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Abstract
The importance of strengthening grid resilience has grown with the increase in environmental destruction and modern

power grid complexity, as a consequence of power outages inflicted by human intrusion and extreme weather events.

Micro-grids (MGs) have proven to be a viable alternative in such circumstances. However, these occurrences are highly

unpredictable, resulting in unintended islands of MGs with negative consequences. As a response, alerting its distributed

generations about unintended island is indeed a crucial issue for enhancing grid resilience with MG. Therefore, it is

essential to develop a technique for the efficient and accurate detection of unintended islands. There has been an increase in

the use of micro-phasor measurement units (l-PMUs) in MG. In the perspective of this, using an efficient l-PMU, the

research provides a method for finding unintended islands in a MG. The l-PMU analyses the solar generator bus voltage

and analyzes it with symmetrical components for island identification. This study introduces a l-PMU based Fortescue-

transform and random forest algorithm method for rapid detection of unintended islanding in distribution generation

system. The approach monitors voltage phasor of zero and negative sequence, calculating angular sum over time to

distinguish islanding event from other disturbance. Using Matlab/Simulink, the proposed method is evaluated on the IEEE-

34 node distribution network. Multiple simulations provide validation for the method’s resilient performance. The

methodology proposed has a detection time of 20 ms.

1 Introduction

Resilience comes from the Latin verb ‘‘resilire,’’ meaning

‘‘to rebound or recoil.’’ Consequently, resilience in a power

system could be described as the capacity to adequately

plan, retort promptly, and retrieve rapidly in the event of a

power outages caused by a severe unexpected incident (Liu

2015). These severe events are not limited to natural haz-

ards (such as tsunamis, earthquakes, etc.), but it also

includes man-made disasters (for instance operator inac-

curacy, cyberattack, etc.)(Wang et al. 2015). During these

incidents, the performance of the power system degrades in

a cumulative manner. The disruptions created by these

events differ from those caused by conventional contin-

gencies. The following are the features of these disruptions:

(Farzin et al. 2016; Chen et al. 2017):

I. It can affect any component, making the repair and

restoration procedure difficult and time-consuming.

II. It can spread rapidly and make a huge portion of the

grid powerless.

III. Its forecast, endurance, and range are utterly unclear.

IV. Other crucial elements, such as the communication

channel, may also be compromised.

With rapid change in the climate, a rise in cyber-attacks,

and the increasing complexities of the grid, it is anticipated

that the number of these interruptions will increase, espe-

cially in today’s distribution system. On the other side, as

modern customers’ dependency on electricity has

increased, and their desire for a constant supply of elec-

tricity has prompted development into improving grid

resilience.

1.1 Motivation

The advancement of micro-grids (MGs) has improved grid

resilience i.e. grid operational capabilities amid extreme
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weather events, especially when it comes to continual

power delivery to loads which are critical such as hospitals,

data centers, etc. A micro-grid is a grid unit spanning a

smaller area which has its own power and load require-

ments. It has the ability to operate independently or in

conjunction with the grid (Dutta et al. 2023). Under

extreme weather conditions, the generation, storage of

electrical power and control becomes difficult within the

islanded MG. A proper islanding plan may make the

occurrences less severe, allowing for a more rapid and

effective reaction. A system that is not connected to the

main power grid but energized by distributed generators

(DGs) is referred as an island system (Dutta et al. 2022). In

order to avoid blackouts, maintenance, etc., intentional

islanding is performed with the permission of the power

grid controller. In contrast to intentional islanding, unin-

tended islanding arises throughout extreme events without

prior knowledge of the operator, trying to pose implications

in the islanded zone, such as inconvenience in the coor-

dinated revival of power supply, power quality deteriora-

tion because of severe fluctuations in frequency and

voltage, and life-danger to the workers involved in main-

tenance who are uninformed that segregated lines are still

energized by DG (Verma et al. 2019). The disconnected

but electrified cables can also be hazardous to the people,

especially during the event of floods in which individuals

may get electrocuted brutally. Hence, real-time awareness

and presentation strategies for unintended islanding in

distribution generation is necessary (Mumtaz et al. 2023).

Because of lacking situational-awareness, the repair pro-

cess is also delayed after the extreme conditions. There-

fore, it is necessary to alert DG about the islanding

situation as soon as feasible so that appropriate manage-

ment measures can be done to ensure the safe continuation

of power in MG. Consequently, unintended islanding

identification is the initial step in constructing a robust MG.

Phasor measurement units (PMUs) are already prevalent as

effective instruments for transmission system monitoring.

Micro phasor measurement unit (l-PMU) have also begun

to establish themselves in the distribution grid. As l-PMU

has a high sample rate and excellent precision, they may be

used to detect unintended islanding in MG.

1.2 Literature review

There is a vast variety of islanding recognition approaches

that can be found in the academic data. These methods can

be arranged into the broad areas of hybrid, signal pro-

cessing, passive, active, local, and intelligent classifiers

(Manikonda and Gaonkar 2019; Dutta et al. 2018a;

Mohanty et al. 2023; Shukla et al. 2023).

When using passive sensors, islanding can be identified

while a specific aspect of a captured signal achieves a

number that is greater than a threshold that has been pre-

viously established. Most common passive islanding

sensing methods include rate of change of frequency,

inverter non-linear approach, harmonic distortion, rate of

change of power, phase jump detection, and under/over

voltage or frequency (Freitas et al. 2005). The modal

component (Makwana and Bhalja 2017), optimized voltage

shift (Liu et al. 2016), the inverse hyperbolic secant func-

tion, the intrinsic time decomposition (Nale et al. 2019),

and the active rate of change of frequency relay (Gupta

et al. 2016) are all recent passive approaches. Active sen-

sors are able to overcome the drawback of having a high

non-detection zone (NDZ) that is present in the majority of

passive approaches. In active sensors, some disturbances

are purposefully infused into the grid, and the effect of this

is detected through various signals. The most common

active sensing techniques include active frequency drift,

slip mode frequency shift, Sandia voltage shift, Sandia

frequency shift, negative phase sequence current injection,

and frequency locked loop-based frequency positive feed-

back (Ropp et al. 1999; Liu et al. 2010; Trujillo et al. 2010;

Lopes and sun 2006; Karimi et al. 2008; Barkat et al.

2023). The power quality of the system is severely degra-

ded when active schemes are used because active schemes

inject disturbances into the system.

In order to eliminate the limitations of both passive as

well as active detection systems, hybrid sensors combine

the two sensing techniques into a single technology. The

power line carrier communication, transfer trip scheme and

variational mode decomposition are examples of

notable local islanding sensing approaches (Reddy et al.

2023; Thakur et al. 2023). The schemes make use of the

communication channels that exist between distributed

generators and control centres in order to detect island

scenarios. These methods do not have any NDZ but come

at an extremely high cost. Researchers have found that

using sensing methods that involve signal processing has

helped them overcome the limitations of the aforemen-

tioned sensing methods. In signal processing approaches,

relevant signals are evaluated by tools such as wavelet

transform, Stockwell transform, hybrid Stockwell trans-

form, Hilbert Huang transform, time-time transform, and

mathematical morphology (Do et al. 2015; Niaki and

Afsharnia 2014; Raza et al. 2015) for islanding identifi-

cation in order to extract hidden information. These tools

are used to uncover hidden information.

In almost all of the sensing approaches, determining an

acceptable threshold value to use in recognising islanding

signals is a laborious operation that needs to be accom-

plished. The problem of determining an appropriate

threshold value can be effectively solved by the appropriate

training of intelligent classifiers. Effective islanding

detection makes use of intelligent classifiers like fuzzy
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logic, support vector machine, artificial neural network,

and decision tree (Fayyad and Osman 2010; Somalwar

et al. 2023; Al-Momani et al. 2023; Heidari et al. 2013;

Lidula and Rajapakse 2012; Dash et al. 2012; Mohanty

et al. 2014). Island identification is accomplished through

the application of principal component analysis to wide

area phasor measurements in. Using synchrophasor data in

real time hardware, three distinct island sensing approaches

are used in. In the case of island sensors, a technique

known as ‘‘ PMU continuous sync-check’’ is utilised

(Laverty et al. 2015; Arefin 2024). For identification of

island using PMU data, Kumar and Bhowmik (2018) uses

the multiplier approach, a method based on Andrews’ plot,

and an artificial neural network. In (Dutta et al. 2018b;

Singh et al. 2021), a Fortescue transform-based micro-

PMU is utilised for island sensing.

Estimating phasors requires some time when it comes to

methods that make use of PMU. This results in a lag in the

island identifying method, that is something which should

be avoided under extreme situations. In addition, the PMU

approaches are extremely reliant on the communication

network, that might become disturbed whenever there is a

significant amount of noise or interference in the environ-

ment. On the contrary hand, the majority of the approaches

that do not utilise PMU require additional arrangements to

be made solely for island identification. This results in a

significant increase in both the amount of time necessary

for implementation and the amount of money spent. The

purpose of this work is to offer a new island detection

scheme in order to combine the benefits of utilising the

software and hardware of l-PMU while, consequently,

reducing the amount of time spent on phasor estimates.

1.3 Advantages of the method

l-PMU, one of the most valuable components of a distri-

bution generation, has demonstrated its value in harmonic

projections, fault analysis and prevention, state estimation,

dynamic surveillance, etc. The suggested intelligent island

detection system takes into account the availability and

usage of l-PMU. It requires the construction of a separate

function within the installed l-PMU. The l-PMU monitors

the voltage signals at a predefined DG site and conducts

symmetrical component analysis for island event separa-

tion from other events. The following is a summary of the

proposed technique’s contributions:

I. The communication, hardware, and software com-

ponents of PMU are leveraged to detect islanding

occurrences. Therefore, system workers is capable to

re-establish power to the islanded MG in extreme

conditions in a quicker manner.

II. When the communication link between the control

centre and l-PMU is interrupted due to harsh

situations, this will be of great assistance. This

boosts grid resilience even further.

III. This above mentioned technique is quite simple, and

has a high detection speed of 20 milliseconds, and

zero NDZ.

1.4 The structure of the paper

The manuscript is fashioned as stated. Unit 2 delivers

detailed information of necessities in the smart l-PMU.

The development of the presented approach is described in

Unit 3. The outcome of the approach in various conditions

is discussed and validated in Unit 4. In Unit 5, the tech-

nique is equated against the existing islanding detection

approaches. The method is concluded in the last Unit 6.

2 Necessities for the smart l-PMU

The functional operation of a conventional l-PMU in a

distribution grid is illustrated in Fig. 1, which provides a

graphic picture of this process. In a manner analogous to

that of the PMU, the l-PMU obtains current and voltage

signals via potential transformer (PT) /current transformer

(CT), calculates phasors using a digital signal processing

algorithm, time stamps it with time reference as per the

global positioning system, and thereafter transmits the

information to the control centre (Pal et al. 2017). In order

to achieve accurate monitoring in distribution MGs that use

l-PMU, some problems need to be met (Zanjani et al.

2018). Because distribution networks contain higher

resistance than reactance, both reactive power flow and the

real power flow cannot be segregated. As a result, the

conventional estimated power equations cannot be used.

The magnitude as well as the phase angle change are

typically on the order of 10-4 per unit and 0.01o, respec-

tively, due to the fact that the variation in power flows and

bus distances are much shorter than those that exist in the

transmission system. Moreover, a high harmonic content

can be found as a result of the numerous power electronic

converters that are utilised in the process of integrating

energy from renewable sources into to the distribution

system. As a result, l-PMUs have a precise sensor, lower

total voltage error, larger sampling rates, and lower phase

uncertainties, all of which contribute to high resolution

data (Dutta et al. 2020). Because high-resolution data is to

be used for any method analysis of signal processing in a

shorter amount of time, this benefit of l-PMU can be

availed for island detection.

In addition, the measurability of a transmission system

is simple because it includes a smaller quantity of buses,

whereas the measurability of the distribution system is
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significantly more difficult since it includes a greater

quantity of buses. The changing trend of renewable energy

sources is another reason for concern introduced by these

sources. As a result, making suitable decisions on control

actions can be challenging. Because of this, a more

advanced signal analyzer as well as a classifier that is

accurate are required. The amount of time needed for

recovery after an extreme disturbance is an important

consideration. The phasor computation is a time-consum-

ing process. In addition, there is a possibility that the

communication link between the l-PMU and the control

centre will become broken when extreme conditions are

present. So, in the intelligently updated l-PMU that has

been presented, there is a distinct subroutine that is sup-

plied for island detection in order to cut down on the

amount of time needed for detection of island and its

dependence upon the communication network. The pro-

gram directly receives recorded signals through CT/PT and

utilises symmetrical component to do analysis on the

sampled values while operating inside a window of a

predetermined length. A random forest (RF) classifier is

given the data that has been processed or extracted so that

it can make appropriate event classifications.

3 Development of the proposed
methodology

Utilizing an enhanced IEEE-34 node distribution test

generator in MATLAB/SIMULINK, the approach sug-

gested is validated. In the following sections, the

modifications to the traditional IEEE-34 node distribution

test generator and the necessary assumptions are described.

3.1 Proposed test system

Figure 2 depicts the IEEE 34 node distribution system

employed in this paper. The standard frequency is assumed

to be 60 Hz. The resistance of the distribution lines is

supposed to be R = 0.539 /km and the inductance is

expected to be L = 0.4631 H/km (Menon and Nehrir

2007). The IEEE-34 node test feeder network is modified

to simulate an islanding scenario. Node 838 is where the

local loads are wired into a solar DG that is then connected

to the grid. In addition, a l-PMU is connected to the DG

bus. When upstream circuit breakers are opened, islanding

is presumed to have occurred. At an irradiation of 1000 W/

m2, the solar DG may produce up to 100 KW. The solar

DG comprises a 250 kVA, 250 V/25 kV transformer, a 10

kVAR capacitor bank, and a 5 kHz DC to DC boost con-

verter for grid integration. Additionally, the DG has a

maximum power point tracking system, a three-phase,

three-level inverter featuring pulse width modulation and

phase lock loop, and a 10 kVAR capacitor bank.

3.2 Fortescue transform

A set of unbalanced ‘Ni’ phasors can be transformed into

a set of balanced ‘’Ni’ phasors, as described by FTT. In

FTT, the ‘’Ni’ phases determine which transformation

matrix is used. The Fortescue matrix equation is provided

CT/PTMicrogrid

Phasors

μPMU

Control
center

Fig. 1 Functional operation of a

conventional l-PMU
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by (1), where operator T= ej2p=Ni for any Ni-phase sequence

component. By utilising this operator, one’s phase is

rotated by 2p/Niradian. In the case of three-phase power

system laterals, Ni=3, the three phase voltage phasors

(ERYB) are represented as the product of three phase posi-

tive (ERYBþ), three phase negative (ERYB ), and three phase

zero (ERYB0) sequences, respectively, as shown in (2); or, in

compressed form, as shown in (3), where f T represents the

Fortescue transformation matrix. The variables ERYB

denoted as ERYBþ, ERYB�, and ERYB0 each represent a

voltage matrix of size 3 9 1 corresponding to a positive,

negative, or zero sequence, respectively, of the three

voltage phases. The symbol ER�0 denotes a 3 9 1 matrix

consisting of the phase R voltage’s positive, negative, and

zero sequences. The aforementioned system produces

identical magnitudes and phases for both the positive and

negative sequence components, with a phase difference of

120�. In contrast, the zero sequence component system

exhibits identical magnitudes and phases throughout all

phases. The FTT for three phase voltages, expressed in

matrix form, is as follows (4) whereER denotes the mag-

nitude of voltage of phase R, \bR denotes the phase angle

of voltage phase R,EY denotes the magnitude of voltage of

phase Y, \bY denotess the phase angle of voltage phase Y,

EB denotess the magnitude of voltage of phase B, \bB
denotes the phase angle of voltage phase B, ERþ denotess

the magnitude of positive sequence component of phase R,

\bRþ denotes the angle of positive sequence component of

phase R,ER� denotes the magnitude of negative sequence

component of phase R, \bR� denotes the angle of negative

sequence component of phase R and ER0 represents the

magnitude of zero sequence component of phase R, \bR0
represents the angle of zero sequence component of phase

R.

Consequently, the expanded form and system symmetric

component for the phase represented as ‘R’ in the matrix

form are calculated using the Eqs. (5, 6), where f�1 rep-

resents the inverse FTT matrix. The system sequence

components for the remaining phases are assessed in

accordance with (7)-(9). In this context, EYþ denotes the

positive sequence phasor for phase voltage Y, EY� signifies

the negative sequence phasor for phase voltage Y, EY0

signifies the zero sequence phasor for phase voltage Y, EBþ
signifies the positive sequence phasor for phase voltage B,

EB� signifies the negative sequence phasor for phase

voltage B, and EB0 signifies the zero sequence phasor for

phase voltage B. ERþ signifies the positive sequence phasor

for phase voltage R. ER� signifies the negative sequence

phasor for phase voltage R and ER0 signifies zero sequence

phasor for phase voltage R.

As demonstrated in (10) and (11), it is possible to

deduce that, under balanced system conditions, only posi-

tive sequence components will be retained, and their value

will be equal to the phase voltage. Consequently, E=

ERþand b = bRþhold true for a balanced system. The

algorithm under consideration is illustrated in Eq. (12) and

utilises the phase angle of the three-phase voltage signal

acquired at PCC, which is the angle between the zero and

negative sequences. The geometric construction of zero

and negative sequence phasors can be used to interpret the

proposed method by considering its operator ‘T’ as a

rotational operator of 120�, as illustrated in Fig. 3a and b.

Thus, as illustrated in Fig. 3c, angular sum of the zero and
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Fig. 2 Adapted IEEE-34 node system network
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negative sequence phase angles under unbalanced condi-

tions. By establishing this angle addition as a threshold,

islanding cases can be identified.
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3.3 Random forest algorithm

Random forest algorithm is an ensemble machine learning

procedure that integrates the prediction method. There are

two categories of hyper-parameters in random forest

algorithm: (1) the count of splits on the subset and (2) the

count of trees on the forest (Ashwin et al. 2023). Two

challenges are observed in the interim. To determine the

finest sequence, the training samples are initially selected

at random based on their complexity. The second com-

plexity arises from the absence of clipping energy con-

sumption in this method, which indicates that there is a

limit number of trees in each forest. The capacity demand

in the proposed method is accurately predicted by the

Random Decision Forest (RDF), which is dependent on the

historical dataset. Figure 4 illustrates the random forest

algorithm structure.

As seen in Fig. 4 and described in detail below, the RF

classifier works as follows. Training the RF classifier is

covered in stages 1–6, while actual classification occurs in

stage 7 (Ashwin et al. 2023).

Stage: 1 Being A = 1 to Ct where, Ct denotes the

complete count of trees.

Stage: 2 Under the condition that the number of boot-

strap aggregation does not exceed the size of the training

sample, generate a bootstrap sample from the training data

set.

Stage: 3 Develop a random forest tree RFTA(U,EA)

based on the bootstrap sample, where U is an input vector

and EA is a random vector with VR random integers that

must be less than or equal to the number of traits in U.

First, VR variables are chosen from a set of traits, and then

the best variable is chosen. At this point, the node has split

into two child nodes. This process is done again and again

until the maximum depth is reached.

Stage: 4 A = A ? 1.

Stage: 5 If AB Ct, go to step 1 if not, go to step 6.

Stage: 6 Get the list of trees as½RFTA U;EAð Þ;A ¼ 1toCt�

EY
ER

O
ER0

T2EBTEY

(a)

EB
O

ER
T2EY

TEB

ER-

(b)

ER+O

(c)
ER-

Fig. 3 Fortescue transform geometric construction of a zero

sequence b negative sequence c angular sum of zero and negative

sequence phasors
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Stage: 7 In classification, for an input U, each tree

assigns a unit vote to the corresponding class. The output

O(U) represents the class that the majority of the trees vote

for, as denoted by (13), where ORFTA(U) is the class vote

(i.e. prediction) of the Ath tree of the RF.

O Uð Þ ¼ ORFTA Uð Þ;P ¼ 1toCt ð13Þ

In this method, the voltage signal of the solar generator

is continuously analyzed by the l-PMU. The l-PMU then

calculates the symmetrical components of the voltage. The

angular sum between the zero and negative sequence

components is calculated in the l-PMU and is compared

against a threshold to detect island. To obtain the threshold

values needed, several scenarios are simulated such as

island, faults and normal conditions and the graphs are

plotted in Figs. 5, 6, 7, 8, 9 and 10. The graphs show that

the angular sum between the zero and negative sequence

components has different characteristics for different sce-

narios. The threshold value (i.e. the maximum angular

sum) are different in each case. The threshold is considered

as the maximum angular sum and the values are provided

in Table 1. However, these thresholds cannot be deter-

mined based on few cases. Hence, as provided in Table 2, a

number of scenarios has been simulated to determine the

threshold. These threshold values act as the input feature

for training the RF classifier. The RF classifier has been

compared with other classifier models in Table 3 which

shows its supremacy over other classifiers for this partic-

ular application.

3.4 Stages of the proposed algorithm

The proposed algorithm is illustrated in Fig. 11. The initial

phase detects the occurrences, whereas the subsequent

phase implements post-event measures to bolster resi-

lience. Detailed descriptions of the sequential stages

follow.

Stage 1 The l-PMU obtains the voltage data of the solar

generator bus.

Stage 2 Fortescue Transform is performed to calculate

maximum angular sum, symmetrical components of the

voltage signal is done and the information obtained in 10

ms i.e. 10,000 samples to calculate the angular sum

between the zero and negative sequence components.

Stage 3 The maximum angular sum between the zero

and negative sequence component is obtained.

Training Samples

Bootstrap-aggregating

Feature F1 Feature F2 Feature FN

Tree #1 Tree #2 Tree #N 

Random Forest Class 1 Random Forest Class 2 Random Forest Class 3

Majority Voting

Classification Result

Fig. 4 The basics of the random forest algorithm
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Stage 4 The maximum angular sum is fed to the RF

classifier model for cataloguing of the events.

Stage 5 The flow goes to Stage 6 on detection of fault or

island else it goes to Stage 1.

Stage 6 The detected event is shared with the nearby

substations.

4 Performance of the algorithm

It is proposed to simulate a number of different scenarios in

order to illustrate the resilience of the approach. Table 4

presents the findings for the various island situations using

active power imbalance (at zero reactive power mismatch).

It is obvious to see that when there is no power discrepancy

at all, the algorithm operates well. This demonstrates that

the algorithm does not have any NDZ. The outcomes for

Fig. 5 Under normal condition, the three phase voltage waveforms (represented by the R phase in red, the Y phase in yellow, and the B phase in

blue) along with the angle of zero and negative phase sequences and their angular sums are illustrated (color figure online)
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the island situations for the numerous reactive power

mismatches are presented in Table 5 (at zero active power

mismatch). It is evident, after looking at Tables 4 and 5,

that the procedure provides accurate results for every cir-

cumstance involving an island.

The results of the faults are presented in Tables 6 and 7,

respectively, and are subdivided by fault inception angle

(FIA) and fault resistance (FR). In order to accomplish this

goal, the MG was given a number of LG, LLG, LL, and

LLL faults, each of which featured a unique fault resistance

and FIA. The findings demonstrate that the precision of the

approach is not contingent on the fault kinds, fault resis-

tance, or FIA. However, the method gives inaccurate

results for FR above 90 X and FIA above 300�.
The findings of the algorithm used in various power

system operations in the MG are presented in Table 8.

Taking into consideration are several potential outcomes,

such as the switching of a capacitor with 250 kVAR, the

Fig. 6 Under islanding condition, the three phase voltage waveforms (represented by the R phase in red, the Y phase in yellow, and the B phase

in blue) along with the angle of zero and negative phase sequences and their angular sums are illustrated (color figure online)
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unmasking of a load with 200 kW, and the beginning of an

induction motor at the solar generator bus. In order to

validate the algorithm’s effectiveness in the context of

faults that arise outside of the microgrid, the algorithm is

additionally validated in the context of multiple faults that

arise between the different nodes. In order to demonstrate

how the proposed approach is affected by measurement

noise, a noise level with varying signal-to-noise ratio

(SNR) was superimposed on the voltage signal, and a

table of the accuracy of the method versus SNR is shown in

Table 9. As the SNR is increased, it can be shown that the

reliability is not much affected. This is because RF is a

reliable tool for combating noise sensitivity. As a result,

this follows directly from that fact with a limitation of 30

dB SNR.

Fig. 7 Under LLL-fault condition, the three phase voltage waveforms (represented by the R phase in red, the Y phase in yellow, and the B phase

in blue) along with the angle of zero and negative phase sequences and their angular sums are illustrated (color figure online)
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It is obvious to see that the algorithm generates correct

results in almost every circumstance. Thus, the tables jus-

tify the robustness of the method.

4.1 Time of detection

Reaction time 10,000 samples are needed for achieving

symmetrical components. Hence, the reaction time, or the

time necessary to collect 8000 samples, may be determined

to be 10 milliseconds (10,000 * 0.001ms).

Program Execution time The execution time is 5 ms as RF

classifier model takes some time to give results.

Propagation delay Around 5 ms of lag can be attributed to

voltage detection via PT, A/D conversion, etc. (Makwana

and Bhalja 2017).

Total time In order to determine how long it takes to

conduct a full island sensing, we can use the formula (1).

As a result, the suggested algorithm has total detection time

of around 20ms (10 ? 5 ? 5ms).

Fig. 8 Under LLG-fault condition, the three phase voltage waveforms (represented by the R phase in red, the Y phase in yellow, and the B phase

in blue) along with the angle of zero and negative phase sequences and their angular sums are illustrated (color figure online)
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Total time½ � ¼ Program execution time½ � þ Reaction time½ �
þ Propagation delay½ �

ð14Þ

5 Assessment of the proposed technique
with other approaches

The major contrast between the suggested and other

detection methods mentioned in literature survey is that the

present approach is programmed within l-PMU for the

purpose of unintentional islanding circumstances detection.

This is the notable change. Because of this, power system

engineers will have the chance to reduce the amount of

time and money spent on the implementation process

because all they will need to do is add a separate subroutine

to the l-PMU that has already been installed. In addition,

because the process of phasor estimate is not incorporated

into the algorithm, the island may be identified very fast,

which is essential for increasing the grid’s resilience. The

method’s independence on the reference phase angle as

well as the reference frequency is an added benefit of using

the technique. In addition to that, the method that has been

proposed has the capability of fault recognizing, and also

improves the situational healthiness of the grid. Some of

Fig. 9 Under LG-fault condition, the three phase voltage waveforms (represented by the R phase in red, the Y phase in yellow, and the B phase in

blue) along with the angle of zero and negative phase sequences and their angular sums are illustrated (color figure online)
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the approaches that are currently available are replicated by

employing the identical computer system using the same

testing system that is described in Unit 3, and using the

same types of testing scenarios that are described in

Table 2. The simulation results for detection time (for

approaches that do not use classifiers) and accuracy (for

methods that use classifiers) are compared to the suggested

approach in Tables 10 and 11 correspondingly. As

Fig. 10 Under LL-fault condition, the three phase voltage waveforms (represented by the R phase in red, the Y phase in yellow, and the B phase

in blue) along with the angle of zero and negative phase sequences and their angular sums are illustrated (color figure online)
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compared to other methods, it can be noted that the pro-

posed method takes a shorter amount of detection time

while maintaining a high level of accuracy. These facets

provide supporting evidence for the presented technique’s

superiority over alternative islanding recognition

approaches.

6 Conclusion

As the power system continues to be subjected to exorbi-

tant situations, the power industries have become increas-

ingly interested in strengthening the resilience of the grid,

specifically though islanding of MG. Nevertheless, the

islanding under such scenarios happens inadvertently,

devoid of the MG operators’ previous knowledge. There-

fore, this paper presents a novel and improved approach to

islanding detection by implementing l-PMU. l-PMU

based Fortescue transform with random forest algorithm is

introduced for the purpose of evaluating the phase angle of

sequence components. For detecting island cases, the

angular sum of phase angles of a zero and negative

sequence of voltage signals is utilised. The algorithm is

devoid of NDZs. In order to ensure its robustness and

accuracy, the proposed method undergoes simulations

under a variety of conditions, including normal conditions,

islanding conditions, and faults like: L-L, L-G, L-L-L, L-L-

G. Furthermore, the programmed algorithm incorporates

Table 1 Values obtained from the graphs

Case Threshold value (deg.)

Normal 15.71

Island 182.26

LLL 184.35

LLG 256.57

LG 89.83

LL 15.16

Table 2 Situations simulated for threshold calculation

Situations Explanation No. of situations

Island Reactive power variation = ± 35% 70

Active power variation = ± 35% 70

Active and reactive power variation = ± 35% 70

Fault Different faults (LG, LLL, LL and LLG) having fault resistance variation in range of 0X to 85X 160

Other Switching on of loads having variation in the range of 125 kW to 225 kW kVAR 50

Switching on of capacitor banks having variation in the range of 125 kVAR to 225 50

Table 3 Classifier model and their accuracy

Classifier model Accuracy (%)

Artificial neural network 95.2

Support vector machine 92.9

RF 99.3

Decision tree 81.7

Access the voltage signal of DG by μ-
PMU

Feed the fortescue transform 
maximum angular addition to  RF 

classifier at control center

Fault or islandidentified?

Islanding conditions 
identified?

Execute the Fortescue transform 
to calculate maximum angular
addition  and  transfer data to 

control center

Yes
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Fig. 11 Flowchart illustrating the proposed method for intelligent

control of MG and island detection using a l-PMU
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intelligent islanding to safeguard against the destruction of

the critical load. Thus, the study’s results guarantee that the

proposed method for islanding detection is not only

quicker, but also simpler, more cost-effective, secure,

accurate, and intelligent.

Consideration may be given to a variety of prospects for

future employment. Further application of the current work

is possible in grids with a high proportion of electric

vehicles, taking into account the rapid charging methods of

electric vehicles that may introduce grid transients com-

parable to those caused by island detection signals. SNR

limitations notwithstanding, contemporary advanced tech-

niques including reinforcement learning, extreme learning,

and spatiotemporal pattern recognition can be integrated to

rectify the present method’s deficiencies. Additionally,

Table 4 Performance of the algorithm under different power mis-

match (reactive) during islanding

% Power mismatch Load (kW) Classified event

- 80 50 Island

- 60 100 Island

- 40 150 Island

- 20 200 Island

0 250 Island

20 300 Island

40 350 Island

60 400 Island

80 450 Island

100 500 Island

Table 5 Performance of the algorithm under different power mis-

match (reactive) during islanding

Power mismatch (%) Load (kVAR) Classified event

0 0 Island

50 50 Island

100 100 Island

150 150 Island

200 200 Island

Table 6 Performance of the algorithm under different faults having

FR

FR (X) LLG Fault LG Fault LLL Fault LL Fault

0 Fault Fault Fault Fault

15 Fault Fault Fault Fault

25 Fault Fault Fault Fault

35 Fault Fault Fault Fault

45 Fault Fault Fault Fault

55 Fault Fault Fault Fault

65 Fault Fault Fault Fault

75 Fault Fault Fault Fault

85 Fault Fault Fault Fault

95 Fault Other Fault Fault

100 Fault Island Other Island

Table 7 Performance of the algorithm under different faults having

FIA

FIA (Deg) LLG Fault LG Fault LLL Fault LL Fault

0 Fault Fault Fault Fault

35 Fault Fault Fault Fault

65 Fault Fault Fault Fault

95 Fault Fault Fault Fault

125 Fault Fault Fault Fault

155 Fault Fault Fault Fault

180 Fault Fault Fault Fault

215 Fault Fault Fault Fault

245 Fault Fault Fault Fault

275 Fault Fault Fault Fault

305 Island Fault Island Other

330 Other Island Fault Fault

Table 8 Performance of the algorithm under different power system

operations

Operations Classified event

Normal Other

Starting an induction motor Other

Unmasking of load Other

Switching of capacitor Other

LLL fault in middle of node 675 and 692 Fault

LL fault in middle of node 632 and 633 Fault

LG fault in middle of node 652 and 684 Fault

LLG fault in middle of node 645 and 646 Fault

Table 9 Performance of the

algorithm under different noise

levels

SNR(dB) Classified event

10 Island

15 Island

25 Island

35 Other

45 Fault
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these approaches would be advantageous in light of the

growing complexity of power grids and the magnitude of

cyber threats. Additionally, future research may consider

the implementation of secure methods to regulate power

flow in the islanded area through the division of it into

smaller islands, known as ‘‘islands of islands.’’
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