Skip to main content

Advertisement

Log in

Molecular targeted therapy for advanced hepatocellular carcinoma: current status and future perspectives

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Sorafenib, a multikinase inhibitor targeting vascular endothelial growth factor (VEGF)-mediated angiogenesis, is the first drug found to prolong survival of patients with advanced hepatocellular carcinoma (HCC). This advance has shifted the paradigm of systemic treatment for HCC toward molecular targeted therapy (MTT). However, the disease-stabilizing effect of VEGF signaling-targeted MTT normally lasts only for a few months, suggesting a rapid emergence of resistance in the majority of patients. To overcome the resistance to VEGF signaling-targeted MTT, strategies incorporating inhibition of either compensatory pro-angiogenic pathways or recruitment of bone marrow-derived circulating endothelial progenitors, as well as suppression of other oncogenic pathways, are currently being investigated. The combination of multiple molecular targeted agents or the use of multi-target agents may enhance the efficacy at the expense of increased toxicities. To facilitate the development of MTT for HCC, current methodologies for pharmacodynamic assessment, patient selection and target identification need to be improved. Patient selection according to the individual molecular signature of the tumor and correlative biomarker studies are encouraged while planning a clinical trial of novel MTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Llovet JM, Ricci S, Mazzaferro V, Hilgaard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  PubMed  CAS  Google Scholar 

  2. Cheng AL, Kong YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  PubMed  CAS  Google Scholar 

  3. Mise M, Arii S, Higashituji H, Furutani M, Niwano M, Harada T, et al. Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology. 1996;23:455–64.

    Article  PubMed  CAS  Google Scholar 

  4. Park YN, Kim YB, Yang KM, Park C. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med. 2000;124:1061–5.

    PubMed  CAS  Google Scholar 

  5. Li Q, Xu B, Fu L, Hao XS. Correlation of four vascular specific growth factors with carcinogenesis and portal vein tumor thrombus formation in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2006;25:403–9.

    PubMed  CAS  Google Scholar 

  6. Uematsu S, Higashi T, Nouso K, Kariyama K, Nakamura S, Suzuki M, et al. Altered expression of vascular endothelial growth factor, fibroblast growth factor-2 and endostatin in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2005;20:583–5.

    Article  PubMed  CAS  Google Scholar 

  7. Li XM, Tang ZY, Zhou G, Lui YK, Ye SL. Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J Exp Clin Cancer. 1998;17:13–7.

    Google Scholar 

  8. Tsou AP, Wu KM, Tsen TY, Chi CW, Chiu JH, Lui WY, et al. Parallel hybridization analysis of multiple protein kinase: identification of gene expression patterns characteristic of human hepatocellular carcinoma. Genomics. 1998;50:331–40.

    Article  PubMed  CAS  Google Scholar 

  9. Stock P, Monga D, Tan X, Micsenyi A, Loizos N, Monga SP. Platelet-derived growth factor receptor-alpha: a novel therapeutic target in human hepatocellular cancer. Mol Cancer Ther. 2007;6:1932–41.

    Article  PubMed  CAS  Google Scholar 

  10. El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N. The clinicopathological significance of heparanase and basic fibroblast growth factor expression in hepatocellular carcinoma. Clin Cancer Res. 2001;7:1299–305.

    PubMed  CAS  Google Scholar 

  11. Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands JR. Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest. 1999;103:341–5.

    Article  PubMed  CAS  Google Scholar 

  12. Harada T, Arii S, Mise M, Imamura T, Higashitsuji H, Furutani M, et al. Membrane-type matrix metalloproteinase-1 (MT1-MMP) gene is overexpressed in highly invasive hepatocellular carcinomas. J Hepatol. 1998;28:231–9.

    Article  PubMed  CAS  Google Scholar 

  13. Tshii Y, Nakasato Y, Kobayashi S, Yamazaki Y, Aoki T. A study on angiogenesis-related matrix metalloproteinase networks in primary hepatocellular carcinoma. J Exp Clin Cancer Res. 2003;22:461–70.

    Google Scholar 

  14. Dhar DK, Ono T, Yamanoi A, Soda Y, Yamaguchi E, Rahman MA, et al. Serum endostatin predicts tumor vascularity in hepatocellular carcinoma. Cancer. 2002;95:2188–95.

    Article  PubMed  CAS  Google Scholar 

  15. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  PubMed  CAS  Google Scholar 

  16. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth fator pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–27.

    Article  PubMed  CAS  Google Scholar 

  17. Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:16–24.

    Article  PubMed  CAS  Google Scholar 

  18. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:3584–90.

    Article  PubMed  CAS  Google Scholar 

  19. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13:1367–73.

    Article  PubMed  CAS  Google Scholar 

  20. Di Lorenzo G, Cartenì G, Autorino R, Bruni G, Tudini M, Rizzo M, et al. Phase II study of sorafenib in patients with sunitinib-refractory metastatic renal cell cancer. J Clin Oncol. 2009;27:4469–74.

    Article  PubMed  CAS  Google Scholar 

  21. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28:1061–8.

    Article  PubMed  CAS  Google Scholar 

  22. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  PubMed  CAS  Google Scholar 

  23. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist. 2007;12:356–61.

    Article  PubMed  CAS  Google Scholar 

  24. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007;12:713–8.

    Article  PubMed  CAS  Google Scholar 

  25. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Archer L, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28:2137–43.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist. 2009;14:1131–8.

    Article  PubMed  CAS  Google Scholar 

  27. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.

    Article  PubMed  CAS  Google Scholar 

  28. Sherman M, Mazzaferro V, Amadori D, Seitz J, Moscovici M, Shan M, et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma and vascular invasion or extrahepatic spread: a subanalysis from the SHARP trial. J Clin Oncol. 2008;26 (Suppl; abstract no. 4584).

  29. Bolondi L, Caspary W, Bennouna J, Thomson B, Van Steenbergen W, Degos F, et al. Clinical benefit of sorafenib in hepatitis C patients with hepatocellular carcinoma (HCC): subgroup analysis of the SHARP trial. In: 2008 Gastrointestinal Cancers Symposium (abstract no. 129).

  30. Raoul J, Santoro A, Beaugrand M, Marrero JA, Moscovici M, Shan M, et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma according to ECOG performance status: a subanalysis from the SHARP trial. J Clin Oncol. 2008;26 (Suppl; abstract no. 4587).

  31. Craxi A, Porta C, Sangiovanni A, Seitz J, Moscovici M, Shan M, et al. Efficacy and safety of sorafenib in patients with alcohol-related hepatocellular carcinoma: a subanalysis from the SHARP trial. J Clin Oncol. 2008;26 (Suppl; abstract no. 15591).

  32. Bruix J, Cheng A, Kang Y, Tsao C, Qin S, Lentini G, et al. Effect of macroscopic vascular invasion (MVI), extrahepatic spread (EHS), and ECOG performance status (ECOG PS) on outcome in patients with advanced hepatocellular carcinoma (HCC) treated with sorafenib: analysis of two phase III, randomized, double-blind trials. J Clin Oncol. 2009;27 (Suppl; abstract no. 4580).

  33. Raoul J, Sherman M, Nadel A, Lentini G, Moscovici M, Voliotis D, et al. Efficacy and safety of sorafenib (Sor) in patients (pts) with advanced hepatocellular carcinoma (HCC): subgroup analyses of the SHARP trial by baseline (BL) transaminase (ALT/AST)/alphafetoprotein (AFP) and bilirubin (Bil) levels. In: 2010 Gastrointestinal Cancer Symposium (abstract no. 129).

  34. Cantarini MC, Trevisani F, Morselli-Labate AM, Rapaccini G, Farinati F, Del Poggio P, et al. Effect of the etiology of viral cirrhosis on the survival of patients with hepatocellular carcinoma. Am J Gastroenterol. 2006;101:91–8.

    Article  PubMed  Google Scholar 

  35. Hsu C, Shen YC, Cheng CC, Hu FC, Cheng AL. Geographic difference in survival outcome for advanced hepatocellular carcinoma: Implications on future clinical trial design. Contemp Clin Trials. 2010;31:55–61.

    Article  PubMed  Google Scholar 

  36. Je Y, Schutz FA, Choueiri TK. Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. Lancet Oncol. 2009;10:967–74.

    Article  PubMed  CAS  Google Scholar 

  37. Elbekai RH, Korashy HM, El-Kadi AO. The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes. Curr Drug Metab. 2004;5:157–67.

    Article  PubMed  CAS  Google Scholar 

  38. Frye RF, Zgheib NK, Matzke GR, Chaves-Gnecco D, Rabinovitz M, Shaikh OS, et al. Liver disease selectively modulates cytochrome P450-mediated metabolism. Clin Pharmacol Ther. 2006;80:235–45.

    Article  PubMed  CAS  Google Scholar 

  39. Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:4293–300.

    Article  PubMed  CAS  Google Scholar 

  40. Furuse J, Ishii H, Nakachi K, Suzuki E, Shimizu S, Nakajima K. Phase I study of sorafenib in Japanese patients with heatocellular carcinoma. Cancer Sci. 2008;99:159–65.

    PubMed  CAS  Google Scholar 

  41. Miller AA, Murry DJ, Owzar K, Hollis DR, Kennedy EB, Abou-Alfa G, et al. Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol. 2009;27:1800–5.

    Article  PubMed  CAS  Google Scholar 

  42. Pinter M, Sieghart W, Graziadei I, Vogel W, Maieron A, Königsberg R, et al. Sorafenib in unresectable hepatocellular carcinoma from mild to advanced stage liver cirrhosis. Oncologist. 2009;14:70–6.

    Article  PubMed  Google Scholar 

  43. Wörns MA, Weinmann A, Pfingst K, Schulte-Sasse C, Messow CM, Schulze-Bergkamen H, et al. Safety and efficacy of sorafenib in patients with advanced hepatocellular carcinoma in consideration of concomitant stage of liver cirrhosis. J Clin Gastroenterol. 2009;43:489–95.

    Article  PubMed  Google Scholar 

  44. Ozenne V, Paradis V, Pernot S, Castelnau V, Cullierme MP, Bouattour M, et al. Tolerance and outcome of patients with unresectable hepatocellular carcinoma treated with sorafenib. Eur J Gastroenterol Hepatol. 2010. [Epub ahead of print].

  45. Faivre S, Demeri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007;6:734–45.

    Article  PubMed  CAS  Google Scholar 

  46. Faivre S, Raymond E, Boucher E, Douillard J, Lim HY, Kim JS, et al. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol. 2009;10:794–800.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu AX, Sahani DV, Duda DG, di Tomaso E, Ancukiewicz M, Catalano OA, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol. 2009;27:3027–35.

    Article  PubMed  CAS  Google Scholar 

  48. Koeberle D, Montemurro M, Samaras P, Majno P, Simcock M, Limacher A, et al. Continuous sunitinib treatment in patients with advanced hepatocellular carcinoma: A Swiss Group for Clinical Cancer Research (SAKK) and Swiss Association for the Study of the Liver (SASL) multicenter phase II trial (SAKK 77/06). Oncologist. 2010;15:285–92.

    Article  PubMed  CAS  Google Scholar 

  49. Raoul JL, Finn R, Kang YK, Park JW, Harris R, Coric V, et al. An open-label phase II study of first- and second-line treatment with brivanib in patients with hepatocellular carcinoma (HCC). J Clin Oncol. 2009;27 (Suppl; abstract no. 4577).

  50. Finn RS, Kang Y, Park J, Harris R, Donica M, Walters I. Phase II, open label study of brivanib alaninate in patients (pts) with hepatocellular carcinoma (HCC) who failed prior antiangiogenic therapy. In: 2009 Gastrointestinal Cancers Symposium. (abstract no. 200).

  51. Finn RS, Park JW, Kang YK, et al. Time-to-progression sub-analysis of second-line treatment with brivanib after failure of prior antiangiogenic therapy in patients with unresectable, locally advanced, or metastatic hepatocellular carcinoma. In: AASLD Annual Meeting 2009 (abstract).

  52. Kanai F, Yoshida H, Teratani T, Sato S, Tateishi R, Obi S, et al. New feasibility study design with hepatocellular carcinoma: A phase I/II study of TSU-68, an oral angiogenesis inhibitor. J Clin Oncol. 2006;24 (Suppl; abstract no. 4145).

  53. Kanai F, Yoshida H, Tateishi R, Sato S, Kawabe T, Obi S, et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2010. [Epub ahead of print].

  54. Toh H, Chen P, Carr BI, Knox JJ, Gill S, Qian J, et al. Linifanib phase II trial in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2010;28 (Suppl; abstract no. 4038).

  55. Yau CC, Chen PJ, Curtis CM, Murphy PS, Suttle AB, Arumugham T, et al. A phase I study of pazopanib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2009;27:3561.

    Google Scholar 

  56. Siegel AB, Cohen EI, Ocean A, Lehrer D, Goldenberg A, Knox JJ, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26:2992–8.

    Article  PubMed  CAS  Google Scholar 

  57. Bergers G, Hannahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.

    Article  PubMed  CAS  Google Scholar 

  58. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.

    Article  PubMed  CAS  Google Scholar 

  59. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalized tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.

    Article  PubMed  CAS  Google Scholar 

  60. Bertolini F, Mancuso P, Shaked Y, Kerbel RS. Molecular and cellular biomarkers for angiogenesis in clinical oncology. Drug Discov Today. 2007;12:806–12.

    Article  PubMed  CAS  Google Scholar 

  61. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, et al. HIF 1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008;13:206–20.

    Article  PubMed  CAS  Google Scholar 

  62. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol. 2005;7:870–9.

    Article  PubMed  CAS  Google Scholar 

  63. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comogli PM, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncoene. Cancer Cell. 2003;3:347–61.

    Article  PubMed  Google Scholar 

  64. Steeg PS. Angiogenesis inhibitors: motivators of metastasis? Nat Med. 2003;9:822–3.

    Article  PubMed  CAS  Google Scholar 

  65. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–5.

    Article  PubMed  Google Scholar 

  66. Kruse FE, Joussen AM, Rohrschneider K, Becker MD, Völcker HE. Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Opthalmol. 1998;236:461–6.

    Article  CAS  Google Scholar 

  67. Kumar S, Witzig TE, Rajkumar SV. Thalidomide: current role in the treatment of non-plasma cell malignancies. J Clin Oncol. 2004;22:2477–88.

    Article  PubMed  CAS  Google Scholar 

  68. Hsu C, Chen CN, Chen LT, Wu CY, Hsieh FJ, Cheng AL. Low-dose thalidomide treatment for advanced hepatocellular carcinoma. Oncology. 2003;65:242–9.

    Article  PubMed  CAS  Google Scholar 

  69. Patt YZ, Hassan MM, Lozano RD, Nooka AK, Schnirer II, Zeldis JB, et al. Thalidomide in the treatment of patients with hepatocellular carcinoma: a phase II trial. Cancer. 2005;103:749–55.

    Article  PubMed  CAS  Google Scholar 

  70. Chiou HE, Wang TE, Wang YY, Liu HW. Efficacy and safety of thalidomide in patients with hepatocellular carcinoma. World J Gastroenterol. 2006;12:6955–6.

    PubMed  CAS  Google Scholar 

  71. Chuah B, Lim R, Boyer M, Ong AB, Wong SW, Kong HL, Millward M, et al. Multi-centre phase II trial of thalidomide in the treatment of unresectable hepatocellular carcinoma. Acta Oncol. 2007;46:234–8.

    Article  PubMed  CAS  Google Scholar 

  72. Chen LT, Liu TW, Chao Y, Shiah HS, Chang JY, Juang SH, et al. Alpha-fetoprotein response predicts survival benefits of thalidomide in advanced hepatocellular carcinoma. Aliment Pharmacol Ther. 2005;22:217–26.

    Article  PubMed  CAS  Google Scholar 

  73. Yau T, Chan P, Wong H, Ng KK, Chok SH, Cheung TT, et al. Efficacy and tolerability of low-dose thalidomide as first-line systemic treatment of patients with advanced hepatocellular carcinoma. Oncology. 2007;72:67–71.

    Article  PubMed  CAS  Google Scholar 

  74. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4:423–36.

    Article  PubMed  CAS  Google Scholar 

  75. Gasparini G. Metronomic scheduling: the future of chemotherapy? Lancet Oncol. 2001;2:733–40.

    Article  PubMed  CAS  Google Scholar 

  76. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cyotoxic drugs can target tumor angiogenesis in mice. J Clin Invest. 2000;105:1045–7.

    Article  PubMed  CAS  Google Scholar 

  77. Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA. 2003;100:12917–22.

    Article  PubMed  CAS  Google Scholar 

  78. Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Sampson JH, Sathornsumetee S, et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer. 2009;101:1986–94.

    Article  PubMed  CAS  Google Scholar 

  79. Garcia AA, Hirte H, Fleming G, Yang D, Tsao-Wei DD, Roman L, et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol. 2008;26:76–82.

    Article  PubMed  CAS  Google Scholar 

  80. Dellapasqua S, Bertolini F, Bagnardi V, Campagnoli E, Scarano E, Torrisi R, et al. Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol. 2008;26:4899–905.

    Article  PubMed  CAS  Google Scholar 

  81. Hsu CH, Shen YC, Lin ZZ, Chen PJ, Shao YY, Ding YH, et al. Phase II study of combining sorafenbi with metronomic tegafur/uracil for advanced hepatocelular carcinoma. J Hepatol. 2010. doi:10.1016/j.jhep.2010.01.035.

  82. Hsu CH, Yang TS, Hsu C, Toh HC, Epstein RJ, Hsiao LT, et al. Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma. Br J Cancer. 2010;102:981–6.

    Article  PubMed  CAS  Google Scholar 

  83. Hsu C, Chang D, Lin Z, Lee K, Hsiao C, Shen Y, et al. Thalidomide plus tegafur/uracil for the treatment of advanced/metastatic hepatocellular carcinoma (HCC): a phase II single-arm study. J Clin Oncol. 2008;26 (Suppl; abstract no. 15598).

  84. Jeong W, Chun HG, Cer D, Sekhri V, Kim-Schluger L, Wolf D. A combination of capecitabine and thalidomide in patients with hepatocellular carcinoma. J Clin Oncol. 2006;24 (Suppl; abstract no. 4142).

  85. Thomas MB, Abbruzzese JL. Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol. 2005;23:8093–108.

    Article  PubMed  CAS  Google Scholar 

  86. Hoshida Y, Toffanin S, Lachenmayer A, Villanueva A, Minguez B, Llovet JM. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis. 2010;30:35–51.

    Article  PubMed  CAS  Google Scholar 

  87. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  88. Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, et al. Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology. 1998;27:951–8.

    Article  PubMed  CAS  Google Scholar 

  89. Huynh H, Nguyen TT, Chow KH, Tan PH, Soo KC, Tran E. Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol. 2003;8:3–19.

    CAS  Google Scholar 

  90. Lee HC, Tian B, Sedivy JM, Wands JR, Kim M. Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology. 2006;131:1208–17.

    Article  PubMed  CAS  Google Scholar 

  91. Erhardt A, Hassan M, Heintges T, Häussinger D. Hepatitis C virus core protein induces cell proliferation, activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology. 2002;292:272–84.

    Article  PubMed  CAS  Google Scholar 

  92. Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J. 2004;18:1123–5.

    Article  PubMed  CAS  Google Scholar 

  93. Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 2003;52:706–12.

    Article  PubMed  CAS  Google Scholar 

  94. O’Neil BH, Williams-Goff LW, Kauh J, Bekaii-Saab T, Strosberg JR, Lee R, et al. A phase II study of AZD6244 in advanced or metastatic hepatocellular carcinoma. J Clin Oncol. 2009;27:15574.

    Google Scholar 

  95. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48.

    Article  PubMed  CAS  Google Scholar 

  96. Fujiwara Y, Hoon DS, Yamada T, Umeshita K, Gotoh M, Sakon M, et al. PTEN/MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinoma. Jpn J Cancer Res. 2000;92:287–92.

    Google Scholar 

  97. Hu TH, Huang CC, Lin PR, Lin PR, Liu SY, Chang HW, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer. 2003;97:1929–40.

    Article  PubMed  CAS  Google Scholar 

  98. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135:1972–83.

    Article  PubMed  CAS  Google Scholar 

  99. Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTOR and P70S6 kinase expression in primary liver neoplasms. Clin Cancer Res. 2004;10:8421–5.

    Article  PubMed  CAS  Google Scholar 

  100. Chen KF, Yeh PY, Yeh KH, Lu YS, Huang SY, Cheng AL. Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2008;68:6698–707.

    Article  PubMed  CAS  Google Scholar 

  101. Chen KF, Yeh PY, Hsu C, Hsu CH, Lu YS, Hsieh HP, et al. Bortezoomib overcomes tumor necorsis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells in part through the inhibition of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem. 2009;284:11121–33.

    Article  PubMed  CAS  Google Scholar 

  102. Rizell M, Andersson M, Cahlin C, Hafström L, Olausson M, Lindnér P. Effects of the mTOR inhibitor sirolimus in patients with hepatocellular and cholangiocellular cancer. Int J Clin Oncol. 2008;13:66–70.

    Article  PubMed  CAS  Google Scholar 

  103. Chen L, Shiah HS, Chen CY, Lin YJ, Lin PW, Su WC, Chan JY. Randomized, phase I, and pharmacokinetic (PK) study of RAD001, an mTOR inhibitor, in patients (pts) with advanced hepatocelluar carcinoma (HCC). J Clin Oncol 2009;27 (Suppl; abstract no. 4587).

  104. Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene. 2006;25:3787–800.

    Article  PubMed  CAS  Google Scholar 

  105. Furuse J. Growth factors as therapeutic targets in HCC. Crit Rev Oncol Hematol. 2008;67:8–15.

    Article  PubMed  Google Scholar 

  106. Hamazaki K, Yunoki Y, Tagashira H, Mimura T, Mori M, Orita K. Epidermal growth factor receptor in human hepatocellular carcinoma. Cancer Detect Prev. 1997;21:355–60.

    PubMed  CAS  Google Scholar 

  107. Altimari A, Fiorentino M, Gabusi E, Gruppioni E, Corti B, D’Errico A, Grigioni WF. Investigation of ErbB1 and ErbB2 expression for therapeutic targeting in primary liver tumours. Dig Liver Dis. 2003;35:332–8.

    Article  PubMed  CAS  Google Scholar 

  108. Hsu C, Huang CL, Hsu HC, Lee PH, Wang SJ, Cheng AL. HER-2/neu overexpression is rare in hepatocellular carcinoma and not predictive of anti-HER-2/neu regulation of cell growth and chemosensitivity. Cancer. 2002;94:415–20.

    Article  PubMed  CAS  Google Scholar 

  109. Su MC, Lien HC, Jeng YM. Absence of epidermal growth factor receptor exon 18–21 mutation in hepatocellular carcioma. Cancer Lett. 2005;224:117–21.

    PubMed  CAS  Google Scholar 

  110. Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol. 2005;23:6657–63.

    Article  PubMed  CAS  Google Scholar 

  111. Thomas MB, Ghadha R, Glover K, Wang X, Morris J, Brown T, et al. Phase II study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer. 2007;110:1059–67.

    Article  PubMed  CAS  Google Scholar 

  112. O’Dwyer PJ, Gianotonio BJ, Levy DE, Kauh JS, Fitzgerald DB, Benson AB. Gefitinib in advanced unresectable hepatocellular carcinoma: results from the Eastern Cooperative Oncology Group’s Study E1203. J Clin Oncol. 2006;24 (Suppl; abstract no. 4143).

  113. Bekaii-Saab T, Markowitz J, Prescott N, Sadee W, Heerema N, Wei L, et al. A multi-institutional phase II study of the efficacy and tolerability of lapatinib in patients with advanced hepatocellular carcinomas. Clin Cancer Res. 2009;15:5895–901.

    Article  PubMed  CAS  Google Scholar 

  114. Gruenwald V, Wilkens L, Gebel M, Wirth T, Greten S, Kubicka MP, et al. A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma. J Clin Oncol. 2006;24:14079.

    Google Scholar 

  115. Zhu AX, Stuart K, Blaszkowsky LS, Muzikansky A, Reitberg DP, Clark JW, et al. Phase 2 study of cetuximab in patients with advanced HCC. Cancer. 2007;110:581–9.

    Article  PubMed  CAS  Google Scholar 

  116. Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis. Mol Pathol. 2001;54:138–44.

    Article  PubMed  CAS  Google Scholar 

  117. Aishima S, Basaki Y, Oda Y, Kuroda Y, Nishihara Y, Taguchi K, et al. High expression of insulin-like growth factor binding protein-3 is correlated with low portal invasion and better prognosis in human hepatocellular carcinoma. Cancer Sci. 2006;97:1182–90.

    Article  PubMed  CAS  Google Scholar 

  118. Breuhahn K, Schirmacher P. Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol. 2008;14:1690–8.

    Article  PubMed  CAS  Google Scholar 

  119. Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Sole M, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52:550–9.

    Article  PubMed  CAS  Google Scholar 

  120. Okano J, Shiota G, Kawasaki H. Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver disease: an immunohistochemical study. Liver. 1999;19:151–9.

    Article  PubMed  CAS  Google Scholar 

  121. Osada S, Kanematsu M, Imai H, Goshima S. Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. Hepatogastroenterology. 2008;55:544–9.

    PubMed  CAS  Google Scholar 

  122. Chiba T, Yokosuka O, Arai M, Tada M, Fukai K, Imazeli E, et al. Identification of genes up-regulated by histone deaceetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J Hepatol. 2004;41:436–45.

    Article  PubMed  CAS  Google Scholar 

  123. Yamashita Y, Shimada M, Harimoto N, Rikimaru T, Shirabe K, Tanaka S, et al. Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. In J Cancer. 2003;103:572–6.

    CAS  Google Scholar 

  124. Lu YS, Kashida Y, Kulp SK, Wang YC, Wnag D, Hung JH, et al. Efficay of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology. 2007;46:1119–30.

    Article  PubMed  CAS  Google Scholar 

  125. Shirakawa H, Suzuki H, Shimomura M, Kojima M, Gotohda N, Takahashi S, et al. Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci. 2009;100:1403–7.

    Article  PubMed  CAS  Google Scholar 

  126. Baumhoer D, Tornillo L, Stadimann S, Roncalli M, Diamantis EK, Terracciano LM. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol. 2008;29:1319–26.

    Google Scholar 

  127. Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, et al. Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol. 2009;51:725–33.

    Article  PubMed  CAS  Google Scholar 

  128. Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Thng CH, et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med. 2009;13:2673–83.

    Article  PubMed  Google Scholar 

  129. Desbois-Mouthon C, Baron A, Blivet-Van Eggelpoel MJ, Fartoux L, Venot C, Bladt F, et al. Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma. Clin Cancer Res. 2009;15:5445–56.

    Article  PubMed  CAS  Google Scholar 

  130. Desbois-Mouthon C, Cacheux W, Blivet-Van Eggelpoel MJ, Barbu V, Fartoux L, Poupon R, et al. Impact of IGF-1R/EGFR cross-talks on hepatoma cell sensitivity to gefitinib. Int J Cancer. 2006;119:2557–66.

    Article  PubMed  CAS  Google Scholar 

  131. Ou DL, Shen YC, Liang JD, Liou JY, Yu SL, Fan HH, et al. Induction of Bim expression contributes to the antitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signaling-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res. 2009;15:5820–8.

    Article  PubMed  CAS  Google Scholar 

  132. Thomas MB, Morris JS, Chadha R, Iwasaki M, Kaur H, Lin E, et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol. 2009;27:843–50.

    Article  PubMed  CAS  Google Scholar 

  133. Kaseb AL, Iwasaki M, Javle M, Onicescu G, Garrett-Mayer E, Abbruzzese GL, et al. Biological activity of bevacizumab and erlotinib in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2009;27 (Suppl; abstract no. 4522).

  134. Govindarajan R, Siegel ER, Makhoul I, Williamson SK. Phase II study of efficacy of bevacizumab and erlotinib in inoperable previously untreated hepatocellular carcinoma (HCC). In: 2009 Gastrointestinal Cancers Symposium (abstract no. 264).

  135. Hsu C, Kang Y, Yang T, Su W, Sandoval-Tan J, Chiou T, et al. A phase II study of bevacizumab (B) and erlotinib (E) in combination for Asian patients (pts) with advanced/metastatic hepatocellular carcinoma (HCC): an interim report. J Clin Oncol. 2009;27 (Suppl; abstract no. 4585).

  136. Hsu C, Yang TS, Huo TI, Hsieh RK, Hwang WS, Hsieh TY, et al. Evaluation of vandetanib in patients with inoperable hepatocellular carcinoma (HCC): a randomized, double-blind, parallel group, multicenter, Phase II study. European Cancer Organization (ECCO) 15/European Society of Medical Oncology (ESMO) 34 Meeting, 2009 (abstract no. 6518).

  137. Yeo W, Chan TC, Leung NW, Lam WY, Mo FK, Chu MT, et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J Clin Oncol. 2009;27:605–11.

    Article  PubMed  CAS  Google Scholar 

  138. Pitini V, Sturniolo G, Arrigo C, Leonardi S, Pino S, Altavilla G. HCV genotype 2 as a risk factor for reactivation in patients with B-cell lymphoma undergoing rituximab combination chemotherapy. Br J Haematol. 2010. [Epub ahead of print].

  139. Forner A, Reig ME, de Lope CR, Bruix J. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis. 2010;30:61–74.

    Article  PubMed  CAS  Google Scholar 

  140. Poon D, Anderson BO, Chen LT, Tanaka K, Lau WY, Van Cutsem E, et al. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol. 2009;10:1111–8.

    Article  PubMed  Google Scholar 

  141. Kokudo N, Makuuchi M. Evidence-based clinical practice guidelines for hepatocellular carcinoma in Japan: the J-HCC guidelines. J Gastroenterol. 2009;44:119–21.

    Article  PubMed  Google Scholar 

  142. Kudo M, Okanoue T. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice manual proposed by the Japan Society of Hepatology. Oncology. 2007;72:2–15.

    Article  PubMed  Google Scholar 

  143. Poon RT, Fan ST. Hepatectomy for hepatocellular carcinoma: patient selection and postoperative outcome. Liver Transpl. 2004;10:S39–45.

    Article  PubMed  Google Scholar 

  144. Shao YY, Lin ZZ, Chen TJ, Hsu C, Shen YC, Hsu CH, Cheng AL. Prognostic values of baseline circulating endothelial progenitor level for advanced heaptocellular carcinoma (HCC) patients under anti-angiogenic therapy. J Clin Oncol. 2010;28 (abstract).

  145. Booiege V, Baey C, Dromain C, Ducreux M, Malka D, Pignon J, et al. Circulating endothelial cells (CEC) and angiogenic proteins monitoring in patients (pts) with advanced hepatocellular carcinoma (HCC) treated with bevacizumab. J Clin Oncol. 2009;27 (Suppl; abstract no. 4597).

  146. Sessa C, Guibal A, Del Conte G, Ruegg C. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Rev Pract Oncol. 2008;5:378–91.

    Article  CAS  Google Scholar 

  147. Murukesh N, Dive C, Jayson GC. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer. 2010;102:8–18.

    Article  PubMed  CAS  Google Scholar 

  148. O’Connor JPB, Jackson A, Parker GJM, et al. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer. 2007;96:189–95.

    Article  PubMed  CAS  Google Scholar 

  149. Leach MO, Brindle KM, Evelhock JL, Griffiths JR, Horsman MR, Jackson A, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer. 2005;92:1599–610.

    Article  PubMed  CAS  Google Scholar 

  150. Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JX, et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol. 2009;6:327–38.

    Article  PubMed  CAS  Google Scholar 

  151. Shen YC, Hsu CY, Yu CW, Hsu C, Hsu CH, Cheng AL, et al. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict treatment outcomes for advanced hepatocellular carcinoma (HCC) patients who received sorafenib plus tegafur/uracil therapy. J Hepatol. 2010;52 (Suppl 1):S52 (abstract no. 116).

    Google Scholar 

  152. Mirlacher M, Kasper M, Storz M, Knecht Y, Dürmüller U, Simon R, et al. Influence of slide aging on results of translational research studies using immunohistochemistry. Mod Pathol. 2004;17:1414–20.

    Article  PubMed  Google Scholar 

  153. Shao YY, Chen CL, Huang CC, Tu HC, Lin ZZ, Hsu CH, et al. Discordance of the immunohistochemical expression of phosphor-Akt and phosphor-ERK between paired biopsy and hepatectomy specimens of hepatocellular carcinoma. In: AACR annual meeting 2010 (Abstract no. 3759).

  154. Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 2004;40:667–76.

    Article  PubMed  CAS  Google Scholar 

  155. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al. Gene expression patterns in human liver cancers. Mol Biol Cell. 2002;13:1929–39.

    Article  PubMed  CAS  Google Scholar 

  156. Izuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet. 2003;361:923–9.

    Article  CAS  Google Scholar 

  157. Breuhahan K, Vreden S, Haddad R, Beckebaum S, Stippel D, Flemming P, et al. Molecular profiling of human hepatocellular carcinoma defines mutually exclusive interferon regulation and insulin-like growth factor II overexpression. Cancer Res. 2004;64:6058–64.

    Article  Google Scholar 

  158. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, et al. Predicting hepatitis B virus-positive metastatic hepatocellulr carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9:416–23.

    Article  PubMed  CAS  Google Scholar 

  159. Midorkawa Y, Tsutsumi S, Nishimura K, Kamimura N, Kano M, Sakamoto H, et al. Distinct chromosomal bias of gene expression signatures in the progression of hepatocellular carcinoma. Cancer Res. 2004;64:7263–70.

    Article  Google Scholar 

  160. Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42–52.

    Article  PubMed  CAS  Google Scholar 

  161. Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68:6779–88.

    Article  PubMed  CAS  Google Scholar 

  162. Dalton WS, Friend SH. Cancer biomarkers––an invitation to the table. Science. 2006;312:1165–8.

    Article  PubMed  CAS  Google Scholar 

  163. Dash A, Maine IP, Varambally S, Shen R, Chinnaiyan AM, Rubin MA. Changes in differential gene expression because of warm ischemia time of radical prostatectomy specimens. Am J Pathol. 2002;161:1743–8.

    PubMed  CAS  Google Scholar 

  164. El-Serag HB, Nurgalieva ZZ, Mistretta TA, Finegold MJ, Souza R, Hilsenbeck S, et al. Gene expression in Barrett’s esophagus: laser capture versus whole tissue. Scand J Gastroenterol. 2009;44:787–95.

    Article  PubMed  CAS  Google Scholar 

  165. Klee EW, Erdogan S, Tillmans L, Kosari F, Sun Z, Wigle DA. Impact of sample acquisition and linear amplification on gene expression profiling of lung adenocarcinoma: laser capure micro-dissection cell-sampling versus bulk tissue-sampling. BMC Med Genom. 2009;9:2–13.

    Google Scholar 

  166. De Cecco L, Musella V, Veneroni S, Cappelletti V, Bongarzone I, Callari M, et al. Impact of biospecimens handling on biomarker research in breast cancer. BMC Cancer. 2009;9:409–10.

    Article  PubMed  CAS  Google Scholar 

  167. Hoshida Y, Nijman SMB, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69:7385–92.

    Article  PubMed  CAS  Google Scholar 

  168. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.

    Article  PubMed  CAS  Google Scholar 

  169. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    Article  PubMed  CAS  Google Scholar 

  170. Demetri GD. Targeting the molecular pathophysiology of gastrointestinal stromal tumors with imatinib. Mechanisms, successes, and challenges to rational drug development. Hematol Oncol Clin North Am. 2002;16:1115–24.

    Article  PubMed  Google Scholar 

  171. Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K, et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell. 2006;9:485–95.

    Article  PubMed  CAS  Google Scholar 

  172. Meric-Bernstam F, Hung MC. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin Cancer Res. 2006;12:6326–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Lii Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, YC., Hsu, C. & Cheng, AL. Molecular targeted therapy for advanced hepatocellular carcinoma: current status and future perspectives. J Gastroenterol 45, 794–807 (2010). https://doi.org/10.1007/s00535-010-0270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0270-0

Keywords

Navigation