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Abstract Chronic inflammation has a certain impact on the

carcinogenesis of the digestive organs. The characteristic

tissue structure of pancreatic cancer, desmoplasia, results

from inflammatory processes induced by cancer cells and

stromal cells. Concerning the progression of pancreatic

cancer, recent research has clarified the pivotal role of tumor-

stromal interaction, which promotes the development of an

invasive phenotype of cancer and provides survival advan-

tages against chemotherapeutic agents or immune surveil-

lance. Tumor stromal cells such as pancreatic stellate cells

and immune cells establish a microenvironment that protects

cancer cells through complex interactions. The microenvi-

ronment of pancreatic cancer acts as a niche for pancreatic

cancer stem cells from which therapy-resistance and disease

recurrence develop. Inhibition of the stromal functions or

restoration of the immune reaction against cancer cells has

therapeutic benefits that enhance the efficacy of conven-

tional therapies. Some of the recent advances in this field are

now under evaluation in clinical settings, but many problems

must be overcome to establish a radical therapy for pancre-

atic cancer. This review summarizes current knowledge

about the tumor-promoting stromal functions, immune sys-

tem modulation and therapeutic strategies targeting tumor-

stromal interactions in pancreatic cancer.
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Abbreviations

a-SMA a-Smooth muscle actin

ARB Angiotensin II type 1 receptor blocker

ATRA All-trans retinoic acid

CSCs Cancer stem cells

CTGF Connective tissue growth factor

DPI Diphenylene iodonium

ECM Extracellular matrix

EMT Epithelial-mesenchymal transition

ERK Extracellular signal-regulated kinase

HIF1a Hypoxia-inducible factor 1 alpha

IL Interleukin

JAK Janus kinase

JNK c-Jun NH2-terminal kinase

MAPK Mitogen-activated protein kinase

M-CSF Macrophage colony-stimulating factor

MDSCs Myeloid-derived suppressor cells

MMP3 Matrix metalloproteinase 3

NADPH Nicotinamide adenine dinucleotide

phosphate

p38 MAPK p38 Mitogen-activated protein kinase

PanINs Pancreatic intraepithelial neoplasias

PDGF Platelet-derived growth factor

PEGPH20 PEGylated human recombinant PH20

hyaluronidase

PI3K Phosphatidylinositol 3-kinase

PSCs Pancreatic stellate cells

ROS Reactive oxygen species

Shh Sonic hedgehog

SPARC Secreted protein acidic and rich in cysteine

STAT Signal transducers and activators of

transcription

TGF-b Transforming growth factor-b
Tregs Regulatory T cells

VEGF Vascular endothelial growth factor
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Introduction

Chronic inflammation is closely related to the carcino-

genesis of digestive organs. The pivotal roles of

inflammation in the carcinogenesis of various organs are

well recognized; Helicobacter pylori in gastric cancer,

hepatitis virus or non-alcoholic steatohepatitis in hepa-

tocellular carcinoma and colitis-associated colon cancer

are typical examples [1, 2]. The role of chronic inflam-

mation in pancreatic carcinogenesis has also been

investigated in detail [3]. Chronic pancreatitis causes

repeated, acute exacerbations leading to tissue destruc-

tion and fibrosis, referred to as the necrosis-fibrosis

sequence [4]. A meta-analysis of reports assessing the

correlation between chronic pancreatitis and pancreatic

cancer described that the pooled relative risk for pan-

creatic cancer in chronic pancreatitis patients was 13.3

(6.1–28.9, 95 % confidence intervals) [5]. Hereditary

pancreatitis is a rare cause of pancreatitis originating

from a genetic burden that results in the early onset of

pancreatitis and prolonged exposure to inflammatory

stimuli. As expected, the pooled relative risk for pan-

creatic cancer in hereditary pancreatitis patients was

higher than that in chronic pancreatitis [5]. A prospective

study also revealed that hereditary pancreatitis patients

had a significantly higher standardized incidence ratio of

pancreatic cancer compared with the general population

[6]. Even though these risk factors such as genetic

variants of pancreatitis-associated genes and familial

history of pancreatic cancer are known, it is still difficult

to find an early stage pancreatic cancer [7, 8]. These

lines of evidence suggest the indispensable contribution

of the inflammatory process to pancreatic carcinogene-

sis. Indeed, detailed analysis of human pancreatic cancer

specimens and the development of pancreatic cancer

model mice have highlighted the importance of sustained

inflammation, which aggravates the cancer cell behavior,

within pancreatic cancer tissue. The tissue structure of

pancreatic cancer results from the activation of stromal

cells by cancer cells and vice versa, with the result that

the wound never heals. This review article summarizes

the current knowledge about the inflammatory processes

related to pancreatic cancer progression, and possible

therapeutic interventions.

Tissue structure of pancreatic cancer and its cellular

origin

Pancreatic cancer is recognized as a less-enhanced tumor

by contrast-enhanced computed tomography or magnetic

resonance image, reflecting poorly the vascularized tissue

structure [9]. Microscopic images of pancreatic cancer

specimens show a characteristic tissue structure, desmo-

plasia. Typically, a dense fibrotic stroma surrounding

cancer cells is observed, accompanied by sparse blood

vessels [10]. The formation of desmoplasia results from the

continuous inflammation evoked by pancreatic cancer

cells, activated stromal cells and immune cells. These

tumor components establish an inflammatory network

within pancreatic cancer, leading to the protection of can-

cer cells from exogenous anticancer drugs and immune

surveillance [11]. Inflammatory cytokines and downstream

signals contribute to this process, such as mitogen-acti-

vated protein kinase (MAPK) or Akt pathways [10, 12].

Among stromal cells, pancreatic stellate cells (PSCs) play a

central role in the development of desmoplasia [13]. In the

normal pancreas, PSCs remain in a quiescent state, carry-

ing vitamin A-containing lipid droplets. Similar cells have

been found in the peri-sinusoidal space of the liver’s

hepatic stellate cells [14]. The activation of PSCs by

inflammatory signals results in the proliferation of PSCs,

extracellular matrix (ECM) protein production, a-smooth

muscle actin (a-SMA) expression and inflammatory cyto-

kine secretion [15]. The increased expression of secreted

protein acidic and rich in cysteine (SPARC) in the tumor

stroma is correlated with a poor prognosis, suggesting that

ECM proteins have a role in promoting tumors [16]. The

interaction of PSCs with cancer cells and other types of

stromal cells form a feed-forward loop of inflammation

within the pancreatic cancer, leading to the desmoplasia.

In addition to desmoplasia, the pancreatic cancer tissue

is infiltrated by a wide variety of immune cells. Assessment

of these cells clarified that pancreatic cancer tissue is

enriched with immunosuppressive cells. These cells

include myeloid-derived suppressor cells (MDSCs) and

regulatory T cells (Tregs), which suppress cytotoxic T cell

functions. MDSCs are immature myeloid derived precursor

cells of granulocytes, dendritic cells and macrophages.

MDSCs produce reactive oxygen species (ROS), arginase

and nitric oxide that increase the intra-tumoral oxidative

stress [17]. The infiltration of MDSCs in pancreatic cancer

tissue leads to the establishment of antigen-specific T-cell

tolerance, which enables cancer cells to escape from

immune surveillance [18]. In addition, a higher ratio of

tumor-infiltrating Tregs to CD4? T-cells was significantly

associated with shorter survival in pancreatic cancer

patients [19], suggesting that immune suppression within

the tumor greatly contributes to the pancreatic cancer

progression. Another type of immune cell, the mast cell,

was also reported to be involved in the pancreatic cancer

progression. Mast cells were originally thought to mediate

type I hypersensitivity by releasing chemical mediators in

allergic diseases [20]. Immunohistochemical analysis for

the quantification of mast cells in pancreatic cancer
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revealed that the presence of higher numbers of mast cells

in the intra-tumoral border zone was an independent

prognostic factor for overall survival [21].

These characteristic tissue structures affect the tumor

microenvironment in a manner conducive to the invasive

growth of pancreatic cancer. Desmoplasia and poor vas-

cularity hamper the blood supply, leading to severe

hypoxia within the tumor. Hypoxia stabilizes the tran-

scriptional factor hypoxia-inducible factor 1 alpha

(HIF1a), which promotes the transcription of HIF1a target

genes such as vascular endothelial growth factor (VEGF)

or matrix metalloproteinase 3 (MMP3) [22, 23]. Adaptation

to the hypoxic condition itself increases the malignant

potential of pancreatic cancer cells. The up-regulation of

VEGF and interleukin (IL)-6 enhanced the invasive growth

of pancreatic cancer cells under the hypoxic condition [24].

Another report described that hypoxia induced a typical

oncomiR, miR-21, in pancreatic cancer cells, which con-

tributed to the sustained cell proliferation under hypoxia

[25]. Furthermore, a recent report described that hypoxia

regulated the susceptibility of cancer cells to lysis by

cytotoxic T-cells, indicating its involvement in the modu-

lation of immune function [26]. This effect was mediated

by the induction of miR-210, one of the miRNAs induced

by hypoxia [27]. Coordinated knockdown of miR-210

target genes PTPN1, HOXA1, and TP53I11 recapitulated

the blunted susceptibility to lysis by cytotoxic T-cells,

clarifying the novel mechanism by which hypoxia yields an

immunosuppressive effect in cancer cells. Interestingly, co-

culture of PSCs could induce miR-210 expression in

pancreatic cancer cells in an HIF1a-independent manner,

suggesting an unknown tumor-stromal interaction [28].

These characteristic tissue structures and cellular compo-

nents of pancreatic cancer are summarized in Fig. 1.

Inflammation and mouse model of pancreatic cancer

The role of chronic inflammation in pancreatic carcino-

genesis was also confirmed by a mouse model of pancreatic

cancer. Several key mutations were confirmed in pancreatic

cancer such as a mutation of Kras, inactivating mutations

of tumor suppressor p16, p53 and Smad4 [29], which were

applied to establish a mouse model of pancreatic cancer.

Pancreas-specific expression of constitutively active

mutant K-ras (G12D) using PDX-1 or p48 promoter-driven

Cre-loxP system resulted in the development of pre-neo-

plastic lesions, pancreatic intraepithelial neoplasias (Pa-

nINs) [30]. However, the development of invasive

pancreatic cancer was rare in this mouse model, suggesting

the requirement of an additional insult. Conditional

knockout of p16 or the expression of loss of function

mutant p53, which were frequently observed mutations in

high-grade PanINs [29], accelerated the progression to

invasive pancreatic cancer [31, 32].

Interestingly, conditional expression of pancreatic can-

cer-promoting gene mutations in addition to the oncogenic

K-ras recapitulates the formation of a stromal structure

similar to that found in human pancreatic cancer. For

example, the above-mentioned mouse model that expressed

Fig. 1 A schematic view of the

tissue structure of pancreatic

cancer
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K-ras (G12D) and p53 (R172H) in the pancreas (KPC

mouse) developed pancreatic cancer accompanied by a

prominent stromal matrix and decreased blood vessels [33].

In another study, conditional expression of K-ras (G12D)

and conditional knockdown of type II transforming growth

factor-b (TGF-b) receptor impaired the growth-suppressive

TGF-b signal in mouse pancreas. This mouse model also

developed well-differentiated pancreatic cancer accompa-

nied by a dense fibrotic stroma [34]. These observations

indicate that cumulative gene mutations within cancer cells

trigger the activation of stromal cells and inflammatory

reactions, which leads to the characteristic tissue structure

of pancreatic cancer. Several factors released from pan-

creatic cancer cells were proven to activate stromal cells,

which will be described in detail in the following section.

In addition to these genetic changes in the pancreas,

non-specific inflammation itself also accelerates the

development of invasive pancreatic cancer. The pancreas-

specific expression of constitutively active mutant K-ras

(G12V) using an inducible Cre-loxP system enabled the

expression of mutant K-ras in adult mice. The expression

of mutant K-ras in adult pancreas failed to develop PanINs,

but the addition of caerulein-induced chronic pancreatitis

significantly promoted PanIN and invasive pancreatic

cancer formation [35]. This study confirmed that inflam-

mation in the adult pancreas has the potential to overwhelm

the protective machinery against carcinogenesis. The fol-

lowing study further clarified the effect of cancer-promot-

ing inflammation in this mouse model. It was found that the

expression of constitutively active mutant K-ras (G12V)

triggered cellular senescence, as evidenced by the b-

galactosidase staining and p16Ink4a expression in PanIN

lesions, referred to as oncogene-induced cellular senes-

cence. The induction of chronic pancreatitis using caeru-

lein inhibited the oncogene-induced cellular senescence in

this mouse model, which identified the tumor-promoting

downstream mechanism of inflammation. The withdrawal

of caerulein led to the reversal of cellular senescence,

indicating the importance of continuous inflammation. In

addition, this attenuation of cellular senescence was also

reversed by the administration of Sulindac, a nonsteroidal

anti-inflammatory drug, suggesting anti-inflammatory

treatment could have tumor suppressive potential [36]. The

contribution of immune cells to pancreatic cancer pro-

gression was also confirmed by a mouse model. In the

conditional K-ras (G12V) expression mouse model, mast

cell infiltration was observed around the PanIN lesions.

The growth of an ortho-topically implanted tumor was

significantly retarded in mast cell-deficient Kitw-sh/w-sh

mice. A rescue experiment using mast cells from wild-type

bone marrow restored the tumor growth, which revealed

the requirement of mast cells during the progression of

pancreatic cancer [37]. These results demonstrated the

mutual activation between cancer cells and stromal cells,

forming a feed-forward loop that perpetuates the inflam-

mation in pancreatic cancer. Thereafter, dissection of each

signaling pathway and therapeutic intervention uncovered

the intriguing cell-to-cell interactions between cellular

components within the tumor that are indispensable for the

disease progression.

Detailed mechanism of PSC activation in pancreatic

cancer

Since the continuing inflammation plays a pivotal role

during pancreatic carcinogenesis, the key signaling path-

ways that lead to stromal cell activation and pancreatic

fibrosis were extensively studied. The detailed mechanism

of pancreatic fibrosis was identified by studies on the

pancreatitis-associated fibrosis. Among pancreatic stromal

cells, PSCs attracted great attention due to their central role

in pancreatic fibrosis, and multiple cytokines and growth

factors have been reported to activate PSCs. For example,

platelet-derived growth factor (PDGF), TGF-b, angiotensin

II and tumor necrosis factor-a are well-known activators of

PSCs [38–41]. These ligands activate downstream signal-

ing pathways that promote cell proliferation, survival,

migration and the ECM production of PSCs. Pancreatic

cancer cells could be a source of these ligands, as con-

firmed by the neutralizing antibody-based inhibition of

each ligand such as PDGF or TGF-b in a co-culture of

PSCs with pancreatic cancer cells [42]. The activation of a

wide variety of signaling pathways participates in the PSC

activation, such as extracellular signal-regulated kinase

(ERK), c-Jun NH2-terminal kinase (JNK), p38 mitogen-

activated protein kinase (p38 MAPK), Janus kinase-signal

transducers and activators of transcription (JAK-STAT)

and phosphatidylinositol 3-kinase (PI3K) pathways [43–

47]. Pharmaceutical inhibition of these pathways effec-

tively attenuated PSC activation, but the off-target effects

of each compound and redundant activation of PSCs

hampered clinical application. Following these studies,

increased ROS production within PSCs was found to play

an important role during fibrogenesis. Activated PSCs

express key components of nicotinamide adenine dinucle-

otide phosphate (NADPH) oxidase, which is one of the

major ROS-generating enzymes [48, 49]. Inflammatory

cytokines such as PDGF, angiotensin II or IL-1b increased

ROS production within PSCs in a similar manner, resulting

in the activation of MAPK pathways. Treatment with di-

phenylene iodonium (DPI) and apocynin, which are

inhibitors of NADPH oxidase, effectively inhibited PSC

activation [48].

After detailed examinations of pancreatitis-associated

fibrogenic mechanisms, many studies focused on the
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mechanism of pancreatic cancer-specific desmoplasia for-

mation. Sonic hedgehog (Shh) is a secreted ligand that

regulates the developmental process of digestive organs.

The Shh is highly expressed in the endoderm of the gut

tube during embryogenesis, while its expression is absent

in pancreatic precursor cells [50]. A Shh-lacking pancreatic

bud forms the pancreas and Shh expression is almost

undetectable in adult pancreas. However, pancreatic cancer

tissue and their precursor lesions express high levels of Shh

compared with a normal pancreas [51]. A recent report

described that Shh from orthotopically implantated pan-

creatic cancer cells induced desmoplasia formation in the

pancreas of athymic nude mice [52]. In this study, Shh

promoted the proliferation of PSCs and increased the

expression of a-smooth muscle actin, Vimentin and des-

min. Shh also facilitated the invasion of human myofi-

broblasts through matrigel, suggesting it has a substantial

role as an activator of stromal cells.

Another ligand, connective tissue growth factor

(CTGF), is also involved in the induction of desmoplasia.

In pancreatic cancer, the expression of CTGF is increased

compared with normal pancreas. CTGF altered the func-

tions of other growth factors or integrins by directly

binding to those molecules [53, 54]. CTGF interacted with

a5b1 integrin promoting the activation of PSCs. This sig-

nal increased the cell adhesion and migration of PSCs,

leading to PSC activation [55]. CTGF was supplied from

activated PSCs themselves, which were activated by

exogenous stimulants such as ethanol [56]. Another report

described that pancreatic cancer cells could also become a

source of CTGF in pancreatic cancer tissue [57]. This

evidence suggests that CTGF plays an important role in the

sustained activation of PSCs in pancreatic cancer.

In addition to the specific signaling pathways, tumor

microenvironment could also activate PSCs. For example,

a hypoxic condition affects the stromal cell functions.

Hypoxia was reported to stimulate type I collagen pro-

duction from PSCs, which were typical fibrogenic pro-

cesses seen in activated PSCs. Hypoxia also promoted the

migration of PSCs, which was partly mediated by VEGF

secreted from the PSCs themselves [58]. Since increased

fibrogenesis leads to the maintenance of desmoplasia, these

mechanisms persistently maintain the hypoxic condition

within the tumor. At the same time, solid stress by the

desmoplasia resulted in increased intra-tumoral pressure

due to the unregulated deposition of ECM and continuous

proliferation of cancer cells and stromal cells [59]. Exter-

nally applied pressure also activated PSCs via the increased

production of ROS within PSCs [60]. These PSC-activating

signaling pathways and environmental factors are sum-

marized in Fig. 2.

Increased metastatic potential by tumor-stromal

interaction

The tumor-promoting role of stromal cells was experi-

mentally confirmed in vitro by co-culturing PSCs with

pancreatic cancer cells or conditioned medium derived

from the culture supernatant of PSCs. Proliferation, cellular

migration, invasion and soft-agar colony formation of

human pancreatic cancer cell lines BxPC3 and Panc-1 were

increased by the PSC-conditioned medium [61]. This study

also confirmed that the co-injection of PSCs with BxPC3

into immuno-deficient mouse pancreas increased the size

of ortho-topically implanted primary tumors. Since the co-

Fig. 2 Summary of PSC-

activating stimuli and

environmental factors
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injection of PSCs also promoted metastatic invasion, the

interaction between pancreatic cancer cells and PSCs was

assumed to promote metastasis. Another group reported

similar results using an alternative human pancreatic can-

cer cell line, MiaPaCa-2, the orthotopic injection of which

in mouse pancreas with PSCs increased the tumor size and

distant metastasis [62]. In this report, PSC-conditioned

medium inhibited cancer cell apoptosis in addition to

increasing proliferation and cellular migration. These

results suggested that PSCs affect the biological behavior

of pancreatic cancer cells by secreting soluble factors. The

activation of cell growth or of a survival-enhancing signal,

such as ERK or Akt pathway, was detected in the pan-

creatic cancer cells treated by PSC-conditioned medium in

a previous study [61]. While PSCs promote the invasive

growth of cancer cells, they inhibit normal cell function at

the same time. Co-culture of the RIN-5F pancreatic beta-

cell line with PSCs induced apoptosis, suggesting a cell-

context specific effect of PSCs [63].

After these studies, the detailed mechanisms how PSCs

exacerbate the malignant phenotype of pancreatic cancer

cells were examined. When the orthotopically implanted

pancreatic cancer cells and PSCs co-injected tumors in

immunodeficient mouse developed metastatic nodules in

the liver, diaphragm, lung and mesentery, PSCs were also

detected in those metastatic nodules with cancer cells [64].

This finding suggested that PSCs were capable of

enhancing the colonization and survival of cancer cells in

the metastasized organ. The cancer cell-stimulated PSCs

were also able to migrate through the endothelium, which

meant PSCs extravasate from blood vessels as well as

cancer cells. Furthermore, a specific population of PSCs

was found to facilitate exclusively the invasive growth of

pancreatic cancer cells. In pancreatic cancer patients, the

expression of stromal CD10 expression was correlated with

shorter patient survival. Since the expression of CD10 was

observed in the areas showing strong a-SMA expression,

this subpopulation of PSCs was thought to express CD10.

Isolated CD10? PSCs revealed a higher capacity to pro-

mote pancreatic cancer cell invasion compared with

CD10- PSCs. This functional difference between CD10?

and CD10- PSCs was attributed to the increased produc-

tion of MMP3 in CD10? PSCs, which was confirmed by

the attenuation of the invasion-promoting ability in MMP3-

knockdown PSCs [65].

Interaction between pancreatic cancer cells and PSCs

also affects the cancer cell phenotypes. Among various

phenotypic changes, epithelial-mesenchymal transition

(EMT) was shown to play an important role during the

establishment of distant metastasis or invasion toward

surrounding organs by mobilizing cancer cells from the site

of origin [66]. Loss of cell polarity, cell-to-cell adhesion,

decreased expression of epithelial markers and increased

expression of mesenchymal markers are typical character-

istics of cancer cells undergoing EMT. A wide variety of

growth factors and cytokines such as TGF-b, bone mor-

phogenetic protein and VEGF induced EMT [67–69]. A

recent report described that indirect co-culture with PSCs

and PSC-conditioned medium caused EMT-compatible

phenotypic changes in pancreatic cancer cells. The human

pancreatic cancer cell lines Panc-1 and SUIT-2 indirectly

co-cultured with PSCs showed decreased cell-to-cell

adhesion and a scattered appearance. Along with these

changes, the epithelial markers E-cadherin and cytokeratin

19 were decreased, whereas the mesenchymal marker

Vimentin and EMT-inducing transcriptional factor Snail

were increased [70]. Interestingly, inhibition of the typical

EMT inducer TGF-b [67] by adding neutralizing antibody

to the PSC-conditioned medium failed to attenuate the

EMT-inducing effect, suggesting an unknown EMT-

inducing mechanism in the tumor-stromal interaction. The

effects of the metabolic status or mechanical stress in the

tumor microenvironment, and direct cell-to-cell interaction

between cancer cells and stromal cells also remain to be

clarified so far in vivo.

Cancer stem cell-related phenotypes and tumor-stromal

interaction

In normal organs, tissue stem cells supply the proper cel-

lular components by strictly regulated mechanisms. Cancer

stem cells (CSCs) are the counterpart of normal tissue stem

cells, which give rise to the cancer cells at various degrees

of differentiation and reconstruct entire populations of

cancer cells [71]. CSCs are capable of self-renewing and

are resistant to conventional chemotherapy and radiation,

leading to the re-growth of therapy-resistant tumors and

recurrence after surgery. CSCs play an indispensable role

in pancreatic cancer progression and therapy-resistance

[72–74]. Several CSC-containing cell fractions were

identified in pancreatic cancer, based on cell surface

markers such as CD44?CD24?ESA? or CD133? [75, 76].

However, the regulatory factors of the CSC-related phe-

notypes have not been clarified. The EMT phenotype is

also one of the CSC-related phenotypes, recognized as

migrating CSCs that establish distant metastasis and cause

postoperative recurrence [77]. Based on these findings, the

induction of EMT-compatible phenotypes by co-culture

with PSCs [70] and the co-localization of PSCs with cancer

cells within the metastatic foci [64] suggested the possible

contribution of tumor-stromal interaction to the mainte-

nance of CSC-related phenotypes.

As reported previously, co-injection of PSCs with pan-

creatic cancer cells into immunodeficient mice accelerated

tumor growth [61, 62]. Since increased tumorigenicity is
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another trait of CSCs, detailed analysis of the pancreatic

cancer cell phenotypes under the influence of PSCs was

carried out. Indirect co-culture of pancreatic cancer cell

lines Panc-1 and AsPC-1 with PSCs enhanced the spheroid

formation in low-adhesion coated plates, also a feature of

CSCs. Along with this change, the expression of CSC-

related genes was up-regulated in pancreatic cancer cells

co-cultured with PSCs [78]. The up-regulated genes

included ABCG2, Nestin and LIN28. ABCG2 is a member

of the ATP-binding cassette transporter, whose expression

was elevated in side population cells enriched with CSCs

[79]. Nestin is an intermediate filament expressed in pan-

creatic progenitor cells that increased pancreatic cancer

cell invasion and metastasis [80]. LIN28 is an RNA-inter-

acting protein that plays a crucial role in the maintenance

of embryonic stem cell functions [81]. These observations

indicate the pivotal role of PSCs in maintaining CSC-

related phenotypes and forming a CSC niche. Indeed,

another study reported that PSCs promote the self-renewal

of CSCs, by creating a paracrine niche for pancreatic

cancer cells. Nodal-expressing PSCs promoted this effect,

which was mediated by paracrine Nodal/Activin signaling

[82].

The tumor microenvironment also affects the CSC-

related phenotypes. The hypoxia resultant from the des-

moplasia could increase the expression of the putative CSC

marker CD133 in pancreatic cancer cells. Hypoxia also

increased the expression of CXC chemokine receptor 4,

which was highly expressed in an invasive subpopulation

of CSCs in a previous study [76]. Other stem cell markers,

such as EZH2, Oct4 and Nanog were induced by the

hypoxic condition in pancreatic cancer cells [24]. In

addition to the induction of these CSC-related genes,

resistance to radiation was supported by hypoxia. Hypoxia

facilitates glycolysis in cancer cells, leading to the activa-

tion of the pentose phosphate pathway, which increases the

antioxidant capacity [83]. Inhibition of the HIF1a function

by the specific inhibitor PX-478 increased pancreatic can-

cer cell killing by radiation, suggesting some contribution

of hypoxia to the radioprotection [84]. Since resistance

against radiation is another CSC-related phenotype, des-

moplasia-derived hypoxia contributes to the maintenance

of CSCs as a part of the niche for CSCs. Together with the

increased metastatic ability, these CSC-related phenotypes

supported by tumor-stromal interaction promote disease

progression such as the dissemination of metastatic foci

and selection of a refractory population against therapeutic

intervention. The effects of tumor-stromal interactions on

the metastatic capacity of pancreatic cancer cells and CSC-

related functions are summarized in Fig. 3.

Modulation of the immune system in pancreatic cancer

According to a recent report, establishment of the primary

pancreatic cancer requires approximately 10 years of

cumulative gene mutations, and 5 more years are needed to

develop metastatic disease [85]. In other words, cancer

Fig. 3 EMT induction and

CSC-related phenotype

maintenance mechanisms by

PSCs
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cells have escaped from the host immune surveillance for

the same period. Wide varieties of immunosuppressive

changes contribute to this process, including attenuation of

the immune reaction against cancer cells and the induction

of immunosuppressive cells around the pancreatic cancer

tissue. The analysis of a mouse model that conditionally

expresses K-ras (G12D) in the pancreas revealed that even

at low-grade PanIN, CD45? leukocyte infiltration was

observed, which gradually increased along with the pro-

gression of PanIN. In contrast, the effector T-cell response

was lost within the pancreas, suggesting immunosuppres-

sion. Infiltrating leukocytes expressed Gr-1 and CD11b,

showing the characteristics of MDSCs [86]. These results

indicated that pancreatic carcinogenesis mobilizes bone

marrow-derived cells from the early stage of disease to

establish an immunosuppressive microenvironment. The

immunosuppressive status could be reflected by systemic

changes. MDSCs were detectable in peripheral blood

samples, and their amount correlated with the prognosis of

patients. In cancer-bearing patients, the MDSC level in

blood samples was significantly elevated, and was also an

independent prognostic factor for survival [87].

PSCs also affect the immune cell functions during

pancreatic carcinogenesis. The differentiation of myeloid-

derived cells to MDSCs was promoted by pancreatic can-

cer-associated PSCs via the activation of the STAT3

pathway [88]. This study clarified the contribution of

cytokines derived from PSCs such as IL-6, VEGF and

macrophage colony-stimulating factor (M-CSF) to the

induction of MDSCs. The induction of MDSCs by PSC-

derived cytokines and chemokines offers survival advan-

tages to pancreatic cancer cells, enabling escape from

immune surveillance. In addition to the induction of

MDSCs, activated PSCs sequestered cytotoxic T-cells and

reduced their interaction with cancer cells. Immunohisto-

chemical analysis of pancreatic cancer tissue revealed that

the density of the CD8? T-cell infiltrate in pancreatic

cancer tissue was significantly reduced compared with

ampullary carcinoma and cholangiocarcinoma. An

increased CD8? T-cell infiltrate around cancer cells was

correlated with improved survival after surgery, suggesting

this immune reaction against cancer cells directly affects

the clinical outcome [89]. This study clarified the detailed

mechanism of immunosuppression by PSCs using a KPC

mouse model. As described previously, the pancreatic

cancer tissue of KPC mice was accompanied by desmo-

plasia, which could be reversed by the administration of

all-trans retinoic acid (ATRA) [90]. The treatment with

ATRA enhanced the CD8? T-cell infiltrate around the

cancer cells, suggesting activated PSCs sequester CD8?

T-cells preventing access to the cancer cells. Finally, T-cell

migration toward activated PSCs was found to be mediated

by CXCL12 from PSCs [89].

Interaction between PSCs and another type of immune

cell also contributes to the pancreatic cancer progression.

Analysis of a pancreatic cancer model mouse revealed the

contribution of mast cells during pancreatic carcinogenesis,

and detailed mechanisms of their activation were examined

thereafter. Co-culture of mast cells with PSCs led to mast

cell activation, characterized by tryptase and tumor

necrosis factor-a release in the culture supernatant [91]. In

turn, mast cell-derived IL-13 and tryptase promoted the

proliferation of PSCs, leading to further fibrogenesis.

Interestingly, a previous report described that IL-13 nega-

tively regulated immune surveillance against cancer cells

by inducing MDSCs [92, 93]. These findings were con-

nected by recent research, which described the mast cell’s

novel role in enhancing the immunosuppressive functions

of MDSCs [94]. Taken together, complex interactions

between cancer cells, PSCs and immune cells produce an

immunosuppressive microenvironment that inhibits the

elimination of cancer cells by the host immune reaction. A

schematic view of the interaction between cancer cells,

PSCs and immune cells is shown in Fig. 4.

Therapy-resistance and stromal cells

The prognosis of pancreatic cancer remains dismal, despite

improvements in imaging studies and therapeutic strate-

gies. According to the Japan Pancreatic Cancer Registry,

the 5-year survival of pancreatic cancer patients doubled

over the past 30 years, but is still less than 20 % [95]. This

clinical manifestation of pancreatic cancer is largely due to

the low possibility for curative surgical resection (*20 %)

and resistance to alternative therapies such as chemother-

apy or radiation for unresectable disease [96]. As summa-

rized in this review, stromal cells and host immune cells

establish a formidable fortress protecting the pancreatic

cancer cells after a long period of complex interactions.

Since conventional therapy such as gemcitabine treatment

itself could be a selection pressure for a therapy-resistant

new population of cancer cells [97], novel strategies that

overwhelm these machineries are urgently required. Ther-

apy-resistant evolution is a relatively rare phenomenon in

normal cells such as PSCs or immune cells due to the intact

genomic regulation and absence of oncogenic mutations.

Therefore, targeting tumor-promoting stromal cells or the

immune cell function is being considered as an alternative

therapeutic target in pancreatic cancer.

For the attenuation of desmoplasia, PSC-targeting

interventions have been extensively studied. Strategies to

inhibit the functions of PSCs are generally divided into two

approaches of specific inhibition of PSC-activating path-

ways and broad inhibition of PSC functions. The first

approach became available by the identification of PSC-
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activating pathways such as the Shh pathway or CTGF

pathway [52, 55]. The Shh inhibition was achieved by the

discovery of small molecules such as cyclopamine that

modulated the downstream signal mediators of the Shh

pathway [98]. A desmoplasia-recapitulating mouse model

of pancreatic cancer, the KPC mouse, develops gemcita-

bine-resistant pancreatic cancer [33]. The pancreatic

tumors continued to grow despite gemcitabine adminis-

tration. Isolated cancer cells from KPC mice tumors were

sensitive to gemicitabine indicating the contribution of

desmoplasia to this resistance. The administration of IPI-

926, an oral inhibitor of the Shh pathway, reduced the

desmoplasia in the tumors of KPC mice, and transiently

increased the vascularity of the pancreatic cancer tissue

[33]. Combination therapy of IPI-926 and gemcitabine

prolonged the survival of KPC mice, suggesting the pos-

sibility of tumor stroma-targeting therapy in addition to the

conventional chemotherapies. Similarly, conditional

expression of mutant K-ras (G12D) with TGF-b receptor

type II knockout in pancreas also led to desmoplasia-con-

taining pancreatic cancer development, in which elevated

CTGF expression was detected [99]. This CTGF induction

was mediated by the Cxc chemokine signal, and inhibition

by the Cxc receptor inhibitor SB225002 repressed CTGF

expression in mouse tumors and prolonged the survival.

Another study used a monoclonal antibody against CTGF

(FG-3019) in combination with gemcitabine in KPC mice.

The administration of FG-3019 improved the response to

the gemcitabine, accompanied by the decreased expression

of an X-linked inhibitor of apoptosis [100]. In this study,

combination therapy of cytidine deaminase inhibitor and

gemcitabine, which increased the intra-tumoral gemcita-

bine concentration without affecting the tumor microen-

vironment, failed to show a beneficial effect. Based on

these results, gemcitabine resistance due to desmoplasia

might be mediated by the tumor microenvironment.

The second approach, broad inhibition of the PSC func-

tions, has also been studied in detail. A wide variety of agents

have been identified that inhibit ECM production or the

proliferation of PSCs, such as plant-derived polyphenol

(green tea polyphenol, ellagic acid and curcumin) [101–103],

NADPH oxidase inhibitor [48] and angiotensin II type 1

receptor blocker (ARB) [104]. Among these agents, ARB has

been used clinically as an antihypertensive drug with

acceptable feasibility and safety. The administration of

candesartan, one of the ARBs, decreased pancreatic inflam-

mation and fibrosis in Wistar Bonn/Kobori rats, a model rat

of chronic pancreatitis [105]. A retrospective study revealed

that patients with pancreatic cancer who received angiotensin

I-converting enzyme inhibitors and ARBs showed better

prognoses [106], suggesting that inhibition of the PSC

function by ARBs might yield therapeutic benefits. This

hypothesis was assessed by the administration of olmesartan

to subcutaneous-tumor bearing immunodeficient mice, the

tumors derived from the co-injection of the human pancreatic

cancer cell line AsPC-1 and PSCs. Olmesartan significantly

retarded the growth of the subcutaneous tumors, accompa-

nied by decreases in the expression of a-SMA and collagen

deposition in the tumors [107]. Delayed administration of

olmesartan also had a growth suppressive effect on the

tumors, suggesting that PSCs were required for the mainte-

nance of tumor growth, as well as for tumor implantation.

Fig. 4 Establishment of the

immunosuppressive

microenvironment by PSCs,

MDSCs and mast cells
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The extracellular component of pancreatic cancer tissue

or immune cells could be an additional therapeutic target.

A recent report suggested that an abundant stromal matrix

component, hyaluronan, accumulates in pancreatic cancer

tissue [108]. The enzymatic degradation of hyaluronan by

PEGylated human recombinant PH20 hyaluronidase

(PEGPH20) improved the vascular patency and chemo-

therapeutic delivery in tumors of KPC mice. The combi-

nation of PEGPH20 with gemicitabine extended the

survival of the tumor-bearing mice by enhancing the effect

of gemcitabine. Excess ECM components such as hyalu-

ronan in desmoplasia increase the interstitial fluid pressure,

leading to a compromised vascular function in the pan-

creatic tissue. Combined treatment of KPC mice tumors

with gemcitabine and PEGPH20 demonstrated decreased

expression of a-SMA, that is, tissue remodeling [109]. In

addition, a recently approved chemotherapeutic agent, nab-

paclitaxel, revealed a tumor-stroma depleting effect that

led to an increased intra-tumoral gemcitabine concentra-

tion, improving the antitumor activity [110, 111]. These

studies indicate that depletion of the ECM component

could be an attractive therapeutic target. Tumor-infiltrating

immune cells were also targeted by direct elimination or by

inducing differentiation to attenuate immunosuppressive

functions. Injection of effector T-cells targeting

CD11b?Gr1? MDSCs in tumor-bearing mice efficiently

inhibited tumor growth, suggesting the host immune

reaction could suppress tumor growth in the absence of

MDSCs [112]. Another study reported that IL-12 induced

the differentiation of MDSCs and decreased nitric oxide

synthase expression [113]. As inducers of MDSC differ-

entiation, ATRA and vitamin D3 were also clinically tested

in metastatic renal cell carcinoma and head and neck

squamous cell carcinoma patients [114, 115]. The thera-

peutic strategies targeting tumor-stromal interaction in

pancreatic cancer are summarized in Fig. 5.

Closing remarks

The tumor-stromal interaction plays a pivotal role during

the progression of pancreatic cancer, which, by the time it

has become apparent, has probably existed more than a

decade. Targeting tumor-stromal interaction by inhibiting

PSC functions, depleting ECM components and restoring

the host immune reaction seems promising, but several

problems still exist that must be addressed before the

establishment of radical therapy. For example, a clinical

trial using IPI-926 in combination with gemcitabine has

been halted due to the increased mortality compared with

the control group, suggesting simple inhibition of the

desmoplasia might be insufficient to cure pancreatic can-

cer. Further study is necessary to improve the clinical

outcomes of pancreatic cancer patients, by clarifying the

complex interactions between pancreatic cancer cells and

the stromal components.
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