Skip to main content

Advertisement

Log in

Multi-regional sequencing reveals clonal and polyclonal seeding from primary tumor to metastases in advanced gastric cancer

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Tumor metastases to lymph nodes and distant organs are associated with worse prognosis in gastric cancer. However, little is known about the genetic profiles, subclonal architecture, and evolutional processes across primary tumors and metastases.

Methods

We analyzed the genetic alterations of 106 multiregional samples including primary tumors, lymph node metastases, and visceral metastases from 10 patients with advanced gastric cancer. Histologically different portions were obtained by laser-capture microdissection. We reconstructed the subclonal architectures and inferred the primary to lymph or visceral metastatic seeding patterns.

Results

The different histological portions in primary tumors had common mutations, suggesting common ancestral tumor origins transformed into distinct histological types. In almost all cases, TP53 mutations were identified as clonal mutations across primary tumors and metastases. Subclonal reconstruction and phylogenetic analysis showed primary tumors were classified into monoclonal or polyclonal tumors. All monoclonal primary tumors disseminated as metastases with the same tumor composition (100%, 26/26 samples). In contrast, polyclonal primary tumors mainly spread as metastases by way of polyclonal seeding (84%: 37/44 samples).

Conclusions

Clonal mutations were maintained at both the primary and metastatic sites and genetic divergence of these was low. These findings shed light on the genetic basis of primary tumor dissemination and metastatic processes in advanced gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Thrumurthy SG, Chaudry MA, Chau I, et al. Does surgery have a role in managing incurable gastric cancer? Nat Rev Clin Oncol. 2015;12:676–82.

    Article  PubMed  Google Scholar 

  3. Bang Y-J, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  4. Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kang Y-K, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    Article  CAS  PubMed  Google Scholar 

  6. Kim ST, Cristescu R, Bass AJ, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–588.

    Article  CAS  PubMed  Google Scholar 

  7. Koizumi W, Narahara H, Hara T, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 2008;9:215–21.

    Article  CAS  PubMed  Google Scholar 

  8. Hartgrink H, Putter H, Klein KE, et al. Value of palliative resection in gastric cancer. Br J Surg. 2002;89:1438–43.

    Article  CAS  PubMed  Google Scholar 

  9. Hirotsu Y, Nakagomi H, Sakamoto I, et al. Detection of BRCA1 and BRCA2 germline mutations in Japanese population using next-generation sequencing. Mol Genet Genom Med. 2015;3:121–9.

    Article  CAS  Google Scholar 

  10. Sakamoto I, Hirotsu Y, Nakagomi H, et al. BRCA1 and BRCA2 mutations in Japanese patients with ovarian, fallopian tube, and primary peritoneal cancer. Cancer. 2016;122:84–90.

    Article  CAS  PubMed  Google Scholar 

  11. Amemiya K, Hirotsu Y, Oyama T, et al. Relationship between formalin reagent and success rate of targeted sequencing analysis using formalin fixed paraffin embedded tissues. Clin Chim Acta. 2019;488:129–34.

    Article  CAS  PubMed  Google Scholar 

  12. Hirotsu Y, Nakagomi H, Amemiya K, et al. Intrinsic HER2 V777L mutation mediates resistance to trastuzumab in a breast cancer patient. Med Oncol. 2017;34:3.

    Article  PubMed  CAS  Google Scholar 

  13. Takano A, Hirotsu Y, Amemiya K, et al. Genetic basis of a common tumor origin in the development of pancreatic mixed acinar-neuroendocrine-ductal carcinoma: a case report. Oncol Lett. 2017;14:4428–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Iijima Y, Hirotsu Y, Amemiya K, et al. Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer. Eur J Cancer. 2017;86:349–57.

    Article  CAS  PubMed  Google Scholar 

  15. Amemiya K, Hirotsu Y, Goto T, et al. Touch imprint cytology with massively parallel sequencing (TIC-seq): a simple and rapid method to snapshot genetic alterations in tumors. Cancer Med. 2016;5:3426–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirotsu Y, Nagakubo Y, Amemiya K, et al. Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types. Clin Chim Acta. 2019;13:5.

    Google Scholar 

  17. Bando H, Okamoto W, Fukui T, et al. Utility of the quasi-monomorphic variation range in unresectable metastatic colorectal cancer patients. Cancer Sci. 2018;109:3411–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirotsu Y, Mochizuki H, Amemiya K, et al. Deficiency of mismatch repair genes is less frequently observed in signet ring cell compared with non-signet ring cell gastric cancer. Med Oncol. 2019;36:4.

    Article  Google Scholar 

  19. Ohyama H, Yoshimura D, Hirotsu Y, et al. Rapidly declining trend of signet ring cell cancer of the stomach may parallel the infection rate of Helicobacter pylori. BMC Gastroenterol. 2019;19:178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hirotsu Y, Kojima Y, Okimoto K, et al. Comparison between two amplicon-based sequencing panels of different scales in the detection of somatic mutations associated with gastric cancer. BMC Genom. 2016;17:833.

    Article  CAS  Google Scholar 

  21. Takaoka S, Hirotsu Y, Ohyama H, et al. Molecular subtype switching in early-stage gastric cancers with multiple occurrences. J Gastroenterol. 2019;54:674–86.

    Article  CAS  PubMed  Google Scholar 

  22. Hirotsu Y, Nakagomi H, Sakamoto I, et al. Multigene panel analysis identified germline mutations of DNA repair genes in breast and ovarian cancer. Mol Genet Genom Med. 2015;3:459–66.

    Article  CAS  Google Scholar 

  23. Chakravarty D, Phillips S, Kundra R, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;20:4.

    Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:l1.

    Article  CAS  Google Scholar 

  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  26. Goto T, Hirotsu Y, Mochizuki H, et al. Stepwise addition of genetic changes correlated with histological change from "well-differentiated" to "sarcomatoid" phenotypes: a case report. BMC Cancer. 2017;17:65.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nakagomi T, Goto T, Hirotsu Y, et al. New therapeutic targets for pulmonary sarcomatoid carcinomas based on their genomic and phylogenetic profiles. Oncotarget. 2018;9:10635–49.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roth A, Khattra J, Yap D, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11:396–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McPherson A, Roth A, Laks E, et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet. 2016;48:758–67.

    Article  CAS  PubMed  Google Scholar 

  30. Turajlic S, Xu H, Litchfield K, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173(581–594):e512.

    Google Scholar 

  31. Espiritu SMG, Liu LY, Rubanova Y, et al. The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell. 2018;173:1003–13.

    Article  CAS  PubMed  Google Scholar 

  32. Cancer Genome Atlas Research. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  CAS  Google Scholar 

  33. Goto T, Hirotsu Y, Mochizuki H, et al. Mutational analysis of multiple lung cancers: discrimination between primary and metastatic lung cancers by genomic profile. Oncotarget. 2017;8:31133–43.

    PubMed  PubMed Central  Google Scholar 

  34. Macintyre G, Van Loo P, Corcoran NM, et al. How subclonal modeling is changing the metastatic paradigm. Clin Cancer Res. 2017;23:630–5.

    Article  CAS  PubMed  Google Scholar 

  35. Ulintz PJ, Greenson JK, Wu R, et al. Lymph node metastases in colon cancer are polyclonal. Clin Cancer Res. 2018;24:2214–24.

    Article  CAS  PubMed  Google Scholar 

  36. Turajlic S, Swanton C. Metastasis as an evolutionary process. Science. 2016;352:169–75.

    Article  CAS  PubMed  Google Scholar 

  37. Gundem G, Van Loo P, Kremeyer B, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, Huang JY, Chen YN, et al. Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Sci Rep. 2015;5:13750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee HH, Kim SY, Jung ES, et al. Mutation heterogeneity between primary gastric cancers and their matched lymph node metastases. Gastr Cancer. 2019;22:323–34.

    Article  CAS  Google Scholar 

  40. Guilford PJ, Hopkins JB, Grady WM, et al. E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat. 1999;14:249–55.

    Article  CAS  PubMed  Google Scholar 

  41. Oliveira C, Bordin MC, Grehan N, et al. Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred. Hum Mutat. 2002;19:510–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kakiuchi M, Nishizawa T, Ueda H, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ushiku T, Ishikawa S, Kakiuchi M, et al. RHOA mutation in diffuse-type gastric cancer: a comparative clinicopathology analysis of 87 cases. Gastr Cancer. 2016;19:403–11.

    Article  CAS  Google Scholar 

  44. Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.

    Article  CAS  PubMed  Google Scholar 

  45. Casasent AK, Schalck A, Gao R, et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell. 2018;172(205–217):e212.

    Google Scholar 

Download references

Acknowledgements

We thank all medical and ancillary staff of the hospital and the patients for consenting to participate. We thank H. Nikki March, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This study was supported by Grant-in-Aid for Genome Research Project from Yamanashi Prefecture, The Japan Society for the Promotion of Science (JSPS) KAKENHI Early-Career Scientists, Research Grant for Young Scholars, The YASUDA Medical Foundation and The Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Hirotsu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirotsu, Y., Hada, M., Amemiya, K. et al. Multi-regional sequencing reveals clonal and polyclonal seeding from primary tumor to metastases in advanced gastric cancer. J Gastroenterol 55, 553–564 (2020). https://doi.org/10.1007/s00535-019-01659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-019-01659-6

Keywords

Navigation