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Abstract Pancreatic ductal adenocarcinoma (PDAC) is

one of the most aggressive and lethal cancers, and devel-

oping an efficient and reliable approach for its early-stage

diagnosis is urgently needed. Precancerous lesions of

PDAC, such as pancreatic intraepithelial neoplasia (PanIN)

and intraductal papillary mucinous neoplasms (IPMN),

arise through multiple steps of driver gene alterations in

KRAS, TP53, CDKN2A, SMAD4, or GNAS. Hallmark

mutations play a role in tumor initiation and progression,

and their detection in bodily fluids is crucial for diagnosis.

Recently, liquid biopsy has gained attention as an approach

to complement pathological diagnosis, and in addition to

mutation signatures in cell-free DNA, cell-free RNA, and

extracellular vesicles have been investigated as potential

diagnostic and prognostic markers. Integrating such

molecular information to revise the diagnostic criteria for

pancreatic cancer can enable a better understanding of the

pathogenesis underlying inter-patient heterogeneity, such

as sensitivity to chemotherapy and disease outcomes. This

review discusses the current diagnostic approaches and

clinical applications of genetic analysis in pancreatic can-

cer and diagnostic attempts by liquid biopsy and molecular

analyses using pancreatic juice, duodenal fluid, and blood

samples. Emerging knowledge in the rapidly advancing

liquid biopsy field is promising for molecular profiling and

diagnosing pancreatic diseases with significant diversity.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most

dismal malignancy, with a 5-year survival rate of approx-

imately 10% [1], as only\ 25% of PDAC are localized

and potentially curable during the first diagnostic phase

[2, 3]. Owing to the lack of early-stage diagnosis, most

patients with PDAC present with locally advanced or

metastatic cancers [4]. Surgical resection that results in a

better prognosis than other therapies [5] is an option;

however, over 80% of PDAC cases are advanced owing to

constant invasion and distant metastasis [6, 7]. FOLFIR-

INOX (fluorouracil, leucovorin, irinotecan, and oxaliplatin)

and gemcitabine plus nanoparticle albumin-bound pacli-

taxel (GnP) are chemotherapeutic agents used to treat

unresectable PDAC. However, their effectiveness is still

unsatisfactory and limited [5].

For the early diagnosis of PDAC, imaging studies per-

formed for screening or symptomatic examination should

accurately detect pancreatic tumors, main pancreatic duct

dilatation, and cystic changes [8]. Abdominal ultrasound is

simple but does not have a high tumor detection rate;

contrast agents have been reported to improve detection in

recent years [9]. Computed tomography (CT) is the most
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widely used modality in diagnosing the presence and extent

of PDAC [10]. However, to avoid radiation-associated

malignancies in BRCA mutation carriers [11], follow-up is

usually preferred using magnetic resonance imaging

(MRI). To date, there is no clear evidence of a link between

medical radiation exposure and accelerated pancreatic

carcinogenesis; however, the long-term effects of frequent

dynamic scanning need to be carefully evaluated.

Endoscopic ultrasonography (EUS) was developed in

the early 1980s, and EUS-guided tissue acquisition (TA)

was first reported in 1992 [12]. Since then, EUS has

become increasingly widespread. EUS achieves the best

detection performance [13]. However, it differs from other

endoscopic procedures in its operation, making it chal-

lenging to train physicians and limiting its applicability as

its diagnostic performance is influenced by the examiner’s

skill [14]. Attempts to strengthen cooperation among

medical institutions are also being made to utilize these

examination modalities accurately. [15, 16]. Significant

efforts have been made to identify the etiology of car-

cinogenesis and its risk factors. However, strategies that

integrate this knowledge into clinically feasible scoring are

yet to be established [17]. Recently, scattered reports on

using specific biomarkers for the minimally invasive

identification of high-risk PDAC groups are available.

However, to date, no effective biomarker for early detec-

tion has been established, despite an understanding of the

mechanism of pancreatic carcinogenesis.

A liquid biopsy system using body fluids to detect

reliable biomarkers is crucial for the early diagnosis of

PDAC to improve diagnostic applications. Carbohydrate

antigen 19–9 (CA19-9) and carcinoembryonic antigen

(CEA) are commonly used tumor markers for PDAC.

CA19-9 has the highest sensitivity at 70–80% and a\ 50%

specificity for PDAC diagnosis. Moreover, the sensitivity

of CA19-9 for stage I PDAC is 55.6% [18]. Notably,

several studies have reported the usefulness of CA19-9 as

an anchor marker for PDAC [19, 20]; however, its utility is

still restricted, particularly in Lewis antigen-negative

patients characterized by inadequate secretion of CA19-9

and fucosylation deficiency [21].

In contrast, many clinical trials have been conducted to

identify new biomarkers using liquid biopsy tools, such as

cfDNA, cell-free RNA (cfRNA), proteins, extracellular

vesicles (EVs) including exosomes, and circulating tumor

cells (CTCs) [22, 23]. For example, the cell surface pro-

teoglycan glypican-1 (GPC1) is present in PDAC cell-

derived exosomes, and circulating exosome GPC1 in serum

has been reported to serve as a biomarker for detecting

early stages of PDAC [24]. Moreover, several miRNAs or

exosomal miRNAs are highly expressed in body fluids such

as blood, duodenal fluid (DF), and pancreatic juice (PJ)

[25–27]. We previously encountered a case of early-stage

PDAC in which KRAS mutations were detected in PJ

within the resected PDAC tissue but not in the plasma,

suggesting that PJ is superior to blood for PDAC diagnosis

as it may reflect DNA mutations or abnormal RNA

expression from the original tumor more precisely owing to

the short distance between the primary lesion and the

position from where PJ is collected [28]. DF can also be a

valuable sample collected using a minimally invasive

method compared with PJ collection using a catheter.

Nevertheless, there is a need to discover and validate new

markers in PJ and DF for their utility for liquid biopsy to

enable the early diagnosis of PDAC and increase the

opportunities for curative surgery.

This review summarizes the gene alterations associated

with initiating PDAC precursor lesions, such as intraep-

ithelial neoplasia (PanIN) and intraductal papillary muci-

nous neoplasms (IPMN). It discusses the molecular

subtypes of invasive PDAC. We also discuss literature and

trials on the early diagnosis of PDAC. Finally, we sum-

marize the key themes and recent progress in liquid biopsy

using body fluids, mainly PJ and DF, to analyze oncogenic

mutations, RNA expression, and other factors, focusing on

high-grade IPMN and PDAC.

Precancerous lesions and gene alterations

Pancreatic intraepithelial neoplasia (PanIN)

and gene alteration

PanIN is the most common precursor lesion for PDAC.

Oncogenic Kras can induce PanIN in mice [29], and

humans with PDAC harbor KRAS mutations. Tumor

development is initiated by KRAS mutation at the earliest

stages of pancreatic tumorigenesis [30]. Mutations are

mainly detected in codon 12, while during the initial stage

of pancreatic carcinogenesis, mutations are occasionally

identified in codons 13 and 61 [31]. Approximately

70–80% of PDAC patients harbor G12V, G12D, or G12R

KRAS mutations [32, 33]. KRAS G12D mutation is the

most frequent and is a predictive factor for worse PDAC

prognosis [34]. A metastatic mouse PDAC model with

KrasG12D revealed that Kras mutant allele-specific imbal-

ances, such as copy number gain or loss of heterozygosity,

were observed even in human PanIN lesions and invasive

PDAC (Fig. 1) [35].

Following tumor initiation by KRAS mutation, PanIN

lesions progress to invasive PDAC through subsequent

inactivation of the tumor suppressor genes TP53, cyclin-

dependent kinase inhibitor 2A (CDKN2A), and SMAD

family member 4 (SMAD4) [36]. Mutations in several

genes have been associated with PDAC; however, these
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four genes are the primary driver genes for human PDAC

[37].

IPMN and gene alteration

IPMN has been associated with GNAS mutation at codon

201 in 40–70%, while KRAS mutations in 40–65% of cases

[36]. GNAS gene is located on chromosome 20q13.32 and

encodes the G-protein alpha-subunit [G(s)a] of hetero-

trimeric G-protein-coupled receptors. Activation of protein

kinase A (PKA) through stimulation of the messenger

cAMP by the ligand induces the phosphorylation of cAMP-

responsive element-binding protein (CREB) and extracel-

lular signal-regulated kinase (ERK). In several tissues,

GNAS–cAMP signaling maintains cellular differentiation

and quiescence [38–41]. GNAS mutations have been

detected in most intestinal-type and about 50% of gastric-

type IPMNs [42]. GNAS mutations can evolve from gastric

epithelial-type to intestinal-type IPMNs via the induction

of intrinsic CDX2/MUC2 expression [43]. GNAS mutations

are crucial for IPMN initiation [44]. However, they have

also been shown to suppress tumor development in several

types of cancers, including basal cell carcinoma and

medulloblastoma [45, 46]. We recently reported that GNAS

mutations inhibit tumor cell invasion by suppressing the

KRAS pathway in PDAC [39]. These results suggest that

GNAS may have inconsistent roles with tumor-initiating

and tumor-suppressing effects.

Germline mutations in Serine/Threonine Kinase 11

(STK11) are considered a major cause of Peutz-Jeghers

syndrome [47]. A recent study demonstrated that consistent

loss or reduction of STK11 expression was observed in

14% of IPMNs, and the aberrant tumor suppressor proteins

were associated with STK11 mutation in 58% of IPMNs

and significantly downregulated phosphorylated AMPK

levels [48]. In this subset, KRAS mutations were observed

in 92% of cases, whereas GNAS mutations were detected in

none. STK11 mutations are frequently observed in pan-

creatobiliary types of IPMN, and patients with aberrant

STK11 have poorer survival than those with normal

STK11.

RNF43 is a tumor suppressor gene, and loss-of-function

mutations in RNF43 often accompany GNAS mutations

during IPMN development [49]. RNF43 serves as a nega-

tive feedback regulator of Wnt signaling by suppressing the

membrane expression of Frizzled, and RNF43 mutation

confers Wnt dependency on PDAC cells [50]. In addition,

this gene is involved in the ATM–ATR-mediated DNA

Fig. 1 Diagnostic material/information during pancreatic carcino-

genesis. Oncogenic KRAS can initiate precursor lesions (dysplasia;

see Fig. 2 for details), and allelic imbalance increases oncogenic

dosage gain and tumor progression. In addition to circulating tumor

cells (CTCs), mutations and methylations in circulating cell-free

DNA (cfDNA), cell-free RNA (cfRNA), and extracellular vesicles

(EVs) can serve as liquid biopsy targets. A multi-layer detection

system covering these factors is necessary for early diagnosis,

complementary to conventional pathological assessments (e.g.,

SPACE and FNA). In addition to blood, where tumor-derived factors

are significantly diluted, the collection of DF and PJ is expected to

provide an opportunity to capture such molecules. Such genomic

information can be integrated with traditional diagnostic modalities,

improving the accuracy of early detection of human pancreatic cancer

with high accuracy
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damage response pathway, and its loss promotes tumor

development by bypassing oncogene-induced senescence

[51]. An analysis of resected IPMN tissue and mucinous

cystic neoplasm (MCN) revealed RNF43 mutations in 56%

of cases, which were more frequent in non-invasive lesions

than invasive lesions [52]. Similarly, Kruppel-like factor 4

(KLF4) mutation was detected in over 50% of resected

IPMN and significantly more prevalent in low-grade IPMN

than in high-grade IPMN [53]. Considering the increased

occurrence of RNF43 and KLF4 mutations in low-grade

tumors, alterations in these genes likely have less impact

on clonal expansion during IPMN progression. In contrast,

TP53, CDKN2A, and SMAD4 mutations are more com-

mon with high-grade dysplasia (HGD), supporting their

role in risk stratification for IPMN progression to invasive

tumors [52, 54].

Approaches for defining molecular subtypes

of PDAC and their utility in early diagnosis

The cell origin theory is crucial to understand better the

diversity of clonal evolution in cancer [55]. Studies in

genetically engineered mouse models (GEMMs) suggest

that PanIN arises from pancreatic acinar cells that incur

Kras mutations and undergo acinar-ductal metaplasia

(ADM), characterized by the transformation of acinar cells

into duct-like cells expressing CK19 and Sox9 [56, 57].

However, whether human PDA also undergoes ADM

remains to be determined [58]. A recent study by Huang

et al. proposed a potential cell of origin for PanIN or IPMN

using human pluripotent stem cell-derived pancreatic pro-

genitors and organoids [59]. Duct-specific expression of

GNAS mutation is sufficient to induce IPMN lesions, and

Fig. 2 Cell of origin and molecular subtypes in pancreatic cancer.

The pancreas contains several specialized cell types that can alter

cellular identity in response to inflammation and subsequent regen-

eration/repair. Pancreatic acinar cells can undergo acinar-to-ductal

metaplasia (ADM), a reprogramming event that induces transdiffer-

entiation into a duct-like phenotype. Pancreatic intraepithelial neo-

plasia (PanIN)-like lesions can be generated in mice through the

expression of oncogenic Kras in acinar cells; intraductal papillary

mucinous neoplasms (IPMN) can arise from acinar cells in associ-

ation with mutant Kras and Gnas or from ductal cells in the context of

association with chromatin remodeling or transforming growth factor

b signaling mutations. The subsequent inactivation of tumor

suppressors accelerates the progression of precursor lesions, leading

to invasive ductal adenocarcinoma. Molecular subtyping approaches

for pancreatic cancer based on transcriptomic data can help stratify

patients in clinical practice, leading to optimized treatment algo-

rithms. The recently identified classical and basal-like molecular

subtypes of pancreatic cancer affect patient survival and can be

profiled by the differential immunohistochemical expression of

GATA6, CK5, and Vimentin. Phenotypic transitions can be observed

during chemotherapy and even during the natural history of tumor

progression via genetic and epigenetic alterations. It remains to be

determined if mutant KRAS dosage and chromothripsis regulate

PDAC development. Recent mouse and human studies have sup-

ported the significant role of the cell of origin and the associated

transcriptomes in influencing PDAC phenotype
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GNAS R201C causes cystic growth more effectively in the

ducts than in the acinar organoids. In contrast, KRAS G12D

induces cancerous lesions more often in acinar versus

ductal organoids [59]. These data suggest that PanIN and

IPMN may originate from acinar and ductal cells.

Transcriptomic subtyping approaches have been devel-

oped over the past 10 years to understand better the

pathology of PDAC, evolving a framework for molecular

taxonomy [60]. PDAC can be classified into two common

molecular subtypes: basal like and classical. The basal-like

subtype is characterized by a more aggressive phenotype

and poor patient survival, whereas the classical subtype is

highly sensitive to chemotherapeutic agents. Therefore,

knowing which subtype is involved can help guide

chemotherapy decisions [61–63]. Phenotype classification

by RNA signatures may not be clinically relevant because

of the high cost and difficulty in analyzing heterogeneous

tumors. However, immunohistochemical analysis has sev-

eral advantages in overcoming this issue; GATA6, CK5,

and Vimentin may serve as relevant markers for defining

the differential expression profile of heterogeneous tumors

[64]. Like GATA6, GATA4 maintains the classical phe-

notype in cooperation with GATA6 [65].

Flowers et al. suggested that ductal cell-derived tumor

signatures are associated with the basal-like subtype.

However, acinar cell-derived tumor signatures are corre-

lated with the classical subtype of human PDAC, using a

gene set from GEMM in the context of oncogenic Kras and

Tp53. They also suggested that specific genetic events,

such as mutations in TP53 and KDM6A, may be associated

with particular subtypes [66]. There is some confusion,

however, regarding IPMN-related tumors. As IPMN likely

originates from ductal cells, this would suggest that it is

correlated with the more aggressive basal-like subtype of

PDAC. Yet Collisson et al. have identified IPMN-related

tumors as belonging to the classical subtype, which

Flowers et al. associate with acinar cells related to PanIN

[60]. This raises a discrepancy between these two theories:

cell of origin and molecular subtypes (Fig. 2). Moreover, in

IPMN, driver gene mutations, such as GNAS, STK11,

RNF43, or KLF4, may also determine the molecular sub-

type and its transition [32, 67]. Therefore, the regulation of

PDAC subtypes and their potential interaction with cancer

cell origin must be further investigated in early-stage

tumors to develop novel clinical applications for screening

and surveillance.

Body fluids transcriptomes can provide clinically rele-

vant information to explore the origin of cancer and the

roots of PDAC subtypes. Larson et al. reported that plasma

cell-free RNAs (cfRNAs) in plasma help detect cancer

tissue origin and subtypes [68]. The circulating cell-free

genome atlas (NCT02889978) contains transcriptome data

of blood samples from cancer and non-cancer patients. To

date, no registry has collected mutation profiles combined

with transcriptome analysis using DF or PJ, and we are

currently investigating the states of driver mutations and

transcriptomes in DF and PJ in collaboration with affiliated

hospitals to establish a catalog for identifying PDAC sub-

types and detecting the early stages of tumors more

effectively than blood testing.

A diagnostic approach for early-stage PDAC

Endoscopic modalities for pathological assessment

The pathological diagnosis of PDAC is mandatory for

patients with unresectable PDAC, and its significance has

increased with advances in matched therapies following

molecular profiling [69]. There has been an increase in the

use of preoperative chemotherapy and a growing consensus

that pathological diagnosis is crucial in cases where sur-

gery is an option [70, 71].

EUS-TA, with a sensitivity of 84–91%, is the most

widely performed tissue sampling method for pathological

diagnosis [72, 73]. EUS-TA has progressed with a focus on

puncture needles, such as forward facing, Franseen, and

fork tips [74–77], and specimen collection and processing

methods, such as rapid on-site evaluation and target sample

check illuminator [78, 79]. Tissues obtained by EUS-FNA

are occasionally small, and a diagnosis may not be made in

samples containing a large amount of blood. Some reports

have suggested that increased punctures improve diagnos-

tic performance [80].

An unusual complication associated with EUS-TA is

needle tract seeding. Kitano et al. reported that transgastric

but not transduodenal EUS-TA causes seeding in approx-

imately 0.9% of cases [81]. Therefore, careful monitoring

is required following the resection of PDACs diagnosed

using EUS-TA. In addition, the procedure should be

avoided in cases where it is difficult to suspend

antithrombotic drugs, where it is challenging to delineate

the mass by EUS, or where the presence of a blood vessel

or pancreatic duct in the puncture route is unavoidable.

Pancreatic juice cytology (PJC), with a sensitivity of

47–76%, is an alternative to EUS-TA [82]. Notably, sev-

eral methods, including brushing PJC, washing PJC,

endoscopic nasopancreatic drainage (ENPD) with serial

pancreatic juice aspiration cytologic examination (SPACE)

[83], and secretin-loaded PJC (S-PJC), have been attemp-

ted to improve the diagnostic performance of PJC [84].

However, all methods are associated with the risk of post-

ERCP pancreatitis as a severe complication and are still

considered alternatives to EUS-TA. Iiboshi et al. reported

the usefulness of multiple consecutive PJC examinations

with ENPD [83]. Sensitivity, specificity, and overall
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accuracy were 100%, 83.3%, and 95%, respectively, with

an average of 5.3 mL PJ sampling. They also reported that

SPACE is particularly useful for diagnosing intraepithelial

carcinomas that cannot be delineated using EUS. Since

then, there have been increasing reports on diagnosing

intraepithelial pancreatic cancer using SPACE, mainly in

Japan [85–88].

Until recently, S-PJC had been performed widely using

porcine secretin [84, 89]; however, animal-derived prod-

ucts have been discontinued due to safety issues. Synthetic

human secretin is now available as a secretin preparation.

In the United States, synthetic secretin is licensed for use in

(i) the exocrine pancreas function test, (ii) the Zollinger-

Ellison Syndrome Test, and (iii) stimulation of pancreatic

secretions to facilitate the identification of the ampulla of

Vater and accessory papilla during ERCP. However,

secretin has not been approved for clinical use in some

countries, including Japan. The unstable supply of secretin

is another issue. Mass production, distribution, and cost

reductions are expected as its clinical utility becomes

clearer. Other methods include (1) bile cytology in cases of

pancreatic head cancer invading the distal bile duct [89],

(2) ascites cytology in cases of peritoneal dissemination

with exudative ascites effusion, and (3) tumor biopsy under

transabdominal ultrasound or CT in institutions where

EUS-TA is not feasible [90].

Clinical application of genetic testing

A highly sensitive method for detecting even minor chan-

ges in crucial genes is required, particularly in the early

stages of cancer. Invariably, numerous techniques have

been developed to quantify mutations in driver oncogenes

and tumor suppressor genes. One method fundamental in

mutation analyses is polymerase chain reaction (PCR).

Real-time PCR for mutation-specific amplification has

been widely validated with high sensitivity and reliability,

allowing for the real-time detection and quantification of

DNA in a comparatively short turnaround time.

Further technological developments aimed at improving

detection sensitivity have led to the advent of technologies

such as the BEAMing (Beads, Emulsion, Amplification,

and Magnetics) method [91] and digital PCR (dPCR) [92].

dPCR is a highly sensitive method that performs endpoint

PCR on more than 10,000 individual reaction wells (such

as oil droplets or chambers), allowing for accurate detec-

tion and absolute quantification of DNA mutations without

calibration reactions [93]. The dPCR assays achieved a

shallow variant allele frequency (VAF) detection limit

(approximately 20-fold; 0.05% vs. 1%). The multiplex

droplet digital PCR assay was developed to target many

genomic regions using a few primers and probes [94–96].

As tissue specimens are occasionally minimal,

comprehensive analysis of genomic alterations in a single

reaction is a powerful tool for clinical testing, potentially

compensating for pathological diagnosis. The multiplex

ddPCR assay can detect point mutations in cfDNA to

minimize false positives while retaining sensitivity, making

it feasible to analyze cfDNA samples [97].

Comprehensive genomic profiling (CGP) using next-

generation sequencing (NGS) is the most powerful tool for

identifying tumor-specific genomic alterations in clinical

oncology, enabling precision medicine [98–100]. In addi-

tion to clinically available CGP assays such as Founda-

tionOne CDx and OncoGuide, whole exome sequencing

(WES) and whole genome sequencing (WGS) are used to

evaluate to fine-tune cancer therapy for patients with

unresectable diseases [101]. As a super-sensitive analysis

protocol for cfDNA, unique molecular identifiers (UMIs)

that are attached to unique DNA sequences in each original

molecule of DNA are standard tools for overcoming PCR

and sequencing errors to reliably quantitate low-frequent

mutations at B 0.1% VAFs [99, 100]. In addition to

determining the best cancer therapy, the possibility of early

PDAC screening through cfDNA diagnostics has been

widely discussed, and many trials on cfDNA mutation

profiling have been conducted [102]. Such a technique

would be useful in stratifying high-risk individuals, such as

those with a family history of PDA and pancreatic cysts,

including IPMN. Furthermore, several other CGP panels

for tissue and plasma cfDNA using genetic or epigenetic

biomarkers, such as FoundationOne Liquid [103] and

Guardant360, as well as the more recent CGP: Guardan-

tOMNI and GuardantINFINITY [104], have also been

developed. Currently, the last two panels are even more

comprehensive for research use only and may eventually

allow diagnosis at an earlier tumor stage [105].

Molecular diagnosis using body fluids

Advantage of the analysis using PJ or DF

Molecular diagnostic methods using body fluids have been

developed in recent years, and we outlined the benefits and

the challenges that need to be addressed in Table 1. Sig-

nificant efforts have been made to detect mutations in

plasma cfDNA in many cancer types early. Such detection

may be a biomarker of tumor burden; however, mutation

detection rates are lower in patients with PDAC than in

those with other neoplasms, primarily because of low

tumor cellularity [106]. Even in metastatic PDAC, a pre-

vious study demonstrated that the accuracy only reached

around 40% [107]. Considering the low yield of circulating

plasma cfDNA, specifically in patients with small PDAC,

detecting tumor-derived DNA remains challenging [108].
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Therefore, alternative approaches must be considered to

overcome this limitation.

Analysis of blood cfDNA from patients with pancreatic

neoplasms has been performed using high-sensitivity dPCR

technology [109]. dPCR detects KRAS codon12 mutations

even in pancreatic cancer cohorts with many early-stage

patients [110]. We developed a dPCR method to overcome

subsampling errors, an issue in testing for extremely low

copy number mutations [111]. Using the pre-amplification

method, tumor-derived mutant KRAS in the plasma of

patients with resectable PDAC was accurately detected

(AUC, 0.861–0.876), and the dPCR method improved post-

resection recurrence prediction over that of the marker

CA19-9 [26]. DNA in blood exosomes (exoDNA) is pro-

tected from degradation and fragmentation and can be

extracted as high molecular weight DNA compared with

cfDNA. It has been reported that exoDNA levels increase

after neoadjuvant therapy; exoDNA also yields a higher

detection rate of KRAS mutations with dPCR and is more

amenable as a template for CGP [112].

In gastrointestinal organs, secreted digestive juices may

enrich genetic abnormalities associated with cancerous

lesions. Therefore, liquid biopsy using body fluids could

resolve the limitations of mutation detection in plasma

cfDNA. Initially, KRAS mutations were targeted using PJ

collected from patients with PDAC/IPMN for PJC and

could complement the less-sensitive cytology evaluation

and help in follow-up [113–115]. Using high-resolution

melt curve analysis and pyrosequencing methods [31],

mutations in KRAS are detected in PJ from PDAC patients

and in 50% of asymptomatic individuals at high risk for

neoplasms [116]. KRAS mutations have also been observed

in individuals without pancreatic abnormalities, likely

because of invisible PanIN lesions. TP53 mutations have

also been detected in PJ from patients with HGD [31].

Sequencing technologies enable comprehensive cancer

genome profiling using PJ and efficient detection of tumor

suppressor mutations, including TP53, KRAS, and GNAS

mutations, serving as a tool to stratify tumor grades in

patients with IPMN [117, 118]. Yu et al. developed a

Table 1 The benefits and current challenges of each molecular diagnostic method for PDAC

Sample Analysis

target

Molecular targets Features and benefits Current problems and

challenges

Body fluid

(blood, DF, PJ,

etc.)

Cell-free

DNA

(cfDNA)

KRAS, TP53, SMAD4, CDKN2A, GNAS,
RNF43, etc.

Plasma cfDNA concentration in

1–10 ng/mL and is increased

in patients with cancers

Analysis of cfDNA is a well-

developed technique

cfDNA and cfRNA represent

complete tumor heterogeneity

They are useful for monitoring

treatment response,

development of resistance, and

tumor recurrence

Clinical practice rules

are not well

established

Rapidly degrade in body

fluid samples

Difficult to detect the

origin of a tumor

Experience potential

contamination with

DNA and RNA from

normal cells

Cell-free

RNA

(cfRNA)

miR-21, miR-10b, miR-30c, miR-181a, miR-
17, miR-2346, HULC, HOTAIR,
LINC00346, ABHD11-AS1, etc.

Extracellular

vesicles

(EVs)

miR-17, miR-21, miR-23a, miR-34a, miR-
106a, miR-108a, miR-423, miR-1246, miR-
4634, CD63, CD9, CD81, HULC, Sox2ot,
UCA1, MALAT1, CRNDE, MUC 5AC,

glypican-1, etc.

EVs contain RNA, protein, and

other tumor cell-derived

factors

EVs are found in most body

fluids

Analysis methods are

diverse and still under

development

Circulating

tumor cells

(CTCs)

EpCAM, cytokeratin, MUC1, etc. CTC contents (DNA, RNA, and

proteins) are examined as

liquid biopsy markers

CTCs have broad utility

Morphological and functional

analyses are possible

Extreme rarity, fragility,

and heterogeneity of

CTCs

Analysis methods are

diverse and still under

development

Tumor tissue

(biopsy/cytology)

DNA, RNA,

Protein,

etc.

KRAS, TP53, SMAD4, CDKN2A, GNAS,
RNF43, STK11, etc.

Clinically validated methods Invasive to patients

Fail to show tumor

heterogeneity and

distant metastasis

Difficult for monitoring

therapeutic effect and

tumor recurrence
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digital NGS method in which many aliquots of DNA from

each patient’s fluid were individually subjected to

sequencing, and a mutation score of one was given to each

mutation-containing aliquot [119]. Canonical mutations

during pancreatic carcinogenesis (e.g., KRAS, TP53,

SMAD4, and CDKN2A), using this method, were efficiently

detected in the PJ of PDAC/IPMN patients, proving useful

in the evaluation of patients undergoing pancreatic

surveillance [120].

Epigenetics, fragmentomics, and cfDNA topology are

crucial for developing DNA-based cancer screening [121].

Advanced library preparation was adapted to allow for the

methylome profiling of samples with a low input of DNA

(1–10 ng), potentially applicable to early cancer detection

[122]. In addition to this technology, detailed informatics

regarding pan-cancer methylome analysis offer a better

classification of cancer origins [123]. Methylated DNA in

the PJ can also provide clinically relevant information to

diagnose PDAC, and three methylated DNA markers

(C13orf18, FER1L4, and BMP3) can distinguish non-

PDAC patients from PDAC patients, including those in the

early stage or those with HG IPMN [124].

Recently, cfRNAs and EVs were investigated as

potential tools for liquid biopsy (Table 2) [23, 125]. EVs

comprise exosomes, apoptotic bodies, and microvesicles

and are released by most cells, including cancer cells. EVs

are microstructures with a lipid bilayer membrane con-

taining RNAs, proteins, or lipids and transfer their contents

from donor to recipient cells [126–128]. As EVs exist in

circulating body fluids, such as blood, PJ, and DF, the

expression levels of their contents, mRNA, protein, and

non-coding RNAs (ncRNAs), have been used as

biomarkers for PDAC diagnosis [25]. ncRNAs are non-

protein-coding RNAs that regulate diverse biological pro-

cesses in several diseases [129]. In particular, ncRNAs,

non-protein-coding RNAs regulating various biological

processes in several diseases, have recently been investi-

gated regarding disease pathogenesis, including several

cancers. They are divided into two main groups based on

their transcript size. Short ncRNAs, which are less than 200

nucleotides in length, include microRNAs (miRNAs) and

other small RNA classes, whereas long non-coding RNAs

(lncRNAs) are greater than 200 nucleotides long

[129–131].

Table 2 Examinations of body fluid-derived EVs or RNAs as liquid biopsy tools for PDAC

Target Type of

clinical

sample

Potential roles for liquid biopsy for PDAC diagnosis References

miR-21 Serum EVs EVs miR-21 was upregulated in patients with PDAC compared to healthy

individuals and be identified as a prognostic and chemo-resistant marker

Goto et al.

[132]

miR-1246, miR-4644, miR-3976,

and miR-4306, CD44, EpCAM

Serum EVs The combined analysis of serum EVs miRNAs with CD44 and EpCAM

could contribute to detecting the early stages of PDAC

Madhavan

et al. [133]

MUC5AC Plasma EVs MUC5AC expression showed significantly higher levels in invasive IPMN

compared with low-grade IPMN

Yang et al.

[134]

MALAT-1 Serum EVs Serum EVs MALAT-1 was increased in PDAC patients compared to IPMN

patients or healthy individuals

Kumar et al.

[135]

HOTAIR Serum HOTAIR in serum was increased in PDAC patients compared to healthy

individuals

Ma et al.

[136]

Sox2ot Plasma EVs Plasma EVs Sox2ot was highly expressed in PDAC patients and associated

with TNM stage

Li et al. [137]

HULC Serum EVs EVs HULC in serum was highly expressed in serum from PDAC patients

compared to IPMN patients or healthy individuals

Takahashi

et al. [144]

miR-21, miR-155 PJ EVs MiR-21 and miR-155 within exosomes discriminated PDAC patients

compared with chronic pancreatitis (CP) patients

Nakamura

et al. [27]

miR-21, miR-25, miR-16 PJ EVs The combination of EV miR-21, miR-25, and miR-16 with serum miR-210

and CA-19–9 had an AUC of 0.91, a specificity of 84.2%, and a

sensitivity of 81.5% for PDAC diagnosis

Nesteruk

et al. [138]

Size and concentration of EVs PJ EVs EVs concentration did not differ between healthy control and PDAC

patients. PJ from PDAC had a higher number of large vesicles

Nesteruk

et al. [138]

MUC1, MUC4, MUC5AC,

MUC6, MUC16, CFTR, MDR1

PJ EVs MUC1, MUC4, MUC5AC, MUC6, MUC16, CFTR, and MDR1 were

increased in pancreatic juice-derived EVs of PDAC patients

Osteikoetxea

et al. [139]

CEACAM 1/5, tenascin C PJ EVs Exosomal proteins, CEACAM 1/5 and tenascin C, were identified to be the

most discriminating proteins between PDAC patients and benign controls

Zheng et al.

[140]

EVs, extracellular vesicles; PDAC, pancreatic ductal adenocarcinoma; PJ, pancreatic juice;
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In a blood examination, serum EV-encapsulated miR-21

was upregulated in patients with PDAC compared with

healthy individuals and has been identified as a prognostic

and chemoresistance marker [132]. Combined analysis of

serum EVs miRNAs, miR-1246, miR-4644, miR-3976, and

miR-4306, with PDAC-initiating cell markers, such as

CD44 and EpCAM, could contribute to the detection of the

early stages of PDAC [133]. Yang et al. investigated the

usefulness of the expression levels of 16 plasma EV-related

proteins as biomarkers of the malignant potential of IPMN.

They found that MUC5AC expression was significantly

higher in IPMN-associated carcinoma than in low-grade

IPMN [134]. In contrast, some lncRNAs are detected as

cfRNAs or EV-encapsulated RNAs in blood [25]. lncRNA

MALAT-1 and HOTAIR expression is significantly

increased in blood derived from patients with PDAC,

suggesting their utility as biomarkers [141, 142]. Further-

more, lncRNA Sox2ot is present in plasma EVs and is

highly expressed in patients with PDAC [137].

Nakamura et al. reported that expression levels of miR-

21 and miR-155 within exosomes distinguished PDAC

patients from chronic pancreatitis (CP) patients [27];

however, PDAC and CP patients could not be characterized

based on miR-21 and miR-155 levels when whole RNAs

from PJ were analyzed. The accuracy of exosomal miR-21

and miR-155 levels and PJC was 83%, 89%, and 74%,

respectively. Another study revealed that EV-derived miR-

21, miR-25, and miR-16 in the PJ were increased in

patients with PDAC than in non-malignant controls.

Combining these EV miRNAs with serum miR-210 and

CA-19-9 showed an area under the curve of 0.91, a

specificity of 84.2%, and a sensitivity of 81.5% for PDAC

diagnosis [138]. They also investigated the size and con-

centration of EVs in PJ following secretin stimulation. EV

concentrations did not differ between healthy controls and

patients with PDAC; however, the PJ from PDAC had

more large vesicles [143]. Moreover, in PJ-derived EVs,

MUC1, MUC4, MUC5AC, MUC6, MUC16, CFTR, and

MDR1 have been recognized as candidate markers for

PDAC [139]. In addition, exosomal proteins carcinoem-

bryonic antigen-related cell adhesion molecule (CEA-

CAM) 1/5 and tenascin C have been identified as the most

discriminating proteins between patients with PDAC and

benign controls [140].

Besides miRNAs, mRNAs, and proteins, EV-encapsu-

lated lncRNAs in PJ are yet to be investigated. We previ-

ously reported that EV lncRNA HULC in the serum was

highly expressed in PDAC patients compared with IPMN

patients or healthy individuals and served as a potential

biomarker [144]. Therefore, similar to blood samples,

several lncRNAs in the PJ may be crucial markers for

detecting the early stages of PDAC. Moreover, no studies

have evaluated EVs or cfRNAs to diagnose PDAC using

DF. Considering the evidence showing that ncRNAs in the

blood can be assessed through liquid biopsy [25], the

analysis of ncRNAs and EVs is needed to discover previ-

ously unrecognized biomarkers in body fluids such as PJ

and DF.

The relationship between the microbiome and PDAC

has been increasingly reported in the past decade. In 2015,

Fusobacterium species were found in PDAC tumors [145].

In 2019, Malassezia, a type of fungus, was shown to be

increased in the pancreas of PDAC patients by 18S rRNA

sequencing [146]. In 2022, certain strains of gut microbiota

were shown to be more prevalent in patients with pancre-

atic cancer across racial groups (Japanese, Spanish, and

German) using shotgun metagenomic analysis [147].

Examination of the PJ microbiome in resected pancreatic

cancer tissue samples revealed no specific trends [148].

There remains much potential for microbiome research, not

only as a direct cause of pancreatic carcinogenesis but also

for the search for biomarkers for early diagnosis, the

identification of new risk factors, and the prediction of

treatment efficacy after diagnosis.

In this review, we have examined various studies con-

ducted in different laboratories. However, it is difficult to

determine the levels of evidence in each study. To address

this issue, we need to establish specific protocols for liquid

biopsies that standardize the sample collection process and

ensure quality control throughout the molecular analysis

process. By doing so, we can improve the consistency

between investigators and better identify the origin tumor

using liquid biopsy. In addition, integrating the information

on where and how liquid biopsy factors are released into

the body fluid and collected, sample size, single institute or

multicenter study, and prospective study or study using

existing samples will enhance compatibility across studies

and deepen our understanding of the topics.

Ongoing projects using PJ or DF

We have been studying the PJC using synthetic secretin

since 2012 and are conducting a multicenter study on MRI

imaging and liquid biopsy in addition to PJC

(CRB6200003). Synthetic secretins such as ChiRhoStim

(ChiRho-Clin, Inc., Burtonsville, MD, USA) and Secrelux

(Sanochemia, Vienna, Austria) have been used in the past;

the former is currently in use. We previously reported that

administering 0.6 lg of synthetic human secretin increases

the amount of PJ collected using a catheter-inserted

transpapillary [149, 150]. For the substantial masses, col-

lected volume increased from 2.0 ± 2.1 mL (range,

0–14.0 mL) to 3.7 ± 2.5 mL (range, 1–15.0 mL) in PDAC

patients [149] and from 3.7 ± 7.3 mL (range:0–79.0 mL)

to 5.1 ± 6.2 mL (range:1–64.0 mL) in IPMN patients

[150]. Furthermore, in diagnosing malignancy using PJC,
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we found that the sensitivity improved from 50.9 to 74.0%

and from 50.0 to 70.8% in the case of a substantial mass

and IPMN, respectively [149, 150].

We also evaluated mutation detection in DNA from DF

(DFDNA) as an alternative to plasma DNA

(UMIN000028284). In 150 patients suspected of PDAC

and IPMN, DF containing PJ was collected from the duo-

denal lumen through an endoscopic channel. DFDNA

yielded significantly higher levels of plasma cfDNA and

exhibited characteristic fragmentation patterns. Using

molecular barcode sequencing, hotspot mutations detected

in DF showed higher concordance with resected tissue than

with plasma cfDNA. In contrast to plasma cfDNA, in

which liquid tissue matches were limited to advanced-stage

cancer, the DFDNA assay enabled higher concordance

across a wide range of PDA stages. We showed that DF-

derived DNA could be a potent biospecimen for detecting

mutations with higher yield and sensitivity than plasma

cfDNA [120].

In contrast, genuine PJ-derived DNA had a much higher

mutation detection rate. During endoscopic retrograde

cholangiopancreatography (ERCP) testing, pancreatic fluid

was aspirated via a catheter from the main pancreatic duct

using a contrast agent. Mutation analysis using molecular

barcoding of DNA from 1 mL of PJ showed a much higher

concordance rate for PJDNA than for DFDNA. Further-

more, in addition to mutations derived from the index

lesion, several other mutations that might have originated

from multicentric lesions in the residual pancreas were

detected in the PJDNA (manuscript in preparation) [151].

Therefore, mutational analysis using PJDNA may be

helpful for auxiliary diagnosis when PJ is collected for

cytological analysis.

Future directions

To investigate the usefulness of PJ-derived genes or EVs,

we have initiated a prospective multicenter study to ana-

lyze EV RNAs, including lncRNAs and cfDNAs, in the PJ

and plasma as liquid biopsy tools for the early diagnosis of

PDAC (CRB6200003). Based on our previous report

demonstrating the efficacy of synthetic secretin injections

on the diagnostic accuracy of PJC [149], PJ samples are

now collected following secretin administration. The

dataset of DNA mutations and EV RNA expression in

plasma and PJ will be integrated to develop a multi-layer

diagnostic agonism for the early stages of PDAC diagnosis.

These trials may offer new insights for developing diag-

nostic strategies and identifying therapeutic targets for

deadly cancers.

Perspectives

The utility of liquid biopsy is increasingly being explored,

and several markers for the early diagnosis of human

PDAC in humans are being identified. Novel cancer-asso-

ciated RNAs as biomarkers and their roles in regulating

tumor phenotypes are being investigated. In particular,

ncRNAs seem promising for defining disease pathogenesis

and serving as diagnostic and prognostic markers and

therapeutic targets. Mutation analysis of liquid samples can

supplement pathological diagnosis or may even be an

alternative; however, there is a need to improve the diag-

nostic accuracy and identification of early PDAC using

body fluids such as blood and PJ, and DF obtained via

endoscopy. Therefore, a clinical application system must

be promptly developed based on current and future trials.

In addition, focused studies on the genes implicated in

pancreatic diseases must be conducted to improve our

understanding of disease pathogenesis and to aid their

utility as diagnostic markers, so they can eventually lead to

novel clinical applications.
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