Skip to main content
Log in

Smoothing and surface planarization of sacrificial layers in MEMS technology

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this work we present a novel technology for tailoring the edges of a polymer sacrificial layer by combining multiple techniques. Standard polymers like Shipley Microposit S1818 for the sacrificial layers and gold as a structural layer have been used for our purposes. As a result, oblique profiles of double clamped bridges have been obtained, characterized by an improved homogeneity of the deposited metal thickness on the edges and by a very good surface planarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bartolucci G, Catoni S, Giacomozzi F, Marcelli R, Margesin B, Pochesci D (2007) Realisation of distributed RF MEMS phase shifter with very low number of switches. Electron Lett 43:1290–1292. doi:10.1049/el:20071679

    Article  Google Scholar 

  • Bartolucci G, De Angelis G, Lucibello A, Marcelli R, Proietti E (2012) Analytic modeling of RF MEMS shunt connected capacitive switches. J Electromagn Waves Appl 26:1168–1179. doi:10.1080/09205071.2012.710564

    Article  Google Scholar 

  • Bo L, Zhiqiu L, Zhihong L, Xunjun H, Yilong H (2010) A surface micromachining process utilizing dual metal sacrificial layer for fabrication of RF MEMS switch. In: Proceedings 5th IEEE international conference on nano/micro engineered and molecular systems. Xiamen, China, pp 620–623. doi:10.1109/NEMS.2010.5592479

  • Bühler J, Steiner FP, Baltes H (1997) Silicon dioxide sacrificial layer etching in surface micromachining. J Micromech Microeng 7:R1. doi:10.1088/0960-1317/7/1/001

    Article  Google Scholar 

  • Bustillo JM, Howe RT, Muller RS (1998) Surface micromachining for microelectromechanical systems. Proc IEEE 86:1552–1574. doi:10.1109/5.704260

    Article  Google Scholar 

  • Chung C, Allen M (2005) Uncrosslinked SU-8 as a sacrificial material. J Micromech Microeng 15:N1–N5. doi:10.1088/0960-1317/15/1/N01

    Article  Google Scholar 

  • Kovacs GTA, Maluf NI, Petersen KE (1998) Bulk micromachining of Silicon. Proc IEEE 86:1536–1551. doi:10.1109/5.704259

    Article  Google Scholar 

  • Levinson HJ (2005) The principles of lithography. SPIE Press, Bellingham, WA

    Book  Google Scholar 

  • Lindroos V, Tilli M, Lehto A, Motooka T (2010) Handbook of silicon based MEMS materials and technologies. Elsevier, Holland

    Google Scholar 

  • Malek CK, Saile V (2004) Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro components and systems: a review. Microelectron J 35:131–143. doi:10.1016/j.mejo.2003.10.003

    Article  Google Scholar 

  • Peroulis D, Margomenos A, Katehi LPB (2002) RF MEMS and Si micromachining in high frequency applications. In: Proceedings IEEE radio and wireless conference. Boston, pp 265–268. doi:10.1109/RAWCON.2002.1030168

  • Peroulis D, Pacheco SP, Sarabandi K, Katehi LPB (2003) Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Trans Microw Theory Tech 51:259–270. doi:10.1109/TMTT.2002.806514

    Article  Google Scholar 

  • Piyabongkarn D, Rajamani R, Greminger M (2005) The development of a MEMS gyroscope for absolute angle measurement. IEEE Trans Control Syst Technol 13:185–195. doi:10.1109/TCST.2004.839568

    Article  Google Scholar 

  • Rebeiz GM (2003) RF MEMS theory, design, and technology. Wiley, New Jersey

    Book  Google Scholar 

  • Schiltz A, Pons M (1985) Two layer planarization process. Microelectron Eng 3:507–509. doi:10.1016/0167-9317(85)90063-2

    Article  Google Scholar 

  • Van Zeijl HW, Nanver LK (2005) LPCVD silicon nitride-on-silicon spacer technology. In: Proceedings 20th international symposium on microelectronics technology and devices. Brazil, pp 153–162

  • Voskericiana G, Shive MS, Shawgo RS, Recum H, Anderson JM, Cima MJ, Langere R (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24:1959–1967. doi:10.1016/S0142-9612(02)00565-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romolo Marcelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucibello, A., Proietti, E., Marcelli, R. et al. Smoothing and surface planarization of sacrificial layers in MEMS technology. Microsyst Technol 19, 845–851 (2013). https://doi.org/10.1007/s00542-013-1747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1747-6

Keywords

Navigation