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Abstract
Atrial fibrillation (AF) stands as the predominant arrhythmia observed in ICU patients. Nevertheless, the absence of a swift 
and precise method for prediction and detection poses a challenge. This study aims to provide a comprehensive literature 
review on the application of machine learning (ML) algorithms for predicting and detecting new-onset atrial fibrillation 
(NOAF) in ICU-treated patients. Following the PRISMA recommendations, this systematic review outlines ML models 
employed in the prediction and detection of NOAF in ICU patients and compares the ML-based approach with clinical-based 
methods. Inclusion criteria comprised randomized controlled trials (RCTs), observational studies, cohort studies, and case–
control studies. A total of five articles published between November 2020 and April 2023 were identified and reviewed to 
extract the algorithms and performance metrics. Reviewed studies sourced 108,724 ICU admission records form databases, 
e.g., MIMIC. Eight prediction and detection methods were examined. Notably, CatBoost exhibited superior performance in 
NOAF prediction, while the support vector machine excelled in NOAF detection. Machine learning algorithms emerge as 
promising tools for predicting and detecting NOAF in ICU patients. The incorporation of these algorithms in clinical practice 
has the potential to enhance decision-making and the overall management of NOAF in ICU settings.
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Abbreviations
AF  Atrial fibrillation
NOAF  New-onset atrial fibrillation
ICU  Intensive care unit
ML  Machine learning
RF  Random forest
DT  Decision tree
LR  Logistic regression
K-NN  K-nearest neighbors
SVM  Support vector machine

GBM  Gradient boosted machine
AUC   Area under the curve
ECE  Expected calibration error
ESCE  Expected signed calibration error
PRIMSA  Preferred Reporting and Items for Systematic 

Reviews and Meta-Analyses
SR  Systematic review

Introduction

Atrial fibrillation (AF) is the most prevalent arrhythmia 
in the ICU patients [1], with new-onset atrial fibrillation 
(NOAF) developing in one of six patients admitted to the 
ICU [2]. Prediction and early detection NOAF are impera-
tive in ICU settings, given its association with life-threat-
ening complications and prolonged hospital length of stay 
[1]. Specific triggers in ICU patients, such as structural and 
electrical remodeling related to infection and inflamma-
tion, along with arrhythmogenic triggers like continuous 
catecholamine infusion, can precipitate NOAF [1]. Clinical 
suspicion and detection of NOAF often relay on continuous 
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ECG monitoring and analysis of 12-leads ECG analysis 
[2]. Severe acute complications encompass hemodynamic 
compromise, peripheral organs embolism, ischemia (brain, 
kidney, etc.), and death [3–5]. The occurrence of NOAF 
is linked to a more challenging clinical course, including 
extended length of stay increased mortality and the develop-
ment of ICU-acquired weakness in survivors [5–7]. Several 
models have been proposed to predict and detect NOAF 
in ICU patients, with the current gold standard being the 
“post-operative atrial fibrillation (POAF) score’’. However, 
its clinical utility is constrained by its poor accuracy [8–12].

Machine learning (ML), a subset of artificial intelligence 
(AI), encompasses algorithms employing statistical and 
optimization methods to learn from prior data experiences. 
Its primary goal is to detect or predict valuable outcomes 
within extensive databases [13–15]. The significant ML 
development is related to the possible replication of human 
intelligence in machines programmed to duplicate important 
cognitive processes such as learning, problem-solving, and 
decision-making to analyze and process large amounts of 
data, focused on extracting useful information without being 
explicitly programmed [16]. ML capabilities extend to the 
development of procedures that autonomously learn from 
prior experiences, enhancing knowledge in specific domains. 
ML-based algorithms represent emerging and promising 
techniques for early AF detection [17]. These algorithms 
exhibit the capacity to identify patterns, make predictions, 
and propose actions [18]. Prediction and detection of NOAF 
are critical in ICU patients holding the potential to substan-
tially contribute to the complicated clinical courses [1].

Despite the expanding body of evidence regarding the 
clinical applications of ML in risk stratification and early 
diagnosis of NOAF in ICU patients, there is a noticeable 
absence of dedicated reports on the role of ML in this 
specific context. The primary objective of this systematic 
review (SR) is to elucidate the existing evidence concern-
ing the role of ML in both predicting and detecting NOAF 
in ICU patients.

Materials and methods

Protocol and registration

This SR was conducted based on the recommendations of 
the Preferred Reporting and Items for Systematic Reviews 
and Meta-Analyses (PRISMA) and was recorded in the 
PROSPERO registry for SR (N. CRD42023397136, Feb 
17, 2023).

Search strategy

A literature search was conducted through PubMed, Embase, 
Scopus, and Medline databases, covering publications avail-
able until May 31, 2023. The search strategy employed the 
following terms: (atrial fibrillation OR new-onset atrial 
fibrillation) AND (artificial intelligence OR machine learn-
ing) AND (intensive care unit OR ICU).

Inclusion criteria comprised randomized controlled trials 
(RCTs), observational studies, cohort studies, and case–con-
trol studies. Full-text articles published in English, focusing 
on adult patients (age > 18 years old) treated in the ICU and 
utilizing ML for predicting the clinical outcome of AF, both 
pre-existing and new onset, were included. Exclusion criteria 
encompassed case reports, comments, letters to the editor, 
editorials, study protocols, and replies. Studies involving 
pediatric patients and those not published in English were 
also excluded.

The primary outcomes sought were the ML-based predic-
tion and/or detection of NOAF in patients admitted to the 
ICU. The assessment focused on evaluating the accuracy, 
sensitivity, and specificity of the machine learning algo-
rithms in predicting and detecting the occurrence of NOAF.

Risk of bias assessment in individual studies

The assessment of bias risk encompassed an examination 
of five key parameters: a sufficiently sized cohort, appropri-
ate cross-validation, an external validation set, blinding of 
participants and personnel, and handling of incomplete out-
come data (Table 1). For data extraction, a predefined form 
was utilized, capturing essential information such as study 
type, sample size, patient characteristics, intervention/expo-
sure details, comparator details, outcome measures, effect 
measures, follow-up time, funding source, and conflicts of 
interest.

Results

Study selection and description

Literature search was conducted in July 2023, resulting in 
the retrieval of 1596 records encompassing risk factors, 
treatment, prophylaxis, monitoring, and outcomes associated 
with AF. Among these, 714 articles (44, 7%) were identified 
as potentially relevant for investigating the role of ML in the 
prediction and detection of NOAF. Two expert reviewers 
independently screened the papers, resulting in the selec-
tion of 59 articles out of the 714 selected. A subsequent 
secondary screening focused on excluding studies involving 
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non-ICU patients. Any disparities between the reviewers 
were resolved through discussion and consensus. Ultimately 
five studies, each aligning with at least one of the designated 
outcomes, were deemed eligible for inclusion in the present 
SR. These studies were further categorized into prediction 
of NOAF occurrence (n = 2) and detection of NOAF (n = 3) 
in ICU. The study design is summarized in the PRISMA 
flowchart reported in Fig. 1.

A comprehensive dataset comprising medical records 
from a total of 108,724 subjects was sourced from various 
databases, including Medical Information Mart for Inten-
sive Care (MIMIC)–II [19], –III [20, 21], –IV [22], Kens-
ington General Hospital (KGH) database [23], Amster-
damUMCdb [22], Ghent University Hospital database 
[22], and Belgian hospital ICU database [22]. The ICU 

admission records were retrieved for ML models design, 
testing, and external validation [22, 23]. The records of 
ICU admissions used in the modeling studies spanned the 
period from 2001 to 2020 [19–23]. The studies employed 
eight distinct ML models: K-nearest neighbor (K-NN) 
and support vector machine (SVM) were utilized in three 
studies [19–21], while forest (RF) and decision tree (DT) 
were applied in two studies [19, 21]. In addition, logistic 
reasoning [19], gradient boosted machine [19], CatBoost 
classification models [22], and deep learning models [23] 
were each analyzed in single studies.

The results of the selected studies are presented in two 
distinct sections: ML-based prediction of NOAF and ML 
detection of NOAF occurrence.

Table 1  Risk of bias evaluation panel of included studies
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J. Verhaeghe., 2023 [23] L L L M L Low 

S. Bashar., 2021 [21] S M M L L Medium 

B. Chen., 2022 [19] L L S L L Low 

R. Karri., 2021 [20] L L L L L Low 

S. Bashar., 2020 [22] S M M L L Medium 

low risk of bias 

moderate risk of bias 

serious risk of bias 

Table reports risk of bias evaluation panel
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AI‑based prediction of NOAF occurrence

The prediction of NOAF occurrence in ICU patients was 
examined in two retrospective studies [19, 22]. These stud-
ies employed database analysis and reported models using 
the MIMIC-III [16] MIMIC-IV [22], AmsterdamUMC [22], 

and GUH [22] databases. The patients’ bedside records 
were collected between 2001 and 2012 [19], 2003 and 2016 
[22], 2008–2019 [22] and 2013–2020 [22]. A comprehen-
sive investigation encompassing a total of 107,463 cases is 
summarized in Table 2. In all the studies, ML-based mod-
els were explored, including K-NN, SVM, RF, LR, GBM, 

Literature search performed 
between 1/07/2023-31/07/2023 
using the following search string 
[(atrial fibrillation OR new-onset 
atrial fibrillation) and (artificial 
intelligence OR machine learning) 
and (intensive care unit OR ICU)] 

1596 records retrieved: 
•Pubmed (n= 200) 
•Embase (n= 379) 
•Scopus (n= 298) 
•Medline (n= 719) 

714 records underwent a 
primary screening of the titles 
and abstracts 

882 articles were excluded based on:
•repetitions (n=62) 
•case reports (n=11) 
•case series reports (n=7) 
•comments (n=4)  
•letter to the editor / editorial / erratum / reply (n=23)  
•non-ICU patients (n=182) 
•non-English (n=22) 
•AI-based models not implemented (n=261) 
•ML-based models not implemented (n=89) 
•non-NOAF (n=159) 
•pediatric (n=19) 
•study protocols (n=43) 

59 full-text articles underwent a secondary 
screening for eligibility 
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Prediction of occurrence of 
NOAF (n= 2) 

655 articles were excluded based on:  
•case reports 
•lack of NOAF-related content 
•lack of AI or ML-related content 
•case series, comments, letters to 
editor, multidisciplinary studies, 
cross-sectional studies 
•study population with age <18 
years 
•non-English language 

Detection of NOAF (n= 3) A
llo

ca
tio

n 

5 articles were inclused in SR 

54 articles were excluded 
beacuse of non-ICU patients 

Fig. 1  PRISMA diagram of the literature search [30]. Exclusion process flowchart. AI artificial intelligence, ML machine learning, NOAF new-
onset atrial fibrillation, SR systematic review
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and DT [19], with one study incorporating CatBoost clas-
sification models [22]. Notably, one of the studies applied 
ML-based electrocardiogram (ECG) waveform processing 
techniques [22], while the second study predicted NOAF 
occurrence based on risk parameters such as age, chronic 
obstructive pulmonary disease, eGFR of 15 ml/min per 1.73 
 m2 or dialysis, emergency status, preoperative intra-aortic 
balloon pump need, valve surgery, and left ventricular ejec-
tion fraction < 30% [19].

Each study evaluated the performance of their models 
using the area under the curve (AUC) (Table 2), achiev-
ing the best results of AUC = 0.81 [22] and AUC = 0.74 
[19]. The authors of both publications assert the superiority 
of their models compared to other currently proposed ML-
based AF prediction models [19, 22]. In addition, they claim 

superiority over a current gold standard clinical scoring tool, 
namely, POAF scoring system, which exhibited an AUC of 
0.63 [19].

ML‑based detection of NOAF

The detection of NOAF in ICU patients was investigated in 
three retrospective studies [20, 21, 23] based on database 
analysis report models: MIMIC-III [20, 21]. The medi-
cal records were collected between 2001–2012 [20] and 
2015–2020 [23]. A total of 1261 cases were investigated 
(Table 3). The three studies investigated ML-based models: 
K-NN [20, 21], SVM [20, 21], RF [20], and DA [21]. One 
study [23] did not explicitly specify the type of ML-based 
method utilized. Notably, all studies incorporated ML-based 

Table 2  Prediction of occurrence of NOAF

Table reports the performance of ML algorithms achieved in each study in the prediction of occurrence of NOAF
RF random forest, DT decision tree, LR logistic regression, K-NN k-nearest neighbors, SVM support vector machine, GBM gradient boosted 
machine, AUC  area under the curve

Study (first author, year, ref) ML method Number of subjects Performance of ML algorithms

J. Verhaeghe et al. 2023 [22] CatBoost classification models 101,114 AUC = 0.81
ECE = 0.04
ESCE = 0.04

R. Karri et al. 2021 [19] RF, DT, LR, K-NN, SVM, GBM 6349 GMB: AUC = 0.74 (0.71–0.77)
LR: AUC = 0.73 (0.71–0.75)
RF: AUC = 0.72 (0.69–0.75)
K-NN: AUC = 0.68 (0.67–0.69)
SVN: AUC = 0.67 (0.66–0.68)
DT: AUC = 0.59 (0.55–0.63)
POAF SCORE = 0.63 (0.62–0.64)
GMB model had the highest sensitivity (0.74), DT had 

the highest specificity (0.84)
All ML models outlined in this investigation, except for 

DT, outperformed the gold standard clinical scoring 
tool (POAF score)

Table 3  Detection of NOAF

Table reports the performance of ML algorithms achieved in each study in the detection of NOAF
RF random forest, DT decision tree, LR logistic regression, K-NN k-nearest neighbors, SVM support vector machine, GBM gradient boosted 
machine, AUC  area under the curve, ECE expected calibration error, ESCE expected signed calibration error

Study (first author, year, ref) ML method Number 
of sub-
jects

Performance of ML algorithms

B. Chen et al. 2022 [23] Deep learning models 1043 Classification performance: F1 score (0.64–0.67), Calibration: expected cali-
bration error (0.05–0.07)

S. Bashar et al. 2021 [20] K-NN, SVM, RF 20 K-NN classifier: sensitivity = 84.01%, specificity = 64.55%, accuracy = 76.16%, 
PPV = 78.01% and NPV = 74.16%,

SVM classifier: sensitivity = 98.18%, specificity = 93.98%, accuracy = 96.48%
RF classifier: sensitivity = 97.78%, specificity = 90.38%, accuracy = 97.09%

S. Bashar et al. 2020 [21] SVM, DT, k-NN 198 Overall confusion matrix: sensitivity = 100%, specificity = 98%, accu-
racy = 98,99%, PPV = 98%, NPV = 100%
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electrocardiogram (ECG) waveform processing techniques 
[20, 21, 23]. The performance evaluation in each study was 
conducted using various metrics. The best values, as pre-
sented in Table 3, were achieved by the study using F1 score 
(0.64–0.67) and expected calibration error (0.05–0.07) [23]. 
In another study, the SVM classifier demonstrated sensitivity 
greater than 98% and specificity exceeding 93% [20]. The 
authors of the three publications claim that their models are 
superior compared to other currently proposed ML-based 
AF detection models pointing out at a better sensitivity [23] 
and accuracy [20, 21].

Discussion

This SR originally reports the available evidence on the role 
of ML-based prediction and detection models in patients 
with NOAF treated in ICU.

The first study compares ML-based predictive mod-
els capable of anticipating NOAF based on an extensive 
set of 194 variables including administered drug therapy, 
laboratory values, anthropometric data, and hemodynamic 
parameters. Notably, the designed models demonstrate the 
ability to predict NOAF onset 24–36 h before its occurrence 
[22]. The second study presents ML-based models that rely 
their prediction on demographics, physiological parameters, 
laboratory results, and clinical outcomes [19]. Although the 
specific timeframe for prediction is not explicitly specified 
in this article, the study remains valuable in the ICU clini-
cal practice as it provides crucial information to intensivists 
regarding patients at risk of developing complications, such 
as NOAF. Based on the comparison of the performance of 
each ML-model measured in terms of AUC, it is observed 
that all ML models outperform traditional clinical scores and 
among the studied algorithms, CatBoost shows to be supe-
rior in comparison to the others. A noteworthy observation 
from the comparison of the ML models’ performance, meas-
ured in terms of the area under the curve (AUC), indicates 
that all ML models surpass traditional clinical scores. Fur-
thermore, among the studied algorithms, CatBoost emerges 
as superior in comparison to the others. The selected articles 
suggest the potential capability of the described ML models 
to predict and detect NOAF, signaling a promising potential 
for a possible implementation of ML in both research and 
clinical practice. Importantly, ML methods exhibit an advan-
tage over conventional clinical scoring systems, particularly 
in predicting the occurrence of NOAF and significantly lim-
its human error and shortens detection process in unclear 
ECG readings. Moreover, ML methodologies significantly 
mitigate human error and expedite the detection process, 
especially in cases of unclear ECG readings.

Numerous research findings, comprehensive meta-
analyses, and systematic reviews, consistently affirm the 

substantial potential in the utilization of ML methods. A 
study conducted in non-ICU setting stands as a pertinent 
example of leveraging ML for predicting NOAF [24]. Reli-
able outcomes have consistently demonstrated the effective-
ness of ML predicting models, particularly in their ability to 
anticipate intensive care delirium up to 12 h in advance [25]. 
In addition, the use of ML has shown promise in predicting 
cardiovascular complications in diabetic patients [26].

Time factor is crucial in diagnosing NOAF in critical 
patients, given the elevated risk of death and the potential 
long-term complications [1–7]. The prediction and rapid 
detection of NOAF have been highly discussed in the medi-
cal society. The medical community has extensively dis-
cussed the importance of predicting and rapidly detecting 
NOAF. Numerous alternative strategies have been proposed 
for NOAF prediction, including assessing DNA methylation 
levels [27], measuring plasma aldosterone concentrations 
[28], and exploring immune-associated biomarkers [29]. 
While these methods indicate potential for NOAF predic-
tion, further investigations through prospective clinical trials 
are essential. In this context, rapidly developing ML-based 
methods and their increasing integration into medical prac-
tice demonstrate a remarkable potential for the prediction 
and detection of NOAF. The agility and adaptability of ML 
approaches offer a promising avenue for timely identification 
and management of NOAF, potentially improving patient 
outcomes in critical care settings. Therefore, the evolving 
ML-based methods and their growing integration into medi-
cal practice hold substantial potential for the prediction and 
detection of NOAF.

Limitations of this SR include the relatively limited num-
ber of available studies, all of which were retrospective and 
based on few databases which could result in a partially 
overlapping of records. To address this, future prospective 
randomized clinical trials comparing the performance of 
ML-based models versus traditional clinical methods for 
the prediction and detection of NOAF in ICU are neces-
sary. Such trials should provide more robust evidence and 
contribute to the refinement of ML applications in critical 
care settings.

Conclusion

This SR provides a comprehensive summary of all available 
evidence related to the prediction and detection of NOAF in 
the ICU. Importantly, the evidence suggests that ML-based 
methods have already surpassed the POAF score, which cur-
rently serves as the gold standard in clinical practice. Among 
the various ML algorithms studied, CatBoost emerges as 
the top performer. Furthermore, the rapid development of 
ML signifies the potential for a paradigm shift, advocating 
for the redesign or integration of ML-based methods either 
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independently or in conjunction with traditional risk scoring 
systems in the ICU. This recommendation is underscored by 
the need for further evaluation in prospective, randomized 
controlled trials, which will provide more robust insights 
into the efficacy and feasibility of ML applications in the 
critical care setting.
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