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Abstract
Heating ventilation and air conditioning (HVAC) accounts for approximately 50% of the total energy consumption of

buildings. Therefore, many studies have been focused on the simulation and optimal control of HVAC power consumption

or the prediction of energy consumption through the construction of energy consumption models and the improvement of

HVAC power consumption through energy management methods. The prediction of energy consumption by optimal

energy-saving control or energy baseline is dependent on an accurate energy consumption model, however, the accuracy of

the energy consumption model is influenced by the model variables. In addition, different operating periods and load

conditions also lead to different changes in energy consumption, which will affect the accuracy of optimal energy

consumption control or prediction of energy consumption. The present study proposes a method to enhance the accuracy

and sensitivity of HVAC power consumption prediction, which involves the use of a clustering technique to locate clusters

with similar information within hourly data, the construction of energy consumption models by converting the clustered

hourly data into monthly data, and the application of the proposed Naı̈ve Bayes classifier to classify hourly data under

different operating conditions into the energy consumption model with the smallest prediction error. A multiple variable

regression model and an artificial neural network (ANN) model were compared with the models developed in the present

study, and the normalized mean bias error (NMBE) and the coefficient of variation of the root mean squared error (Cv-

RMSE) were used as criteria for the predicted energy consumption values.

1 Introduction

According to data from the International Energy Agency

(IEA), the annual average growth rate of global energy

demand from 2011 to 2035 is predicted to be 2.5%. The

buildings sector is the largest energy-consuming sector,

accounting for approximately 33% of the global energy

consumption. Many studies have shown that heating ven-

tilation and air conditioning (HVAC) is responsible for

approximately 50% of the total energy consumption of

buildings (Lombard et al. 2008; U.S. Energy Information

Administration 2012; Office of Energy Efficiency &

Renewable Energy (EERE) 2012), therefore, the develop-

ment of energy-saving control technologies for HVAC

systems has become extremely important. The steady rise

of global temperatures in recent years and the utilization of

HVAC systems in office buildings to maintain thermal

comfort in the indoor environment have led to a continuous

increase in HVAC power consumption. Many studies on

energy control have been focused on the construction of

HVAC power consumption models for the estimation of

minimum energy consumption and subsequent control of

HVAC operating parameters to achieve energy savings.

(Lee et al. 2011) developed a chiller energy consumption

model using part load ratios (PLR) for the estimation of

minimum energy consumption and employed a differential

evolution algorithm to obtain the optimal model, which

was used to solve the optimal chiller loading (OCL)

problem for energy conservation. (Chang 2004) used PLR

to build a nonlinear regression model of chiller efficiency

to achieve optimal control of chiller load. In another study,

(Chang et al. 2005) constructed kW-PLR curves for air-
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conditioning systems and employed a genetic algorithm

(GA) to solve the OCL problem. In a multi-chiller system,

the best operation occurs when the total energy consump-

tion of the chillers with respect to the demanded load is

minimized. (Salari and Askarzadeh 2015) generated a

model based on the relationship between centrifugal chiller

energy consumption and PLR to calculate the minimum

total energy consumption of multi-chiller systems, and

used the General Algebraic Modeling System (GAMS) to

solve the OCL problem. (Chen et al. 2014) used neural

networks (NN) to build models of chiller power con-

sumption for energy saving in chillers.

The energy consumption model can also be used as an

energy baseline, which serves as a reference standard for

the quantification of energy performance and the calcula-

tion of energy savings, thus providing a reference for the

comparison of energy performance before and after the

implementation of energy saving measures. The energy

baseline, which is constructed by establishing relationships

between variables that influence energy use, plays a critical

role in the measurement and verification (M&V) process

(Fig. 1). The majority of literature on the improvement of

the control of building energy consumption utilized an

energy baseline for the verification of the actual energy

savings achieved with improvement measures. (Lee and

Cheng 2012) compared the results of a simulation–opti-

mization approach with an energy baseline to verify the

overall energy savings of a chilled water system. In addi-

tion, the energy consumption model can be used for the

prediction of the energy consumption of facilities to assist

in the implementation of energy saving measures or energy

management in buildings. Lei and Hu (2009) used mete-

orological data as variables for the construction of a

regression model and compared the prediction accuracy of

a simple linear regression model and a multiple variable

regression model. From the results of the study, it was

found that the monthly average outdoor dry-bulb temper-

ature was the most important variable that affected model

accuracy, and a simple linear regression model was suffi-

cient for the simulation of energy use. Manjarres et al.

(2017) proposed an optimal energy-efficient predictive

control framework to achieve the minimization of HVAC

power consumption, and compared energy savings through

the use of an energy baseline. Kissock and Kelly (1993)

used four weather parameters to construct energy con-

sumption models for the prediction of energy use in com-

mercial buildings. Carpenter et al. (2018) used change-

point and Gaussian process models to create baseline

energy models in industrial facilities, and compared the

verification results of two energy consumption models in

accordance with the ASHRAE Guideline 14 requirements

on the normalized mean bias error (NMBE) and coefficient

of variation of the root mean square error (Cv-RMSE).

Kissock and Eger (2008) proposed the application of multi-

variable change-point models in the estimation of energy

savings in industrial facilities, as the models can reduce the

effects of actual temperature changes on the model-pre-

dicted values. Amiri et al. (2015) used stepwise analysis to

identify the most effective variables and developed a

multiple variable regression model to predict the energy

consumption of commercial buildings. The selection of

variables is extremely important in the creation of baseline

energy models. Mustapa et al. (2017) used the simple

regression method and multiple variable regression method

with different variables to develop models for educational

buildings to identify the variables with the greatest effect

on energy consumption in educational buildings, and

compared the mean squared error (MSE), root mean

squared error (RMSE), and mean absolute percentage error

(MAPE) of the constructed models. Regardless of whether

the energy consumption model is used in the estimation of

the minimum energy consumption in energy-saving control

or as an energy baseline for the comparison of energy

performance, the prediction accuracy of the model is

extremely critical. The accuracy of energy consumption

models is influenced by the model variables; however,

different operating periods and load conditions also result

in changes in energy consumption. The use of a single

energy consumption model for the dynamic simulation of

energy consumption at different working levels will result

in excessively large errors in the estimated energy con-

sumption values. Ko et al. (2017) proposed a cluster

Fig. 1 Illustration of

verification M&V for

retrofitting
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inverse model, which involved the clustering of daily data

using the K-means clustering algorithm and the subsequent

use of the clustered data to create linear models of tem-

perature and energy consumption for the estimation of

energy consumption in office buildings. Tnag et al. (2014)

used a clustering algorithm and regression analysis to

predict HVAC power consumption, and subsequently

achieved the enhancement of model accuracy through data

mining and machine learning methods.

Data mining is the process of discovering knowledge

from data and the utilization of the discovered knowledge

to describe the clusters, rules, and associations within the

data. Bayindir et al. (2017) applied the Naı̈ve Bayes clas-

sifier to the prediction of daily total photovoltaic energy

generation by using daily average temperature, daily total

sunshine duration, and daily total global solar radiation as

input parameters. Granderson et al. (2016) expands recent

analyses of public-domain whole-building M&V methods,

focusing on more novel M&V 2.0 modeling approaches

that are used in commercial technologies and present a

testing procedure and metrics to assess the performance of

whole-building M&V methods. Hong et al. (2013) pro-

posed a modern approach that takes advantage of hourly

information to create more accurate and defensible fore-

casts with several MLR models. The paper showed the

predictive models attained from hourly data, over the

classical methods of forecasting using monthly or annual

peak data.

The development of energy consumption models pro-

posed in the present study involved the clustering of hourly

data using the K-means clustering algorithm, consolidation

of the clustered hourly data into monthly average data by

month, and the construction of energy consumption models

using the simple linear regression method, so as to achieve

regression models with high reliability. In addition, the

Naı̈ve Bayes classifier was used to classify data obtained

under different operating conditions into the energy con-

sumption model with the smallest prediction error. There-

fore, the present study aimed to enhance the accuracy and

reduce the prediction error of energy consumption predic-

tion through the integration of the K-means clustering

algorithm and the Naı̈ve Bayes classifier.

2 Research background

The main objective of the present study was to set up a

conditional probability model using a data mining method,

the Naı̈ve Bayes classifier, and to calculate energy con-

sumption models corresponding to the data clusters using a

set of attributes and Baye’s theorem, so as to reduce the

error in energy consumption prediction. The process flow

chart of the methods used in the present study is shown in

Fig. 2. Outdoor temperature data and HVAC power con-

sumption data were clustered using the K-means clustering

algorithm, and the energy consumption models of the

respective data clusters were constructed using the simple

linear regression method. Calendar data, outdoor temper-

ature data, and HVAC on/off status were used as attributes

for the classification of the hourly data into the corre-

sponding HVAC power consumption model. The detailed

methods used will be described in the following

subsections.

3 Methodology

3.1 Data collection and variable selection

With HVAC power consumption data collected by digital

meters at 3-min intervals, hourly energy consumption data

were obtained by calculating the average of every 20 data

points. Similarly, outdoor weather data, including outdoor

temperature, outdoor humidity, wind speed, sunshine

duration, and rainfall, are collected by meteorological

stations at 3-min intervals, and hourly weather data were

subsequently obtained by calculating the average of every

20 weather data points. HVAC power consumption

increases with outdoor temperature, and the HVAC on/off

status of many office buildings is distinctly different

between non-working hours on non-working days and

working hours on working days. In the present study, the

hourly outdoor temperature data and hourly HVAC power

consumption from May to Oct 2015 were compiled into a

training dataset, while the hourly outdoor temperature data

and hourly HVAC power consumption data during working

hours from May to Oct 2016 were compiled into a testing

dataset. The training and testing datasets consisted of

hourly outdoor temperature data, hourly HVAC power

consumption data, and calendar data, with the units of

hourly outdoor temperature data and hourly HVAC power

consumption data being �C and kWh, respectively.

3.2 K-means clustering algorithm

The K-means clustering algorithm, which is a partitioning-

based clustering method, is one of the most widely applied

methods in cluster analysis. It involves the organization of

data objects into several mutually exclusive clusters, which

are used to satisfy an optimal objective partitioning crite-

rion. During the initialization of the partitioning algorithm,

the number of clusters is first selected, and partitioning

quality is assessed using an objective function to ensure

mutual similarity among data objects within the same

cluster and mutual dissimilarity among data objects of

different clusters.
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The K-means clustering algorithm is a centroid-based

partitioning-based clustering method whereby each cluster

is represented by its centroid, which is also the mean of the

cluster. Given a dataset S consisting of Q data points:

S ¼ xij1� i�Q; xi 2 Rf g, K-means clustering aims to

partition the data in S into k clusters to generate a cluster

set K ¼ cij1� i� kf g, where ci represents the i-th cluster

of data points. Additionally, the clusters are mutually

exclusive, i.e. ci \ cj ¼ ;, and 1� i; j� k; i 6¼ j. The union

of all clusters is equivalent to the dataset S, as shown in

Eq. (1):

S ¼
[k

i¼1

ci ð1Þ

With the K-means clustering algorithm, the centroid zi
of each cluster ci is initially generated, with the initial value

of zi determined by random sampling from the dataset S.

Subsequently, the two steps described below are repeatedly

executed until the data points within all clusters no longer

change or until a specific termination condition is fulfilled.

3.2.1 Cluster allocation

Each data point xi within S is allocated to a cluster cj by

locating the centroid that is closest to xi. The measure of

closeness is the Euclidean distance D, and the closest cj to

xi is determined based on D xi; cj
� �

�D xi; clð Þ, where

1� j; l� k; j 6¼ l. The Euclidean distance between any two

Fig. 2 Flowchart of the cluster

and classifier method
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points a ¼ a1; a2; . . .; ad½ �T and b ¼ b1; b2; . . .; bd½ �T is cal-

culated using Eq. (2):

D a; bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

i¼1

ai � bið Þ2
vuut ð2Þ

3.2.2 Centroid relocation

cj ¼ xcji j1� i� ncj
� �

, where xcji represents the i-th data

point of cluster cj and ncj represents the number of data

points of cluster cj. The updated centroid cj is calculated

using Eq. (3):

cj ¼
Pncj

i¼1 x
cj
i

ncj
ð3Þ

3.3 Regression model

The linear regression model investigates the linear rela-

tionship between one or more independent variables (W)

and a dependent variable (Y), and the values of the

dependent variable are predicted based on the independent

variables through the construction of an appropriate

mathematical equation. The mathematical equation that

relates the independent variables with the dependent vari-

ables is known as a regression model. The simple linear

regression model is as follows:

Yi ¼ aþ bWi þ eii ¼ 1; 2; . . .; n ð4Þ

where Yi is the observed value, a is the intercept, b is the

slope, and ei is the random error. a and b are known as the

regression coefficients.

One of the most common methods used for the esti-

mation of regression coefficients is the ordinary least

squares method (OLS). The estimated regression model is

as follows:

Ŷi ¼ âþ b̂Wii ¼ 1; 2; . . .; n ð5Þ

where Ŷl is the estimated value of each observed value Yi,

and â and �b represent the estimated values of a and b,
respectively.

Residual ei is defined as the difference between the

observed value and fitted value of the i-th data point, i.e.

ei ¼ Yi � Ŷi. The residual sum of squares (RSS) is used as

the criterion to assess the fit of the model, with a smaller

RSS indicating a better fit of the linear regression model to

the observed value. The RSS is calculated using Eq. (6):

Xn

i¼1

e2i ¼
Xn

i¼1

Yi � Ŷi
� �2Xn

i¼1

Yi � aþ bWið Þ½ �2 ð6Þ

The coefficient of determination (R2) is a measure of the

goodness of fit and explanatory power of the regression

model, and is calculated using Eq. (7):

R2 ¼ 1�
P

Y � Ŷ
� �2

P
Y � �Yð Þ2

ð7Þ

The R2 value ranges from 0 to 1, with a higher value

indicating a higher explanatory power of the model for the

variance in the dependent variable. As R2 increases with

increased model complexity, the explanatory power of

high-complexity models for variance is usually overesti-

mated. To address this concern, the adjusted R2 (R2
adj) was

developed. The R2
adj value is calculated as follows:

R2
adj ¼ 1�

P Y�Ŷð Þ2
n�1ð Þ

P Y� �Yð Þ2
n�pð Þ

ð8Þ

where n is the number of points in the data sample, and p is

the number of independent variables.

3.4 The proposed Naı̈ve Bayes application

The Naı̈ve Bayes classifier is a probabilistic model based

on the analysis of relations between attributes and response

variables in data. It is used for the classification of sample

data through the application of Bayes’ theorem to update

probabilities as new information is acquired, and serves as

a basis for classification and inference. The Bayes’ theorem

is described below [19], where P(A\B) is the probability of

event A in case B occurs, P(B\A) is the probability of event

B in case A occurs, P(A) is the probability of A and P(B) is

the probability of B.

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ ð9Þ

In particular, the Naı̈ve Bayes classifier works as

follows:

Each instance in the learning set D is defined by an n-

dimensional attribute vector X = (x1; x2; � � � ; xn). Assume

that m categories C = (C1, C2,…,Cm,) exist, and the naı̈ve

Bayes classifier predicts that X belongs to the category of

maximum posterior probability if—and only if—the fol-

lowing conditions are met:

P CijXð Þ[P CjjX
� �

1� j�m; j 6¼ i ð10Þ

According to (9), the maximized posterior probability

P CijXð Þ yields the following equation:

PðCijXÞ ¼
PðXjCiÞP Cið Þ

P Xð Þ ð11Þ
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Because P Xð Þ is a constant, only the maximum value of

PðXjCiÞP Cið Þ must be determined. If the prior probabilities

of the categories are unknown, each category is generally

assumed to possess the same prior probability

P C1ð Þ ¼ P C2ð Þ ¼ P C3ð Þ ¼ . . .P Cmð Þ. Therefore, only the

maximum value of PðXjCiÞ must be determined. Assuming

that the attribute relationships in each category are inde-

pendent of each other, PðXjCiÞ can be estimated through

(9).

P XjCið Þ ¼
Yn

k¼1

PðxkjCiÞ

¼ Pðx1jCiÞ � Pðx2jCiÞ � � � � � PðxnjCiÞ ð12Þ

Finally, the class label of X is predicted using the fol-

lowing equation:

P XjCið ÞP Cið Þ[P XjCj

� �
P Cj

� �
for1� j�m; j 6¼ i ð13Þ

3.5 Model verification criteria

In accordance with the requirements and recommendations

of ASHRAE Guideline 14 and the FEMP’s M&V Guide-

line 4.0, energy consumption models must be verified to

ensure that the statistical results satisfy acceptable criteria.

In the present study, the normalized mean bias error

(NMBE) and the coefficient of variation of the root mean

squared error (Cv-RMSE) were used to correct the monthly

and hourly data of the model. Smaller NMBE and Cv-

RMSE values indicate higher prediction accuracy.

The NMBE is used to estimate the deviation between

predicted and actual measured values. A positive NMBE

value indicates that the actual measured value is higher

than the predicted value, while a negative NMBE value

indicates that the measured value is lower than the pre-

dicted value. The NMBE is computed according to

Eq. (14):

NMBE ¼
Pn

i¼1 Yi � Ŷi
� �

n� pð Þ � �Y
� 100 ð14Þ

The root mean squared error (RMSE) is computed as

follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Yi � Ŷi

� �2

n

s

ð15Þ

For a multiple linear regression model, RMSE is com-

puted as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Yi � Yið Þ2

n� p

s

ð16Þ

The coefficient of variation of the root mean squared

error (Cv-RMSE) indicates the uncertainty inherent in the

model, which is computed as follow:

Cv� RMSE ¼ 100� RMSE
�Y

ð17Þ

The required values are dependent of data sampling

frequency as listed in Table 1. ASHRAE Guideline 14 only

provides requirements for monthly and hourly models.

4 Case study and results

4.1 Test site description

The building selected in the present study was a four-story

office building with a floor area of approximately 3495 m2.

The operating periods of HVAC in the building were dis-

tinctly divided into non-working days and working days,

while the load conditions were distinctly different between

summer and non-summer seasons. HVAC power con-

sumption accounted for approximately 50% of the total

power consumption of the building, and the peak period of

power consumption occurred during working hours (8 am

to 6 pm) from May to October each year. The HVAC

system of the building, which supplied cold air to the entire

building, consisted of one 90 RT variable speed chiller, one

15 HP chilled water pump, one 15 HP cooling water pump

and one 5 HP cooling tower.

The monthly average HVAC power consumption of the

office building in 2015 is shown in Fig. 3. Within the year,

monthly HVAC power consumption showed a peak in the

summer seasons of June and July and gradual decreases on

both sides of the peak (preceding and subsequent months).

In Fig. 4, which shows the monthly average outdoor tem-

perature in 2015, it can be seen that the highest outdoor

temperatures were also concentrated in the months of June

and July. Therefore, these results indicate a definite link

between HVAC power consumption and outdoor

temperature.

Table 1 Required values for the baseline model according to ASH-

RAE Guideline 14

Monthly (%) Hourly (%)

NMBE 5 10

Cv-RMSE 15 30
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4.2 Training of the clustering algorithm

In the present study, the K-means clustering algorithm was

used for the clustering of outdoor temperature and HVAC

power consumption data, so as to identify the HVAC

power consumption data corresponding to different outdoor

temperatures and organize similar data into clusters. The

clustered hourly data were subsequently converted to

monthly average data by month, and energy consumption

models were constructed using the simple linear regression

method. Lastly, the Naı̈ve Bayes classifier was used to

classify data obtained under different operating conditions

into the energy consumption model with minimum pre-

diction error.

The HVAC power consumption models were developed

using the training dataset, which consisted of monthly

average HVAC power consumption data and monthly

average outdoor temperature data from May to Oct 2015.

The constructed models were then used to simulate the

HVAC power consumption data during the working hours

of May to Oct 2016, which were subsequently compared

with the HVAC power consumption measurement data

during the same period.

During the initialization of the K-means clustering

algorithm, the number of clusters must first be decided. In

the present study, the adjusted coefficient of determination

(R2
adj) for the regression model was used as the criterion for

determining the number of clusters k for the K-means

clustering algorithm. If R2
adj \ 75%, the number of clusters

was increased and reclustering was performed until

R2
adj [ 75% (Fig. 2). The number of clusters was set as

k = 3, k = 4, and k = 5 for comparison and the respective

R2
adj values were calculated, as shown in Table 2. Results

indicated that R2
adj [ 75% was achieved for 2 clusters when

k = 3, therefore the optimal k value of 3 was used in the

case study.

The data of the training dataset were normalized to

avoid the situation whereby direct comparison could not be

Fig. 3 Bar chart of monthly

HVAC consumption of the B1

office building in Hsinchu,

Taiwan

Fig. 4 Bar chart of monthly

outdoor temperatures in

Hsinchu (2015)
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performed due to different data sizes. Normalization was

performed using Eq. (18):

x0i ¼
xi � �x

Sx
ð18Þ

where xi is the i-th data point,x0i is the normalized value of

the i-th data point, �x is the mean value of the data point, and

Sx is the standard deviation of the data point.

Using the K-means clustering algorithm, the normalized

data were divided into three clusters c1; c2; andc3, with the

x-axis being outdoor temperature and y-axis being HVAC

power consumption, as shown in Fig. 5.

4.3 Validation of the clustering algorithm

Energy consumption models were constructed for each

cluster by performing simple linear regression. Each model

represents the relationship between outdoor temperature

and HVAC power consumption data within the cluster, and

was established by converting the hourly HVAC power

consumption data and hourly outdoor temperature data into

monthly average data by month and constructing a simple

linear regression model. Figures 6, 7, 8 indicate the energy

consumption models for the respective clusters of outdoor

temperature and HVAC power consumption data and the

adjusted coefficients of determination R2
adj. In particular,

the R2
adj of the second (c2) and third (c3) clusters were 84%

and 83.2%, respectively, while the R2
adj of the first cluster

(c1) was only 31%. This is due to the fact that the centroid

of c1 was representative of the median outdoor temperature

and low HVAC power consumption, c2 consisted of high

outdoor temperature and high HVAC power consumption

data points, while c3 consisted of low outdoor temperature

and low HVAC power consumption data points. In addi-

tion, the data of c1 were mostly data obtained during non-

working hours, therefore the average outdoor temperatures

ranged between 20 to 25 �C and the HVAC system was not

in operation.

4.4 Training of the Naı̈ve Bayes classifier

The outdoor temperature data of the training dataset were

respectively input into the three HVAC power consumption

models for the calculation of three sets of simulated HVAC

power consumption values. Subsequently, for each data

point, the residual between the simulated and measured

HVAC power consumption values was calculated and the

regression model with the smallest residual was set as the

HVAC power consumption model for classification using

the Naı̈ve Bayes classifier.

The training dataset consisted of hourly HVAC power

consumption data and hourly outdoor temperature data

with a time format, which amounted to a total of 3995 data

points. In the present study, three parameters, namely

calendar data (including month, week, and time), outdoor

temperature and on/off status of the HVAC system, were

Fig. 5 Scatterplot of clusters

related to HVAC consumption

Table 2 Comparison of the coefficients of determination (R2
adjÞ of the

regression models

c1 (%) c2 (%) c3 (%) c4 (%) c5 (%)

k ¼ 3 31.8 84 83.2 – –

k ¼ 4 34 5 59.4 18.7 –

k ¼ 5 - 1.6 59.3 70.4 36.9 11.3
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Fig. 6 Correlation between

energy consumption and

outdoor temperature of C1

Fig. 7 Correlation between

energy consumption and

outdoor temperature of C2

Fig. 8 Correlation between

energy consumption and

outdoor temperature of C3
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classified into 20 labels and 5 attributes (A, B, C, D, and

E). Table 3 shows the value range and type of status of

each label. The HVAC power consumption models of the

three clusters were set as three categories c1; c2; andc3, and

the data points of the training dataset were used to calculate

the prior probability P Cið Þ of the three categories and the

conditional probability PðXjCiÞ of each attribute. The

conditional probability distribution of the categories and

attributes is shown in Table 4. The respective probabilities

that each hourly data point of the training dataset belonged

to each category were calculated by substituting the prob-

ability values of the different attributes in Table 4 into

Eq. (12). Subsequently, each data point of the training set

was classified into the corresponding energy consumption

model according to the maximum value calculated by

Eq. (13).

4.5 Validation of the Naı̈ve Bayes classifier

Results indicated that the sensitivity of the Naı̈ve Bayes

classifier in correctly predicting the HVAC power con-

sumption models for the training dataset was 82.703%.

Sensitivity indicates the rate of correct prediction and is

calculated using the following equation:

Sensitivity ¼ TP

TPþ FNð Þ ð19Þ

where: TP: true positives where both the actual and the

software-predicted values are positive, i.e. correct

prediction

FN: false negatives where the actual value is positive

but the software-predicted value is negative, i.e. incorrect

prediction. This represents a misjudgment of a correct

result.

4.6 Validation of the proposed algorithm

The testing dataset was used to assess the accuracy of the

HVAC power consumption models. Each data point of the

testing dataset was classified into a HVAC power con-

sumption model based on the probability calculated using

the Naı̈ve Bayes classifier, and the hourly outdoor tem-

perature data of the testing dataset were input into the

corresponding HVAC power consumption model to obtain

the predicted hourly HVAC power consumption values.

The normalized mean bias error (NMBE) and the coeffi-

cient of variation of the root mean squared error (Cv-

RMSE) between the predicted hourly HVAC power con-

sumption and the hourly HVAC power consumption data

of the verification dataset were then compared.

Table 3 Value ranges corresponding to each label and parameter

Label Parameter Attributes Description

1 Outside Temperature A 0–5 �C
2 5–10 �C
3 10–15 �C
4 15–20 �C
5 20–25 �C
6 25–30 �C
7 30–35 �C
8 35–40 �C
1 Month B May

2 June

3 July

4 August

5 September

6 October

1 Week C Weekday

2 Weekend

1 Time of day D else

2 08:00 * 18:00

0 On/Off E Off

1 On

Table 4 Conditional probability distribution for the naı̈ve Bayes

application using the training dataset

C1 C2 C3

P(Ci) 0.479599 0.331414 0.188986

P(A1|Ci) 0 0 0

P(A2|Ci) 0 0 0

P(A3|Ci) 0 0 0

P(A4|Ci) 0.017223 0.001511 0.003974

P(A5|Ci) 0.499478 0.108761 0.103311

P(A6|Ci) 0.3262 0.327795 0.892715

P(A7|Ci) 0.152401 0.535498 0

P(A8|Ci) 0.004697 0.026435 0

P(B1|Ci) 0.209812 0.132175 0.133775

P(B2|Ci) 0.150835 0.147281 0.150993

P(B3|Ci) 0.157098 0.202417 0.203974

P(B4|Ci) 0.136221 0.185801 0.264901

P(B5|Ci) 0.186326 0.179003 0.149669

P(B6|Ci) 0.159708 0.153323 0.096689

P(C1|Ci) 0.570459 1 0.670199

P(C2|Ci) 0.429541 0 0.329801

P(D1|Ci) 0.749478 0.059668 0.863576

P(D2|Ci) 0.250522 0.940332 0.136424

P(E0|Ci) 0.981733 0.003021 0.993377

P(E1|Ci) 0.018267 0.996979 0.006623
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4.7 Comparsion with other methods

Multiple variable regression and artificial neural network

(ANN) are two methods commonly used to construct

energy consumption models. As such, the energy con-

sumption models established with the energy modeling

application of the Naı̈ve Bayes classifier for accuracy

enhancement in the present study were compared with

multiple variable regression and ANN models to assess the

differences in accuracy of HVAC power consumption

prediction. The multiple variable regression model was

constructed with monthly average outdoor temperature and

monthly average outdoor humidity as independent vari-

ables and monthly average HVAC power consumption as

the dependent variable. For the ANN model, a feedforward

network was adopted, which included an input layer, two

hidden layers, and an output layer, and the only output of

the model was predicted HVAC power consumption. The

energy consumption models proposed in the present study

were constructed by dividing hourly data into three clusters

using the K-means clustering algorithm, converting the

hourly data in each cluster into monthly average data, and

performing simple linear regression. Subsequently, the

Naı̈ve Bayes classifier was applied to classify data obtained

under different operating conditions to the energy con-

sumption model with the minimum prediction error. Fig-

ures 9, 10, 11 show the comparison of the predicted and

measured hourly HVAC power consumption data for the

three methods. The data used for comparison was the

testing dataset, which consisted of hourly HVAC power

consumption data during the working hours of May to

October 2016. Figure 9 shows the comparison for the

multiple variable regression model, while Figs. 10 and 11

show the comparison for the ANN model and energy

consumption models with the application of the Naı̈ve

Bayes classifier, respectively. The months at the left and

right ends of Figs. 9 to 11 are May and October, respec-

tively, which experienced greater fluctuations in outdoor

temperature. Therefore, the HVAC power consumption of

these two months exhibited dense, jagged patterns with

large fluctuations. In contrast, the middle portions of the

figures show data obtained from June to September, which

are months with high outdoor temperatures, therefore the

HVAC power consumption exhibited a more stable pattern

with smaller fluctuations. With the multiple variable

regression method, a mathematical relation of outdoor

temperature and outdoor humidity with HVAC power

consumption was established, and an R2
adj value of 92.6%

was achieved. However, the predicted HVAC power con-

sumption values in Fig. 9 were calculated solely based on

outdoor weather data, therefore low HVAC power con-

sumption during off-peak periods or non-working days

could not be effectively estimated. In addition, high out-

door temperatures usually resulted in the overestimation of

power consumption as the load condition of the HVAC

system was not considered in the prediction process.

Compared with the multiple variable regression model, the

ANN model in Fig. 10 and energy consumption models

with the application of the Naı̈ve Bayes classifier in Fig. 11

were both able to achieve predicted power consumption

Fig. 9 Comparisons of the baseline model predictions for the multivariate regression model with the measured HVAC power consumption data
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values that were close to the actual measured values. The

inputs to the ANN model were the attributes used in the

Naı̈ve Bayes classifier defined in the present study, i.e.

outdoor temperature, calendar data, and on/off status of the

chiller system, while the output was the predicted HVAC

power consumption. For Fig. 11, the Naı̈ve Bayes classifier

was applied to classify each data point into the corre-

sponding energy model according to the attributes of

outdoor temperature data, calendar data and the on/off

status of the HVAC system. With this method, HVAC

power consumption during different operating periods and

load conditions can be effectively predicted, thus resulting

in smaller prediction errors. The comparison of the R2
adj,

NMBE and Cv-RMSE values of the multiple variable

regression model, ANN model and energy consumption

Fig. 10 Comparisons of the baseline model predictions for the ANN with the measured HVAC power consumption data

Fig. 11 Comparisons of the baseline model predictions for the proposed method with the measured HVAC power consumption data
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models with the application of the Naı̈ve Bayes classifier is

shown in Table 5.

Table 5 shows the comparison of statistical metrics

among different models. Based on the statistical perfor-

mance of the three methods, we can conclude that the

Naı̈ve Bayes application inverse model has slightly better

statistical performance in terms of the lowest NMBE

compared to the other two methods. Although ANN can

well predict the power consumption and has lower Cv-

RMSE, it also has high model complexity, poor extrapo-

lation possibility, and difficulty in calculating uncertainty.

For the energy consumption models with the application of

the Naı̈ve Bayes classifier for prediction accuracy

enhancement, the NMBE and Cv-RMSE of hourly data

were 0.73% and 22.36%, respectively, which indicate that

the energy consumption prediction results were superior to

the requirements of ASHRAE Guideline 14, i.e.

NMBE\ 10% and Cv-RMSE\ 30%. For the multiple

variable regression model, although the R2
adj value of

92.6% was the highest, the NMBE and Cv-RMSE values

were - 41.43% and 93.2%, respectively, which indicate

the model’s ineffectiveness in predicting energy con-

sumption and high uncertainty in the predicted data. For

the ANN model, the NMBE and Cv-RMSE were 5.29%

and 19.54%, respectively. In particular, the Cv-RMSE

value was the smallest among the three methods, which

shows that the energy consumption values predicted by the

ANN model were lower than the actual values, however,

the uncertainty of the predicted data was lower. The R2
adj

values of the energy consumption models corresponding to

the three clusters obtained using the K-means clustering

algorithm were 31.8, 84, and 83.2%, while the NMBE and

Cv-RMSE were - 0.73% (smallest among the three

methods) and 22.36%, respectively. These results show

that the method proposed in the present study had the

highest accuracy, i.e. the predicted data were the closest to

the measured data, and the predicted data had low uncer-

tainty, therefore the present study has provided a high-

accuracy method for the prediction of building energy

consumption.

5 Conclusions

The optimal energy-saving control or energy baseline of

HVAC systems are dependent on an accurate energy con-

sumption model for the prediction of power consumption.

The use of hourly data to calibrate energy consumption

models provides higher accuracy compared with the use of

monthly or daily data, and facilitates discernment of the

operating mode of the HVAC system. In the present study,

an energy modeling application of the Naı̈ve Bayes clas-

sifier to classify energy consumption models for the

enhancement of prediction accuracy was proposed. Hourly

outdoor temperature data and hourly HVAC power con-

sumption data were divided into clusters using the

K-means clustering algorithm, and the hourly data of the

respective clusters were converted to monthly average data

for the construction of energy consumption models using

simple linear regression. The HVAC power consumption

models of the clusters were set as the categories, and

outdoor temperature, month, week, time, and on/off status

of the HVAC system were set as the attributes for the

calculation of conditional probabilities by the Naı̈ve Bayes

classifier, so as to obtain HVAC power consumption

models with the smallest prediction error. Lastly, hourly

data were used to increase the accuracy of the energy

consumption models. The obtained models were subse-

quently compared with a multiple variable regression

model and an ANN model. The NMBE of the multiple

variable regression model and ANN model were - 41.43%

and - 5.29%, respectively, while the NMBE and Cv-

RMSE of the models developed in the present study were

0.73% and 22.36%, respectively, which indicated the ful-

filment of the requirements of ASHRAE Guideline 14 as

well as the substantial enhancement of the accuracy of

power consumption prediction. With the application of the

Naı̈ve Bayes classifier, the operating trends of HVAC

systems during different operating periods and load con-

ditions can be shown through hourly data, and with the

clustering of data, outlier power consumption values within

the same operating period and load conditions can be

identified for the diagnosis of power consumption abnor-

malities. Moreover, (Ballarini et al. 2014) presented a

methodology for the identification of reference buildings,

according to the IEE-TABULA project (2009–12) aimed

at creating a harmonized structure for ‘‘European Building

Typologies’’. The results show the enormous potentialities

of energy savings even with basic energy retrofit actions.

(Costanzo et al. 2018) reported he outcomes of a one-year

measurement campaign of a passive house built in the

Mediterranean climate of Cesena (Italy) in terms of thermal

comfort parameters temperature and relative humidity and

Indoor Environmental Quality (IEQ) parameter CO2

Table 5 Statistical metrics of the multiple variable regression, ANN,

and naı̈ve Bayes classifier to classify power consumption models

Multiple

variable

regression (%)

ANN (%) Energy modeling

application of Naı̈ve

Bayes classifier (%)

R2
adj

92.6 – 31.8/84/83.2

NMBE - 41.43 - 5.29 0.73

Cv-RMSE 93.2 19.54 22.36
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concentrations. The Passivhaus Standard can still be

regarded as a good reference for designing low-energy and

comfortable houses in a Mediterranean climate if some

simplifications are made according to detailed building

performance simulations. (McLeod et al. 2012) proposed a

new method for the generation of current and future

probabilistic micro regional climatic data in Passivhaus

design, such data should provide a more robust basis for

future cost and performance optimisation in low energy

and passive building design. (Granderson et al. 2015)

reported documents the application of a general statistical

methodology to assess the accuracy of baseline energy

models, focusing on its application to Measurement and

Verification (M&V) of whole-building energy savings.

Low-cost energy saving and indoor comfort are the key

directions for energy saving improvement in the future. In

the future, the classification modeling method of this study

can be combined with indoor temperature and outdoor

temperature to establish an HVAC model that achieves

indoor comfort. The HVAC system can be optimally

adjusted according to different usage requirements inside

the building, and the cooling air required for use space is

supplied.
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