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Abstract
Currently, no device is available for the rapid screening of ventilator-associated pneumonia (VAP) at an early stage.

Accordingly, we propose the design of an offline gas detection system to monitor and detect metabolites of pneumonia at

an early stage. An electronic nose (e-nose) with 28 metal oxide semiconductor gas sensors was developed for predicting the

presence of infection after patients have been intubated in the intensive care unit. The effectiveness of VAP identification

was verified using clinical data. A total of 40 patients were included in this study, of whom 20 were infected with

Pseudomonas aeruginosa and the remaining were uninfected. The results revealed that good accuracy rates of

0.9208% ± 0.0302% and 0.8547% ± 0.0214% were achieved by support vector machine and artificial neural network

models, respectively. This study provides a simple, low-cost solution for the rapid screening of VAP at an early stage.

1 Introduction

Ventilator-associated pneumonia (VAP) is a common

nosocomial infection occurring in ventilator-assisted

patients in intensive care units (ICUs). Hospital-acquired

pneumonia (HAP) (Self et al. 2013) is a major clinical

problem associated with patients subjected to intubation

and mechanical ventilation in ICUs (Woodhead et al. 2006;

Chastre and Fagon 2002; Morehead and Pinto 2000;

Koenig and Truwit 2006). The lower respiratory tract of a

normal individual is usually a sterile environment; in

intubated and mechanically ventilated patients, the inci-

dence of bacterial infection can be as high as 80% (Fer-

nández-Crehuet et al. 1997). VAP was estimated to account

for 20–35% of the total cost burden imposed on hospitals.

VAP increases hospitalization costs and may lead to death.

Clinical sputum cultures, endotracheal aspirate analysis,

and, less frequently, bronchoalveolar lavage are used to

diagnose pneumonia; however, these techniques are poor in

terms of sensitivity and positive predictive value for

diagnosing VAP (Mandell et al. 2007). Reports of the

diagnostic sensitivity and specificity of sputum cultures

have varied extensively. Furthermore, sputum cultures can

be difficult to interpret owing to the upper respiratory tract

being colonized by bacteria, in contrast to the lower res-

piratory tract, which is typically sterile (Campbell and

Forbes 2011). Therefore, numerous studies have been

conducted on patients with other inflammatory pulmonary

diseases, including VAP (Fens et al. 2011; Berkel et al.

2010; Phillips et al. 2010; Bos et al. 2014; van der Schee

et al. 2015; Gao et al. 2016; Shafiek et al. 2015).

Exhaled breath contains gas-phase metabolites called

volatile organic compounds (VOCs) that are produced by

the host and bacteria. Different bacterial strains exhibit

distinct patterns of VOCs in vitro and in animal models

(Slupsky et al. 2009; Moens et al. 2006; Schöller et al.

1997; Dolch et al. 2012; Shestivska et al. 2012; Thorn et al.

2011). Recently, the breath of patients has been used to

detect pneumonia infections (Nayeri et al. 2002; Corradi
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et al. 2003); the smell from the breath of patients can help

detect pneumonia more easily. However, conventional gas-

analysis methods require the gas samples to be examined in

a laboratory using a gas chromatography–mass spectrom-

etry (GC–MS) analyzer (van den Velde et al. 2008; Zhu

et al. 2010). Although GC–MS yields relatively accurate

results, it is not suitable for monitoring in daily life because

the instruments required are bulky and the procedure is a

time-consuming process. Therefore, a device that can

rapidly screen for VAP is lacking. Electronic noses (e-

noses) are innovative devices for VOC sampling because

they facilitate online recognition of complex VOC mix-

tures. A comparison of the predictive value of e-noses with

that of the clinical pulmonary infection score indicated that

e-noses could distinguish between infected and uninfected

states (Hanson and Thaler 2005). The use of an e-nose to

rapidly screen patients for pneumonia is a noninvasive

technique that can help in the administering of antibiotic

treatment in a timely manner. Therefore, e-noses constitute

a suitable alternative for gas identification. An e-nose uses

an array of sensors to acquire the specific response pattern

of each type of gas and identifies this specific pattern for

disease identification (Wilson and Baietto 2011; Pearce

et al. 2006; Gardner and Bartlett 1992).

The use of an artificial neural network (ANN) has been

proposed in the past (Sadrawi et al. 2015; Liu et al. 2015)

as a suitable algorithm for modeling complex nonlinear and

nonstationary relationships in medical research. An ANN

can also be operated in real time when the weights have

been trained and fixed, and it is fault tolerant. A support

vector machine (SVM) is another machine learning method

that is based on statistical theory (Chapelle and Vapnik

2000); SVMs are used for feature classification and

regression. An SVM has many advantages when solving

for a small number of samples; moreover, it can solve

nonlinear and high-dimensional pattern recognition prob-

lems, and it is easy to use and implement in a real system

owing to its simplicity (Gold and Sollich 2003; Anguita

et al. 2003; Mustafa et al. 2009).

Herein, we propose the installation of a gas detection

system in a ventilator to monitor and detect metabolites of

pneumonia at an early stage. Unlike in our previous study

(Liao et al. 2019), where we used equipment manufactured

by Sensigent (i.e., Cyranose 320) to design a detection

system through Matlab, in the present study, we indepen-

dently designed our e-nose system. Specifically, we

designed the sensor board, embedded hardware, and

Android software for the system. Our data suggest that

VOCs in exhaled breath can be used to discriminate intu-

bated and mechanically ventilated patients with Hospital-

acquired pneumonia (HAP) from ventilated patients with-

out pneumonia in ICUs with high accuracy.

2 Materials and methods

The e-nose system designed in this study includes a sensor

array panel with an air chamber and an e-nose circuit panel,

in addition to have data collection, gas detection, and

machine learning modules.

2.1 Sensor array panel

The sensor array is a key component of the e-nose system;

it consists of 28 sensors. Table 1 lists the sensor manu-

facturer, target gas, and detection range. All 28 sensors are

of the metal oxide semiconductor (MOS) type, such as

TGS2600, TGS2602, TGS2603, TGS2610-C00, TGS2610-

D00, TGS2611-C00, TGS2611-D00, TGS2612-D00,

TGS2620, TGS3870, TGS2444, and TGS8100. MOS-type

sensors have a simple structure, long life cycle, and low

manufacturing cost; moreover, they are easy to miniaturize

and are highly responsive. MOS-type sensors are composed

of reactive materials such as Tin oxide (SnO2), Zinc per-

oxide (ZnO2) (Ji et al. 2010; Young et al. 2014; Liu et al.

2014; Chen et al. 2013), Tungsten trioxide (WO3), Palla-

dium (Pd), Carbon nanotube (CNT) (Young and Lin 2018)

as a substrate and noble metals such as platinum, gold,

tungsten, or palladium as a catalyst (Lin et al. 2015). The

catalyst shortens the response time of the sensor to the

chemical reaction equilibrium and expedites the response

of the sensor.

2.2 E-nose circuit panel

Figure 1a shows the location of the 28 sensors (S1–S28) in

a chamber sensor designed to enclose sensors of the same

type. Figure 1b shows the block diagram of the sensor

module comprising AD5144 analog potentiometers. The

AD5144 potentiometers control by Inter-Integrated Circuit

(I2C) bus and provide a nonvolatile solution for 256-po-

sition adjustment applications, and their resistance ranges

from 10 to 100 kX; they ensure low resistor tolerance

errors of ± 8%. The circuit controls the sensor resistance

load and maintains the analog to digital converter (ADC)

sampling voltage base in half maximum range to preserve

each sensor’s resistor as well as quality and health for long-

term use. The central processing Unit (CPU) used is

Freescale i.MX6, which has a single core running up to

1.0 GHz with 512 kB of L2 cache and 32-bit double data

rate 3 (DDR3) with synchronous dynamic random access

memory (SDRAM) support. Furthermore, it can integrate

low voltage differential signaling (LVDS), a mobile

industry processor interface (MIPI) display, MIPI camera

port, and high definition multimedia interface (HDMI)

v1.4.
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The hardware framework of the e-nose system includes

a valve, pump, gas chamber, temperature humidity control,

sensor array, CPU mainboard, and control circuit (Fig. 2).

The solenoid valve controls the inlet gas path and the pump

initiates the gas flow, which is monitored using a flow

sensor to monitor the flow ratio. A flow sensor from Sen-

sirion is used to monitor the inlet gas operation in normal

digital output. This facilitates long-term stability and pre-

cision even when the flow rate is slow. Furthermore, the

gas chamber includes a sensor board that consists of 28

sensors and a potentiometer to attenuate the sensor output

voltage and monitor the sensor resistance status. A high-

precision 16-bit sigma–delta ADC with a low-noise pro-

grammable gain amplifier is used. The ADC includes TI

LMP90080, which is a highly integrated multichannel,

low-power 16-bit sensor analog front end chip. Finally, the

e-nose system must be calibrated before use. The

calibration procedure can be performed using standard

gases, such as carbon monoxide gas or ethanol gas, to

obtain the sensor array response curve. If this curve is

within the tolerance range, the e-nose system can be used.

However, the pump flow rate, temperature, and humidity of

the chamber of the e-nose system are still needed to cali-

brate in regular intervals to make sure every parts of e-nose

system within accurate values. Furthermore, even after the

e-nose system is in use, we must still ensure that the pump

flow rate, temperature, and humidity of the chamber are

within a certain range, which can serve as a control system.

2.3 Breath samples and collection method

The single inclusion criterion for the patients to be part of

the study was that they had to be on mechanical ventilation

for more than 24 h Cardiopulmonary surgery patients and

Table 1 Specifications of the 28 sensors

SI No. Sensor Manufacturer Target gas Sensitivity (PPM)

1 TGS2600 Figaro Inc., Osaka, Japan Hydrogen, ethanol 1–30

2 TGS2600 Figaro Inc., Osaka, Japan Hydrogen, ethanol 1–30

3 TGS2600 Figaro Inc., Osaka, Japan hydrogen, ethanol 1–30

4 TGS2602 Figaro Inc., Osaka, Japan VOCs, ammonia, H2S 1–30

5 TGS2602 Figaro Inc., Osaka, Japan VOCs, ammonia, H2S 1–30

6 TGS2602 Figaro Inc., Osaka, Japan VOCs, ammonia, H2S 1–30

7 TGS2603 Figaro Inc., Osaka, Japan Trimethylamine, methyl mercaptan 1–10

8 TGS2603 Figaro Inc., Osaka, Japan Trimethylamine, methyl mercaptan 1–10

9 TGS2603 Figaro Inc., Osaka, Japan Trimethylamine, methyl mercaptan 1–10

10 TGS2610-C00 Figaro Inc., Osaka, Japan Butane, Propane 500–10,000

11 TGS2610-C00 Figaro Inc., Osaka, Japan Butane, Propane 500–10,000

12 TGS2610-D00 Figaro Inc., Osaka, Japan Butane, Propane 500–10,000

13 TGS2610-D00 Figaro Inc., Osaka, Japan Butane, Propane 500–10,000

14 TGS2611-C00 Figaro Inc., Osaka, Japan Methane 500–10,000

15 TGS2611-C00 Figaro Inc., Osaka, Japan Methane 500–10,000

16 TGS2611-E00 Figaro Inc., Osaka, Japan Methane 500–10,000

17 TGS2611-E00 Figaro Inc., Osaka, Japan Methane 500–10,000

18 TGS2612-D00 Figaro Inc., Osaka, Japan Methane, Propane, Butane 1 * 25% LEL

19 TGS2612-D00 Figaro Inc., Osaka, Japan Methane, Propane, Butane 1 * 25% LEL

20 TGS2620 Figaro Inc., Osaka, Japan Alcohol, Solvent vapors 50–5000

21 TGS2620 Figaro Inc., Osaka, Japan Alcohol, Solvent vapors 50–5000

22 TGS2620 Figaro Inc., Osaka, Japan Alcohol, Solvent vapors 50–5000

23 TGS3870 Figaro Inc., Osaka, Japan Methane, CO 50–1000

24 TGS3870 Figaro Inc., Osaka, Japan Methane, CO 50–1000

25 TGS3870 Figaro Inc., Osaka, Japan Methane, CO 50–1000

26 TGS2444 Figaro Inc., Osaka, Japan Ammonia 10–100

27 TGS8100 Figaro Inc., Osaka, Japan Hydrogen, ethanol 1–30

28 TGS8100 Figaro Inc., Osaka, Japan Hydrogen, ethanol 1–30

LEL lower explosive limit
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Fig. 1 E-Nose circuit panel block diagram a Sensor placement, b Sensor module block diagram
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patients who previously received mechanical ventilation

during the same hospitalization were excluded. The

exhaled gas was sampled within 24 h after the patient was

admitted into the ICU. The sampling method is illustrated

in Fig. 3.

In this study, the bacterium Pseudomonas aeruginosa

(P. aeruginosa) was collected in a sterile vacuum bottle

connected to a respirator. The e-nose system equipped with

28 sensor arrays was then used offline to screen the patterns

of respiratory gases in the sterile bottle, as shown in Fig. 4.

The sampling equipment was approved by Taiwan Food

and Drug Administration (TFDA) product code 001903.

The sterile bottle was provided by Xindong Co., Ltd., and

the medical equipment intravenous (IV) set was used to

connect the two sides. The sterile vacuum bottle was

connected to the other side of the respirator. To ensure

patient safety, the sampling process was performed by a

medical professional and the sampling time was limited to

10 s.

Data were collected from selected patients with VAP

infection and those without infection. The present research

received approval from the Institutional Review Board at

Taipei Medical University Hospital (TMUH), Taiwan.

Written informed consent was obtained from the 40

patients participating in the study. Of the 40 patients, 20

contracted pneumonia at TMUH and the remaining did not

have pneumonia (Table 2). Patients in the ICU are usually

those that have undergone neurosurgery without any evi-

dence of infection or lung disease. Raw data of 120 sam-

ples per patient were collected to obtain 4800 raw data

points. To avoid bacterial variation caused by treatment

implementation, respiratory gases from patients not injec-

ted with antibiotics were collected to constitute an exper-

imental database.

2.4 Detection process

Figure 5 shows the architecture of the e-nose system. The

system architecture shows the overall system flow in

relation to external auxiliary systems.

The detection process is automatically controlled by the

e-nose system. Figure 6 shows the timing sequence of the

motor solenoid valve and sensor control. The detection

procedure is divided into four phases, each defined as a

flag:

Flag 0—Baseline phase (600 s): Each sensor baseline is

recorded, which is used in data analysis.

Fig. 2 Framework of e-nose system hardware

Fig. 3 Setup for collecting exhaled breath samples from VAP patients

Fig. 4 Setup for e-Nose breath sample reading
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Flag 1—Breath gas injection phase (30 s): The pump is

turned on. A breath gas sample is drawn from the airbag

to the air chamber at constant speed. The sensor signal

begins to respond to the injected target expiratory gas.

Flag 2—Sensor reaction phase (30 s): The pump is

turned off. The sensor continues to react with compo-

nents in the breath gas. The response of the MOS sensor

reaches its maximum value.

Flag 3—Cleaning phase (600 s): The pump is turned on

again and draws clean air into the air chamber for 600 s.

The sensor response gradually returns to the baseline.

After the response becomes stable, the device is ready to

measure the next sample.

The responses of the sensors (S1–S28) in the four phases

are illustrated in Fig. 7. The response remains stable during

the baseline phase (Flag 0) and changes during the injec-

tion phases (i.e., Flags 1 & 2). Each sensor reaches its

maximum response at least once during the sensor reaction

phase (Flag 2). Finally, during the purge phase (Flag 3), the

APP Home

Go
(Auto Diagnosis) Setup

Preparation
(Purge)

Data 
Collection

Analysis

Reports

R/W

Sensors

Read Settings

Data Mgmt

Patient Mgmt

Event Log

R/W

Choose Patient

Database

Fig. 5 System architecture

Table 2 Patients with infection P. aeruginosa and without infection

No. Sex Age WBC PLT Seg CRP Sputum No. Sex Age WBC PLT Seg CRP Sputum

1 Male 77 11.25 216 59.0 7.08 P. aeruginosa 1 Female 86 16.49 262 85.1 2.86 X

2 Male 33 7.93 98 87.4 N/A P. aeruginosa 2 Female 81 10.31 239 79.6 1.87 X

3 Female 67 19.35 474 83.4 17.74 P. aeruginosa 3 Male 73 16.49 262 85.1 2.86 X

4 Female 90 15.19 505 82.6 N/A P. aeruginosa 4 Male 69 14.55 483 82.1 4.91 X

5 Male 61 7.87 371 69.7 1.76 P. aeruginosa 5 Female 93 7.81 235 73 N/A X

6 Male 83 10.21 251 82.1 4.2 P. aeruginosa 6 Female 81 10.46 290 79.4 0.81 X

7 Male 55 6.00 164 73.4 24.31 P. aeruginosa 7 Female 81 13.75 259 80.5 5.69 X

8 Female 87 11.60 315 64.9 1.42 P. aeruginosa 8 Male 83 11.31 208 81.4 1.18 X

9 Male 85 10.99 266 81.6 N/A P. aeruginosa 9 Male 76 7.81 235 73 N/A X

10 Male 46 15.92 374 89.1 16.42 P. aeruginosa 10 Male 79 13.75 259 80.5 5.69 X

11 Female 91 8.28 141 84.8 8.60 P. aeruginosa 11 Male 56 2.59 195 72.2 31.03 X

12 Female 51 12.10 65 89.3 0.41 P. aeruginosa 12 Male 63 7.98 15 89.2 N/A X

13 Female 88 13.90 145 89.0 N/A P. aeruginosa 13 Male 53 17.45 145 95.2 N/A X

14 Female 64 11.13 93 58.5 3.97 P. aeruginosa 14 Male 47 7.38 126 80.6 N/A X

15 Female 87 2.46 139 37.6 6.90 P. aeruginosa 15 Female 66 1.30 87 70 N/A X

16 Female 83 6.75 77 75.7 4.87 P. aeruginosa 16 Female 66 7.67 66 91.9 7.98 X

17 Female 78 5.89 135 85.7 15.46 P. aeruginosa 17 Female 74 11.60 315 64.9 1.42 X

18 Male 94 6.75 77 75.7 4.87 P. aeruginosa 18 Male 85 11.92 249 79.7 N/A X

19 Male 91 58.50 144 84.6 N/A P. aeruginosa 19 Male 68 13.57 370 86 N/A X

20 Male 64 11.54 146 94.1 9.52 P. aeruginosa 20 Male 65 5.14 40 76.4 18.09 X

P. aeruginosa: Pseudomonas aeruginosa,WBCWhite Blood Cell (10-3/ul); PLT platelet (103/ui), Seg segmented eutrophils (%), CRP C-reactive

protein (mg/L), N/A not available, X non-infected patient
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sensor response gradually returns to the baseline when

clean air is injected into the chamber. After the entire

process, the digitized breath sample is represented by 28

response curves. Each response curve has 120 data points.

The data samples are then used for further analysis.

2.5 Machine learning methods

2.5.1 SVM architecture

The SVM techniquewas introduced byVapnik, and in recent

years, it has been further developed. Several studies have

reported that an SVM is usually able to achieve higher

classification accuracy than other existing classification

algorithms. In the past decade, the SVM has emerged as an

important learning technique for solving classification and

regression problems in various fields. A novel kernel func-

tion called the radial basis polynomial kernel (RBPK), which

combines the characteristics of the radial basis function

(RBF) kernel and the polynomial kernel, is defined as

KðxixjÞ ¼ exp
xixj þ c
�
�

�
�
d

r2

 !

where c [ 0; d [ 0 ð1Þ

The RBPK function has good predictive ability from the

polynomial kernel function and good learning ability from

the RBF kernel function.

Fig. 6 Timing sequence of

motor solenoid valve and sensor

control

Fig. 7 Response curves of 28 sensors
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2.5.2 ANN architecture

The ANN algorithm is a machine learning algorithm that

mimics human neural networks, and it is used for prediction,

clustering, and pattern recognition based on past and current

training data. An ANN allows for the inclusion of a large

number of variables, and each variable can be assigned a

different weight to produce an output that is very close to the

predicted result. A typical classification network consists of an

input layer, a hidden layer, and an output layer. In addition, the

data are usually divided into training, validation, and testing

sets. In previous studies (Liu et al. 2015), nonlinear and

nonstationary medical data have been used with a backprop-

agation network having four layers: an input layer, two hidden

layers with 17 and 10 neuron nodes each, and an output layer.

Recently, deep learning has been extended to contain more

layers; for example, CifarNet contains 5 layers, AlexNet

contains 8 layers, and VGGNet contains 15–19 layers (Liu

et al. 2019). For our study, since the dataset was of only 40

patients, we selected only four layers: an input layer, two

hidden layers with 30 neuron nodes each, and an output layer.

2.5.3 Evaluating the predictive performance of machine
learning methods

The receiver operating characteristic (ROC) curve analysis

is a statistical method that has been widely used in medical

diagnosis for evaluating the performance of classifiers

(Ottenbacher et al. 2001; Yeh et al. 2009). Furthermore, the

area under the ROC curve (AUC) is the main performance

index of a classification system. An AUC of 1.0 typically

implies perfect discrimination; however, this is an ideal

case and would not occur in the real world. An AUC of 0.5

is equivalent to a random model. An AUC of less than 0.5

implies that an alternative method would be required to

build the model, as it would mean that the classifier does

not fit the real situation. Therefore, in this study, the ROC

curve and AUC analysis were used to evaluate the pre-

dictive performance of the machine learning methods (i.e.,

the SVM and ANN). Moreover, the sensitivity (SEN),

accuracy (ACC), and positive predictive value (PPV) of the

methods were calculated using Eqs. (2)–(4) as follows:

SEN ¼ TP

TPþ FN
; ð2Þ

ACC ¼ TPþ TN

TPþ FPþ TN þ FN
; ð3Þ

PPV ¼ TP

TPþ FP
ð4Þ

where TP is a true positive classification, FN is a false

negative classification, TN is a true negative classification,

and FP is a false positive classification.

3 Data analysis and results

3.1 Data preprocessing

Data preprocessing has a major effect on the performance

of e-nose systems. A good signal preprocessing method not

only reduces noise but also reduces recognition complexity

and errors, thereby improving system identification per-

formance. Accordingly, in this study, we implemented a

hardware first-order low-pass RC filter. A nonlinear log–

sigmoid activation function was used, which is defined in

Eq. (5), where a is the output of the nonlinear log–sigmoid

function and n is the input of the nonlinear activation

function. The training and testing data are normalized in

the range of 0–1

a ¼ f ðnÞ ¼ 1

1þ e�n
: ð5Þ

3.2 Predictive ability of ANN and SVM ROC
models

The concept of cross-validation is to generate k-fold cross-

validations of equal size. One data fold is used as the

validation set, and the other folds are used for training to

generate a neural network model. This process is repeated

k times, and for each repetition, the validation sets are

selected from the k-fold; the sets are never used twice. This

process generates a k number of neural networks that are

averaged to generate the final prediction.

To estimate the generalized prediction abilities of the

ANN model, testing data were applied to the model, and

the outputs were used to generate the ROC curve. Table 3

summarizes the ROC curve analysis results for the ANN

and SVM models. To evaluate the performance of the

models, we employed fivefold cross-validation. The results

revealed that the ANN model had good VAP recognition

rates, and the average ACC, SEN, and PPV values were

0.8547 ± 0.0214 (mean ± SD), 0.6779 ± 0.1133, and

0.6408 ± 0.1583, respectively. The results also showed

that the SVM model exhibited high VAP recognition rates,

and the average ACC, SEN, and PPV values were

0.9208 ± 0.0302, 0.8439 ± 0.0303, and 0.8145 ± 0.0660,

respectively. Therefore, the SVM model performed better

than the ANN model in terms of detecting VAP. The

optimized SVM model shown in Fig. 8 was established

with the ideal combination of parameters of C = 10,

r = 0.001, to achieve better performance in VAP

detection.

The ROC curves (Fig. 9) for the ANN and SVM models

were analyzed. The average AUC obtained from fivefold

cross-validation tests for the ANN model was

0.868 ± 0.04868 (mean ± SD). In addition, the average
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AUC obtained from fivefold cross-validation tests for the

SVM model was 0.926 ± 0.0167. The high mean values

and the low SD values of SVM model confirm the uni-

formity and reliability of the results.

4 Discussion

In this study, an e-nose system consisting of 28 gas sensors

was developed and tested on 40 patients. Our experience of

each type of sensor consists of at least 3 sensors which

could get good stability and performance. Furthermore,

sensors need filter to use target gas to screen and define

sensor quality. Moreover, each sensor module needs aging

over 168 h to ensure stability.

The proposed system has a high degree of automation,

has a relatively low environmental impact, has low artifi-

cial effects, improves the repeatability and reliability of

tests, and can be integrated with or customized for various

test methods to meet different needs. In addition, the

advancement of system software functions along with

improvements in identification technology will improve the

performance of the system.

5 Conclusion

In this study, machine learning was used to predict whether

patients were infected with major bacteria P. aeruginosa in

the ICU. The ANN and SVM models were trained and

tested separately. ROC curve analysis showed that the

ANN and SVM models had a high pneumonia identifica-

tion rate. The SVM model was more accurate than the

ANN model. Because only 40 patients were included in

this study, the ANN model may not have had sufficient data

for training. If we were to include more data in the future,

the ANN model would outperform the SVM model because

the nonlinear mapping for the ANN is higher than that for

the SVM. The designed system utilizes a low-cost

microarray e-nose that is easy to install into a mechanical

ventilation system in the ICU to facilitate the collection of

breath samples from VAP patients. In the future, data

collected from multiple hospitals can be tested not only

with the traditional ANN (or shallow learning) but also

with deep learning (e.g., convolutional neural networks)

(Esteva et al. 2017; Rajpurkar et al. 2017; De Fauw et al.

2018), which can be applied to VAP detection systems.
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