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Abstract
The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for 
plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or 
indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences 
will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, 
we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and 
alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture 
of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and 
non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by 
shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites,  
and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover 
change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of 
shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza)  can help retain N within the ecosystems by tightening 
the N cycle.
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Introduction

Mycorrhizal fungi assist plants in acquiring nutrients 
(Newsham et  al. 2009; Hewitt et  al. 2020). Currently, 
the Arctic is undergoing vegetation changes including 

“shrubification,” i.e., shrub expansion, as a consequence 
of global warming (Martin et al. 2017; Bjorkman et al. 
2018; Myers-Smith et al. 2019). With changing plant spe-
cies dominance, we also expect a change in mycorrhizal 
association (Lorberau et al. 2017; Zhao et al. 2018; Volwes  
and Björk 2019). Changes in the plant community can 
have strong effects on the soil carbon (C) and nitrogen (N) 
cycle (Schimel and Chapin III 1996, Hicks et al. 2020). It is 
known that in N poor ecosystems, such as alpine and arctic 
tundra, plants with their mycorrhizal fungal associates can 
directly take up free amino acids (fAA) and other mono-
meric N compounds, bypassing the mineralization to inor-
ganic N, and thereby shortcutting the N cycle (Schimel and 
Bennett 2004). Depending on the type of mycorrhizal asso-
ciation, plants can access N bound in soil organic matter 
(SOM) (Read and Perez-Moreno 2003; Clemmensen et al. 
2013). Ecosystems dominated by ectomycorrhizal (ECM) 
fungal communities are characterized by relatively slow 
soil nutrient cycling with only little loss of inorganic nutri-
ents, in contrast to arbuscular mycorrhizal (AM)-supported 
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vegetation types with rapid nutrient cycling and substan-
tial nitrification (Phillips et al. 2013). Ecosystem nutrient 
cycling rates are mainly driven by litter decomposition 
rates. The ECM- and the AM-dominated ecosystems have 
different nutrient turnover rates, as litter from ECM plant 
species in general has a relatively slow decomposition, 
whereas AM plant species exhibit faster litter decomposi-
tion (Cornelissen et al. 2001). Also, litter from plant species 
with ericoid mycorrhizal (ERM) fungi consistently have 
relatively poor decomposability (Cornelissen et al. 2001). 
Hence, there is a strong relation of the dominant plants and 
their mycorrhizal types with decomposition, controlled 
both by the litter quality and the abilities of the mycorrhi-
zal fungi to access N. For example, ECM fungi have about 
twice as many genes related to N metabolism compared to 
AM fungi (Pellitier and Zak 2018).

Free amino acids reside in the soil for a limited time 
and are rapidly taken up by N demanding microorganisms 
(including mycorrhizal hyphae) and plant roots (Jones and 
Kielland 2012; Homyak et al. 2021). Free-living soil micro-
organisms acquire intact fAA rather as a C source than as 
an N source (Soong et al. 2020). Plants with ECM associa-
tions  utilize both organic (such as fAA) and inorganic N 
resources whereas non-mycorrhizal (NM) and AM plants 
rely more on inorganic N sources (Peay 2016). Hence, the 
use of soil N resources in a plant community depends on 
the dominant plant species and their associated mycorrhizal 
types. Theoretically, ECM plants are more competitive than 
AM plants when soil has a high stock of organic N (Peay 
2016). The fAA content in soil is controlled directly by the 
balance between fAA production (mainly hydrolyzation of 
AA polymers), leading to the inflow of amino acids to the 
soil (Wanek et al. 2010; Andresen et al. 2016a), and by plant 
and microbial uptake (consumption) (Näsholm et al. 2009). 
Plants also affect the fAA composition directly by root exu-
dation (Moreau et al. 2019). The relative effectivity of the 
fAA-N uptake in tundra ecosystems has been investigated 
using stable isotope (15N and 13C) tracing. There are no gen-
eral conclusions on dominant mycorrhizal type in organic N 
uptake as yet, but significant differences in plant uptake of 
fAA between types of mycorrhizal associations were found 
in subarctic heaths, suggesting proportionally higher uptake 
of fAA by ECM and ERM fungi than by AM fungi and NM 
types (Andresen et al. 2008; Ravn et al. 2017). ERM fungi 
are capable of acquiring N from peptides and amino acids 
(Bajwa and Read 1985, Sokolovski et al. 2002), and attack 
structural polymers of SOM to access organic N (Read and 
Perez-Moreno 2003; Dynarski and Houlton 2020). The ERM 
symbiosis is therefore often viewed as similarly efficient in 
acquiring N from SOM as the ECM symbiosis (Dynarski 
and Houlton 2020), but ECM fungi may differ widely in 
their capacity to break down organic matter (Clemmensen 
et al. 2021). Hence, vegetation composition can, through its 

association with mycorrhizal fungi, have a strong impact on 
soil chemistry, because plant functional group composition 
and soil fAA content are related (Yano et al. 2013).

Arctic and subarctic ecosystems generally have a slow 
turnover of litter and SOM because of low temperatures 
restricting decomposition, low chemical litter quality, and 
constraints from saturated or very low water availability 
(Pascual et al. 2021). These soils are vulnerable to global 
warming because an increase in soil temperature can accel-
erate SOM decomposition (Cornelissen et al. 2007) and 
provide access to organic N in deeper soil layers through 
permafrost thaw (Hewitt et al. 2020; Pedersen et al. 2020), 
leading to stimulated N turnover (Keuper et al. 2012). Con-
sequently, soil C and SOM stocks can decrease (Wieder et al. 
2019; Jung et al. 2020), and with faster enzymatic processes 
(Brzostek et al. 2012), depolymerization rates will increase, 
thereby potentially increasing fAA pools in soils under 
warming. However, increased plant or microbial uptake of 
fAA can counteract this, and potentially lead to a decrease 
in soil fAA content (Andresen et al. 2009; Hicks et al. 2020).

We aimed to investigate if soil fAA content across tun-
dra sites was associated with vegetation and mycorrhizal 
types, if warming affected the fAA content, and if the effect 
of warming depended on site. Thereto, we measured soil 
fAA contents in plots exposed to decade-long warming in 
five field experiments with Open Top Chambers (OTCs) in 
northern Scandinavia. We hypothesized that fAA content 
is lower in soils underneath vegetation with dominance of 
ECM and ERM fungal communities due to their efficient 
N uptake from organic N sources and their slower litter 
decomposition rates. We also hypothesized that fAA con-
tent should be reduced in sites where experimental warming 
has led to expansion of ECM and ERM shrubs compared to 
ambient conditions.

Methods

Study sites

The study sites (Table S1) were located in the subarctic 
(Latnajaure and Abisko) and alpine (Finse) regions in the 
Scandinavian Mountain range. All sites had long-term 
warming experiments with OTCs (Marion et al. 1997). The 
Latnajaure Field Station (68° 21′ N 18° 30′ E) is situated 
about 15 km west of Abisko in northern Sweden and resem-
bles the low-arctic phytogeography (Björk et al. 2007a, b), 
with mesic meadow as one of the many vegetation types. 
The temperature ranged from the coldest month, Febru-
ary, average −9.7 °C, to the warmest month, July, average 
8.6 °C during 1992–2019 (Scharn et al. 2021). Abisko Sci-
entific Research Station (68° 21′ N 18° 49′ E) houses three 
OTC experiments. One is a blanket-bog at the shore of lake 
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Torneträsk (Dorrepaal et al. 2009; Weedon et al. 2012). Sec-
ond is at a wet heath near lake Torneträsk, and third at a 
mesic heath (Michelsen et al. 2012). The snow-free season 
usually lasts from late May to early October (Abisko Scien-
tific Research Station Meteorological Station, 1986–2015 
averages; Callaghan et al. 2010; Hicks et al. 2020). At Finse 
(60° 21′ N 7° 13′ E) in the northern part of Hardangervidda, 
Norway, an OTC experiment is situated in a dry heath 
(Klanderud and Totland 2007). Finse has a summer mean 
monthly temperature during June, July, and August of 6.3 °C 
(Klanderud 2008).

At each site, the OTCs and control plots were at least 2 m 
apart; the control plots were marked out by the corners. The 
effect of warming, the duration of the experiment, dominant 
vegetation type, height above sea level, and climatic infor-
mation are given in Table S1.

Plant and soil sampling

Data of plant cover percentage inside the OTC and control 
plots was obtained from databases (unpublished). This data 
was determined by using the point intercept method (Molau 
and Mølgård 1996) or by recording species abundances in 
subplots and calculating sub-plot frequencies (Klanderud 
2008). Plant cover was classified by the plant functional 
types: forbs, graminoids, shrubs, and mosses; and by type 
of mycorrhizal association, such as ERM, ECM, and NM 
combined with AM groups. For classification of mycorrhi-
zal type, we used the classifications described by Michelsen 
and co-authors (Michelsen et al. 1996, 1998), who investi-
gated mycorrhizae in subarctic and arctic plants including 
Abisko sites nearby the current study sites. While the degree 
of mycorrhizal colonization may change over the year, it is 
unlikely that change in types of mycorrhizal colonisations 
may occur. The AM plants were grouped with NM plants, 
as some sites had no or very low presence of AM species, 
hereafter called AM/NM as one group. Furthermore, Arc-
tostaphylos spp. was grouped functionally with ECM, as 
this genus shows Arbutoid mycorrhizal colonization mor-
phology, which resembles the ECM symbiosis in mycor-
rhizal function (Michelsen et al. 1998). Plant cover data was 
assembled from databases from the year closest to the time 
of soil sampling in 2013: 2013 for blanket bog, 2011 for wet 
heath, 2014 for mesic heath, 2016 for mesic meadow, and 
2011 for dry heath, as these communities are dominated by 
perennials the coverage varies little from year to year.

For soil sampling, the vegetation and moss-lichen crust 
was gently pushed aside. Soil was sampled with a knife or 
soil corer in the predominant rooting zone (at dry, wet, and 
mesic heath down to bedrock). Thus, we sampled from the 
surface down to 3–5 cm depth in dry heath, and bulked 
three subsamples. At the other sites, only one soil core was 
taken, at mesic meadow from surface down to 5 cm depth, 

in blanket bog to 12 cm depth, in wet heath to 3–8 cm depth 
and in mesic heath to 6–11 cm depth. The soils were kept 
cold, and upon returning to the field station laboratory, the 
samples were hand-sorted to remove roots, green plant mate-
rial, and stones for a maximum of 10 min per sample. Fresh 
soil was extracted in a weight ratio 1 to 3 with 10 mmol⋅L−1 
CaSO4 solution containing 3.4% formaldehyde, shaken for 
30 min, then filtrated (Whatman 1 qualitative filter papers 
12.5 cm diam.) and shipped to ISOFYS (Belgium) as frozen 
extracts.

The CaSO4 extracts were purified using SPE (solid 
phase extraction) cation-exchange cartridges (OnGuard 
II H, 1 cc, Dionex). The SPE cartridges were conditioned 
with ultrapure water (> 18.2 MΩ), then 10 mL 3 mol L−1 
NH3, 10 mL ultrapure water, and 10 mL 1 mol L−1 HCl, and 
finally 10 mL ultrapure water. After loading the extract on 
the cation-exchange resin, the cartridge was washed with 
10 mL ultrapure water, and the purified amino acids were 
eluted with 30 mL 3 mol L−1 NH3. The purified sample was 
dried under reduced pressure at 35 °C, and finally derivat-
ized using ethanol-pyridine and ethylchloroformate (Wanek 
et al. 2010).

Analysis of amino acids with GC–MS

During purification, an internal amino acid standard was added 
to samples, which was a mixture of three non-biological amino 
acids: nor-valine, nor-leucine, and 4-chloro-phenylalanine.  
The method described by Wanek et al. (2010) was developed  
further at ISOFYS, Ghent University (Andresen et al. 2015). 
Concentrations of amino acids were determined using gas  
‘chromatography–mass spectrometry (GC–MS, Trace 
GC–DSQ, Thermo Fisher). Separation was done on a VF 
5-MS column (30 m × 0.25 mm ID × 0.25 µm film). With the 
available technical capacity, we focused on 14 amino acids: 
alanine, glycine, valine, leucine, serine, isoleucine, threonine, 
proline, asparagine, aspartate, methionine, glutamate, pheny-
lalanine, and tyrosine.

Calculations and statistical analysis

In order to test overall effects of warming, site, and their 
interaction on soil properties, a multivariate ANOVA 
(MANOVA) using Wilks lambda was made for the 14 fAA 
content and other soil properties (SOM, dissolved organic 
C, microbial biomass C and N, NO3-N, NH4-N, and total 
fAA-N). The MANOVA test for overall effects of the fac-
tors on multiple related response variables, and in case of 
significance, the individual response variables were subse-
quently tested by two-way ANOVA for all soil properties, 
and for the plant cover summed by type of mycorrhizal asso-
ciations and by plant growth forms. In addition, significant 
differences between sites (including both treatments) were 
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tested by Tukey’s test. Within site, the effect of treatment 
was tested with one way ANOVA for each soil property. 
Effects of treatment from the tests were considered signifi-
cant when P < 0.05 and denoted as a tendency when P < 0.1. 
We explored if data met the assumptions of ANOVA (vari-
ance homogeneity, normality) and log transformed the data 
if required. All analysis of variance was performed using 
SAS 9.4.

The redundancy analysis (RDA), in which the gradient 
lengths were 1.4 SD units, was conducted using CANOCO 
5.04 to investigate the relationship between types of myc-
orrhizal associations and content of individual fAA across 
sites and treatments.

The “responsiveness” to warming for variables repre-
senting vegetation cover and soil properties at a site was 
expressed as logarithmic response ratio (LRR) calculated 
as follows (van Wijk et al. 2003; Andresen et al. 2016b): 
LRR = ln(warmedav/controlav).

Results

Growth form and mycorrhizal types

Both graminoid and forb cover differed between sites (both 
P < 0.0001, ns for treatment and the interaction). Grami-
noid coverage ranged from a mean of 5% (4% std. dev.) at 
mesic heath warmed and 5 (2) % at blanket bog control, up 

to as much as 95 (17) % at wet heath warmed. Forbs ranged 
from 1 (1) % at blanket bog control to 42 (55) % at wet 
heath warmed. At the blanket bog, the graminoids tended to 
increase under warming, from 5 (2) to 19% (13) (P = 0.073).

Shrub and moss cover also differed significantly between 
sites with shrubs ranging from 21 (14) % at mesic meadow 
control to 212 (76) % at blanket bog control, and mosses 
ranged from 2 (2) % at mesic heath warmed to 100 (0) % at 
all blanket bog plots (both with P < 0.0001 for site). We also 
observed interactions between site and treatment (P = 0.032 
for shrubs and < 0.0001 for mosses). Shrubs increased under 
warming at the mesic heath from 95 (14) to 152 (14) % 
(P = 0.003). Moss cover decreased under warming at the 
mesic meadow from 57 (17) to 28 (10) % (P = 0.004) and at 
the mesic heath from 26 (18) to 2 (2) % (P = 0.038).

At the dry heath, ECM plant cover decreased from 64  
(26) in control to 53 (19) % in warmed plots (P = 0.042). At the  
mesic meadow, the AM/NM mycorrhizal type plant cover 
tended to decrease under warming (33 (14) to 22 (2) %, 
P = 0.086) (Table S2).

Soil‑free amino acids

Total fAA-N varied 12-fold among sites and treatments with 
the blanket bog having higher total fAA-N compared to the 
other sites (P < 0.0001). There was no significant effect 
of treatment nor interaction between site and treatment 
(Fig. 1, Table S3). Similar results were found for fAA-C 

Fig. 1   Total free amino acid 
nitrogen (fAA-N) content in soil 
from wet heath, mesic heath, 
mesic meadow, dry heath, and 
blanket bog, for control (C) and 
warming treatment by OTC 
(open top chamber, T). P values 
of the effect of site and warming 
treatment and their interac-
tion. Different letters represent 
significant differences between 
sites

308 Mycorrhiza (2022) 32:305–313



1 3

(site P < 0.0001, data not shown). Predominant amino acids 
in soil extracts were in general glutamate, aspartate, and 
alanine, with the exception of the mesic meadow where 
only glutamate dominated (Fig. S1). Additional predomi-
nant amino acids were glycine at the mesic heath and serine 
at the blanket bog. A MANOVA on all fAA’s showed an 
overall effect of site (P < 0.0001), and no main effect of treat-
ment (P = 0.5520) but a significant interaction between site 
and treatment (P = 0.0176). The blanket bog had the largest 
content of total fAA-N (c. threefold larger than the second 
largest) whereas it had the smallest total soil N content (c. 
a third of the second smallest); contrastingly, the mesic 
meadow had the smallest total fAA-N content (c. half the 
content of the second smallest) in the soil extracts and the 
largest total soil N content (c. 10% more than in the second 
largest) (Fig. 1, Table S3).

When comparing fAA-N to the inorganic N forms, 
fAA-N to NO3-N ratio varied by a factor 4 across sites. The 
fAA-N to NH4-N ratio varied by a factor 5 (Table S3); how-
ever, no significant difference between sites could be found.

Redundancy analysis of the free amino  
acid–vegetation type span

The RDA of the individual fAA, constrained by vegetation 
type as classified by mycorrhizal association, revealed that 

across all sites, the ECM plants drive the fAA pattern in the 
opposite direction of the AM/NM and ERM plants (Fig. 2). 
The higher abundance of AM/NM association at the blanket 
bog and wet heath coincided with the higher abundance of 
most of the individual fAA, whereas the higher abundance 
of ECM associations at the dry and mesic heath had contrast-
ingly lower fAA content. No warming treatment effects were 
revealed at blanket bog, wet heath, or dry heath. However, at 
the mesic heath, which had a significant increase in shrubs 
and decrease of mosses under warming, the RDA analysis 
separated the warming treatment significantly from control 
(distinct 95% confidence intervals), driven by changes in 
vegetation cover and fAA composition jointly (Fig. 2). Simi-
larly for the mesic meadow, which had decreases of AM/
NM plants and mosses under warming, a clear separation of 
warming and control had the same direction as at the mesic 
heath, with modified amino acid blend and relatively higher 
cover of ECM and ERM shrubs.

Discussion

In our study, the fAA content in the heath, meadow, and 
bog soils of the Scandinavian mountains ranged from 0.5 to 
6.2 µg N g−1 dry soil, and thus compares well in magnitude with 
soils from other studies; in the tundra near Toolik Lake, Alaska, 

Fig. 2   RDA analysis diagram, 
free amino acid content (µg∙g−1 
soil; error bars indicate 95% 
confidence interval). The sites 
are blanket bog, wet heath, 
mesic heath, mesic meadow, 
and dry heath. Treatment T is 
warming, and C is control (no 
treatment). The direction of 
mycorrhizal types ERM, ECM, 
and AM/NM by black arrows. 
Total variation is 73.6%, and 
explanatory variables account 
for 100.0%, where axis 1 
explains 84.2% of the variation 
and axis 2 explains 11.2% of the 
variation. Red arrows represent 
the direction and strength of the 
individual amino acids: alanine 
(Ala), glycine (Gly), valine 
(Val), leucine (Leu), serine 
(Ser), theonine (The), proline 
(Pro), asparagine (Asn), aspar-
tate (Asp), methionine (Met), 
glutamate (Glu), phenylalanine 
(Phe), tyrosine (Tyr)
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the fAA content ranged from 1.6 to 8.3 µg N g−1 dry soil, across 
the ecosystem types wet meadow (lowest), dry heath, shrub 
tundra and tussock tundra (highest) (Kielland 1995), and in 
acidic and nonacidic tundra from 1.0 to 4.5 µg N g−1 dry soil 
(Nordin et al. 2004). Even the boreal forests at Fairbanks, 
Alaska, had fAA content within the same magnitude (0.4 to 
4.9 µg N g−1 dry soil; Werdin-Pfisterer et al. 2009), and also in 
a northern Swedish pine forest, the fAA content ranged from 
0.8 to 5.2 µg N g−1 dry soil (Nordin et al. 2001). The standing 
pool of fAA is affected by both production (depolymerization) 
and consumption and by the soils capacity for carrying fAA, 
i.e., the standing pool of fAA (Homyak et al. 2021), which is 
controlled by pH, soil organic matter, cation exchange capac-
ity, and clay content. Hence, based on the above, the sites well 
represent northern latitude soils in fAA abundance and patterns 
observed below can be generalized.

This study is unique in that we investigated 14 individ-
ual free amino acids in the soil in multiple subarctic sites 
exposed to long-term experimental warming. We found that 
the negatively charged (acidic) amino acids glutamate and 
aspartate were the predominant fAA in soil extracts, but 
qualitative comparisons across to other studies are difficult 
because most studies only measure a selection of amino 
acids, due to analytical constraints (Nordin et al. 2001; 
Werdin-Pfisterer et al. 2009; Warren and Taranto 2010). 
For example, the dominant amino acids in North American 
tundra were also glutamate and aspartate as well as argi-
nine, serine, and glycine (Kielland 1995; Nordin et al. 2004). 
In forest soils, the Northern Swedish pine forest soils had 
dominance of glutamine and alanine (Nordin et al. 2001), 
and in North America alanine, asparagine, aspartate, gluta-
mate, glutamine, and histidine dominated (Werdin-Pfisterer 
et al. 2009). These qualitative differences may thus reflect 
the vegetation differences.

Field experiments using 15N tracing suggest that micro-
bial and plant uptake of glycine (Nordin et al. 2001, 2004; 
Ma et al. 2015; Ravn et al. 2017), glutamate (Andresen et al. 
2008; Gunina et al. 2014; Månsson et al. 2014), aspartate 
(Schimel and Chapin III 1996, Nordin et al. 2004; Wang 
et al. 2012), and alanine (Wilkinson et al. 2014) is important 
in alpine, subarctic, temperate, and boreal ecosystems. On 
the other hand, fAA are released in soil through depolymeri-
zation of peptides which are made available at decomposi-
tion. With poorer decomposability of litter from ERM and 
ECM plants (Cornelissen et al. 2001), the plant abundance 
affects the fAA balance both through the uptake and through 
the litter quality. Also in other studies in cold biomes, dif-
ferences in fAA content have been linked to plant commu-
nity composition (Feng et al. 2018), with twofold higher 
fAA concentration in soils with vascular plants compared 
to moss-dominated soils (Hill et al. 2019). Though the con-
nection of plant type and soil fAA is clear, the causes can 
be many.

Among our subarctic sites, we found indications that 
the soil fAA composition was associated with the veg-
etation and dominance of mycorrhizal types. One possi-
ble cause is that the differences in fAA composition and 
amount across our sites, i.e., largest amount at blanket 
bog and the composition response to warming at mesic 
heath (and by tendency at mesic meadow), was driven by 
a larger uptake of fAA by the ECM and to some extent 
ERM vegetation (Andresen et al. 2008; Peay 2016; Ravn 
et al. 2017), as this co-occurred with an increase of ECM 
and ERM shrubs. However, as the study did not investigate 
plant uptake, other dynamic mechanisms such as microbial 
immobilization, or altered plant litter quality, might also 
have influenced the response. Hypothetically, predicted 
shrubification of the Arctic (Bjorkman et al. 2018; Scharn 
et al. 2021) can potentially  reduce the fAA content in the 
soil, and hence lessen the fAA input to N-cycle processes 
that release inorganic N. This could lead to a positive feed-
back mechanism enhancing “Arctic greening”—i.e., with 
increased ERM and ECM shrubs due to increased tempera-
ture, their ability to shortcut the N-cycle and take up fAA 
could result in less substrate input to N mineralization, 
with consequences for other plant types relying on mineral 
N (Fig. S2). The mechanism counteracts the temperature-
enhanced N turnover by tightening the N cycle via the 
plant N uptake, and also via slower decomposition of leaf 
litter dominated by ERM and ECM fungal communities 
(Cornelissen et al. 2007). Thus, potential increased plant 
uptake of fAA by plants with ECM (and to some extent 
ERM) association and their decreased litter decomposition 
rate can lead to a decrease in the fAA soil content as a side 
effect of “Arctic greening.”

Conclusions

The mycorrhizal types influenced the content of individual 
fAA with a distinct pattern for blanket bog and wet heath 
together representing vegetation with more AM and non-
mycorrhizal-type associations, and this effect was stronger 
than the effect of the warming treatment. The findings sug-
gest that lower soil fAA contents can be driven by a larger 
uptake of fAA by the ECM (and to some extent ERM) veg-
etation, and by altered litter quality and decomposition and 
depolymerization of organic compounds in sites dominated 
by these plant functional groups. We suggest that vegeta-
tion changes such as shrubification may indirectly reduce the 
fAA soil content and influence its composition. This fAA 
retention in the ecosystem serves as retention of N within a 
tight soil–mycorrhiza–plant cycle, which reduces potential 
leaching losses of inorganic N. We suggest that such shrubi-
fication helps to retain N within these ecosystems.
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