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Emergency agitation (EA) is one of the most challenging 
postoperative complications that involve mental excitement 
and reported incidence in 11–25% following pediatric gen-
eral anesthesia [1–3]. EA can lead to adverse events such as 
accidental removal of intravenous catheters, wound dam-
age, and burden for nurses and the parent. Although EA and 
emergency delirium are sometimes used interchangeably in 
previous reports, EA is an emotional disturbance or mental 
excitement, including emergency delirium and cognitive 
dysfunction. In contrast, emergency delirium is unstable 
mental change with cognitive dysfunction [2, 4].

Recently, Miyake et al. studied their hypothesis that con-
tinuous propofol infusion during sevoflurane anesthesia 
reduces the incidence of EA compared to sevoflurane anes-
thesia without propofol [5]. They retrospectively compared 
a group that was treated with sevoflurane alone with another 
group that was treated with sevoflurane and propofol (6 mg/
kg/h or less) within a cohort of 244 children aged 0 to 16 
while adjusting for known risk factors. The authors found 
the odds ratio of EA was significantly low in the combina-
tion group compared to the sevoflurane group (adjusted odds 
ratio: 0.48, 95% confidence interval: 0.25–0.91, p = 0.024). 
In the study, the authors treated known risk factors includ-
ing age, sex, premedication, and surgical procedures as 

confounding factors and adjusted for them in the analysis 
that compares the two groups. In addition, the authors also 
adjusted for attending anesthesiologists as a confounding 
factor in a sensitivity analysis since management against EA 
depends on the attending anesthesiologist. Moreover, they 
considered intraoperative doses of fentanyl and droperidol 
as mediators in the analysis since these agents were affected 
by anesthetic methods.

Multivariable logistic regression analysis can adjust 
for factors that affect both the exposure and the outcome, 
often known as confounding factors and compute the odds 
ratio of the outcome in association with the exposure, when 
the outcome is binary [6]. The authors revealed the odds 
of the outcome (EA) associated with the exposure (anes-
thetic method; the combination group compared with the 
sevoflurane group) decreased by 52% through a multivari-
able logistic regression analysis adjusting for confounding 
known risk factors. The authors could not obtain and adjust 
for patient behavior during induction, which was deemed 
as another known risk factor. Moreover, the authors devel-
oped a mixed-effect multivariable logistic regression model, 
including fixed effects and random effects, as a sensitivity 
analysis that adjusts for attending anesthesiologists as a 
confounding factor in addition to the known risk factors. 
A fixed effect refers to a factor that continuously influences 
the target population under analysis, while a random effect 
refers to a factor that randomly influences the target popu-
lation under analysis [7]. In the mixed model, the authors 
included attending anesthesiologists as a random effect and 
the aforementioned known risk factors as fixed effects. The 
model revealed the odds of the outcome decreased by 53% 
comparing combination group with the sevoflurane group. 
This result, in which the odds ratio is almost the same as 
that of the main analysis without attending anesthesiologists 
as a confounding factor, not only suggests the robustness 
of the findings of this study but also implies that attending 
anesthesiologists is not a confounding factor.
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A mediator is a factor that provides a mechanism that 
affects or explains how the outcome is caused by the expo-
sure, while a confounding factor is a factor that affects both 
the exposure and the outcome that could potentially distort 
the relationship between the two. Mediation analysis can 
demonstrate a causal relationship between the exposure, the 
mediator, and the outcome with an effect size, such as odds 
ratio, derived from the regression coefficient by incorporat-
ing the mediator into the regression equation [8, 9]. The 
effect of exposure to outcome without considering a media-
tor is referred as the total effect. When the mediator is con-
sidered, the effect of exposure to outcome mediated and not 
mediated through the mediator are referred as the indirect 
effect and the direct effect, respectively (Fig. 1). Suppose the 
direct effect is smaller than the total effect when calculating 
effect size on mediation analysis. In this case, we can deem 
the mediator as being on the causal pathway and suggest 
the mechanism of the causal relationship from it. In this 
study by Miyake et al., the direct effect and the total effect 
were the same, both being odds ratio of 0.48, and conse-
quently the indirect effect was odds ratio of 0.99. The odds 
ratio of indirect effect equals to the odds ratio of the total 
effect divided by the direct effect. These results indicate the 
amount of intraoperative fentanyl and droperidol does not 
affect the outcome as a mediator (Fig. 1). This result dem-
onstrates the mechanism of reducing the incidence of EA by 
continuous propofol infusion during sevoflurane anesthesia 

is not dependent on the amount of intraoperative fentanyl 
and droperidol.

Finally, the authors assessed whether an unknown con-
founding factor had potentially affected the analysis results; 
in other words, they assessed whether they had sufficiently 
adjusted for confounding factors in their analysis. The author 
chose to use E-value to conduct this assessment. E-value 
informs how strongly an unknown confounding factor could 
affect the exposure and the outcome and in turn negate the 
causal relationship between the two. E-value provides the 
influence of an unknown confounding factor on the exposure 
and the outcome as some numeric estimate [10]. This study 
used risk ratio instead of odds ratio, to represent E-value and 
revealed that if the risk ratio of an unknown confounding 
factor on the association between anesthetic method and EA 
is over 2.25, then the observed odds ratio of the exposure 
on the outcome would change from 0.48 to 1 should the 
unknown factor become adjusted for. This result indicates 
the observed causal relationship, that is, continuous propo-
fol infusion during sevoflurane anesthesia decreases EA, is 
negated if the risk ratio is over the E-value threshold. The 
authors evaluated that an unknown factor with a risk ratio 
of 2.25 is unlikely to exist, implying their causal results are 
unlikely to be negated. However, they also suggested the 
possibility that the causal relationship under study could 
not be fully explained even with the adjusted confounding 
factors in the presence of unknown confounding factors, 

Fig. 1  The relation between the 
exposure, the outcome, and the 
mediator on causal pathway
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regardless of their strength and impact. Thus, it is still dif-
ficult to derive further interpretation of the results.

This study by Miyake et al. was a retrospective cohort 
conducted in the limitation of data resources that dealt with 
a variety of confounding factors. It revealed continuous 
propofol infusion during sevoflurane anesthesia decreases 
the incidence of EA. Although the robustness of this study 
is verified by a sensitivity analysis and E-value, the most 
useful, robust, and validated method to explore the interven-
tion effect of interest is a randomized control trial (RCT). 
Randomized control trials can avoid selection bias and con-
founding effectively. However, recently, Hayes et al. evalu-
ated the robustness of existing one hundred seventy-two 
RCTs in pediatric anesthesiology using fragility index (FI). 
The FI was used to estimate the number of outcome events, 
which need to change (i.e., an event to a non-event), for a 
result to turn from statistically significant to non-significant 
[11]. The recent study by Hayes et al. showed an FI of 3 
[interquartile range, 1–7], which means the analysis result 
could become “negative” if the outcomes of as few as three 
patients were changed to “no response” from their original 
“response” against the intervention effect. This warns the 
robustness of RCTs in pediatric anesthesiology. As such, the 
study by Miyake et al. warrants future RCTs designed with 
well-planned adequate power and a subsequent systematic 
review with meta-analysis of such RCTs.
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