instance, Hashem
et al. (2016) observed that an AMF mixture comprising C.
etunicatum, F. mosseae, and R. intraradices enhanced the
chlorophyll and protein content and considerably reduced
lipid peroxidation in Cassia italica plants under Cd stress
in a pot experiment. Moreover, AMF inoculation caused
a further increase in proline and phenol content ensuring
improved plant growth under stress conditions.

Arbuscular mycorrhizal fungi symbiosis improved the
disease tolerance of medicinal plants through the mediation
of secondary metabolites. For instance, Jaiti et al. (2007)
reported that a complex of native AMF species increased
the tolerance of Phoenix dactylifera (a plant characterized by
high nutritional and therapeutic value of its fruits (Al-Alawi
et al. 2017)) against bayoud disease (the most damaging vas-
cular disease of date palm caused by Fusarium oxysporum f.
sp. albedinis) by increasing the enzymatic activities of per-
oxidases and polyphenoloxidases, which are associated with
an increase of phenolic compounds in the cell wall.

Mechanisms by which AMF symbiosis promotes
secondary metabolism in medicinal plants

It is often considered that the increased concentrations of
various secondary metabolite groups (e.g., flavonoids, phe-
nolics) in AMF-colonized plants are a result of the elicita-
tion of several defense response pathways as reviewed by
Zeng et al. (2013). For instance, terpenoids in the carotenoid
pathway, flavonoids, phenolic compounds, and some alka-
loids (such as hyoscyamine and scopolamine) in the phenyl-
propanoid pathway are often increased in AMF-colonized
plants (Kaur and Suseela 2020). These pathways play dif-
ferent roles in the plant-AMF symbiosis, such as signaling,
stress tolerance, nutrient uptake, and resistance against biotic
and abiotic stresses. However, it is still not totally clear how
AMF trigger changes in the concentrations of phytochemi-
cals in plant tissues (Toussaint et al. 2007).

Many studies have focused on the mechanisms by which
AMEF modulate the production of terpenoids, phenolic com-
pounds, and alkaloids in plants. Terpenoids are synthesized
from isoprene units in the methyleritrophosphate (MEP)
and the mevalonic acid (MVA) pathways (Zhi et al. 2007).

Phenolic compounds (e.g., phenols, flavonoids, protantho-
cyanidins, tannins) are synthesized in the shikimic acid path-
way where phenylpropanoids are formed and in the malonic
acid pathway (Oksana et al. 2012). Most of the alkaloids are
synthesized from various biological precursors (most amino
acids) such as tyrosine and tryptophane in the shikimic acid
pathway (Facchini 2001) (Fig. 1).

Several common nutritional and non-nutritional factors
have been proposed to explain the increased production of
secondary metabolites in AMF-colonized plants (Kapoor
et al. 2017; Sharma et al. 2017; Dos Santos et al. 2021)
(Fig. 2).

Regarding nutritional factors, the increase was first attrib-
uted to the enhanced uptake of nutrients by AMF-colonized
plants (Lima et al. 2015; Oliveira et al. 2015; Riter et al.
2014). For example, the role of phosphorus in the synthesis
of terpenoids precursors via the MVA (acetyl-CoA, ATP,
and NADPH) as well as the MEP (glyceraldehyde phos-
phate and pyruvate) pathways is widely recognized (Kapoor
et al. 2017). Phosphorus enhances terpenoid biosynthesis by
increasing the concentration of pyrophosphate compounds,
such as isopentenyl pyrophosphate (IPP) and dimethylallyl
pyrophosphate (DMAPP) (Kapoor et al. 2002, 2004; Zubek
et al. 2010), which contain high-energy phosphate bonds.
However, Khaosaad et al. (2006) found that the concentra-
tion of essential oils significantly increased in two Origanum
sp. genotypes colonized by F. mosseae, while the levels of
essential oils in plants treated with P did not change. This
suggests that the increased concentration of essential oils in
AMF-colonized Origanum sp. plants may directly depend on
the association with the fungus. In another study by Zubek
et al. (2012), AMF colonization improved hypericin and
pseudohypericin concentrations in Hypericum perforatum,
probably because of an improved plant P and/or N nutri-
tion in presence of the fungi. The increased growth through
improved nutrients and water uptake of AMF-colonized
plants also explains the enhanced production of these com-
pounds in plants. It is well known that the AMF symbiosis
increases shoot biomass, shoot length, and number of nodes
in Ocimum basilicum (Gupta et al. 2002; Khaosaad et al.
2008; Rasouli-Sadaghiani et al. 2010; Copetta et al. 2006).
Elevated leaf biomass results in increased photosynthetic
capacity (Dave et al. 2011; Zubek et al. 2010), thus increas-
ing the production of total photosynthates (e.g., ATP, carbon
substrate, glyceraldehyde-3-phosphate, pyruvate, phospho-
enolpyruvate, or erythrose-4-phosphate) required for terpe-
noids, phenolics, and alkaloid biosynthesis (Cao et al. 2008;
Hofmeyer et al. 2010; Niinemets et al. 2002).

Regarding non-nutritional factors, alterations in the
levels of phytohormones in AMF-colonized plants may
reflect their enhanced production (Mandal et al. 2013,
2015a; Zubek et al. 2012). Indeed, it has been shown
that the AMF symbiosis changes the concentrations of
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Fig. 1 Main pathways of secondary plant metabolism resulting in the
production of alkaloids, phenolics, saponins, and terpenes (in gray,
green, pink, and brown shaded portions, respectively) mentioned in

phytohormones, such as jasmonic acid (JA), gibberellic
acid (GA;), and cytokinins (Allen et al. 1980, 1982; Hause
et al. 2002; Shaul-Keinan et al. 2002) in plants. Moreover,
it has been reported that phytohormones play a role in the
secondary metabolism of plants (An et al. 2011; Maes and
Goossens 2010; Maes et al. 2008). For instance, JA has
been reported to coordinate transcriptional activation of
sesquiterpenoid biosynthetic gene expression in Artemi-
sia annua (Maes et al. 2011). Furthermore, the phytohor-
monal alterations of GA;, BAP (6-benzylaminopurine),
and JA have been reported to promote the formation of
glandular trichomes (Maes et al. 2011) which is positively
correlated with an enhanced concentration of terpenoids
in plant leaves. Glandular trichomes are the epidermal
secretory structures in which terpenoids are synthesized
and stored in plants (Covello et al. 2007). The enhanced
concentration of terpenoids (essential oils) and increased
glandular trichome density has been observed in a number
of plants (e.g., Mentha x piperita, Phaseolus lunatus, and
Lavendula angustifolia) (Ringer et al. 2005; Bartram et al.
2006; Behnam et al. 2006). Thus, an increase in trichome
density upon mycorrhization often has been linked with
an enhanced concentration of terpenoids (Copetta et al.
2006; Kapoor et al. 2007; Morone-Fortunato and Avato
2008). The modification of these secondary metabolite
concentrations in AMF-plants also may be due to signal-
ing mechanisms between host plants and the fungi (Larose
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et al. 2002; Rojas-Andrade et al. 2003; Xie et al. 2018). For
example, Zhang et al. (2013) have reported that F. mos-
seae associated with Trifolium repens promoted changes
in the concentration of signaling molecules, such as nitric
oxide, salicylic acid (SA), and hydrogen peroxide, which
influence the activation of key enzymes in phenolics bio-
synthesis (e.g., L-phenylalanine ammonia lyase (PAL), and
chalcone synthase (CHS)). Moreover, AMF may increase
the expression of genes encoding enzymes leading to the
biosynthesis of these compounds in mycorrhizal plants
(Andrade et al. 2013; Battini et al. 2016; Mandal et al.
2015a, b; Xie et al. 2018). For example, induction of ter-
pene synthase (TPS) family genes TPS31, TPS32, and
TPS33 has been observed in AMF-colonized tomato plants
and probably can explain the changes in their terpenoid
profile (Zouari et al. 2014). Mandal et al. (2015a) reported
the increase of artemisinin in leaves of Artemisia annua
inoculated with R. intraradices. This result was correlated
with a higher expression of key biosynthesis genes (such
as an allene oxidase synthase gene encoding one of the
key enzymes for JA production) via enhanced JA levels.
In addition, AMF may enhance the biosynthesis of these
compounds either by increasing the production of precur-
sors through the induction of metabolic biosynthetic path-
ways (Lohse et al. 2005; Zimare et al. 2013; Dos Santos
et al. 2021) and/or by induction of key synthase enzymes
(Mandal et al. 2013; Shrivastava et al. 2015; Sharma et al.
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Fig.2 Non-nutritional and nutritional factors influencing the produc-
tion of secondary metabolites (i.e., terpenoids, phenolics, and flavo-
noids) in AMF-colonized plants. Non-nutritional factors (leftside in
orange): AMF colonization results in the activation of plant defense
mechanisms with the production of phenolics and flavonoids. Change
in phytohormone levels, such as jasmonic acid (JA), gibberellic acid
(GA;), and 6-benzylaminopurine (BAP), increases the number and
size of glandular trichomes and leads to transcriptional activation of
sesquiterpenoid biosynthetic gene expression. AMF induce the pro-
duction of signaling molecules, such as nitric oxide, salicylic acid
(SA), and hydrogen peroxide, which influence the activation of key
enzymes such as L-phenylalanine ammonia lyase (PAL) and chalcone
synthase (CHS), for the biosynthesis of phenolic compounds. Nutri-

2017; Dos Santos et al. 2021). For example, mycorrhizal
colonization (R. intraradices) has been found to elevate the
transcript levels of two of the pivotal enzymes of the MEP
pathway, 1-deoxy-D-xylulose 5-phosphate synthase (DXS),
and 1-deoxy-D-xylulose 5-phosphate reductoisomerase
(DXR) in wheat roots (Walter et al. 2000). DXS is an
enzyme that catalyzes the initial step of the MEP pathway,
where many isoprenoids are biosynthesized, and DXR is
an enzyme that is immediately downstream from DXS in
the MEP pathway (Walter et al. 2000). In another study by
Walter et al. (2002), DXS2 transcript levels were strongly
stimulated in Medicago truncatula roots upon colonization
by AMF (a mixture of F. mosseae and R. intraradices),
and were correlated with the accumulation of carotenoids
and apocarotenoids. Finally, alterations in these secondary
metabolites’ production also can result from plant defense
responses to AMF colonization (Mechri et al. 2015; Zubek
et al. 2012, 2015; Torres et al. 2015).

Mycorrhizal = - l

13

Increased nutrients and
==r water uptake

plant MRy ( P o
s = P increases pyrophosphate compounds (IPP,

L DMAPP) for terpenoids biosynthesis

tional factors (rightside in blue): AMF colonization increases plant
nutrients and water uptake leading to increased plant growth and
leaf biomass. This results in enhanced plant photosynthetic capac-
ity and increased production of photosynthates which are precursors
of different secondary metabolites. Increased leaf biomass leads to
an increased density of glandular trichomes in which terpenoids are
synthesized and stored. This figure is adapted with permission from
Springer Nature Customer Service Centre GmbHS: Springer Nature,
Phytochemistry Reviews. Insight into the mechanisms of enhanced
production of valuable terpenoids by arbuscular mycorrhiza (Kapoor
et al. 2017). We thank Evangelia Tsiokanou (National and Kapodis-
trian University of Athens, Greece) for graciously providing the pic-
ture of the plant used in this figure

Various studies have reported increased production of
alkanin/shikonin and their derivatives (A/S) in cell cultures
of Boragenaceous plants (e.g., Lithospermum erythrorhizon,
Alkanna tinctoria, and Arnebia euchroma) after applying
exogenous jasmonate (Gaisser and Heide 1996; Urbanek
et al. 1996; Bychkova et al. 1993). Alkanin/shikonin are naph-
toquinone compounds with a broad spectrum of biological
activities, such as wound healing, anti-inflammatory, and anti-
cancer (Kheiri et al. 2017; Kourounakis et al. 2002; Anddjar
et al. 2013). Interestingly, AMF colonization of various other
plants, such as Hordeum vulgare, Cucumis sativus, Medicago
truncatula, and Glycine max, has resulted in the increase of
endogenous levels of jasmonates within roots (Hause et al.
2002; Vierheilig and Piché 2002; Stumpe et al. 2005; Meixner
et al. 2005). Jasmonic acid and its derivatives, commonly
termed jasmonates, are hormonal regulators involved in plant
responses to abiotic and biotic stresses as well as in plant
development (Creelman and Mullet 1997; Wasternack 2007).
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The level of endogenous jasmonate was shown to increase
after wounding or pathogen attack. There is no direct study
on the effects of AMF on A/S production in these Boragena-
ceous medicinal plants. However, these findings suggest that
AMF could be a potential factor enhancing A/S production
in mycorrhizal Boraginaceae plants through the regulation
of jasmonate.

Cultivation techniques for secondary metabolite
production in mycorrhiza-associated medicinal
plants

Plant secondary metabolites are often extracted from indi-
viduals grown in nature. For instance, around 95% of the
medicinal plants used in the Indian herbal industry today
are collected from the wild (Lakshman 2016). However, the
quantity and quality of secondary metabolites from plants
grown in nature are erratic, often influenced by abiotic
and biotic factors, such as extreme temperatures, drought,
alkalinity, salinity, and plant pathogens, impacting the
metabolic pathways responsible for the accumulation of
bioactive substances (Dayani and Sabzalian 2017; Giurgiu
et al. 2017; Ramakrishna and Ravishankar 2011). Further-
more, overharvesting of medicinal plant species in nature
could place them at a high risk of extinction (Roberson
2008). Finally, growing medicinal plants under field condi-
tions may be time consuming, especially for woody plants
(e.g., Taxus brevifolia and Lithospermum erythrorhizon)
and slow-growing perennial plants (e.g., Panax ginseng),
which can take several years to reach the desired metabo-
lites production (Malik et al. 2011; Chandran et al. 2020;
Yazaki 2017; Murthy et al. 2014). Therefore, there is a
need for alternative production systems.

Production of medicinal herbs in controlled environ-
ments provides opportunities for improving the quality,
purity, consistency, bioactivity, and biomass production
of the raw material (Hayden 2006). In order to secure the
commercial production of secondary metabolites, several
cultivation techniques have been developed, potentially
compatible with AMF application.

Substrate-based cultivation systems
Greenhouse cultivation

Greenhouses are widely used for crop production all-
year round. Environmental parameters (e.g., temperature,
humidity) are controlled, providing optimal growth con-
ditions to the target crop or plant, favoring development,
and thus safeguarding the yield and consistent production
of high-quality bioactive compounds (Panwar et al. 2003).
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Many medicinal plant species, such as Echinacea
angustifolia, Echinacea purpurea, Ocimum basilicum,
Withania somnifera, and Psoralea croylifolia, have been
grown under greenhouse conditions (Zheng et al. 2006;
Panwar et al. 2003). Similarly, many, such as Artemisia
annua, Curcuma longa, Coleus forskohlii, Glycyrrhiza
glabra, and Gloriosa superba, have been associated with
AMF under greenhouse conditions with high production
of bioactive compounds reported (Huang et al. 2011;
Dutta and Neog 2016; Sailo and Bagyaraj 2005; Liu et al.
2007; Pandey et al. 2014). Therefore, growing medicinal
plants in association with AMF under greenhouse con-
ditions could represent a suitable method for improving
the quality and production of bioactive compounds at
large scale.

Substrate-free cultivation systems
Aeroponics

In the aeroponics cultivation system, the roots of plants are
hung inside a sealed container in darkness and exposed to a
water nutrient-rich spray through atomizers (Lakhiar et al.
2018) (Fig. 3a). This technique has been developed for the
cultivation of many different plants, such as horticultural
crops (e.g., Lactuca sativa, Cucumis sativus, and Solanum
lycopersicum) (Movahedi and Rostami 2020), medicinal
herbs (e.g., Anemopsis californica, Crocus sativus, and
Valeriana officinalis) (Hayden 2006; Souret and Weathers
2000; Tabatabaei 2008), and medicinal crops (e.g., Arctium
lappa and Zingiber officinale) used to extract secondary
metabolites from their roots (Hayden et al. 2004a, b). It has
been reported that Ocimum basilicum grown under aero-
ponic conditions had a higher yield, comparable phenolic
and flavonoid contents, and antioxidant properties compared
to plants grown in a solid substrate (Chandra et al. 2014).
Similarly, Cichorium intybus, Withania coagulans, and Echi-
nacea sp. grown in an aeroponic system had higher yields
compared to the same plants grown in soil (Movahedi and
Rostami 2020). This system was efficient for the production
of bioactive molecules from roots of medicinal crops, such
as chlorogenic acid in A. lappa and -sitosterol in Cannabis
sativa (Hayden 2006; Ferrini et al. 2021). For various medic-
inal plants, root apices constitute the main sites where active
substances are produced and stored (Watson et al. 2015).
However, these active substances are almost impossible to
harvest through conventional farming methods. By using the
Plant Milking Technology (Plant milking®) (https://www.
plantadvanced.com/home) for Morus alba (an emblematic
tree of traditional Chinese medicine, rich in alkaloids and
flavonoids), Chajra et al. (2020) obtained an extract enriched
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Fig.3 (a) Morus alba trees cultivated in aeroponic conditions and (b)
close-up view of Morus alba roots grown aeroponically (Chajra et al.
2020). (¢) Anchusa officinalis associated with Rhizophagus irregula-
ris MUCL 41,833 growing in a semi-hydroponic cultivation system

in prenylated flavonoids that was 18-fold higher than com-
mercial root extracts (Fig. 3a, b).

Interestingly, aeroponic cultivation systems also have
been developed and used for the production of AMF inoc-
ulum in which roots (and AMF) were bathed in a nutrient
solution mist (Zobel et al. 1976; Hung and Sylvia 1988).
For the production of AMF, plants are precolonized prior
to their introduction into the system, through precultur-
ing plant seedlings and AMF propagules (both preferably
surface-sterilized) in pots containing a substrate (e.g.,
mixture of sand and perlite). Then the precolonized plants
are transferred to the aeroponic container where the roots
(and AMF) develop. The container is usually protected
from light to prevent the development of algae (Jarstfer
and Sylvia 1995). The mist can be applied by various tech-
niques that differ mainly in the size of the fine droplets
produced (e.g., atomizing disk, pressurized spray through
a microirrigated nozzle, an ultrasonically generated fog of
nutrient solution with droplets of 3—10-pm diameter, and
ultrasonic nebulizer technology resulting into microdro-
plets of 1 pm in diameter) (IJdo et al. 2011; Jarstfer and
Sylvia 1995; Mohammad et al. 2000). Mohammad et al.

and (d) close-up view of a plant (UCLouvain, greenhouse). (e) Plant-
based bioreactor system for the mass production of AMF as described
in Declerck et al. (2009) (WO/2009/ 090,220)

(2000) reported a high number of viable AMF propagules
obtained in aeroponic culture, and such inoculum was
used in a field experiment (Mohammad et al. 2004). Thus,
aeroponic systems could potentially be used for growing
medicinal plants associated with their AMF partners in
order to obtain substantial biomass and production of sec-
ondary metabolites.

Hydroponics

Hydroponic systems include all systems that deliver nutri-
ents in liquid, with or without a solid medium to anchor
plant roots (Hayden 2006) (Fig. 3¢). Such systems have
been applied to several medicinal plants, such as Echi-
nacea angustifolia, Ocimum basilicum, Leonurus quin-
quelobatus, Mentha piperita, Salvia officinalis, Achillea
millefolium, Bidens tripartite, Leonurus sibiricus, Linum
usitatissimum, Hypericum perforatum, and Tanacetum
parthenium (Maggini et al. 2012; Mairapetyan et al. 2018;
Simeunovic 2002). Thanks to these systems, the biosyn-
thesis of active compounds, such as tropane alkaloids in
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Datura innoxia, total phenols and rosmarinic acid in Oci-
mum basilicum, and oil production in Valeriana officinalis,
has been obtained (Gontier et al. 2002; Sgherri et al. 2010;
Tabatabaei 2008).

Different hydroponic culture systems also exist for the
mass production of AMF. They mainly differ in the mode
of aeration and application of the nutrient solution (IJdo
et al. 2011). For instance, in the static hydroponic culture
system, the nutrient solution is not flowing and needs to
be aerated via an aeration pump to prevent roots of mycor-
rhizal plants from suffering oxygen deprivation (IJdo et al.
2011). Via this system, Dugassa et al. (1995) obtained
large quantities of mycorrhizal Linum usitatissimum plant
roots as well as extramatrical mycelium and chlamydo-
spores free of residues from solid substrate components.
In another nutrient film technique (NFT) hydroponic sys-
tem, a thin nutrient solution (i.e., film) flows into inclined
channels (also called gulls) where the plant roots and AMF
develop (IJdo et al. 2011). This technique has been used to
culture AMF since the 1980s with the production of many
sporocarps by F. mosseae (Elmes and Mosse 1984). Later,
Jdo et al. (2011) developed an innovative low-cost in vitro
plant-based bioreactor system for the mass production of
AMPF. In this system, Medicago truncatula roots and AMF
(Glomus sp.) were grown in a sterilized tube connected at
both extremities to a reservoir containing sterilized liquid
culture medium. This nutrient solution circulates across
the mycorrhizal root system, feeding the plant/fungus
associates, while the plant shoot develops in open-air con-
ditions inside a controlled growth chamber (Fig. 3e). The
hydroponic system also has been developed for studying
the effect of the AMF symbiosis (e.g., P uptake) on maize
plants (Garcés-Ruiz et al. 2017). Therefore, hydroponic
or semi-hydroponic systems could potentially be com-
bined with medicinal plants and AMF in order to obtain
increased production of secondary metabolites. In a recent
study, Cartabia et al. (2021) showed how the R. irregula-
ris modified the primary and secondary metabolism and
the root exudates of the medicinal plant Anchusa offici-
nalis growing under a semi-hydroponic cultivation system
(Fig. 3c). Moreover, permeabilization treatments can be
conducted in these cultivation systems, in order to extract
the compounds exuded by roots in a non-destructive pro-
cess that “milks” the same plants several times a year. For
example, in the study by Gontier et al. (2002), Datura
innoxia plants were cultivated in hydroponic conditions
(no AMF were involved) and the plant roots subsequently
permeabilized with Tween 20. As a result, a high con-
centration of tropane alkaloids (TA) (e.g., hyoscyamine
and scopolamine) was detected in the nutrient solution.
Interestingly, all the plants were able to survive after
being rinsed and replaced in the hydroponic system. This
approach allows the permeabilization of the plant multiple
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times without loss of viability (Gontier et al. 2002). More-
over, different permeabilization treatments (e.g., doses and
duration of Tween 20, addition of TA precursors) can be
chosen to release additional bioactive compounds in the
nutrient solution (i.e., TA precursors (phenylalanine and
ornithine) leading to 10-80 mg/l TA in the nutrient solu-
tion) (Gontier et al. 2002). This study, however, did not
include association with AMF.

In vitro production systems

Micropropagation or in vitro propagation is the clonal propa-
gation of plants by tissues, cells, or organs. It involves the
aseptic culture of explants of tissues or organs in closed ves-
sels using defined culture media in a controlled environment
(Debnath and Arigundam 2020).

Whole plant in vitro culture

In vitro cultivation of whole plants is widely used for mass
propagation, conservation of germplasm, production of bio-
active compounds, and genetic improvement of a large num-
ber of medicinal plant species (Nalawade and Tsay 2004). For
instance, protocols have been developed for the in vitro mass
propagation of Limonium wrightii, Adenophora triphylla,
Gentiana davidii, Anoectochilus formosanus, Scrophularia
yoshimurae, Pinellia ternata, Bupleurum falcatum, Zingiber
zerumbet, Dendrobium linawianum, and Fritillaria hupehen-
sis via shoot morphogenesis, for Angelica sinensis and Cory-
dalis yanhusuo via somatic embryogenesis, and for Taxus
mairei, Angelica dahurica, Angelica sinensis, Dioscorea
doryophora, Gentiana davidii, and Bupleurum falcatum via
cell suspension cultures (Nalawade and Tsay 2004).

The association of AMF with whole plants in vitro has
been described in several studies (e.g., Dupré de Boulois
et al. 2006; Voets et al. 2005; Lalaymia and Declerck 2020).
For instance, using the mycorrhizal donor plant in vitro cul-
tivation system, Voets et al. (2009) obtained fast and homog-
enous mycorrhization of Medicago truncatula seedlings by
placing the plantlets in an actively growing mycelial net-
work arising from a mycorrhizal donor plant (Fig. 4a). In
another system, called the half-closed arbuscular mycorrhi-
zal plant in vitro culture system, roots of micropropagated
potato plantlets were associated with actively growing AMF
propagules, while the shoots developed in open-air condi-
tions (Voets et al. 2005) (Fig. 4c). Applying both systems,
several thousand spores of R. intraradices were produced on
an extensive extraradical mycelium and abundant root colo-
nization has been obtained. Hence, they could be extended
to medicinal plants to enhance secondary metabolite produc-
tion (Fig. 4).
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Fig.4 (a) A 145-mm mycorrhizal donor plant in vitro culture system.
(i) The donor plant is Crotalaria spectabilis growing in a root com-
partment (RC) in close association with the arbuscular mycorrhizal
fungus Rhizophagus irregularis MUCL 41833 and (ii) the receiver
plants are Alkanna tinctoria growing under a lid in a hyphal com-
partment (HC) in which only a profuse, active extraradical mycelium
network proliferates; (b) close-up view of extensive development of
extraradical mycelium and spores in the HC; (¢) a 90-mm half-closed
arbuscular mycorrhizal plant in vitro culture system allowing the
growth of the roots of Lithospermum erythrorhizon in close associa-
tion with R. irregularis MUCL 41833; (d) close-up view of the red-
dish roots due to shikonin production; (e) a 90-mm root organ cul-
ture in vitro system allowing the growth of Ri T-DNA transformed A.
tinctoria hairy root (Rat et al. 2021) in assocation with R. irregularis
MUCL 41833 in the RC; (f) close-up view of the red AMF spores
produced in the RC (arrows). We thank Alicia Varela Alonso (Institut
fiir Pflanzenkultur, Germany) for graciously providing the pictures ¢
and d and Angélique Rat (Ghent University, Belgium) for providing
the Alkanna tinctoria hairy roots used in this figure. The system (a)
starts with a donor plant (Crotalaria spectabilis) introduced into the
RC of a bi-compartmented system (a small Petri dish indicated by
a dashed circle (RC) (90 mm diameter)) placed in a large Petri dish
(HC) (145 mm diameter). A hole is made in both Petri dishes allow-
ing the shoot to extend outside the system. Approximately 500 spores
from an AMF in vitro culture are placed in contact with the roots.
The roots and AMF are kept in the dark during the whole growth

period, while shoots remain under light. Once the donor plant is well
colonized, the extraradical mycelium starts to cross the partition wall
separating the RC from the HC, developing profusely in the HC. At
that time, one or several receiver micropropagated plants (Alkanna
tinctoria) are placed in the HC with their roots in contact with the
extraradical mycelium. The plants are planted inside the HC under a
lid. Briefly, the base of a cylinder (150 mm high, 100 mm diameter)
matches a hole made in the lid of the 145-mm Petri dish. The cylinder
top is glued to a 100-mm Petri dish lid. The culture dishes containing
the A. tinctoria plants are sealed and covered, up to the base of the
cylinder, by black plastic bags. The systems are incubated in a growth
chamber to allow plant and AMF growth (detailed procedures of this
system can be found in Lalaymia and Declerck (2020)). For system
(¢), homogenously chopped agar containing AMF propagules from
an AMF in vitro culture is inoculated to the newly growing roots of
a micropropagated seedling of Lithospermum erythrorhizon. After a
few days, the new hyphae growing from the spores colonize the roots
of L. erythrorhizon. In system (e), fine root structures of Ri T-DNA
transformed Alkanna tinctoria hairy roots are cut and placed in the
RC part of a bi-compartmental Petri dish. Chopped agar containing
AMF propagules is spread on the young parts of the hairy roots. After
a few days, new hyphae growing from spores colonize the A. tinctoria
hairy root, producing new spores and extensive mycelium after sev-
eral months. All these three techniques should be conducted under a
laminar flow hood with sterilized laboratory materials
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Hairy root cultures (HRCs)

Hairy root cultures are cultures raised after the infection of
explants/cultures by the gram-negative soil bacterium Agro-
bacterium rhizogenes® (Tepfer and Casse-Delbart 1987). This
bacterium leads to the neoplastic growth of roots which are
characterized by high growth rates in hormone-free media and
genetic stability (Pistelli et al. 2010). Ri T-DNA transformed
hairy roots grow faster than adventitious roots, or even conven-
tional cultures in which plants are growing in soil or substrate
(Paek et al. 2009; Yu et al. 2005). For instance, Panax ginseng,
a valuable medicinal plant originating from Asia, has been used
as a healing drug and health tonic since ancient times (Tang and
Eisenbrand 1992) due to its production of triterpene saponins,
collectively called ginsenosides (Dewick 1997; Huang 1999).
However, it generally takes 5 to 7 years in the field to attain
maturity and to reach the harvesting stage for extraction of bio-
active compounds (Murthy et al. 2014). To solve this problem,
many different techniques have been explored, such as culture
of callus tissues, suspended cells, adventitious roots, and HRCs
(Furuya et al. 1973, 1983; Paek et al. 2009; Shi et al. 2021). It
has been reported that HRCs grow more rapidly and produce
a higher level of ginsenosides than the suspended cells and
adventitious root cultures (Inomata et al. 1993; Yoshikawa and
Furuya 1987). Moreover, HRCs produce the same phytochemi-
cal patterns as the wild-type root organs and accumulate higher
levels of certain valuable compounds compared with adventi-
tious roots and native-grown plant roots (Kai et al. 2011; Hao
et al. 2020; Miao et al. 2017). For instance, the total tanshinone
content reached 15.4 mg/g dry weight (DW) in transgenic Sal-
via miltiorrhiza hairy roots, while only 1.7-9.7 mg/g DW tan-
shinone was produced in roots of field-grown plants (Kai et al.
2011; Hao et al. 2020). High stability and productivity, high bio-
mass production, and efficient biosynthetic capacity make HRCs
valuable biotechnological tools for the production of plant sec-
ondary metabolites (Pistelli et al. 2010; Gutierrez-Valdes et al.
2020). Some examples of metabolites produced using HRCs
are tropane alkaloids, such as scopolamine and hyoscyamine
(Jouhikainen et al. 1999; Hékkinen et al. 2016; Guo et al. 2018;
Khezerluo et al. 2018), catharanthine (Hanafy et al. 2016), gin-
senosides (Woo et al. 2004; Ha et al. 2016), solanoside (Putalun
et al. 2004), and anthraquinones (Perassolo et al. 2017). The
studies mentioned here, however, did not involve inoculation
with AMF.

In order to upscale production and commercialize second-
ary metabolites, various conventional bioreactors, broadly
classified as liquid phase, gas phase, or hybrid reactors, have
been employed for the mass production of HRCs, which per-
mit the growth of interconnected tissues normally unevenly

2 Now called Rhizobium rhizogenes.
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distributed throughout the vessel. For instance, increased
production of terpenoid indole alkaloid and artemisinin was
obtained with HRCs of Rauwolfia serpentina and Artemi-
sia annua grown in different reactors (no AMF involved)
(Mehrotra et al. 2015; Patra and Srivastava 2014). Interest-
ingly, the in vitro large-scale production of AMF is mostly
based on HRCs (Declerck et al. 1996; Declerck 2006) which
involve the association of AMF propagules with transformed
hairy roots on synthetic mineral media. Arbuscular myc-
orrhizal fungi species grown in HRCs produce viable and
contaminant-free spores (Fortin et al. 2005) (Fig. 4e). From
these studies, we can suggest HRCs of medicinal plants
associated with AMF in bioreactors for the commercial
production of secondary metabolites.

Conclusions

Arbuscular mycorrhizal fungi may confer several benefits to
medicinal plants, such as growth promotion and improved
tolerance to stress conditions. Interestingly, AMF also may
enhance the accumulation of active substances in those
plants. This makes mycorrhizal technology a potential and
sustainable tool for improving the growth and secondary
metabolite production of medicinal plants. Factors such as
light, temperature, humidity, soil fertility, and cultivation
techniques also could influence secondary metabolite pro-
duction by medicinal plants (Szakiel and Paczkowski 2011a,
b). It is thus essential to consider these parameters in fine-
tuning the conditions for optimal production of plants and
associated secondary metabolites. In order to guarantee the
quality of the bioactive substances produced by mycorrhizal
medicinal plants, different substrate or substrate-free sys-
tems were described: aeroponic and hydroponic or semi-
hydroponic systems, micropropagated medicinal plants in
half-closed arbuscular mycorrhizal-plant or mycorrhizal
donor-plant in vitro culture systems, and HRCs. These sys-
tems may provide adequate environmental conditions to the
plants, resulting in improved crop yield and production of
bioactive compounds (Nazari Deljou et al. 2014; Dayani and
Sabzalian 2017).

Whatever the system considered, high yields of secondary
metabolites are dependent on the AMF strain, the plant, and
the environmental growth conditions. Arbuscular mycorrhi-
zal fungi are not host specific, but their affinity to a particu-
lar host can be preferential (Cesaro et al. 2008). Early studies
have documented that different AMF species may induce
differences in secondary metabolite production in the same
host or genotype (Zeng et al. 2013). For example, Glomus
caledonium increased rosmarinic acid and caffeic acid pro-
duction in Ocimum basilicum, whereas F. mosseae enhanced
only caffeic acid production (Toussaint et al. 2007). In a
recent study, Frew (2020) showed that inoculation with four
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commercial AMF species (C. etunicatum, Funneliformis
coronatum, F. mosseae, and R. irregularis) had stronger
effects on cereal crop plant allometric partitioning, foliar
nutrient, and phenolic concentrations than inoculation with
a single commercial AMF species (R. irregularis). Interest-
ingly, the results also showed that the effects of inoculating
with these four commercial AMF species were not differ-
ent from the effects of applying a native AMF inoculant
extracted from field soil, suggesting that commercial AMF
assemblages may provide little to no additional benefit com-
pared with a resident AMF community (Frew 2020). Thus,
a thorough study of AMF species native to medicinal plants
should be conducted before choosing the most effective
AMF species (native or not; single or combinations of dif-
ferent AMF strains) to inoculate target plant species.

The use of commercial inoculants is an option which
should be considered with caution. Indeed, a number of
studies have shown that the absence of a regulatory context
for the industry of AMF inoculants may have contributed to
inoculants of questionable quality. For instance, Salomon
et al. (2022) reported that over 80% of tested commercial
inoculants contained no viable propagules when screened in
sterilized soil. Moreover, when preparing AMF inoculum,
adequate phytosanitary controls must be implemented to
avoid proliferation of unwanted microbes which may subse-
quently contaminate plant production. The use of root organs
in vitro may provide a solution by avoiding the presence of
such contaminants. However, genetically modified plants
may represent a drawback for field application and thus for
commercial mass production, and the number of species
grown in this system remains limited (Ijdo et al. 2011).

Finally, whatever system is used, environmental param-
eters should be considered seriously. For instance, light
intensity is known to strongly impact the development of
AMEF. Konvalinkova and Jansa (2016) reported that a sud-
den decrease of light availability to an AMF-colonized plant
resulted in a rapid decrease of P transfer from the AMF to
the plant, and when arbuscular mycorrhizal plants were
exposed to long-periods of shading (weeks to months), posi-
tive mycorrhizal growth responses often declined. Ballhorn
et al. (2016) also reported that under light limited condi-
tions, vegetative and reproductive traits were inhibited in
AMF inoculated Phaseolus lunatus plants relative to non-
colonized plants. Thus, in controlled conditions, light inten-
sity and quality (e.g., blue/red ratio) should be modulated
to improve and guarantee the symbiosis between AMF and
plants of interest (Konvalinkova and Jansa 2016). Adequate
timing and harvestable plant parts also are crucial factors to
increase the production of secondary metabolites. The best
time to harvest (quality peak season/time of day) should be
determined according to the quality and quantity of biologi-
cally active constituents rather than the total vegetative yield
of targeted medicinal plant parts. Taking into consideration

all these environmental factors would help optimize plant-
AMF associations, increasing biomass and secondary
metabolite production.
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