Skip to main content
Log in

A labchip for highly selective and sensitive electrochemiluminescence detection of Hg2+ ions in aqueous solution employing integrated amorphous thin film diodes

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

An electrochemiluminescence (ECL) based detection of Hg2+ ions using a novel monolithically integrated labchip technology has been developed. The combination of a chemical sensor molecule, the azacrown ether appended trisphenanthroline ruthenium(II) complex 1, and an amorphous silicon based pin-diode detects an exceptionally low concentration of 66 nM according to a device current of 1.85 pA, respectively. To support a high sensitivity, fluid volumes of 1.2 or 1.8 nL in the designed measuring cells are investigated by an amorphous silicon based pin-diode at a constant flow rate of 1 μL min−1. The working electrode area can be specified for both cells to 0.06 or 0.09 mm2 according to a photosensitive detector area of 400 or 500 μm in diameter. Corresponding to the distance between the monolithic integrated polymer based microcapillary and the sensing pin-diode layers of ∼150 μm the detector solid angle was calculated to 73.3°. The fabrication methodology and the experimental details are presented. Furthermore, performance metrics including diode characteristics, detection limit, transient current behavior, dynamic range, and linearity are reported. Additionally, the chemical structure, the ECL response towards different metal ions, and the relationship between ECL intensity of 1 and the concentration of Hg2+ ions are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Benthien S, Lulé T, Schneider B, Wagner M, Verhoeven M, Böhm M (2000) Vertically Integrated Sensors for Advanced Imaging Applications. IEEE J Solid State Circuits 35(7):939–945

    Article  Google Scholar 

  • Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ, Shah A, Talley DB (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 37:1534–1539

    Google Scholar 

  • Chemnitz S, Schäfer H, Schumacher S, Koizy V, Fischer A, Meixner AJ, Ehrhardt D, Böhm M (2003) Monolithical Integration of Polymer based Microfluidic Structures on Application Specific Integrated Circuits. Proc SPIE 5116:782–789

    Article  Google Scholar 

  • Chen P, He C (2004) Constructing highly sensitive and selective fluorescent biosensors for metal ions by using the merr family proteins. J Am Chem Soc 126:728–729

    Article  Google Scholar 

  • Deo S, Godwin HA (2000) A selective, ratiometric, fluorescent sensor for Pb2+. J Am Chem Soc 122:174–175

    Article  Google Scholar 

  • Fettinger JC, Manz A, Lüdi H, Widmer HM (1993) Stacked modules for micro flow systems in chemical analysis: Concept and studies using an enlarged model. Sens Actuators B 17:19–25

    Article  Google Scholar 

  • Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3–15

    Article  Google Scholar 

  • Ji HF, Finot E, Dabestani R, Thundat T, Brown GM, Britt PF (2000) A novel self-assembled monolayer (SAM) coated microcantilever for low level cesium detection. Chem Commun 457–458

  • Lai RY, Chiba M, Kitamura N, Bard AJ (2002) Electrogenerated chemiluminescence 68. detection of sodium ion with a ruthenium(II) complex with crown-ether moiety at 3,3′-positions on the 2,2′-bipyridine ligand. Anal Chem 74:551–553

    Article  Google Scholar 

  • Liu Z, Mei SHJ, Brennan JD, Li Y (2003) Assemblage of signalling DNA enzymes with intriguing metal specificity and pH dependences. J Am Chem Soc 125:7539–7545

    Article  Google Scholar 

  • Lu Y, Liu J, Li J, Brueshoff PJ, Pavot C, Brown AK (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 18:529–540

    Article  Google Scholar 

  • Lulé T, Wagner M, Verhoeven M, Keller H, Böhm M (2000a) 100,000-pixel–120-dB imager in TFA technology. IEEE J Solid State Circuits 35(5):732–739

    Article  Google Scholar 

  • Lulé T, Benthien S, Keller H, Mütze F, Rieve P, Seibel K, Sommer M, Böhm M (2000b) Sensitivity of CMOS based imagers and scaling perspectives. IEEE Trans Electron Devices 47(11):2110–2122

    Article  Google Scholar 

  • Lyskawa J, Derf FL, Levillain E, Mazari M, Sallé M, Dubois L, Viel P, Bureau C, Palacin S (2004) Univocal demonstration of the electrochemically mediated binding of Pb2+ by a modified surface incorporating a ttf-based redox-switchable ligand. J Am Chem Soc 126(39):12194–12195

    Article  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B 1:244–248

    Article  Google Scholar 

  • Mogensen KB, Klank H, Kutter JP (2004) Recent developments in detection for microfluidic systems. Electrophoresis 25:3498–3512

    Article  Google Scholar 

  • Muegge BD, Richter MM (2002) Electrochemiluminescent detection of metal cations using a ruthenium(II) bipyridyl complex containing a crown ether moiety. Anal Chem 74:547–550

    Article  Google Scholar 

  • Prasanna de Silva A (2007) Sense and versatility. Nature 445:718–719

    Article  Google Scholar 

  • Rieve P, Sommer M, Wagner M, Seibel K, Böhm M (2000) a-Si:H color imagers and colorimetry. J Noncryst Solids 266–269:1168–1172

    Article  Google Scholar 

  • Schäfer H, Chemnitz S, Schumacher S, Koizy V, Fischer A, Meixner AJ, Ehrhardt D, Böhm M (2003a) Microfluidics meets thin film electronics—a new approach towards an integrated intelligent lab-on-a-chip. Proc SPIE 5116:764–774

    Article  Google Scholar 

  • Schäfer H, Chemnitz S, Koizy V, Fischer A, Ehrhardt D, Böhm M (2003b) A new technology for an application specific lab-on-microchip. In: Fecht HJ, Werner M (eds) The Nano-Micro Interface 2004. Wiley-VCH, New York, pp 119–137

  • Schäfer H, Seibel K, Walder M, Schöler L, Pletzer T, Ihmels H, Schmittel M, Ehrhardt D, Böhm M (2004) A micro cytometer with monolithically integrated optical detectors based on amorphous silicon. In: Laurell T, Nilsson J, Jensen K, Harrison DJ, Kutter JP (eds) Micro total analysis systems 2004. The Royal Society of Chemistry, Cambridge, 2:443–445

  • Schäfer H, Seibel K, Walder M, Schöler L, Pletzer T, Waidelich M, Ihmels H, Ehrhardt D, Böhm M (2005) Monolithic integrated optical detection for microfluidic systems using thin-film photodiodes based on amorphous silicon. Proc IEEE-MEMS, pp 758–761

  • Schäfer H, Seibel K, Schöler L, Böhm M (2007) Monolithic integrated a-Si:H based pin-diodes with orthogonally liquid light guidance structures for lab-on-microchip applications. Mater Res Soc Symp Proc 989:A10–A04

    Google Scholar 

  • Schmittel M, Lin H-W, Thiel E, Meixner AJ, Ammon H (2006) Redox and luminescence investigations of ruthenium trisphenanthroline crown ether hybrids upon multiple ion loading. Dalton Trans 4020–4028

  • Schmittel M, Lin H-W (2007) Quadruple-channel sensing: a molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis. Angw Chem Int Ed 46:893–896

    Article  Google Scholar 

  • Seibel K, Schöler L, Walder M, Schäfer H, Schäfer A, Pletzer T, Püschl R, Waidelich M, Ihmels H, Ehrhardt D, Böhm M (2005) A novel technology to create monolithic instruments for micro total analysis systems. Mater Res Soc Symp Proc 869:119–124

    Google Scholar 

  • Sullivan BP, Salmon DJ, Meyer TJ (1978) Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341

    Article  Google Scholar 

  • Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on silicon wafer. IEEE Trans Electron Devices ED-26:1880–1886

    Article  Google Scholar 

  • Trippé G, Levillain E, Derf FL, Gorgues A, Sallé M, Jeppesen JO, Nielsen K, Becher J (2002) Electrochemical recognition of cations by bis(pyrrolo)tetrathiafulvalene macrocycles. Org Lett 4(15):2461–2464

    Article  Google Scholar 

  • Verpoorte E (2003) Chip vision-optics for microchips. Lab Chip 3:42N–52N

    Article  Google Scholar 

  • Xu X-H, Bard AJ (1995) Immobilization and hybridization of DNA on an aluminum(III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection. J Am Chem Soc 117:2627–2631

    Article  Google Scholar 

  • Zhu Q, Coors S, Schneider B, Rieve P, Böhm M (1998) Bias sensitive a-Si(C):H multispectral detectors. IEEE Trans Electron Devices 45(7):1393–1398

    Article  Google Scholar 

  • Zu YB, Bard AJ (2000) Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem 72:3223–3232

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the “Deutsche Forschungsgemeinschaft” (DFG) under contract “DFG BO 772” and “DFG SCHM 647/13”. The authors are grateful to their colleagues at the “Research Center for Micro- and Nanochemistry and -Engineering” (Cμ) in Siegen and would like to thank Dipl.-Ing. G. Spickermann for the development of the experimental hardware during his diploma thesis and valuable personal discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, H., Lin, H., Schmittel, M. et al. A labchip for highly selective and sensitive electrochemiluminescence detection of Hg2+ ions in aqueous solution employing integrated amorphous thin film diodes. Microsyst Technol 14, 589–599 (2008). https://doi.org/10.1007/s00542-007-0439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-007-0439-5

Keywords

Navigation