
TECHNICAL PAPER

Dynamic sampling rate algorithm (DSRA) implemented in self-
adaptive software architecture: a way to reduce the energy
consumption of wireless sensors through event-based sampling

Hatem Algabroun1

Received: 9 September 2019 / Accepted: 14 September 2019 / Published online: 21 September 2019
� The Author(s) 2019

Abstract
With the recent digitalization trends in the industry, wireless sensors are, in particular, gaining a growing interest. This is

due to the possibility of being installed in inaccessible locations for wired sensors. Although great success has already been

achieved in this area, energy limitation remains a major obstacle for further advances. As such, it is important to optimize

the sampling with a sufficient rate to catch important information without excessive energy consumption, and one way to

achieve sufficient sampling is using adaptive sampling for sensors. As software plays an important role in the techniques of

adaptive sampling, a reference framework for software architecture is important in order to facilitate their design, mod-

eling, and implementation. This study proposes a software architecture, named Rainbow, as the reference architecture, also,

it develops an algorithm for adaptive sampling. The algorithm was implemented in the Rainbow architecture and tested

using two datasets; the results show the proper operation of the architecture as well as the algorithm. In conclusion, the

Rainbow software architecture has the potential to be used as a framework for adaptive sampling algorithms, and the

developed algorithm allows adaptive sampling based on the changes in the signal.

1 Introduction

In the maintenance industry, condition monitoring can be

defined as a technique used to monitor physical variables

(e.g., temperature, vibration, and pressure) to draw con-

clusions about the condition of an asset being monitored.

Condition monitoring techniques are used as a data source

in condition-based maintenance to provide an early warn-

ing to plan and trigger cost-effective maintenance actions

(Owen et al. 2009; Al-Najjar 2012). With the recent digi-

talization trends in industry, wireless sensors are, in par-

ticular, gaining a growing interest. This is due to the

possibility of installing them in inaccessible locations for

wired sensors, such as in embedded systems and rotating

machines. This avoids the burden of unreliable electrical

connections and wiring expenses (Owen et al. 2009).

Although great success has already been achieved in this

area, energy limitation remains a major obstacle for further

advances (Alippi and Anastasi 2010; Zhang et al. 2013).

For this reason, energy harvesting for wireless sensors

received considerable attention from several researchers

(Owen et al. 2009; Bogue 2010, 2015). However, harvested

energy sources are typically unstable and vary with time,

weather, or the season. As such, managing energy con-

sumption wisely is still desirable (Yan et al. 2012; Zhang

et al. 2013).

Generally, it is assumed that the energy consumption for

sensing is relatively far lower than it is for transmitting and

receiving. However, in practice, this is not always the case.

There are so-called ‘‘hungry sensors’’ (e.g., a gas sensor)

whose energy consumption is relatively high compared to

that of data transmitting and receiving (Alippi and Anastasi

2010; Shu et al. 2017). In such applications, efficient

sampling management is a very important issue as reducing

data sampling means, in many cases, reducing data

acquisition, including computations and data transmission.

For wireless sensors, there is usually a trade-off between

monitoring quality and energy consumption. This is

because with the increase in collected data comes increased

monitoring quality and increased energy consumption.

However, if only a little data is collected, there is a lack of

information, which eventually, will come with the cost of

& Hatem Algabroun

hatem.algabroun@lnu.se

1 Mechanical Engineering Department, Faculty of Technology,

Linnaeus University, Vaxjo, Sweden

123

Microsystem Technologies (2020) 26:1067–1074
https://doi.org/10.1007/s00542-019-04631-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-5320-1154
http://crossmark.crossref.org/dialog/?doi=10.1007/s00542-019-04631-9&domain=pdf
https://doi.org/10.1007/s00542-019-04631-9

poor monitoring quality and consequent bad decisions (Lu

et al. 2017). Therefore, it is important to optimize the

sampling with a sufficient rate to catch important infor-

mation cost-effectively and without excessive energy

consumption. One way to achieve sufficient sampling is to

adapt the sampling rate dynamically to the events that

occur in the physical phenomenon being monitored.

Several studies investigated adaptive sampling. For

instance, in Shu et al. (2017), an algorithm for adaptive

sampling was developed and tested for water quality. Two

key parameters were used to evaluate the algorithm, dis-

solved oxygen (DO) and turbidity. Normalized mean error

was used to evaluate the performance of those predeter-

mined parameters. In comparison with fixed intervals, the

study showed that battery life could be increased to 30.66%

within 3 months of monitoring. In Alippi and Anastasi

(2010), an adaptive sampling algorithm was proposed that

estimates the optimal sampling rate online. The proposed

algorithm determines the sampling rate by using the fast

fourier transform algorithm and compares it with the

maximum frequency. The study showed that the algorithm

could reduce the number of samples up to 79% compared

with the traditional fixed-rate approach. Yan et al. (2012)

suggested an adaptive sampling algorithm that adapts the

sampling mode to the present energy state. The test was

made using a CO2 sensor, and the results showed that the

sensor sampling mode was changing based on the changes

in the energy state. More detailed surveys in this domain

can be found in Rault et al. (2014) as well as Khan et al.

(2015).

In general, an adaptive sampling technique is compu-

tational-dependent and, therefore, software plays a signif-

icant role in it. For this reason, a reference framework of

software architecture is important to facilitate adaptive

sampling design, implementation and modeling. Despite its

importance, there is a lack of studies on developing a

reference framework for adaptive sampling models. From

the software engineering field, the architectural approach

appears to be suitable for this task. It provides the right

level of abstraction and generality to construct a knowledge

representation scheme (Oreizy et al. 1998; Garlan et al.

2004; Kramer and Magee 2007; Weyns and Iftikhar 2016;

Algabroun 2017). Garlan et al. (2004) proposed a self-

adaptive based architecture, named Rainbow, that can be

used as a reference for systems that are self-adaptable to

uncertainties at the runtime. In this paper, we argue that

this reference architecture is suitable for adaptive sampling

applications.

The contribution of this paper is twofold: first, proposing

a reference architecture, that is, Rainbow, for adaptive

sampling algorithms, and second, developing a parametric

algorithm, that is, dynamic sampling rate algorithm

(DSRA), that dynamically adapts the sampling rate based

on the events in the signal. Hence, the aims of this study

are as follows: (1) to establish a reference framework for

adaptive sampling algorithms, (2) to develop an adaptive

sampling algorithm, and (3) to implement and test the

proposed reference framework using the developed

algorithm.

The remainder of the paper will be as follows: the next

section will discuss the self-adaptive software architecture;

Sect. 3 will explain the development of the algorithm,

which will then be implemented in the proposed software

architecture; in Sect. 4 the algorithm will be tested using

two datasets; Sect. 5 will discuss the results; and in Sect. 6

conclusions will be drawn.

2 Self-adaptive software architecture

Self-adaptive software architecture is designed to endow a

system with autonomous adaptation to dynamics at runtime

(Kephart and Chess 2003; Gil De La Iglesia and Weyns

2015). Typically, this approach contains a managed system

and a feedback loop, that is, a managing system. The

managed system is concerned with the domain’s func-

tionality, while the managing system is concerned with the

adaptation of the managed system (Oreizy et al. 1998;

Kramer and Magee 2007).

This approach has several advantages (Algabroun

2017):

• It enables the design of a system that is autonomously

adaptable at runtime.

• It is based on the principle of separation of concerns,

where each component is assigned a distinct function.

This facilitates repair, modification, and development.

• It allows the abstract design of a system that covers

different domains.

• The abstraction provides a holistic view of a system

exposing its system-level properties (Garlan et al.

2004).

• It is well supported by modeling languages and

notations to express knowledge such as stitch (Cheng

and Garlan 2012) and automata (Weyns et al. 2012).

• It allows treating a component as a black box, thereby

increasing the possibility of its reusability (Oreizy et al.

1998).

Several frameworks have been proposed for self-adap-

tive software architectures (Oreizy et al. 1998; Kephart and

Chess 2003; Garlan et al. 2004; Kramer and Magee 2007).

Some studies, such as IBM’s MAPE-K (monitor-analyze-

plan-execute-knowledge) (Kephart and Chess 2003), con-

sidered developing a framework that guides the self-

adaptation mechanism. Kramer and Magee (2007) con-

sidered three different hierarchical layers, which named

1068 Microsystem Technologies (2020) 26:1067–1074

123

component control, change management, and goal man-

agement. Others, such as Oreizy et al. (1998) and Garlan

et al. (2004), provided a framework that enables assess-

ment of the adaptation decision and allows runtime con-

figuration. All of these frameworks aimed to provide

leeway for the engineer to architect a software system. As

such, it is nearly possible to reach rather a similar objective

using any of them (Weyns et al. 2012). Despite this, the

Rainbow framework appears to be the most suitable for the

problem addressed in this paper, as it contains the neces-

sary elements for conducting an adaptive sampling opera-

tion. These elements are collect data, detect changes in the

condition, evaluate changes, decide the adaptation regime

(i.e., the sampling rate), and execute the regime. Therefore,

in this study we considered Rainbow architecture (Garlan

et al. 2004). The next section will describe the Rainbow

architecture in more detail.

2.1 Rainbow framework

A framework refers to a structure representing a knowledge

scheme, which serves as a template or guideline to con-

struct a specific model (Guillén et al. 2016; Algabroun

2017). The Rainbow framework (Garlan et al. 2004) is a

reusable software architecture for engineering systems that

are self-adaptive at runtime. It aims to minimize the design

efforts by providing a customizable framework that can be

employed in different domains (Cámara et al. 2016).

The adaptation process of the Rainbow framework is as

follows (see Fig. 1): the data of the managed system (in the

system layer) is collected by the Probes component,

aggregated by the Gauges component, and then used to

update a model of the managed system that is maintained

by the Model manager component. This is done through

the Translation infrastructure layer that enables the com-

munication by mapping the managed system in the system

layer to the managing system in the architecture layer.

Then the Constraints evaluator component evaluates if

specific constraints were violated in the model if so, it

triggers the Adaptation engine component. The latter

component then selects an adaptation regime, and the

Adaptation executor component executes it through

Effectors at running time.

The Rainbow framework employs the notation archi-

tectural style to distinguish system-specific knowledge

from commonalities between systems. This facilitates

customization by determining four customization points

(Cámara et al. 2016):

• The model of the managed system in the system layer,

which is handled by Model manager.

• The constraints, which are handled by Constraint

evaluator.

• The adaptation regime, which is handled by Adaptation

engine.

• The configuration of Effector, which is handled by

Adaptation executor.

Fig. 1 The Rainbow framework

(Garlan et al. 2004)

Microsystem Technologies (2020) 26:1067–1074 1069

123

3 Algorithm development
and the implementation in Rainbow

Sufficient sampling is very important, as once the obtained

signal is distorted from insufficient sampling, it will be

impossible to retrieve the original signal anymore. In a

sampled signal, the pattern between the sampling points is

unknown. From a practical point of view, the signal is

usually assumed to have a smooth transition between these

points (Cohen 2019).

The algorithm developed in this section is based on a

realistic assumption to capture the signal changes; that is,

we need more data when a change in the monitored phe-

nomenon occurs. So, the sampling rate should be depen-

dent on the change rate in the monitored signal. This

motivates the need to consider the slope between two

consecutive points. The more slope there is, the more

change that occurred and the more following-up there

should be; consequently, the higher sampling rate should

be implemented. Based on this assumption, this algorithm

is dealing with two main parts, that is, identifying the slope

and determining the sampling rate.

3.1 Algorithm development

To realize this data driven algorithm, when the monitored

signal is relatively static and no considerable variation is

assumed, it is reasonable to reduce the sampling rate. This

is to reduce energy consumption since much of the data

could be redundant.

The value of the sampling rate in the case of redundancy

should be predetermined first. This value of the sampling

rate serves as a means to explore if a change is present in

the signal. This value is then subtracted from the slope of

the signal trend to obtain the time between measurements

(TBM). In the case where the signal has a high variation,

for example, vibration, a complementary technique has to

be used, such as averaging and cumulative sum (CUSUM)

(Al-Najjar 2016). TBM could be mathematically defined as

follows:

TBM ¼ E � S � yi � yi�1ð Þ
ðMi �Mi�1Þ

�
�
�
�

�
�
�
�

� �

; ði 2 1; 2; 3; . . .nÞ ð1Þ

where E is the exploratory value, that is, the sampling rate

in the normal case, which is meant to explore the presence

of changes and S is a tuning constant that determines the

sensitivity of the changes. It is desirable to utilize knowl-

edge-expert and/or historical data to predetermine a proper

value for those parameters, that is, E and S; yi and yi�1

denote the current and previous sensor values, respectively

and Mi and Mi�1 denote the current and previous time of

measurements, respectively.

The next measurement (Miþ1) could be then defined as

follows:

Miþ1 ¼ Mi þ TBM; ði 2 1; 2; 3; . . .nÞ ð2Þ

3.2 Algorithm implementation in the Rainbow
framework

The adaptive process of the Rainbow framework described

in Sect. 2.1 can be considered as a generic pattern of the

adaptive sampling process. As such, this process can be

mapped to the generic components of the Rainbow

framework; each particular component will be assigned a

related function as follows:

• Gauges: to collect, preprocess, and update the data, for

example, implementing aggregation and averaging.

• Model manager: to handle and run the model being

employed.

• Constraints evaluator: to evaluate if there is a violation

of specific constraints to detect changes.

• Adaptation engine: to decide the proper sampling

regime.

• Adaptation executor: triggering Probes to collect the

data based on the adaptive plan decided by Adaptation

engine.

A pseudo-code for implementing the developed algo-

rithm in the Rainbow framework is represented below in

Algorithm 1.

1070 Microsystem Technologies (2020) 26:1067–1074

123

4 Testing DSRA-based Rainbow architecture

Two datasets were created and used as examples to test the

DSRA algorithm. The first example is intended to visualize

the behavior of the algorithm; the second example is

intended to show the approximation that could be achieved

in a more realistic dataset.

4.1 Example 1

As a proof of concept, a dataset was created with different

slope values to visualize the behavior of the algorithm

implemented in the Rainbow architecture. These values are

meant to represent different states of the physical phe-

nomenon being monitored; the values of the slopes are 0, 1,

and 2.

DSRA was implemented in the Rainbow architecture

and programmed using Python 3.7.3 and open-source

libraries Numpy and Matplotlib. After certain iterations

using different values for E and S, the values of 5 and 2 for

E and S respectively were selected as it allows intuitive

visualization of the algorithm’s behavior (see Fig. 2).

4.2 Example 2

A dataset of a signal with variations in its amplitude was

created, and the algorithm was implemented on this data-

set. After several iterations with different E and S parame-

ters, values of 12 and 15 were selected. These tuning

parameters were selected as in this case, the reconstructed

signal from the algorithm appeared to have a lower number

of samples and a higher approximation to the original

signal (see Fig. 3).

The mean absolute percentage error (MAPE) was cal-

culated for the two signals (i.e., the reconstructed signal

from DSRA and the test signal) as a mean for pattern

similarity and it was 0.326% for 300 points. MAPE was

employed due to its popularity and intuitive interpretability

as an absolute percentage error (Kim and Kim 2016).

Algorithm 1. DSRA

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

Initialization
set the sampling rate at the normal case E;
set the tuning factor ;
set C (Constraint);
set time;
Flag = False

end initialization;
while (True) do:

Gauges
get data from Probes;
preprocess the collected data;
update repository;

Model Manager
find Change Significance (i.e. CS = *);

Constraints Evaluator
If (CS ≥ C);

Flag = True
else;

TBM = E

Adaptation Engine:
If (Flag = True);

find TBM (i.e. TBM = E - CS);
decide (i.e.);
Flag = False

Adaptation Executor
while (time <)

wait;
end while;

Microsystem Technologies (2020) 26:1067–1074 1071

123

5 Discussion

Based on the algorithm implementation and the results of

the examples, the Rainbow software architecture provided

a knowledge scheme for adaptive sampling to follow and

use. It follows systematic steps to perform adaptive sam-

pling that are: data collection, detection of a change in the

signal being monitored, evaluation of the change signifi-

cance, selection of the adaptation strategy, and eventually,

execution of the selected strategy. There was no conflict or

illogical process in the flow of the Rainbow software

architecture to be reported.

Figure 2 shows that the algorithm sampling increases

when the slope increases. When the slope value is 0, the

total number of samples is * 7. When the slope value is 1,

the total number of samples is 9, and when the slope is 2,

the total number of samples is 28. This is when E and S are

5 and 2, respectively.

In Fig. 3, when there is a redundancy in the signal (i.e.,

the amplitude value of the signal is stable, and there is no

variation in its value), fewer samples were collected. When

there were variations in the test signal, higher sampling

was exhibited to capture the changes in the signal. The

reconstructed signal from DSRA appears to have a pattern

close to that of the test signal with MAPE = 0.326% for

300 points. This is when E and S are 12 and 15, respec-

tively. It is crucial to assign a proper value for E and S to

achieve efficient sampling with a good approximation to

the signal being monitored. The optimization strategies and

Fig. 2 DSRA sampling rate over different slopes

Fig. 3 Implementing DSRA on a dataset

1072 Microsystem Technologies (2020) 26:1067–1074

123

techniques for tuning E and S are out of the scope of this

study and will be the subject of future work.

This approach might not be suitable for highly fluctu-

ating signals (e.g., high noise signals, vibration signals),

and in this case, a further process for this signal is required

(e.g., averaging, CUSUM). However, further research is

still required to investigate its performance on such signals.

6 Conclusion and future work

In order to overcome the energy limitation in wireless

sensor, it is important to optimize sensor sampling to catch

only important information without excessive samplings

that cause unnecessary energy consumption. A way to

achieve this is by adapting the sampling rate to the events

that occur in the signal being monitored.

As software plays an important role in the techniques of

adaptive sampling, a reference framework for software

architecture is important in order to facilitate their design,

modeling, and implementation.

The software reference framework for adaptive sam-

pling should allow one to address the following three key

questions: is there a change in the signal, is it considerable

change, and what adaptation strategy should be conducted?

The Rainbow software architecture appears to have a

mechanism that answers those questions, that is, after

collecting data, Model manager component detects the

change in the signal, Constraint evaluator component

determines the relevance of the change, and Adaptation

engine component selects the suitable adaptation strategies

that are then executed by Adaptation executor component.

It is believed that the proposed architecture has the general

steps of adaptive sampling and, as such, can be generalized

and used as a reference software architecture for a self-

adaptive sampling algorithm.

An algorithm for adaptive sampling, namely DSRA, was

developed in this study and implemented in Rainbow

architecture. As proof of concept, this algorithm was

implemented in two examples, and the results prove that

the algorithm has adaptive sampling based on the changes

in the signal. However, this algorithm might not be suit-

able for signals with high fluctuation, in such a case, further

signal processing, such as averaging and CUSUM, might

be necessary. The applicability of DSRA on such a signal

still needs to be investigated. Future work could include

investigating optimization strategies for E and S parameters

and techniques to include multiple sensor signals in the

algorithm, as well as examining the Rainbow software

architecture with other sampling algorithms.

Acknowledgements Open access funding provided by Linnaeus

University. This research was supported by PreCoM-H2020, FoF 09,

2017-202. PreCoM has received funding from European Union’s

Horizon 2020 research and innovation program under grant agree-

ment No. 768575.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Algabroun H et al (2017) Maintenance 4.0 framework using self-

adaptive software architecture. In: Proceedings of 2nd Interna-

tional Conference on Maintenance Engineering, IncoME-II

2017, University of Manchester, UK, pp 1–11

Alippi C, Anastasi G (2010) An adaptive sampling algorithm for

effective energy management in wireless sensor networks with

energy-hungry sensors. IEEE Trans Instrum Meas 59:335–344.

https://doi.org/10.1109/TIM.2009.2023818

Al-Najjar B (2012) On establishing cost-effective condition-based

maintenance. J Qual Maint Eng 18:401–416. https://doi.org/10.

1108/13552511211281561

Al-Najjar B (2016) Determination of potential failure initiation time

using cumulative sum chart. IFAC-PapersOnLine 49:43–48.

https://doi.org/10.1016/J.IFACOL.2016.11.008

Bogue R (2010) Powering tomorrow’s sensor: a review of technolo-

gies—part 2. Sens Rev 30:271–275. https://doi.org/10.1108/

02602281011072125

Bogue R (2015) Energy harvesting: a review of recent developments.

Sens Rev 35:1–5. https://doi.org/10.1108/SR-05-2014-652

Cámara J et al (2016) Incorporating architecture-based self-adaptation

into an adaptive industrial software system. J Syst Softw

122:507–523. https://doi.org/10.1016/j.jss.2015.09.021

Cheng SW, Garlan D (2012) Stitch: a language for architecture-based

self-adaptation. J Syst Softw 85:2860–2875. https://doi.org/10.

1016/j.jss.2012.02.060

Cohen M (2019) Understand the Fourier transform and its applica-

tions. Udemy, Inc. https://www.udemy.com/fourier-transform-

mxc/. Accessed 25 Feb 2019

Garlan D et al (2004) Rainbow: architecture-based self-adaptation

with reusable infrastructure. Computer 37(10):46–54

Gil De La Iglesia D, Weyns D (2015) MAPE-K formal templates to

rigorously design behaviors for self-adaptive systems. ACM

Trans Auton Adapt Syst 10:1–31. https://doi.org/10.1145/

2724719

Guillén AJ et al (2016) A framework for effective management of

condition based maintenance programs in the context of

industrial development of e-maintenance strategies. Comput

Ind 82:170–185. https://doi.org/10.1016/j.compind.2016.07.003

Kephart JO, Chess DM (2003) The vision of autonomic computing.

Computer 36:41–50. https://doi.org/10.1109/MC.2003.1160055

Khan JA et al (2015) Energy management in wireless sensor

networks: a survey. Comput Electr Eng 41:159–176. https://

doi.org/10.1016/j.compeleceng.2014.06.009

Kim S, Kim H (2016) A new metric of absolute percentage error for

intermittent demand forecasts. Int J Forecast 32:669–679. https://

doi.org/10.1016/j.ijforecast.2015.12.003

Kramer J and Magee J (2007) Self-managed systems: an architectural

challenge. In: 2007 Future of Software Engineering. IEEE

Computer Society. pp 259–268. https://doi.org/10.1109/fose.

2007.19

Microsystem Technologies (2020) 26:1067–1074 1073

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TIM.2009.2023818
https://doi.org/10.1108/13552511211281561
https://doi.org/10.1108/13552511211281561
https://doi.org/10.1016/J.IFACOL.2016.11.008
https://doi.org/10.1108/02602281011072125
https://doi.org/10.1108/02602281011072125
https://doi.org/10.1108/SR-05-2014-652
https://doi.org/10.1016/j.jss.2015.09.021
https://doi.org/10.1016/j.jss.2012.02.060
https://doi.org/10.1016/j.jss.2012.02.060
https://www.udemy.com/fourier-transform-mxc/
https://www.udemy.com/fourier-transform-mxc/
https://doi.org/10.1145/2724719
https://doi.org/10.1145/2724719
https://doi.org/10.1016/j.compind.2016.07.003
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1016/j.compeleceng.2014.06.009
https://doi.org/10.1016/j.compeleceng.2014.06.009
https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/10.1109/fose.2007.19
https://doi.org/10.1109/fose.2007.19

Lu T et al (2017) Distributed sampling rate allocation for data quality

maximization in rechargeable sensor networks. J Netw Comput

Appl 80:1–9. https://doi.org/10.1016/j.jnca.2016.12.021

Oreizy P, Medvidovic N, Taylor RNRN (1998) Architecture-based

runtime software evolution. Proc ICSE 1:2. https://doi.org/10.

1109/icse.1998.671114

Owen TH et al (2009) Self powered wireless sensors for condition

monitoring applications. Sens Rev 29:38–43. https://doi.org/10.

1108/02602280910926742

Rault T, Bouabdallah A, Challal Y (2014) Energy efficiency in

wireless sensor networks: a top-down survey. Comput Netw

67:104–122. https://doi.org/10.1016/j.comnet.2014.03.027

Shu T et al (2017) An energy efficient adaptive sampling algorithm in

a sensor network for automated water quality monitoring.

Sensors 17:2551. https://doi.org/10.3390/s17112551

Weyns D and Iftikhar MU (2016) Model-based simulation at runtime

for self-adaptive systems. In: 2016 IEEE International Confer-

ence on Autonomic Computing (ICAC). 14–18 March, Suita,

Japan IEEE, pp 364–373. https://doi.org/10.1109/icac.2016.67

Weyns D, Malek S, Andersson J (2012) FORMS: unifying reference

model for formal specification of distributed self-adaptive

systems. ACM Trans Auton Adapt Syst 7:8. https://doi.org/10.

1145/2168260.2168268

Yan J et al (2012) Local adaptive sampling for wireless sensor

network powered by energy harvesting. Optik 123:2195–2197.

https://doi.org/10.1016/j.ijleo.2011.11.011

Zhang Y et al (2013) Distributed sampling rate control for recharge-

able sensor nodes with limited battery capacity. IEEE Trans

Wirel Commun 12:3096–3106. https://doi.org/10.1109/

TCOMM.2013.050613.121698

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1074 Microsystem Technologies (2020) 26:1067–1074

123

https://doi.org/10.1016/j.jnca.2016.12.021
https://doi.org/10.1109/icse.1998.671114
https://doi.org/10.1109/icse.1998.671114
https://doi.org/10.1108/02602280910926742
https://doi.org/10.1108/02602280910926742
https://doi.org/10.1016/j.comnet.2014.03.027
https://doi.org/10.3390/s17112551
https://doi.org/10.1109/icac.2016.67
https://doi.org/10.1145/2168260.2168268
https://doi.org/10.1145/2168260.2168268
https://doi.org/10.1016/j.ijleo.2011.11.011
https://doi.org/10.1109/TCOMM.2013.050613.121698
https://doi.org/10.1109/TCOMM.2013.050613.121698

	Dynamic sampling rate algorithm (DSRA) implemented in self-adaptive software architecture: a way to reduce the energy consumption of wireless sensors through event-based sampling
	Abstract
	Introduction
	Self-adaptive software architecture
	Rainbow framework

	Algorithm development and the implementation in Rainbow
	Algorithm development
	Algorithm implementation in the Rainbow framework

	Testing DSRA-based Rainbow architecture
	Example 1
	Example 2

	Discussion
	Conclusion and future work
	Acknowledgements
	References

