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Abstract MicroRNAs (miRNAs) are small, noncoding

RNA molecules that regulate gene expression post-trans-

criptionally through complementary base pairing with

thousands of messenger RNAs. Although the precise bio-

logical functions of individual miRNAs are still unknown,

miRNAs are speculated to play important roles in diverse

biological processes through fine regulation of their target

gene expression. A growing body of data indicates the

deregulation of miRNAs during hepatocarcinogenesis. In

this review, we summarize recent findings regarding

deregulated miRNA expression and their possible target

genes in hepatocarcinogenesis, with emphasis on inflam-

mation-related hepatocarcinogenesis. Because miRNA-

based strategies are being applied to clinical therapeutics,

precise knowledge of miRNA functions is crucial both

scientifically and clinically. We discuss the current open

questions from these points of view, which must be clari-

fied in the near future.
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Introduction

MicroRNAs (miRNAs) are short, single-stranded, non-

coding RNAs, which are expressed in most organisms,

from plants to vertebrates [1]. Since the discovery of the

miRNA lin-4 in Caenorhabditis elegans [2, 3], 1,872

miRNA precursors and 2,578 mature miRNA sequences in

humans have been deposited in miRBase, a public repos-

itory hosted by the Sanger Institute, as of November 2013

[4]. Bioinformatic predictions suggest that miRNAs regu-

late more than 30 % of human protein-coding genes [5–7].

Through the regulation of gene expression, miRNAs are

involved in various physiological and pathological pro-

cesses, including cell proliferation, apoptosis, differentia-

tion, metabolism, oncogenesis and oncogenic suppression

[8, 9]. Thus, it is not surprising that deregulation of

miRNAs is linked closely to various human pathological

conditions. In this review, we will describe the crucial role

of miRNAs in liver carcinogenesis, especially inflamma-

tion-related hepatocarcinogenesis.

Biogenesis and functions of miRNAs

Transcription is the first step in miRNA expression

(Fig. 1). Similar to most protein-coding genes, transcrip-

tional factors, enhancers and silencers are involved in

miRNA transcription [10–12]. Epigenetic mechanisms,

such as promoter methylation or histone modification, also

regulate miRNA transcription, and it was shown that his-

tone deacetylase (HDAC) inhibition results in transcrip-

tional changes in *40 % of miRNAs [13].

Primary miRNAs, which possess stem-loop structures,

are transcribed by RNA polymerase II [8]. These pri-

miRNAs are processed by a microprocessor complex
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comprising Drosha (RNAase III) [14] and DGCR8/Pasha

[15] in the nucleus [16]. The processed products are

approximately 65-nucleotide hairpin-shaped precursors

(pre-miRNAs) that are transported to the cytoplasm via

exportin-5 [17, 18]. Pre-miRNAs are further cleaved into

mature miRNAs by Drosha and Dicer RNA polymerase III.

Mature miRNA duplexes are loaded onto an RNA-induced

silencing complex (RISC) and are unwound into the single-

stranded mature form [19–21]. The resulting co-complex

directly targets the 30-untranslated regions (30-UTRs) of

target mRNAs, depending on the sequence similarities, to

negatively regulate their expression by enhancing mRNA

cleavage or inhibiting translation (Fig. 1) [8, 22]. Because

most miRNAs guide the recognition of imperfect matches

of target mRNAs, individual miRNAs have multiple

(probably hundreds) of mRNA targets. In addition, multi-

ple miRNAs can cooperate to regulate the expression of the

same transcript [6]. Thus, depending upon the identity of

the target mRNAs, miRNAs play roles as ‘‘fine-tuners of

gene expression’’ in the control of various biological

functions.

Identifying functionally important miRNA target genes

is crucial for understanding the impact of specific miRNAs

on cellular function. However, this is challenging because

miRNAs usually have imperfect complementarity with

their targets [22]. In mammals, the most consistent

requirement for miRNA-target interaction, although not

always essential, is a contiguous and perfect pairing of the

miRNA (nt 2–8), representing the ‘‘seed’’ sequence [22]. In

many cases, the seed sequences determine this recognition,

but in other cases, additional determinants are required,

such as reasonable complementarity to the miRNA 30 half

to stabilize the interaction. In addition, target pairing to the

center of some miRNAs has also been reported [23].

Although public miRNA target prediction algorithms, such

as TargetScan [24] and PicTar [25], have facilitated the

rapid identification of miRNA target genes [22], candidates

should be validated experimentally.

miRNAs and cancer

The involvement of miRNAs in cancer pathogenesis is well

established. miRNAs can affect six hallmarks of malignant

cells, which are (1) self-sufficiency in growth signals, (2)

insensitivity to anti-growth signals, (3) evasion of apopto-

sis, (4) limitless replicative potential, (5) angiogenesis, and

(6) invasion and metastasis [26]. miRNAs are frequently

Fig. 1 Biogenesis of miRNAs.

The primary miRNA transcript

(pri-miRNA) is transcribed

from the genome by RNA

polymerase II or III. The

microprocessor complex

Drosha–DGCR8 cleaves the pri-

miRNA into the precursor

hairpin, pre-miRNA in the

nucleus. The pre-miRNA is

exported from the nucleus by

exportin-5–Ran-GTP. In the

cytoplasm, the RNase Dicer in

complex with the double-

stranded RNA-binding protein,

TRBP, cleaves the pre-miRNA

hairpin to its mature length. The

functional strand of the mature

miRNA is loaded together with

Argonaute (Ago2) proteins into

the RNA-induced silencing

complex (RISC), where it

guides RISC to silence target

mRNAs through mRNA

cleavage or translational

repression. The passenger strand

(black) is degraded
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up- or downregulated in malignant tissues and can be

considered oncogenes or tumor suppressors, respectively.

However, it is essential to test experimentally whether the

deregulated miRNAs are actually causative to carcino-

genesis, since miRNAs have a very restricted tissue-spe-

cific expression and the apparent miRNA modulation in

cancer tissues may only reflect the different constituents of

a cell population as compared to normal tissues. Extensive

analyses have confirmed the causative roles of miRNAs in

cancer by using either human cancer cells or genetically

engineered animal models, such as transgenic expression of

miR-155, miR-21 and miR-15-a/16-1, which are sufficient

to initiate lymphomagenesis in mice [27–29]. These results

suggest the potential role of miRNAs in the pathogenesis of

carcinogenesis and as therapeutic targets.

miRNAs and hepatocarcinogenesis

Numerous reports regarding the deregulated expression of

miRNAs in human hepatocellular carcinoma (HCC) are

extant. Most studies compared the miRNA expression

levels between cancer tissues and background non-tumor-

ous tissues, selected candidate miRNA(s) and revealed

their target genes, which may be involved in carcinogen-

esis. As shown in Tables 1 and 2, many miRNAs have been

identified as downregulated or upregulated in recent studies

(Tables 1, 2). However, these numerous results are not

always superimposable due to the large variances in the

results. These significant differences may be due to several

reasons, such as the use of different techniques or different

samples as controls, normal liver tissues versus peritumoral

non-neoplastic tissues. In addition, one may need to take

into consideration the fact that HCCs arise in background

livers with different etiologies, such as hepatitis B, hepa-

titis C or steatohepatitis, and also the age or sex of the

tissue-derived patients and background liver condition,

such as fibrosis staging or inflammation activity, which

may result in differences in the expression status of

miRNAs. Despite these considerable limitations, the list

suggests that diverse miRNAs play crucial roles in he-

patocarcinogenesis. We will briefly describe some of them

below.

The expression levels of miRNAs have restricted tissue

specificities. In the liver, miR-122, miR-192 and miR-

199a/b-3p are the three most expressed miRNAs,

accounting for 52, 17 and 5 % of all mRNAs in the tissues,

respectively [30]. The tumorigenic role of the loss of miR-

122 was confirmed in gene-knockout mice [31, 32] and its

expression is indeed decreased in half of the HCCs, espe-

cially non-viral HCCs [30]. We also reported that

decreased expression of miR-122 is linked with poor

prognosis of HCC [33]. While miR-192 does not appear to

be deregulated in HCC samples in previous studies, miR-

199a/b-3p is decreased with high frequency in HCC, which

is closely linked to a poor prognosis of HCC [30]. In

contrast, miR-21, whose expression is increased following

rat hepatectomy [34], is upregulated as a known oncom-

iRNA and represses PTEN signaling, resulting in promo-

tion of HCC development [35]. Although individual

miRNAs may be involved in hepatocarcinogenesis,

because miRNAs often function co-operatively, the extent

of their involvement remains to be determined.

As described above, miRNAs usually have multiple

mRNA targets. Thus, it is not practical to describe only a

few genes as being responsible for the phenotypes by

deregulation of specific miRNAs, while many studies

identify specific genes as targets of specific miRNAs.

Nonetheless, the identified targeted genes are generally

related to at least one of the hallmarks of cancer, such as

cell growth, apoptosis, invasion, and so on. These results

suggest that the deregulation of miRNA expression might

mediate hepatocarcinogenesis through deregulating the

expression of their target genes.

The miRNAs identified as deregulated in hepatocarci-

nogenesis may be useful as diagnostic and prognostic

markers [36], because miRNAs in the circulation are

reported to be relatively stable [37]. Also, deregulated

miRNAs may be candidate therapeutic and preventive

targets against HCC. However, to include the obtained

results in clinical interventional applications, it is necessary

to confirm if the deregulated miRNAs are truly drivers or

are simply passive in hepatocarcinogenesis. To this end,

genetically modified mice may provide some information.

In addition, to correctly interpret the data, a standard

method of normalizing the microRNAome data between

studies may also be crucial. Since there are multiple target

genes of miRNAs and, conversely, one transcript can be

targeted by multiple miRNAs, a more systematic compar-

ison using miRNA data, transcriptome data and proteome

data would increase our understanding of the consequences

of the deregulation of miRNAs during hepatocarcinogen-

esis. From this point of view, systematic and comprehen-

sive target gene analyses for in silico systems biology

models may be one option to resolve these issues.

miRNAs linked to inflammation-mediated

hepatocarcinogenesis

Inflammation is considered to be a major cause of cancer

[38, 39]. In the liver, hepatocarcinogenesis frequently

occurs in persistently inflamed liver tissues caused by

chronic hepatitis viral infection or non-alcoholic steato-

hepatitis. However, the molecular linkage between chronic

inflammation and carcinogenesis is not well characterized.
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Table 1 Upregulated miRNAs in hepatocarcinogenesis

miRNA Expression levels Targets Main tested samples References

miR-17-5p Upregulated p38 pathway Cultured cells, human tissues [52]

miR-18a Upregulated ER1a Human tissues, cultured cells [53]

miR-21 Upregulated C/EBPb Mouse CDAA model [54]

Upregulated PTEN Human tissues, cultured cells [35]

miR-22 Upregulated ERa, IL-1a Human tissues, cultured cells, DEN model [55]

miR-23a Upregulated PGC-1a,G6PC Human tissues, cultured cells [56]

miR-26a Upregulated Lin28B, Zcchc11 Human tissues, xenograft model [57]

Upregulated NF-jB, IL-6 pathways Human tissues [58]

miR-30d Upregulated GNAI2 Human tissues, cultured cells [59]

miR-100 Upregulated Human tissues [60]

miR-106b Upregulated APC Human tissues, cultured cells [61]

miR-122 Upregulated Human tissues [60]

miR-130b Upregulated TP53INP1 Human tissues, xenograft model [62]

miR-135a Upregulated FOXM1, MTSS1 Human tissues, cultured cells, xenograft [63]

miR-143 Upregulated FNDC3B Human tissues, HBX transgenic mouse [64]

miR-146a Upregulated in endothelial cells BRCA, PDGFRA Cultured cells [65]

miR-151 Upregulated FAK Human tissues, cultured cells [66]

Upregulated FAK, RhoGDIA Human tissues, cultured cells [67]

miR-155 Upregulated SOCS1 Orthotropic transplant model [68]

Upregulated DKK1, APC Human tissues, cultured cells [69]

Upregulated PTEN Mouse CDAA model [54]

miR-181 Upregulated TIMP3 Mouse CDAA model [70]

Upregulated CDX2, GATA6, NLK Cultured cells [71]

miR-183 Upregulated AKAP12 Human tissues [72]

miR-186 Upregulated AKAP12 Human tissues [72]

miR-200 Upregulated NRF2 pathway Rat HCC model, [73]

miR-210 Upregulated VMP1 Human tissues, cultured cells [74]

miR-216a Upregulated TSLC1 Human tissues, cultured cells [75]

miR-216a/217 Upregulated PTEN, SMAD7 Cultured cells, Human tissues [76]

miR-221 Upregulated CDK inhibitors Transgenic mouse [77]

Upregulated p27, p57, Arnt Primary hepatocytes [78]

Upregulated Bmf Cultured cells, human tissues [79]

Upregulated p27, p57 Cultured cells, human tissues [80]

miR-221/222 Upregulated p27, DDIT4 Human tissues, mouse model [81]

miR-224 Upregulated Human tissues [82]

Upregulated Atg5, Smad4, autophagy Human tissues, HBV X transgenic mice [83]

Upregulated API-5 Cultured cells, human tissues [84]

Upregulated Human tissues [85]

Upregulated API-5 Human tissues [86]

miR-423 Upregulated p21/waf1 Human tissues, cultured cells [87]

miR-485-3p Upregulated MAT1, LIN28B Human tissues, xenograft model [88]

miR-490-3p Upregulated ERCIC3 Human tissues, cultured cells [89]

miR-494 Upregulated MCC Human tissue, mouse liver cancer model [90]

miR-495 Upregulated MAT1, LIN28B Human tissues, xenograft model [88]

miR-517a Upregulated Human tissues, cultured cells [91]

miR-657 Upregulated TLE1, NF-jB Human tissues, cultured cells [92]

miR-664 Upregulated MAT1, LIN28B Human tissues, xenograft model [88]

miR-1323 Upregulated Human tissues [93]
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Table 2 Downregulated miRNAs in hepatocarcinogenesis

miRNA Expression levels Targets Main tested samples References

let-7a Downregulated STAT3 Cultured cells [94]

let-7c Downregulated Human tissues, cultured cells [95]

let-7g Downregulated COL12A Cultured cells, human tissues [96]

miR-7 Downregulated PIK3CD Cultured cells, human tissues [97]

miR-10a Downregulated EphA4 Cultured cells [98]

miR-10b Downregulated Human tissues [99]

miR-15a/16 Downregulated Cultured cells [100]

miR-21 Downregulated Human tissues [82]

miR-26a Downregulated IL-6 Human tissues, xenograft model [101]

Downregulated CyclinD2, E2 Cultured cells, mouse model [102]

miR-29 Downregulated Bcl2, Mcl1 Human tissues, cultured cells [103]

miR-29b Downregulated MMP-2 Human tissues, cultured cell [104]

miR-29c Downregulated SIRT1 Cultured cells [105]

miR-34a Downregulated CCL22 Human tissues, cultured cells [106]

miR-99a Downregulated PLK1 Human tissues, cultured cells [107]

Downregulated IGF-1R Human tissues, cultured cells [108]

miR-100 Downregulated PLK1 Human tissues, cultured cells [107]

miR-101 Downregulated EZH2, EED Human tissues, cultured cells [109]

Downregulated Human tissues, cultured cells [95]

Downregulated Mcl1 Cultured cells, human tissues [110]

Downregulated Fos Human tissues, cultured cells [111]

miR-122 Downregulated c-Myc Human tissues, cultured cells [112]

Downregulated Cultured cells [113]

Downregulated MTTP Knockout mice [32]

Downregulated IL6, TNF Knockout mice [31]

Downregulated IGF-1R Human tissues [114]

Downregulated Cyclin G1 Human tissues, cultured cells [115]

miR-124 Downregulated ROCK2, EZH2 Human tissues, cultured cells [116]

Downregulated CDK6, VIM, SMYD3, IQGAP1 Human tissues, cultured cells [117]

miR-125a/125b Downregulated Human tissues, cultured cells [118]

miR-125b Downregulated SUV39H Human tissues, cultured cells [119]

Downregulated Mcl1, Bclw, IL6R Human tissues, cultured cells [120]

Downregulated Human tissues, cultured cells [95]

Downregulated PIGF, MMP-2, MMP-9 Human tissues, cultured cells [121]

Downregulated Lin28B Human tissues, cultured cells [122]

miR-139 Downregulated ROCK2 Human tissues, cultured cells [123]

miR-139-5p Downregulated Human tissues, cultured cells [95]

miR-140-5p Downregulated TGFBR1, FGF9 Human tissues, cultured cells [124]

DNMT1 Knockout mice [125]

miR-141 Downregulated DLC-1 Human tissues [126]

miR-145 Downregulated Human tissues [60]

Downregulated IRS1, IRS2, IGF-1R, b-catenin Human tissues, cultured cells [127]

Downregulated Human tissues [85]

miR-148a Downregulated c-Met Human tissues, cultured cells [128]

Downregulated HRIP Mouse xenograft model, cultured cells [129]

Downregulated e-cadherin Human tissues, cultured cells [130]

Downregulated c-Myc Cultured cells [131]

miR-152 Downregulated DNMT1, GSTP1, CDH1 Human tissues [132]
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miRNAs, as a new class of gene expression regulators, may

be involved in chronic inflammation-induced carcinogen-

esis and, in fact, several studies have clarified one such

linkage, in which miRNAs may serve as a bridge between

continuous inflammation and carcinogenesis.

A flagship report addresses a positive feedback loop of

an inflammatory response mediated by NF-jB that acti-

vates Lin28B transcription (Fig. 2) [40]. LIN28B, which is

an inhibitor of miRNA processing, reduces let-7 levels.

Let-7 inhibits IL-6 expression, resulting in higher levels of

IL-6 than achieved by NF-jB activation. IL-6-mediated

STAT3 activation is necessary for transformation and IL-6

activates NF-jB, completing a positive feedback loop.

Although the experiments mainly used MCF10A cells

(breast cancer cells), a similar feedback loop was observed

in HCC tissues. The authors termed these mechanisms an

Table 2 continued

miRNA Expression levels Targets Main tested samples References

miR-195 Downregulated NF-jB pathway Cultured cells [133]

Downregulated VEGF, VAV2, CDC42 Cultured cells, human tissues [134]

Downregulated Cyclin D1, CDK6, E2F3 Cultured cells, human tissues [135]

miR-198 Downregulated Human tissues [60]

miR-199a/b-3p Downregulated PAK4 Human tissues, cultured cells [30]

miR-199b Downregulated Human tissues [85]

miR-200a Downregulated H3 acetylation Human tissues, cultured cells [136]

miR-200b Downregulated Human tissues, cultured cells [95]

miR-200c Downregulated Human tissues [82]

miR-200 Downregulated Human tissues [82]

miR-203 Downregulated ABCE1 Human tissues, cultured cells [117]

miR-214 Downregulated HDGF Human tissues, cultured cells [137]

miR-222 Downregulated Human tissues [82]

miR-223 Downregulated STMN1 Human tissues [138]

miR-224 Downregulated Human tissues [139]

miR-363-3p Downregulated c-Myc Cultured cells [131]

miR-375 Downregulated ATG7 Human tissues, cultured cells [140]

Downregulated AEG-1 Human tissues, cultured cells [141]

miR-429 Downregulated Rab18 Cultured cells [142]

miR-449 Downregulated c-MET Xenograft, cultured cells [143]

miR-520e Downregulated NIK Human tissues, cultured cells [69]

miR-612 Downregulated AKT2 Cultured cells, human tissues [144]

miR-637 Downregulated STAT3 activation Human tissues, cultured cells [145]

miR-1271 Downregulated GLP3 Human tissues, cultured cells [99]

Fig. 2 A model bridging chronic inflammation and transformation by

miRNA. Inflammation triggers activation of NF-jB, which leads to

transcription of LIN28B. LIN28B inhibits the production of Let-7.

Let-7 normally inhibits IL-6 expression, resulting in higher levels of

IL-6 than are achieved by NF-jB activation. IL-6 mediated STAT3

activation is necessary for transformation and IL-6 activates NF-jB,

completing a positive feedback loop
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‘‘epigenetic switch’’ because the loop maintains the epi-

genetic transformed state even in the absence of induction

by inflammation (Fig. 2).

Another report addressed hepatocarcinogenesis induced

by transient inhibition of HNF4a (Fig. 3) [41]. HNF4a
was reported to be involved in liver oncogenesis, although

discrepant reports have also been published [42–44]. In

that report, transient HNF4a silencing was sufficient to

maintain cell transformation. Through a miRNA library

screen, miR-24 and miR-629 were identified to target

HNF4a. Interestingly, both miRNAs were induced fol-

lowing HNF4a silencing, supporting their involvement in

the HNF4a-dependent feedback loop. miR-24 and miR-

629 contain the STAT3-binding motif in their promoter

region. The authors showed that in response to IL-6,

STAT3 binding to their promoters increased, resulting in

miRNA expression. They also identified miR-124, whose

promoter region contains HNF4a binding sites. miR-124

targets IL-6R and, thus, HNF4a silencing results in

reduced expression of miR-124 and enhanced expression

of IL-6R and activation of STAT3. The importance of

these feedback loops was confirmed in vivo using a mouse

HCC model induced by diethylnitrosamine. miR-124

delivery by cationic liposomes prevented tumor develop-

ment. Thus, these microRNA feedback-inflammatory

loops are important and can be a therapeutic target for

liver cancer (Fig. 3) [41].

A recent paper reported a similar but distinct observa-

tion (Fig. 4). The authors found that when using DEN-

induced foci of altered hepatocytes (FAH), LIN28-

expressing cells are present in FAH, in which let-7 is

down-regulated, resulting in the enhanced expression of

IL-6, mediating the progression of malignancies from

progenitors. An important difference between the cells in

FAH and those in early hepatocarcinogenesis is that IL-6

signaling is autocrine, being mediated by reduced let-7 due

to upregulation of LIN28B in FAH cells. This mechanism

may contribute to malignant progression from HCC pro-

genitor cells (Fig. 4) [45].

These three reports are from related research groups,

and rely on the hypothesis that the IL-6-STAT3 pathway is

crucial for hepatocarcinogenesis. Although IL-6 has been

implicated as a growth factor in various epithelial cancers

[46, 47], its relevance in hepatocarcinogenesis needs to be

confirmed to determine the applicability and reproducibil-

ity of these findings to the clinical setting.

Fig. 3 A model describing a positive feedback loop mediated by

miRNAs from transient HNF4a inhibition to transformation. Tran-

sient silencing of HNF4a is mediated by miR-24 and miR-629, both

of which are induced by STAT3 activation following IL-6 stimula-

tion. miR-124, whose promoter region contains HNF4a-binding sites,

targets IL-6R and, thus, HNF4a silencing results in reduced

expression of miR-124 and enhanced expression of IL-6R and

activation of STAT3, which induces miR-24 and miR-629. This

microRNA feedback-inflammatory loop is thought to be crucial in IL-

6-mediated liver cancer

Fig. 4 A model bridging the

malignant transformation of

precursor cells and autocrine-

mediated inflammation by

microRNA. LIN28-expressing

cells exist in the foci of altered

hepatocytes, in which let-7 is

downregulated, resulting in

enhanced IL-6 expression,

which mediates the progression

of malignancies from progenitor

cells

J Gastroenterol (2014) 49:173–184 179

123



miRNAs as therapeutic targets in the liver

Recently, miravirsen, a LNA-modified DNA phosphoro-

thioate antisense oligonucleotide against miR-122, became

the first miRNA-targeting drug for clinical use [48]. It was

developed to target HCV, as the stability and propagation

of this virus is dependent on a functional interaction

between the HCV genome and miR-122 [49, 50]. No

harmful events were observed in Phase I studies in healthy

volunteers, and Phase II studies proceeded to evaluate the

safety and efficacy of miravirsen in 36 patients with

chronic HCV genotype 1 infection. The patients were

randomly assigned to receive 5 weeks of subcutaneous

miravirsen injections at 3, 5 or 7 mg per kg body weight or

a placebo over a 29-day period. Miravirsen resulted in a

dose-dependent reduction in HCV levels, without major

adverse events and with no escape mutations in the miR-

122 binding sites of the HCV genome [48]. The success of

miravirsen is promising, not only as a novel anti-HCV

drug, but also as the first trial of miRNA-targeting therapy.

In addition to miravirsen, a clinical trial of MRX34 as a

mimic of miR-34 is underway. MRX34 is a liposome-

formulated mimic of the tumor suppressor miR-34 (Mirna

Therapeutics, Austin, TX, USA). Further study of MRX34

is being conducted by Mirna Therapeutics, which initiated

a Phase I study in May 2013 to examine the effects of

MRX34 on unresectable primary liver cancer or advanced

or metastatic cancer with liver involvement (ClinicalTri-

als.gov Identifier: NCT01829971). If these oligonucleotide

therapies are successful, therapeutic options based on the

numerous miRNAs deregulated during hepatocarcinogen-

esis appear promising [51].

Issues to be resolved in miRNA involvement

in hepatocarcinogenesis

As described above, along with recent discoveries of the

diverse effects of miRNAs in hepatocarcinogenesis,

miRNA-mediated intervention is promising for the devel-

opment of new diagnostic, preventive and therapeutic

tools. However, the data obtained to date are far from

complete. The following are some of the critical issues that

we believe need to be resolved.

1. The reason for the non-reproducible results among

studies should be determined to utilize the available

data more reasonably and efficiently.

2. Identification of crucial driver miRNAs among the

diverse deregulated miRNAs is critical to develop

useful therapeutics in clinics, although even passive

miRNAs may be utilized as markers for diagnosis or

prediction of prognosis.

3. Comprehensive target gene analyses using in silico

systems biology models should be applied.

4. For effective interventions using miRNA, the delivery

method, improved oligonucleotide modification and

safety must be further considered. Since miRNAs

generally have diverse effects due to targeting multiple

mRNAs, undesired outcomes, so called off-target

effects, may be encountered, even when a specific

miRNA is targeted.

Finding solutions to these issues should be considered as

critically important for the near future in order to under-

stand more fully the physiological function of miRNAs in

hepatocarcinogenesis and utilize this knowledge in trans-

lational research.

Conclusions

The discovery of miRNA has, without doubt, opened up

new possibilities for understanding the molecular mecha-

nisms of gene regulation. As numerous findings regarding

miRNA, from diverse perspectives, have been reported, the

speed of discovery in this field is astonishing. In fact, novel

therapeutics targeting miRNAs have already been suc-

cessfully applied in clinical trials. Some miRNAs may be

useful as novel biomarkers. Additionally, the discovery of

novel concepts in the pathogenesis of hepatocarcinogenesis

frequently involves miRNA. On the other hand, several

important issues remain to be resolved in this field. Thus,

continuous research in this field is still necessary to

develop truly innovative concepts in our understanding of

pathogenesis related to miRNA and to transform the

obtained knowledge into real clinical applications.
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