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dergo mitosis, differentiate into type I cells, and spread
[3,6]. Thus, injury to type II cells impairs gas exchange
and other essential pulmonary functions by reducing
synthesis of surfactant and other key proteins and by
limiting regeneration of type I cells [10–12]. It therefore
is likely that preservation of functional type II cells is
essential for recovery from lung injury.

The heat shock response represents a mechanism of
cellular protection [13] that has evolved to protect cells
from untoward environmental perturbations. Activa-
tion of this pathway by any of a number of noxious
stimuli—heat, hypoxia, hypoglycemia, transition metal
intoxication, ischemia/reperfusion, endotoxemia,
shock—results in the elaboration of a series of heat
shock proteins with specific cytoprotective activity [14–
18]. Of these, the most widely studied is the 70-kDa heat
shock protein 70 molecule (HSP-70). Stress-induced in-
creases in the expression of HSP-70 have been demon-
strated in a number of tissues, including lung, kidney,
heart, and liver [13–18]. The lung, however, is unique in
that there is HSP-70 expression in the absence of insult
[13]. Notably, the stress—inducible form of HSP70
(HSP72) has been detected in normal rat colon [19].
This article explores the data on ARDS and the HSP-70
molecule.

Pathways and mechanisms contributing to cell damage
in ARDS

Inflammatory pathways in ARDS

Cell loss related to ARDS is complex. The excessive
inflammation characteristic of the early phase of the
disorder leads to accumulation of neutrophils in the
perivascular, interstitial, and alveolar spaces [3]. Neu-
trophil accumulation is mediated by a number of
factors. Two are of key importance: (1) elaboration and
release of neutrophil chemokines such as interleukin-8
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Introduction

Sepsis and the related systemic inflammatory response
syndrome (SIRS) and multiple organ dysfunction
syndrome (MODS) are the leading causes of death
in patients in surgical intensive care units [1,2]. The
lung is the organ most often affected in MODS, with
pulmonary dysfunction taking the form of the acute
respiratory distress syndrome (ARDS), an often lethal
inflammatory disorder. Recent data indicate that, at
best, the mortality rate associated with ARDS is 29%
[2–5]. Unfortunately, although some pathophysiologic
mechanisms underlying ARDS have been identified,
most have defied elucidation and treatment remains
largely supportive.

Although the pathophysiology of ARDS remains
obscure, the disease is known to involve unchecked
inflammation that ultimately damages and perhaps
destroys type I and type II alveolar epithelial cells [6].
This has important ramifications. Type I cells are highly
differentiated, are flat, appear to be quiescent, and
facilitate gas exchange [6]. Recent work demonstrates
that these cells can respond to inflammatory stimuli by
producing chemoattractant molecules (chemokines)
and expressing key adhesion molecules [7–9]. Similarly,
metabolically active type II cells produce surfactant
and other products essential to pulmonary function [6].
Damage to type I cells stimulates type II cells to un-
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(IL-8), monocyte chemoattractant protein-1 (MCP-1),
and macrophage inflammatory protein-2 (MIP-2) and
(2) expression, on the surface of pulmonary endothelial
and epithelial cells, of adhesion molecules capable of
binding neutrophils. Among these is intracellular adhe-
sion molecule-1 (ICAM-1) [7–9]. Neutrophils can cause
damage up to and including cellular necrosis. Cell loss in
ARDS also proceeds via activation of pathways lead-
ing to programmed cell death or apoptosis [20–22]. It is
known that the cytokines tumor necrosis factor-a
(TNFa) and IL-1b are responsible, in part, for
neutrophil-mediated necrosis and apoptosis [20–25].
This reflects TNFa/IL-1b-stimulated expression and re-
lease of MCP-1, MIP-2, and ICAM-1. Elements of this
enhanced elaboration of key chemoattractant/adhesion
molecules is modulated by a cytoplasmic signal trans-
duction that culminates in activation of the nuclear pro-
tein transcription factor NF-kB [25–31]. NF-kB also
initiates apoptosis via the caspase-8 pathway [23–27].
Therefore, each step in the proinflammatory cascade
might modulate cell injury in ARDS.

Alteration in gene expression

Alveolar cell damage may be initiated during sepsis/
ARDS by an alteration in gene expression. This can
take two forms. Expression of some genes, such as those
encoding cytokines and cell-surface antigens, is in-
creased [20–23,29–31]. Of equal importance are recent
studies indicating inappropriate transcriptional down-
regulation of certain genes encoding key cellular pro-
teins. For example, using a model of sepsis that leads to
ARDS—cecal ligation and double puncture (2CLP) in
rats and mice—we have found impaired hepatic expres-
sion of several essential liver-specific genes, including
those encoding proteins that catalyze gluconeogenesis,
b-oxidation of fatty acids, ureagenesis, and bile acid
transport [32–34]. Furthermore, we have demonstrated
inappropriate down-regulation of expression of several
key genes in the lung following 2CLP, including surfac-
tant proteins (SP)-A and (SP)-B and, most importantly,
HSP-70 [35–37]. Using Northern blot hybridization and
immunoblotting, we examined the temporal expression
of HSP-70 in lungs of animals surviving 2CLP [36].
HSP-70 mRNA increased after a sham operation but
failed to increase after 2CLP. Immunoblotting and im-
munohistochemistry demonstrated that HSP-70 levels
were unchanged after either 2CLP or the sham opera-
tion. Therefore, HSP-70 mRNA does not increase after
2CLP despite damage to alveolar cells. The failure of
2CLP to increase mRNA levels in the face of the severe
damage caused by 2CLP implies profound pulmonary
epithelial dysfunction, similar to findings in the liver.
Importantly, several recent studies indicate that 2CLP,
sepsis, and endotoxemia impair HSP-70 expression

[36,38–40]. These experiments led us to investigate in
depth the role of HSP-70 in ARDS and inflammation.

Heat shock protein 70

The heat shock response is a phylogenetically con-
served endogenous mechanism that has evolved to pro-
tect cells from untoward environmental perturbations
[13]. The response was first identified in Drosophila
melanogaster, and the findings were later extended to
other eukaryotic tissues. Exposure to heat led to synthe-
sis of a previously unrecognized group of proteins that
appeared to mediate a molecular mechanism to protect
living cells from the untoward effects of heat. There-
fore, the proteins became known as “heat shock pro-
teins” (HSPs) and the response as the “heat shock
response.” Additional studies revealed two key facts.
First, noxious stimuli other than heat led to elaboration
of HSPs. Second, preliminary exposure to heat con-
veyed tolerance to both subsequent heat shock and to
additional noxious stimuli. This “thermotolerance”
phenomenon protected cells from hypoxia, ischemia,
inflammation, and exposure to heavy toxic metals,
endotoxin, and reactive oxygen species [41].

Of the proteins produced during the heat shock re-
sponse, the most widely studied is the 70-kDa HSP-70.
HSP-70 subspecies have been observed in many organs
after diverse insults. The genes encoding members of
the HSP-70 family are a key evolutionary adaptation.
They are conserved across species (from single-cell
organisms to humans), are genetically simple (a single
exon and no introns, permitting rapid transcription),
and have a long protein half-life. A number of noxious
stimuli have been shown to induce HSP-70 expression
in the lung, kidney, heart, pancreas, and liver in vivo
[14–18,38]. Importantly, prior elaboration of HSP-70,
like heat pretreatment, protects cells, reduces inflam-
mation, and alters transcriptional activation in vivo and
in vitro [42–51]. Thus, altered HSP-70 expression might
be of importance in the modulation of ARDS.

Within the cytosol of the eukaryotic cells, members of
the 70- to 78-kDa family of HSPs act as molecular chap-
erons. This involves facilitating folding/refolding of
cellular proteins as well as preserving and stabilizing the
tertiary structure. The 70- to 78-kDa family of HSPs
includes the inducible HSP72, which is highly expressed
during stress, and constitutive HSC70 (also called
HSP73), which is constantly present at basal levels in
the cytosol. All HSP-70 family members with nucleotide
sequences of 72, 73, 75, and 78kDa are highly evolution-
arily conserved. Furthermore, there is 60%–70% ho-
mology between eukaryotic organisms [52].

All HSP-70 molecules include one major peptide
binding site and an enzymatic catalytic binding site. The
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peptide-binding carboxyl-terminal domain is less con-
served than the amino-terminal 44-kDa catalytic site.
This catalytic site has ATPase activity, which is vital for
binding and releasing peptides during stress [41,53,54].
The purpose of the intracellular chaperone HSP ma-
chinery is to identify nonnative protein aggregates and
to participate in de novo protein folding. Chaperones
recognize hydrophobic residues and unstructured back-
bone regions in proteins, and they promote folding
through cycles of substrate binding and release. This
process is regulated by ATPase activity and is aided
by other cofactors [53,55]. Chaperone binding may
not only block intermolecular aggregation directly by
shielding the interactive surfaces of nonnative polypep-
tides, it may prevent intramolecular misfolding.

Expression of HSPs is modulated by an intracellular
signal transduction pathway that activates heat shock
factors (HSFs). When stimulated by an appropriate sig-
nal, HSF-1, a 75-kDa cytosolic protein, translocates to
the nucleus, binds to the heat shock responsive element
(HSRE), and initiates HSP-70 transcription [56].

Although the protective role of HSPs is highly con-
served across species, the profile of HSP transcription
and the time of appearance can be expressed uniquely
in various tissues. The great divergence in HSP expres-
sion explains the plasticity with which these proteins
function [57,58]. Elevated levels of HSPs following di-
verse inciting causes have led researchers to conclude
that HSPs are involved in cellular protection in normo-
thermic environments as well as in response to heat. For
example, Marber et al. demonstrated cardioprotection
against ischemic injury using transgenic mice over-
expressing HSP-70 [16].

Heat shock response in inflammation and
acute lung injury

Data show that HSP-70 can limit inflammation. Heat
pretreatment before a variety of insults protects cells,
inhibits proinflammatory cytokine release, alters activa-
tion of transcriptional pathways, and prevents apoptosis
in vivo and in vitro [13–18,41–51]. Indeed, studies have
demonstrated that heat treatment significantly im-
proves the outcome from phospholipase A1–mediated
acute lung injury or systemically induced ARDS [38–
40,42,44]. We hypothesized that restitution of an appro-
priate HSP-70 response might be protective. To test this
hypothesis we used adenovirus-mediated gene enhance-
ment to treat the impaired pulmonary heat shock re-
sponse following 2CLP in rats. Previous studies had
revealed that this insult resulted in an ARDS-like state
characterized by neutrophil accumulation and protein-
rich interstitial edema formation [36,40,42,59–75]. In
our experiments we administered an adenovirus de-
signed to express porcine HSP-70 (AdHSP) into the

tracheas of rats subjected to 2CLP in the hope that it
would reverse these abnormalities and improve the out-
come. Our approach was unique because other studies
on sepsis and ARDS activated the entire heat shock
response, with its attendant production of a number of
peptides. In addition, the other investigations provoked
an enhanced response in the entire organism. In con-
trast, our studies were designed to increase only the
expression of HSP-70, a single peptide, in one organ, the
lung. Our preliminary studies showed that AdHSP did
indeed increase HSP-70 expression in the lung. Virus
uptake following 2CLP occurred primarily in pulmo-
nary epithelial cells, especially type II pneumocytes.
There was some additional uptake in alveolar macroph-
ages, a finding that could affect neutrophil accumulation
by altering chemokine production [40]. Next, we admin-
istered AdHSP to a cohort of animals subjected to
2CLP. Unoperated and sham-operated animals served
as controls, as did a cohort of rats given a different
adenovirus that did not contain the HSP-70 gene. Our
studies revealed that treatment with AdHSP attenuated
neutrophil accumulation, septal thickening, interstitial
fluid accumulation, and alveolar protein exudatation—
changes characteristic of ARDS 48 h after 2CLP.
Furthermore, AdHSP administration significantly
decreased 48-h mortality [76].

Possible mechanisms to explain the protective effect
of HSP-70

There are a number of potential mechanisms to explain
the cytoprotective effects of HSP-70. Three have been
investigated: preservation of protein structure and con-
figuration [13,77,78]; attenuation of cytokine-induced
inflammatory mediator production [49,79]; and block-
ade of apoptosis [13,50,80]. Each of these processes,
which appear to occur as a result of HSP-70 binding to
hydrophobic domains of proteins involved in inflamma-
tion or apoptosis, may be important in the pathogenesis
of ARDS. In a sense, the heat shock response is
counterregulatory, protecting cells from excessive in-
flammation by limiting some of the potentially harmful
effects (unlimited tissue damage, necrosis, apoptosis,
altered protein expression, impaired or overexuberant
regeneration) of an unchecked inflammatory response.

HSP-70 induction inhibits proinflammatory cytokine
induction, gene expression, and apoptosis in many cells,
including human and murine lung epithelial cells
[45,48,49,81,82]. These findings suggest that one mecha-
nism of protection may be the ability of HSP-70 to
inhibit proinflammatory and apoptotic responses via
modulation of NF-kB activity [49,83]. The actual point
of inhibition in the NF-kB pathway has not been com-
pletely elucidated. This represents an important gap in
our understanding of HSP-70 biology. For NF-kB to
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translocate into the nucleus, its inhibitor molecule,
IkBa, must undergo phosphorylation, ubiquitination,
and proteosomal degradation [84–89]. Yoo et al. indi-
cated that inhibition of IkB phosphorylation by HSP-70
induction is most likely related to inhibition of the IkBa
kinase (IKK) complex [49]. Others, however, have dis-
puted this [90–92]. Support for this conclusion can be
found in the work by Ran et al. [93], who demonstrated
that HSP-70 binds to the g-subunit of the IKK complex,
disrupting the IKK heterodimer [93]. Additional inves-
tigations involving the effects of HSP-70 on the entire
cytokine/NF-kB pathway are of major importance.

HSP-70 may also attenuate ARDS via stabilization
and preservation of damaged intracellular proteins
[13,77,78]. This may result from the unique ability of
HSP-70 to disaggregate and refold denatured proteins
[78]. During this process, HSP-70 binds to hydrophobic
protein domains of native proteins or peptides whose
tertiary structure has been lost [77]. It appears that dam-
aged protein is stabilized in a conformation that facili-
tates refolding. This allows reconstitution of the tertiary
and quaternary structure when normal conditions are
restored [13]. Although this property has been well
demonstrated in vitro, currently there are no data to
support protein stabilization as a direct protective
mechanism in the lungs or any other organ of intact
animals. This highlights another major gap in our un-
derstanding of HSP-70 biology. Because damage to or
loss of proteins in pulmonary epithelial cells has been
implicated in the pathogenesis of ARDS, an under-
standing of a mechanism to restore damaged cellular
components may contribute to strategies designed to
modulate ARDS or any other inflammatory disease
[94–101].

Finally, a large body of evidence indicates that ex-
pression of HSP-70 contributes to blockade of apoptosis
[23,50]. Saleh et al. demonstrated that HSP-70 forms a
complex with the preliminary apoptotic factor Apaf-1,
attenuating oligimerization and formation of the
apoptosome [102]. Because loss of pulmonary epithelial
cells is important in the pathogenesis of ARDS, a better
understanding of the role played by this aspect of HSP-
70 activity is important.

Conclusions

In summary, ARDS is a disorder that involves over-
whelming inflammation, alterations in protein expres-
sion and function, and cell death by apoptosis and
necrosis. Each of these abnormalities can be limited or
controlled by an appropriate heat shock response, spe-
cifically involving induction of HSP-70. Previous studies
have demonstrated failure to increase HSP-70 expres-
sion following 2CLP. HSP-70 deficiency contributes to

inflammation, altered protein expression, and alveolar
cell loss in ARDS. We and others have demonstrated
that correcting this deficit may protect alveolar cells,
reduce functional and morphologic abnormalities, and
improve the outcome in experimental ARDS. Several
mechanisms by which HSP-70 may exert its attenuating
effects in ARDS have been identified. These findings
may have important ramifications with regard to the
pathogenesis of ARDS and can help direct further in-
vestigation and the development of novel therapeutic
approaches.
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