Skip to main content

Advertisement

Log in

A novel, small anti-HBV compound reduces HBsAg and HBV-DNA by destabilizing HBV-RNA

  • Original Article―Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Currently, standard treatments for chronic hepatitis B such as nucleos(t)ide analogs (NAs), effectively reduce hepatitis B virus (HBV) loads but rarely result in a functional cure (defined as sustained HBsAg loss). We report the discovery of a novel, 4-pyridone compound, SAG-524, a potent and orally bioavailable small molecule inhibitor of HBV replication.

Methods

The antiviral characteristics and selectivity of SAG-524 and its derivative compound against HBV were evaluated in HBV-infection assays and HBV-infected chimeric urokinase-type plasminogen activator/severe combined immunodeficiency mice with humanized livers (PXB mice), alone or in combination with entecavir. Toxicity studies were conducted in mice and monkeys.

Results

SAG-524 reduced HBV-DNA (IC50 = 0.92 nM) and HBsAg (IC50 = 1.4 nM) in the supernatant of the HepG2.2.15 cells. SAG-524 selectively destabilized HBV-RNA via PAPD5, but not GAPDH or albumin mRNA, by shortening the poly(A) tail. PAPD5 may also be involved in HBV regulation via ELAVL1. In a study of HBV-infected PXB mice, SAG-524 produced potent reductions of serum HBsAg and HBcrAg, and the minimum effective dose was estimated to be 6 mg/kg/day. The combination therapy with entecavir greatly reduced HBsAg and cccDNA in the liver due to reduction of human hepatocytes with good tolerability. Administration of SAG-524 to monkeys, up to 1000 mg/kg/day for two weeks, led to no significant toxicity, as determined by blood tests and pathological images.

Conclusions

We have identified SAG-524 as novel and orally bioavailable HBV-RNA destabilizers which can reduce HBsAg and HBV-DNA levels, and possibly contribute a functional cure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HBV:

Hepatitis B virus

CHB:

Chronic hepatitis B

NAs:

Nucleos(t)ide analogs

PEG-IFN:

Pegylated interferon

HCV:

Chronic hepatitis C virus

HIV:

Human immunodeficiency virus

BRIC assay:

5’-Bromouridine IP chase assay

BrU-RNA:

BrU-labeled RNA

PRE:

Posttranscriptional regulatory element

ARE:

AU-rich element

cccDNA:

Covalently closed circular DNA

MED:

Minimum effective dose

NTCP:

Sodium taurocholate cotransporting polypeptide

rcDNA:

Relaxed circular DNA

pgRNA:

Pregenomic RNA

dslDNA:

Double-stranded linear DNA

IC50 :

50% Inhibitory concentration

CC50 :

50% Cytotoxicity concentration

uPA/SCID mouse:

Chimeric urokinase-type plasminogen activator/severe combined immunodeficiency mouse

PXB-mouse:

Human liver chimeric uPA/SCID mouse

UTR:

Untranslated region

References

  1. Levrero M, Pollicino T, Petersen J, et al. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51:581–92.

    CAS  PubMed  Google Scholar 

  2. Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris). 2010;58:258–66.

    CAS  PubMed  Google Scholar 

  3. WHO fact sheet, Hepatitis B. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/hep-b.

  4. Mommeja-Marin H, Mondou E, Blum MR, et al. Serum HBV DNA as a marker of efficacy during therapy for chronic HBV infection: analysis and review of the literature. Hepatology. 2003;37:1309–19.

    PubMed  Google Scholar 

  5. Chen CJ, Yang HI. Natural history of chronic hepatitis B REVEALed. J Gastroenterol Hepatol. 2011;26:628–38.

    PubMed  Google Scholar 

  6. Chen CF, Lee WC, Yang HI, et al. Changes in serum levels of HBV DNA and alanine aminotransferase determine risk for hepatocellular carcinoma. Gastroenterology. 2011;141(1240–8):8.e1-2.

    Google Scholar 

  7. Chang TT, Liaw YF, Wu SS, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010;52:886–93.

    CAS  PubMed  Google Scholar 

  8. Yip TC, Wong GL, Chan HL, et al. HBsAg seroclearance further reduces hepatocellular carcinoma risk after complete viral suppression with nucleos(t)ide analogues. J Hepatol. 2019;70:361–70.

    CAS  PubMed  Google Scholar 

  9. Perrillo R. Benefits and risks of interferon therapy for hepatitis B. Hepatology. 2009;49:S103–11.

    CAS  PubMed  Google Scholar 

  10. Janssen HL, van Zonneveld M, Senturk H, et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet. 2005;365:123–9.

    CAS  PubMed  Google Scholar 

  11. Lau GK, Piratvisuth T, Luo KX, et al. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med. 2005;352:2682–95.

    CAS  PubMed  Google Scholar 

  12. Hayashi S, Khan A, Simons BC, et al. An Association Between Core Mutations in Hepatitis B Virus Genotype F1b and Hepatocellular Carcinoma in Alaskan Native People. Hepatology. 2019;69:19–33.

    CAS  PubMed  Google Scholar 

  13. Inoue T, Kusumoto S, Iio E, et al. Clinical efficacy of a novel, high-sensitivity HBcrAg assay in the management of chronic hepatitis B and HBV reactivation. J Hepatol. 2021. https://doi.org/10.1016/j.jhep.2021.02.017.

    Article  PubMed  Google Scholar 

  14. Hayashi S, Isogawa M, Kawashima K, et al. Droplet digital PCR assay provides intrahepatic HBV cccDNA quantification tool for clinical application. Sci Rep. 2022;12:2133.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sugiyama M, Tanaka Y, Kato T, et al. Influence of hepatitis B virus genotypes on the intra- and extracellular expression of viral DNA and antigens. Hepatology. 2006;44:915–24.

    CAS  PubMed  Google Scholar 

  16. Hayashi S, Murakami S, Omagari K, et al. Characterization of novel entecavir resistance mutations. J Hepatol. 2015;63:546–53.

    CAS  PubMed  Google Scholar 

  17. Watanabe T, Ishihara K, Hirosue A, et al. Higher-order chromatin regulation and differential gene expression in the human tumor necrosis factor/lymphotoxin locus in hepatocellular carcinoma cells. Mol Cell Biol. 2012;32:1529–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sells MA, Chen ML, Acs G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A. 1987;84:1005–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou T, Block T, Liu F, et al. HBsAg mRNA degradation induced by a dihydroquinolizinone compound depends on the HBV posttranscriptional regulatory element. Antiviral Res. 2018;149:191–201.

    CAS  PubMed  Google Scholar 

  20. Lee HJ, Lee J, Shin MK, et al. Polyadenylation is dispensable for encapsidation and reverse transcription of hepatitis B viral pregenomic RNA. Mol Cells. 2008;25:545–52.

    CAS  PubMed  Google Scholar 

  21. Lim J, Kim D, Lee YS, et al. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science. 2018;361:701–4.

    CAS  PubMed  Google Scholar 

  22. Hyrina A, Jones C, Chen D, et al. A Genome-wide CRISPR Screen Identifies ZCCHC14 as a Host Factor Required for Hepatitis B Surface Antigen Production. Cell Rep. 2019;29:2970-8.e6.

    CAS  PubMed  Google Scholar 

  23. Mueller H, Lopez A, Tropberger P, et al. PAPD5/7 Are Host Factors That Are Required for Hepatitis B Virus RNA Stabilization. Hepatology. 2019;69:1398–411.

    CAS  PubMed  Google Scholar 

  24. Rothamel K, Arcos S, Kim B, et al. ELAVL1 primarily couples mRNA stability with the 3’ UTRs of interferon-stimulated genes. Cell Rep. 2021;35: 109178.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu R, Wu K, Li Y, et al. Human antigen R: A potential therapeutic target for liver diseases. Pharmacol Res. 2020;155: 104684.

    CAS  PubMed  Google Scholar 

  26. Meisner NC, Hackermüller J, Uhl V, et al. mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. ChemBioChem. 2004;5:1432–47.

    CAS  PubMed  Google Scholar 

  27. Hwang N, Sun L, Noe D, et al. Hepatoselective Dihydroquinolizinone Bis-acids for HBsAg mRNA Degradation. ACS Med Chem Lett. 2021;12:1130–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aktoudianakis E, Canales E, Currie KS, et al. Compounds for the treatment of hepatitis B virus infection and their preparation. WO 2018144605. https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2018144605.

  29. Frebel H, Richter K, Oxenius A. How chronic viral infections impact on antigen-specific T-cell responses. Eur J Immunol. 2010;40:654–63.

    CAS  PubMed  Google Scholar 

  30. Zhu D, Liu L, Yang D, et al. Clearing Persistent Extracellular Antigen of Hepatitis B Virus: An Immunomodulatory Strategy To Reverse Tolerance for an Effective Therapeutic Vaccination. J Immunol. 2016;196:3079–87.

    CAS  PubMed  Google Scholar 

  31. Isogawa M, Chung J, Murata Y, et al. CD40 activation rescues antiviral CD8+ T cells from PD-1-mediated exhaustion. PLoS Pathog. 2013;9: e1003490.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ochel A, Cebula M, Riehn M, et al. Effective intrahepatic CD8+ T-cell immune responses are induced by low but not high numbers of antigen-expressing hepatocytes. Cell Mol Immunol. 2016;13:805–15.

    CAS  PubMed  Google Scholar 

  33. Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. J Hepatol. 2016;64:S71-s83.

    CAS  PubMed  Google Scholar 

  34. Suzuki T, Inoue T, Matsuura K, et al. Clinical usefulness of a novel high-sensitivity hepatitis B core-related antigen assay to determine the initiation of treatment for HBV reactivation. J Gastroenterol. 2022;57:486–94.

    CAS  PubMed  Google Scholar 

  35. Thi EP, Dhillon AP, Ardzinski A, et al. ARB-1740, a RNA Interference Therapeutic for Chronic Hepatitis B Infection. ACS Infect Dis. 2019;5:725–37.

    CAS  PubMed  Google Scholar 

  36. Lake AD, Holsapple K, McDonnell T, et al. Neurotoxicity of an Hepatitis B Virus (HBV) Transcript Inhibitor in 13-Week Rat and Monkey Studies. Toxicol Sci. 2022;186:298–308.

    CAS  PubMed  Google Scholar 

  37. Yuen MF, Lai CL. Combination therapy for chronic hepatitis B: simultaneous or sequential? Am J Gastroenterol. 2007;102:105–6.

    CAS  PubMed  Google Scholar 

  38. Marcellin P, Lau GK, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2004;351:1206–17.

    CAS  PubMed  Google Scholar 

  39. Yuen MF, Schiefke I, Yoon JH, et al. RNA Interference Therapy With ARC-520 Results in Prolonged Hepatitis B Surface Antigen Response in Patients With Chronic Hepatitis B Infection. Hepatology. 2020;72:19–31.

    CAS  PubMed  Google Scholar 

  40. Huang Q, Cai D, Yan R, et al. Preclinical Profile and Characterization of the Hepatitis B Virus Core Protein Inhibitor ABI-H0731. Antimicrob Agents Chemother. 2020;64:e01463-20.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Berke JM, Dehertogh P, Vergauwen K, et al. Antiviral Properties and Mechanism of Action Studies of the Hepatitis B Virus Capsid Assembly Modulator JNJ-56136379. Antimicrob Agents Chemother. 2020;64:e02439-19.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuen MF, Gane EJ, Kim DJ, et al. Antiviral Activity, Safety, and Pharmacokinetics of Capsid Assembly Modulator NVR 3–778 in Patients with Chronic HBV Infection. Gastroenterology. 2019;156:1392-403.e7.

    CAS  PubMed  Google Scholar 

  43. Liu F, Lee ACH, Guo F, et al. Host Poly(A) Polymerases PAPD5 and PAPD7 Provide Two Layers of Protection That Ensure the Integrity and Stability of Hepatitis B Virus RNA. J Virol. 2021;95: e0057421.

    PubMed  Google Scholar 

  44. Mueller H, Wildum S, Luangsay S, et al. A novel orally available small molecule that inhibits hepatitis B virus expression. J Hepatol. 2018;68:412–20.

    CAS  PubMed  Google Scholar 

  45. Block TM, Young JAT, Javanbakht H, et al. Host RNA quality control as a hepatitis B antiviral target. Antiviral Res. 2021;186: 104972.

    CAS  PubMed  Google Scholar 

  46. Akira S, Maeda K. Control of RNA Stability in Immunity. Annu Rev Immunol. 2021;39:481–509.

    CAS  PubMed  Google Scholar 

  47. Julio AR, Backus KM. New approaches to target RNA binding proteins. Curr Opin Chem Biol. 2021;62:13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Khalaj K, Ahn SH, Bidarimath M, et al. A balancing act: RNA binding protein HuR/TTP axis in endometriosis patients. Sci Rep. 2017;7:5883.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Nothing.

Funding

This work was supported by a grant-in-aid from the Research Program on Hepatitis from the Japan Agency for Medical Research and Development (AMED JP23fk0310518).

Author information

Authors and Affiliations

Authors

Contributions

TW, SH, YT designed the study and analyzed the data. TW, SH, YZ, HI, KN, MT, experimented; YT conducted pharmacologic evaluation and compound synthesis. TW, SH, KN, YT wrote the article. All authors interpreted the data and reviewed and approved of the manuscript.

Corresponding author

Correspondence to Yasuhito Tanaka.

Ethics declarations

Conflict of interest

Yasuhito Tanaka received Honoraria from AbbVie GK, Gilead Sciences, Inc, Chugai Pharmaceutical Co., Ltd., ASKA Pharmaceutical Holdings Co., Ltd., OTSUKA Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd. and GlaxoSmithKline PLC. He received Research funds from AbbVie GK, FUJIREBIO Inc, Sysmex Corp, Janssen Pharmaceutical K.K., GlaxoSmithKline PLC. and Gilead Sciences, Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1197 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T., Hayashi, S., Zhaoyu, Y. et al. A novel, small anti-HBV compound reduces HBsAg and HBV-DNA by destabilizing HBV-RNA. J Gastroenterol 59, 315–328 (2024). https://doi.org/10.1007/s00535-023-02070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-023-02070-y

Keywords

Navigation