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Abstract
The late Carboniferous/early Permian post-collisional rhyolites (305–285 Ma) that formed in Central Europe have gener-
ally similar whole rock compositions to that of older Late-Variscan rhyolites (330–310 Ma). However, data compilation 
combining zircon age with the chemical composition of rhyolites from 20 units shows a trend of increasing zircon saturation 
temperature with decreasing age. This trend is particularly well identified in rhyolites from the Central European Lowlands 
(CEL)—consisting of the NE German and NW Polish Basin—and also correlates their location with the zircon saturation 
temperature increasing from SE to NW from 750°C to 850°C. We infer that these higher temperatures of zircon saturation 
reflect a contemporaneous change in the tectonic setting from collisional to divergent, reflecting the onset of the Central 
European continental rifting. This interpretation is further corroborated by the trace element compositions of the CEL zircons, 
which resembles zircon crystallized in a divergent setting. Interestingly, the zircon formed globally in this type of setting is 
chemically diverse, especially considering uranium concentration. For example, zircon from locations dominated by mafic 
magma fractionation, such as rhyolites from Iceland, have low U concentrations and low U/Yb ratios. On the other hand, 
zircon formed in rhyolites in rifted margins, like western North America, tends to have much higher U and U/Yb ratios. Such 
high concentrations are not observed in zircon from the CEL, suggesting that the mantle input could be higher and residence 
times within continental crust shorter than those for rhyolites from the Cenozoic western USA. This may, in turn, suggest that 
the region might have been affected by a hot spot, similar to that responsible for rhyolite formation of the Snake River Plain.

Keywords  Central European Basin system · Rift-related silicic volcanism · Tectonic setting · Superheated magma · Zircon 
saturation

Introduction

The post-collisional late Paleozoic Central European mag-
matic activity ejected vast quantities of volcanic material, 
leading to catastrophic caldera-forming silicic supererup-
tions (VEI > 7, e.g., Teplice caldera, Casas-García et al. 
2019; Wurzen caldera, Repstock et al. 2018), and the forma-
tion of mafic (Skaggerag-Centred Large Igneous Province, 
Torsvik et al. 2008) and silicic large igneous provinces (LIP) 
(felsic large igneous province of the NE German Basin (NE 
GB) and NW Polish Basin (NW PB); Paulick and Breitkreuz 
2005). Continental LIPs are important sites of magma for-
mation, as they eject large quantities of bimodal volcanic 
products with the predominance of rhyolites and dacites (ca. 
80% of volcanic products, Bryan 2007). Although the tec-
tonic setting of silicic LIPs is still debated (e.g., Permian to 
Triassic Choiyoi Magmatic Province of Chile and Argentina, 
Bastías-Mercado et al. 2020), they are known to be typically 
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formed in failed continental rifts (e.g., Mesozoic Chon Aike 
province of Patagonia and related rocks in West Antarctica, 
Pankhurst et al. 1998), in linear volcanic–plutonic belts at 
rifted continental margins (e.g., Archean high-silica rhyo-
lites of the Gavião Block, Brazil, Zincone et al. 2016), and—
very exceptionally—complex hot spot-related systems (e.g., 
Snake River Plain rhyolites of southern Idaho and northern 
Nevada, Branney et al. 2008).

Each of these tectonic settings comprises diverse con-
ditions, differentiation processes, and sources involved 
in rhyolite petrogenesis that can be tracked by analysis of 
major and accessory minerals. However, rhyolites are prone 
to post-magmatic alterations, and this record is often oblit-
erated by low-temperature processes. However, one of the 
accessory minerals that survives most alterations is zircon, 
and it offers a fingerprint of magmatic processes. As such, 
it is important to consider the timing of zircon crystalli-
zation within the system, which strongly depends on the 
bulk rock Zr concentration and consequent zircon satura-
tion temperature in the system. In this study, we review and 
summarize trace element information derived from zircon 
grains obtained from Permo-Carboniferous high-silica vol-
canic rocks drilled across the CEL encompassing the NE 
GB and NW PB (published by Słodczyk et al. 2023) and 
present the results in the tectonic context, i.e., we show that 
a comparison of zircon composition with a wider database 
may provide information on the tectonic regimes in which 
the studied rhyolites were generated.

Geological setting

During the late Carboniferous and Permian in Central 
Europe, large and voluminous volcanic centres were formed 
due to widespread extensional tectonics in the aftermath of 
the Variscan orogeny (Central European Extensional Prov-
ince, Kroner and Romer 2013). Here, the volcanic edifices 
show remarkable similarities with the volcanic products of 
the Cenozoic western USA, ranging from large caldera sys-
tems formed during supereruption events (e.g., the Bishop 
tuff-type Teplice rhyolite, Breiter et al. 2001; the monotonous 
intermediates and rhyolites of northern Saxony, Repstock 
et al. 2018; Hübner et al. 2021), the eruption of a super-
heated rhyolitic pyroclastic flow sheet (Snake River-type 
Planitz ignimbrite, Repstock et al. 2019) to the ejection of 
large quantities of felsic lavas (silicic LIP of the NE GB and 
NE PB, Paulick and Breitkreuz 2005). By contrast with the 
Cenozoic USA, where extensional tectonics and the subse-
quent magmatic activity were caused by slab rollback and/
or break-off at an active continental margin (e.g., Dickinson 
2002; Best et al. 2016), the late Paleozoic magmatic activity 
in Central Europe is associated with a continental rift (Obst 

2000; Torsvik et al. 2008; Repstock et al. 2019, 2022; Mazur 
et al. 2021).

The CEL consists of several smaller volcanic units situ-
ated across two countries, thus called the NE German Basin 
(NE GB) and the NW Polish Basin (NW PB), respectively 
(Fig. 1). The basin development started in the late Carbon-
iferous in the framework of dextral transtension (Breit-
kreuz and Kennedy 1999), which resulted from westward 
movements of Gondwana relative to Laurussia (Arthaud 
and Matte 1977). Magmatic flare-ups occurred during the 
initial phase of the basin development leading to the for-
mation of a large intracontinental volcanic zone consisting 
of ~ 37 000 km3 of silica-rich calc-alkaline lavas and ignim-
brites with a thickness of more than 2000 m (Benek et al. 
1996; Geißler et al. 2008). In Table 1, we characterize five 
subprovinces distinguished within the NE GB and the NW 
PB. The NE GB is divided into i) Mecklenburg–Vorpom-
mern, ii) East Brandenburg, and iii) Flechtingen–Altmark 
subprovinces, and the NW PB is divided into iv) Western 
Pomerania subbasin, and v) the Fore-Sudetic Monocline 
(Table 1, Fig. 1). In this study, we looked at available zircon 
trace element records in the volcanic successions coming 
from Penkun (Mecklenburg–Vorpommern), Salzwedel (from 
Flechtingen–Almark), Wysoka Kamieńska, (from Western 
Pomerania) as well as from Fehmarn (W part of the NE GB, 
not associated with the subprovinces; data from Słodczyk 
et al. 2023).

Dataset reduction

Two compiled datasets were used in this study, consisting 
of (1) high-silica whole rock analyses and (2) rhyolitic zir-
con trace element compositions; which we selected from 
individual localities to better control the data. In the first 
step, we used published whole rock data of the high-silica 
volcanics (mainly rhyolite with associated minor trachy-
dacite) across Central Europe (Arikas 1986; Breiter 1995, 
1997; Breiter et al. 2001; Awdankiewicz 1999; Romer et al. 
2001; Casas-García et al. 2019; Repstock et al. 2018, 2019, 
2022; Breitkreuz et al. 2021; Hübner et al. 2021), as we were 
interested in comparing them with the CEL rhyolites and 
subordinate trachydacites (Benek et al. 1996; Protas et al. 
1995; Paulick and Breitkreuz 2005; Słodczyk et al. 2015; 
Żelaźniewicz et al. 2016). The prerequisite for choosing 
any location was the presence of data necessary to calculate 
zircon saturation temperature (Fig. 2). Additionally, for the 
sake of a more global comparison, we included data from 
the continental divergent zones represented by rift rhyolites 
of the Basin and Range Province (Hildreth and Wilson 2007 
for the Bishop Tuff; Spell et al. 1990; Rowe et al. 2007 and 
Eichler and Spell 2020 for Jemez Mt; Foley et al. 2020 for 
the Peach Spring Tuff), the convergent zone represented by 
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Fig. 1   Spatial distribution of Permo-Carboniferous volcanics in 
the Central European Lowlands with drilled depths in the NE Ger-
man and the NW Polish Basin. Map modified after compilation from 
Benek et  al. 1996; Obst 2000; Dadlez 2006; Breitkreuz et  al. 2007; 
Geißler et al. 2008; and Torsvik et al. 2008. Radiometric 238U/206Pb 
ages for the zircon are taken from Breitkreuz and Kennedy 1999; 
Hoffmann et  al. 2013; Awdankiewicz et  al. 2014, Awdankiewicz 
2022; Słodczyk et al. 2018; Casas-García et al. 2019; Breitkreuz et al. 
2021; Tichomirowa et al. 2022 and Löcse et al. 2023. Abbreviations: 

volcanic systems: AW = Altmark–Wendland caldera, Fl = Flechtingen 
caldera, Fehmarn—assumed caldera, HVC = Halle Volcanic Com-
plex, NSB = North Sudetic Basin rhyolites, PL = vitrophyric Planitz 
ignimbrite, Ro = Rochlitz caldera, Te = Teplice caldera, TF = Tharandt 
Forest caldera, VA = Velpke–Asse caldera, and Wu = Wurzen cal-
dera; fault systems: DFZ = Dolsk Fault Zone, EL = Elbe Lineament, 
EZ = Elbe Zone, OFZ = Odra Fault Zone, STZ = Sorgenfrei Tornquist 
Zone TTZ = Teisseyre–Tornquist Zone
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Andean-type rhyolites (Casé et al. 2008; Mamani et al. 2010; 
Garrison et al. 2011; Van Zalinge et al. 2016; Andersen et al. 
2017; Richards et al. 2006; Lebti et al. 2006; Bahlburg et al. 
2006) and superheated and rheomorphic rhyolites of the 
Snake River Plain system (Pritchard et al. 2013; Coble and 
Mahood 2012; Ellis et al. 2010; Leeman and Bonnichsen 
1982; Watts et al. 2011; Fig. 2).

In the second step, we focused on comparing zircon trace 
element compositions. Generally, silicic rocks contain abun-
dant zircon and this is the case for magmas generated in dif-
ferent tectonic settings such as (1) convergent margins related 
to collisional zones (Zhao et al. 2016; Zeng et al. 2020), with 
the classic example of Andean-type magmatic arcs (Cisneros 
de León et al. 2021; Hu et al. 2013), (2) divergent tectonic 
lineament zones, related to continental rift volcanic (e.g., 
Jemez Mountain volcanic Field in New Mexico, Wu et al. 

2021; Quaternary rhyolite domes of the Coso Volcanic Field 
in California, Burgess et al. 2021), as well as (3) intraplate 
settings (hot spot regime) with the well-known example of hot 
spot silicic volcanic activity at the Snake River Plain (Colón 
et al. 2015; Ellis et al. 2019) in which the Yellowstone sys-
tem is included (Stelten et al. 2013, 2015, 2017; Troch et al. 
2018; Till et al. 2019). Zircon compositions, representing these 
three tectonic settings, are compiled in Fig. 3 and the choice 
of localities was dependent on the availability of trace element 
analyses for the zircon.

Table 1   Characteristic features of Permo-Carboniferous magmatic regions within the Central European Lowlands

[1] Geißler et al. 2008; [2] Benek et al. 1996; [3] Jackowicz 1983, 1994, 1995, 2000, 2004; [4] Katzung 1995; [6] Awdankiewicz et al. 2004; [7] 
Pokorski 1988; [8] Maliszewska et al. 2008; [9] Maliszewska et al. 2016

Region Characteristics

Mecklenburg–Vorpommern
[Germany]

• Silica-rich successions of up to 2,300 m (base not drilled) of lava domes and flows with core and carapace faces 
and subvolcanic intrusions [1]

• Scarcity of block-and-ash flow deposits means rare failure of lava domes [1]
• Reduction in thickness toward the Rügen area (≤ 416 m) [1]
• Basaltic lava fields and subvolcanic complexes [1]

East Brandenburg
[Germany]

• Dominated by Mg-rich andesite lavas (with a calculated volume of ca. 8,000 km3[2]) underlain by rhyodacitic 
pyroclastic deposits

• The volcanic sequence reaches thickness of up to 1,700 m [1]
• No sedimentary intercalations and rare immature soil horizons suggest a shield volcano edifice rather than 

depressions filled with lava flows [1]
• 200 m lithic-rich rhyodacitic ignimbrites overlain by 750 m-thick andesitic succession with pedogenic horizons 

toward the top, indicating declining volcanic activity during the late stage of shield volcano evolution [1]
• Andesitic succession is covered by playa sediments—the contact represents 30 Ma hiatus [4]
• The volcanic rocks become more silica-rich toward the north [1]

Flechtingen– Altmark
[Germany]

• Natural outcrops and quarries in Flechtingen–Roßlau Block along with deep wells with 800 m exposure of 
SiO2-rich bodies [1]

• The early volcanic stage is recorded in silica-rich lavas, lava domes, and laccoliths [1]
• The main volcanic phase was explosive and deposited partly welded dacitic to rhyolitic ignimbrites with a thick-

ness of up to 600 m (minimum diameter of 80 km) with a trend from lithic-rich to garnet-bearing and pumice-
rich deposits [1]

• Lithic-rich ignimbrites contain fragments of silica-rich lava, thus ignimbrite formation was preceded by a lava 
dome/laccolith (?) building phase [1]

• Post-ignimbritic silica rich lava domes [1]
• Existence of a large caldera system (?) or large fissure eruption accommodated within a tectonically active basin 

[1]
• Andesitic magma forms extended sills and plugs [6]
• The final volcanic stage included minor rhyolitic pyroclastic activity forming tuffs [1]

Fore-Sudetic Monocline
[Poland]

• Dominated by andesites, trachyandesites with minor rhyolites, dacites, trachytes, and local basalts [3, 8, 9]
• Common silicic pyroclastics, but they are minor in volume compared to subvolcanic micro-diorites, -monzo-

nites, -granites, granites, and syenites [8]
• Pyroclastic rocks of intermediate composition are rare [8]
• Increasing thickness of overlaid sediments from a few hundred meters to over 5300 m northward refers to the 

highest subsidence rate [7, 8, 9]
Western Pomerania
[Poland]

• Dominated by rhyolites and dacites with subordinate trachyandesites, andesites, and trachytes [3, 8, 9]
• Silicic pyroclastics are abundant but thin, and thus of small total volume [8, 9]
• Subvolcanics include microdiorite, gabbro and micromonzonite [9]
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Fig. 2   Rhyolite whole rock data (a) SiO2 (wt%) vs [Zr] (ppm) con-
centration. The CEL as indicated by the xs, are located close to the 
investigated sites of Fehmarn, Salzwedel, Penkun and Wysoka 
Kamieńska (data from: Protas et al. 1995; Benek et al. 1996; Paulick 

and Breitkreuz 2005; Żelaźniewicz et al. 2016); (b) calculated zircon 
saturation temperatures by formula from Boehnke et  al. 2013; (c) 
Th/U vs SiO2; (d-d’) Eu/Eu* and [Eu] (ppm) vs SiO2 concentration; 
(e) U/Yb vs SiO2; (f) Ce/Yb vs SiO2
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Rhyolite magma diversity related to tectonic 
setting: whole rock viewpoint

Diverse trace element composition of rhyolites was linked 
to different tectonic settings by Bachmann and Bergantz 
(2008), who divided the rhyolites into two groups: (I) 
cold-wet oxidized rhyolites emplaced within subduction 
zones, and (II) hot-dry reduced rhyolites emplaced above 
manifestations of mantle upwelling, i.e., hot spots, ridges, 
and rift zones. These two groups have similar major, but 
variable trace element concentrations reflecting diverse 
fractionation paths that controlled evolution from more 
mafic to high-silicic magmas. In particular, the shape of 
the rhyolite REE patterns depend on the crystallizing min-
eral assemblage. The U-shape REE pattern is associated 
with cold-wet oxidized (I-type) rhyolites characterized by 
early crystallizing pyroxene, oxides, and hydrous miner-
als such as amphibole (Bachmann and Bergantz 2008). In 
contrast, the “seagull” pattern is more typical for hot-dry 
reduced (II-type) rhyolites dominated by fractionation of 
anhydrous minerals such as quartz, plagioclase, alkali feld-
spar, Fe–Ti oxides and clinopyroxene (based on 12 Phan-
erozoic compositions of rhyolites from continental mafic 
Large Igneous Provinces by Halder et al. 2021). These 
differences should be mainly reflected in the Eu anomaly 
with a more negative and variable Eu anomaly typical for 
hot-dry rhyolites that are derived from magmas that frac-
tionated plagioclase early and a less pronounced negative 
Eu anomaly in cold-wet rhyolites, where plagioclase was 
late. However, this distinction is not well observed in our 
dataset in Fig. 2 with Eu anomalies characterized by simi-
lar ranges regardless of the tectonic setting and the CEL 
rhyolites having Eu anomaly values typical for both con-
vergent and divergent settings. Also, LREE/HREE enrich-
ment (Ce/Yb in Fig. 2f) seems to overlap between rhyolites 
and did not permit easy classification of the CEL rhyolites. 
From the whole rock parameters presented in Fig. 2, only 
Zr [ppm] shows a distinctly higher concentration in diver-
gent settings as compared to convergent settings.

Zircon saturation and crystallization

Zirconium concentration [Zr] in magma is important 
because zircon stability in the magma depends on this con-
centration, as well as magma composition and temperature 
(Watson and Harrison 1983; Harrison et al. 2007; Boehnke 
et al. 2013). For the crystallization of zircon, the system 
must be saturated in zirconium [Zr], which happens at a 
certain temperature for a given magma composition. The 
chemical composition of bulk rock rhyolite can be used 
to calculate zircon saturation temperature (Boehnke et al. 
2013). This temperature in rhyolites is often lower than 
the temperature recorded in major phases such as plagio-
clase and quartz (Pitcher et al. 2021). This difference is 
consistent with zircon crystallizing later than some major 
phases. Reconstructing the sequence of crystallization is 
important because it has a bearing on the interpretation 
of trace element concentrations in zircon, but it does not 
affect the temperature of zircon crystallization. This is 
because zircon is the main (or sole) mineral carrier of [Zr] 
in most evolved magmas, as the most common mineral 
phases incorporate very low amounts of [Zr] (< 250 ppm 
for clinopyroxene; < 200 ppm for amphibole; < 100 ppm 
for Fe–Ti oxides; < 50 ppm for biotite < 5 ppm for orthopy-
roxene, feldspathoids; < 1 ppm for plagioclase and alkali 
feldspar; 0 for quartz; Szymanowski et al. 2020). There-
fore, even though zircon saturation rarely coincides with 
liquidus temperature, the range of zircon saturation tem-
peratures observed for different rhyolitic units (Fig. 2b) 
most probably reflects differences in composition ([Zr] 
content) and/or temperature of magmas. The temperature 
and [Zr] concentration in magma might be unrelated as 
both mantle and crustal sources are characterized by a 
range of [Zr] concentrations. For example, [Zr] concen-
tration in basalts derived from various mantle sources is 
between 39 and 134 ppm, with a divergent setting gener-
ally characterized by higher values (Klein 2003; data from 
GREM). Also, the contribution from a crustal component 
is of high importance, as the melting of diverse rocks may 
provide a variable amount of [Zr] depending on inherited 
zircon absence or presence within sedimentary material 
(e.g., Zr-poor mudstone or Zr-rich sandstone respectively; 
for such cases see Słodczyk et al. 2018). However, higher 
[Zr] concentrations of rocks with similar composition 
(i.e., SiO2 content) and consequently higher zircon satu-
ration temperatures for silicic magmas could be related 
to elevated temperatures of magmas (Baker et al. 2002; 
Boehnke et al. 2013; Watson and Harrison 1983; Zhang 
and Xu 2016). This is because hotter magma may dissolve 
inherited zircon grains in the source and incorporate Zr 
into the bulk rock composition (c.f. Miller et al. 2003 for 
hot and cold granites). Consequently, comparing zircon 

Fig. 3   Comparison of selected trace and REE compositions for zircon 
from rhyolites of the NE German and NW Polish Basins (data from 
Słodczyk et al. 2023) with zircon from rhyolites associated with vari-
able tectonic settings. Data for divergent tectonic regimes from Bur-
gess et  al. (2021), Wall et  al. (2021), Banik et  al. (2018), Wu et  al. 
(2021), Velasco-Tapia et al. (2016), Watts et al. (2016a, b), Colombini 
et  al. (2011), Chamberlain et  al. (2014). Data for zircon from rhyo-
lites with hot spot associations from Stelten et al. (2013, 2015, 2017), 
Colón et al. (2015),  Till et al. (2019),  Ellis et al. (2019),  Troch et al. 
(2018). Data for zircon from rhyolites from convergent regimes from 
Zhao et al. (2016), Hu et al. (2013) Zeng et al. (2020),  Zhang et al. 
(2020), Cisneros de León et  al. (2021), Yan et  al. (2018), Wu et  al.
(2016)

◂
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saturation temperatures between different rhyolitic units 
having similar silica contents may be interpreted as a rela-
tive difference in the temperatures of magma from which 
the zircon crystallized.

Figure 2a shows that [Zr] concentrations in rhyolites 
from the CEL trend to higher values compared to other 
European rhyolites. Consequently, the CEL rhyolites are 
characterized by higher zircon saturation temperatures 
compared to the majority of Central European rhyolites 
with a few exceptions showing similarly high tempera-
tures. Also, in the global context, similarly high or higher 
[Zr] concentrations and zircon saturation temperatures are 

typical for some magmas from divergent settings but are 
not observed in convergent settings (Fig. 2a, b). Elevated 
temperatures in divergent settings may represent the case 
where the magmatic system within a continental rift is 
experiencing (multiple) recharge events with a high pos-
sibility for (repeated) dissolution of incorporated zircon 
after each recharge (e.g., Boehnke et al. 2013; Bindeman 
and Melnik 2016; Zhang and Xu 2016; Cashman et al. 
2017). Therefore, we suggest that a secular change in the 
tectonic setting in Central Europe may also be respon-
sible for the diversity in zircon saturation temperatures 
between the CEL and other rhyolites. Figure 4 shows 

285 290 295 300 305 310 315 320
650

700

750

800

850

900

950

1000

Zr
 sa

tu
ra

tio
n 

[T
(°

C)
]

age (Ma)

northwestward migration of
lithospheric extension

monotonous
intermediates

SR-type local advanced lithospheric extension

(NEGB, NWPB)

Fehmarn

Salzwedel
(Altmark)

Parchim
Mirow

Friedland

Penkun
t

836 ± 48°C

851 ± 11°C

870 ± 43°C

775 ± 57°C

827 ± 3°C

819 ± 3°C

799 ± 57°C

772 ± 10°C

Halle Volcanic Complex

18°0'0"E

16°0'0"E

16°0'0"E

14°0'0"E

14°0'0"E

12°0'0"E

12°0'0"E
55°0'0"N

54°0'0"N

54°0'0"N

53°0'0"N

53°0'0"N

52°0'0"N

52°0'0"N

51°0'0"N

130 km

a

b

Fig. 4   (a) Zircon saturation temperatures of presented rhyolitic units of the Central European Lowlands with respect to their ages; (b) schematic 
illustration of alignment of regional change in zircon saturation temperature



787International Journal of Earth Sciences (2024) 113:779–795	

zircon saturation temperatures plotted against the age of 
rhyolitic units. Older units related to the late-Variscan 
extension are characterized by consistent temperatures 
of 750–780 °C, whereas magmas younger than 305 Ma 
have more diverse (both lower and higher) temperatures. 
In the younger group a trend of increasing temperature 
with decreasing age can be distinguished for the CEL 
(Fig. 4a). This trend is correlated with the migration of 
the eruption centers toward the NW with time (Fig. 4b). 
Rhyolites recording even higher saturation temperatures 
occur in the Planitz ignimbrite and northern part of the 
NW PB, which suggests local formation of exceptionally 
hot magmas. Such a record of hot magmatism with some 
evidence of an increase in its temperature with time is con-
sistent with mantle upwelling and lithosphere thinning that 
is particularly well recorded in the CEL, but some records 
are also preserved in intramontane basins (cf. Awdank-
iewicz 2022; Hübner et al. 2021; Repstock et al. 2019, 
2022). Altogether the late- to post Variscan rhyolites seem 

to record a temporally and spatially controlled change in 
the tectonic setting and the predominance of hotter mag-
mas in the Permian.

Trace elements in zircon

Observed differences in zircon saturation temperatures 
between Central European rhyolites and between different 
tectonic settings suggest that the trace elements in zircon 
may provide an independent record of the tectono-magmatic 
environment in which zircon crystallized. Such an idea was 
proposed by Grimes et al. 2015 (with the discrimination 
diagrams shown in this work) linking zircon composition to 
specific tectonic settings such as a mid-ocean ridge, plume-
influenced ocean island, and subduction-related arc envi-
ronment. In this study, we look more closely into trace ele-
ment records in zircon but only from rhyolitic rocks, and our 
distinguished tectonic environments are therefore different 

Fig. 5   (a-b) Zircon composition from rhyolitic units associated with 
variable tectonic settings (data source as in Fig. 3); determination dia-
gram after Grimes et  al. 2015; (c) Gd/Yb vs U/Yb ratios in zircon 

from rhyolitic rocks of divergent regimes (data from Wall et al. 2021; 
Banik et  al. 2018; Velasco-Tapia et  al. 2016; Watts et  al. 2016a, b; 
Wu et al. 2021; Chamberlain et al. 2014; Burgess et al. 2021)
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from those in Grimes et al. (2015). Subduction-related and 
hot spot settings are considered as similar locations in our 
and Grimes et al. (2015) datasets, but we include divergent 
settings that are represented by rifted margins and not by 
mid-ocean ridges (Fig. 5). Despite these differences, our 
zircon data presents a sub-set of data that plots within the 
compositional zircon diversity characterized by Grimes et al. 
(2015) (Fig. 5a and b).

The trace element composition of zircon reflects melt 
composition at the time of zircon saturation. This melt com-
position depends on the initial magma composition or the 
sequence of crystallization, as late crystallizing zircon com-
position is affected by earlier crystallizing phases. For com-
parison purposes, it is better to compare elemental ratios, 
because they are not as easily affected by local changes in 
melt composition. Also, ratios such as Th/U, U/Yb, Eu/Eu*, 
Yb/Gd, and Ce/U are linked to particular conditions, e.g., 
Th/U and U/Yb are thought to reflect magma evolution, Eu/
Eu* and Yb/Gd show plagioclase and amphibole fractiona-
tion, respectively, and Ce/U redox conditions (Grimes et al. 
2015; Kirkland et al. 2015; Burnham and Berry 2012). The 
magma composition may be approximated by whole rock 
composition and for many ratios, the rocks from all conti-
nental settings show a broadly similar range of values for 
some elemental ratios such as Th/U and U/Yb (Grimes et al. 
2015; Fig. 2c and e, respectively). As for the Eu anomaly 
in whole rocks (Fig. 2d and d’), the Eu/Eu* decreases with 
increasing SiO2 content, which may be interpreted as the 
record of plagioclase fractionation, but the decreasing trend 
is similar between settings. Looking at the same ratios in 
zircon (Fig. 3), more pronounced differences are observed 
for zircon than for whole rock dataset. These differences may 
be interpreted first in the context of crystallizing conditions 
specific for each tectonic setting and then applied to the CEL 
zircon to better identify the tectonic setting involved in their 
formation.

Trace elements in rhyolitic zircons from convergent 
tectonic settings

Generally, zircon from convergent margin rhyolites are 
characterized by Hf concentrations starting from ~ 7 000 to 
13,500 ppm and the highest Th/U ratio up to 2 (Fig. 3a). 
The Th/U ratio decreases with Hf concentration. The vari-
ability of Th/U and Eu/Eu* for low Hf concentrations is the 
largest for this setting (Fig. 3a and b). The zircon from a 
convergent setting also shows higher values and variability 
of Yb/Gd compared to other tectonic settings (Fig. 3d and 
f). The high Eu/Eu* and low Yb/Gd ratios are expected of 
the subduction-related wet magmas that crystallize amphi-
bole, before both plagioclase and zircon (Davidson et al. 
2007), and similar trace element characteristics were noted 
in zircon crystallizing from wet appinitic magmas (Bruand 

et al. 2014; Pietranik et al. 2022). The high variability may 
indicate complex saturation of zircon in chemically diverse 
melts, where a small change in proportions of crystallizing 
minerals (amphibole, plagioclase, accessories) affects the 
evolving melt and subsequently zircon compositions (e.g., 
Barth et al. 2013; Grimes et al. 2015; Loader et al 2017; 
Lu et al. 2023).The variability may also suggest that the 
zircon crystallized in a compositionally stratified magma 
chamber (Chamberlain et al. 2014). Alternatively, for many 
trace element ratios the variability may indicate the incor-
poration of antecrystic zircons due to the reworking of a pre-
viously established crystal mush (e.g., Miller and Wooden 
2004; Lukács et al. 2021). Interestingly, there is a bimodal 
character of zircon regarding Eu/Eu* vs Ce/U showing (a) 
a wide range in Eu/Eu* at low Ce/U ratios (vertical trend) 
and a more scattered but still visible (b) higher Ce/U ratio 
for variable Eu/Eu* (horizontal trend, Fig. 3c). This may 
reflect zircon crystallization accompanied by respective co-
crystallization of plagioclase under varied redox conditions.

Altogether the trace element characteristics of zircon 
from a convergent margin setting are consistent with and 
well-illustrates crystallization of the cold-wet oxidized rhy-
olites recognized by Bachman and Bergantz (2008), with 
pyroxene, oxides, and hydrous minerals such as amphibole 
crystallizing before plagioclase. As such, the zircon prob-
ably records prolonged chemical evolution of magma from 
early (before plagioclase saturation) to late stage (when 
plagioclase and zircon co-crystallize). The low saturation 
temperatures of zircon would reflect both the cold nature of 
wet magmas and late zircon crystallization.

Trace elements in rhyolitic zircons from divergent 
and hot spot tectonic settings

Zircon from divergent settings rhyolites is characterized 
by a larger range of Hf concentrations, from 5 000 ppm 
to 16 000 ppm, than that observed in zircon from conver-
gent settings (Fig. 3a and b). This wider range of Hf con-
centrations may reflect zircon crystallizing earlier in the 
mineral crystallization sequence or simply the hotter tem-
perature of more dry magmas (consistent with its higher 
zircon saturation temperatures, Fig. 2b). On the other hand, 
an evolution toward higher Hf concentrations may be also 
due to the lack of abundant amphibole in the crystallizing 
sequence—a mineral that may incorporate some Hf in its 
structure (Nandedkar et al. 2016). Zircon from divergent 
setting rhyolites includes a zircon population with high U 
concentration accompanied by generally lower Th/U ratios 
(0.2–1) and extremely low Eu/Eu* values and similar zircon 
has been not observed in a convergent setting. This is con-
sistent with early plagioclase fractionation (before zircon 
started crystallizing) and the evolution of the melt toward 
extremely fractionated compositions with crystallization of 



789International Journal of Earth Sciences (2024) 113:779–795	

an assemblage typical of dry-hot magmas, i.e., quartz, pla-
gioclase, alkali feldspar, Fe–Ti oxides, and variable clinopy-
roxene (Bachmann and Bergantz 2008). However, the trace 
element ratios and concentrations in zircon from divergent 
settings change from one locality to another. Three groups 
can be distinguished in the diagram showing the Gd/Yb vs. 
U/Yb relationship (Fig. 5c) (I) increasing Gd/Yb ratio for 
low U/Yb typical of Iceland rhyolites (Banik et al. 2018) 
and early Earth crust (Ediacaran–Cambrian Wichita igne-
ous province by Wall et al. 2021); (II) increasing U/Yb ratio 
for low Gd/Yb typical of the voluminous rhyolitic eruption 
of the Bishop Tuff in USA (e.g., Chamberlain et al. 2014); 
(III) mixing trend of U/Yb vs Gd/Yb typical of a mature rift 
system within thick continental crust represented here by 
rhyolitic units created within the Basin and Range Province 
(western USA) and also the CEL rhyolites.

Finally, the compositional diversity of the zircon from hot 
spot rhyolites is rather limited compared to the two previ-
ously presented tectonic settings. This is because the zir-
con is taken from only one locality (Yellowstone), where 
the general heterogeneity of potential sources is lower than 
in other settings. In detail, zircon from rhyolites generated 
within this setting have an Hf concentration ranging from 
7000 to 13 000 ppm. The Th/U ratio is below 0.8 and there 
is no strong correlation between Th/U and Hf concentration 
(Fig. 3a). The Eu/Eu* anomaly for the majority of these 
zircon grains is below 0.2. Therefore, generally zircon from 
this setting is more similar to the zircon from a divergent 
setting, typical of dry, hot magmas.

Trace elements in zircon from NE Germany and NW 
Polish Basin rhyolites

Recent analyses of trace elements in zircon from the CEL 
were interpreted as a record of prolonged crystallization 
interrupted by one or two rejuvenations by more primi-
tive magma (NE GB) or a short crystallization (NW PB, 
Słodczyk et al. 2023). When the zircon composition is com-
pared to the global database, it shows rather limited variabil-
ity with Th/U ratios below 0.6 (with only a few outliers up to 
0.8) and Eu/Eu* below 0.1 (outliers up to 0.3). These ratios 
overlap with a zircon composition typical of divergent and 
hot spot settings, whereas zircon from a subduction-related 
setting has higher ratios. Therefore, all four rhyolite loca-
tions analyzed by Słodczyk et al. (2023) can be classified as 
hot-dry magmas characterized by early plagioclase fraction-
ation and no amphibole crystallization. A lack of amphibole 
in Central European rhyolites was noted in different volcanic 
centers by several authors (e.g., Nahe caldera, Arikas 1986; 
Flechtingen caldera, Geißler et al. 2008; Altmark-Wendland 
caldera, Marx 1994; North Saxon Volcanic complex, Rep-
stock et al. 2018, 2019, 2022; Hübner et al. 2021), and the 
zircon analyses independently confirm the dry nature of the 

magmas, typical of divergent settings. However, the rhyolites 
for this type of setting are elementally diverse between dif-
ferent localities (Fig. 5c), which is also well illustrated by 
the U concentrations in zircon (Fig. 6). The rhyolites related 
to divergent settings such as extensional continental margins 
of N America (Bishop Tuff) are commonly characterized by 
high U concentrations and extremely high U/Yb ratios that 
are observed neither in the Snake River rhyolite nor the CEL 
dataset (Fig. 6 a, b, c). Uranium concentration in zircon may 
be low for oxidized magmas, but it should be paired with 
high Ce/U ratios as it is the case for zircon crystallizing in a 
convergent setting, but not in the CEL (Fig. 3c). When the 
CEL zircons are compared to zircon from Bishop Tuff an 
evolution toward very low Eu/Eu* ratios coupled with a very 
high U concentration is evident only for the latter (Fig. 6b), 
suggesting that high U concentration marks formation of 
highly fractionated rhyolitic melts. Interestingly, high U con-
centrations are coupled with high Th/U ratios and also low 
Yb/Gd (Fig. 6a, c, d), which may be wrongly interpreted as 
crystallization from less evolved magma. The Bishop Tuff 
case shows that Eu/Eu* and U are better records of extreme 
fractionation than Th/U and Yb/Gd. Clearly, the CEL zir-
con does not record such fractionation, which may suggest 
a disruption of rhyolitic magma crystallization by the input 
of a more primitive magma. Therefore, even though the CEL 
rhyolites are said to evolve within a divergent regime during 
mantle upwelling, the late addition of less evolved magma 
portions may be interpreted as an even more intense mantle 
input, perhaps a sign of a hot spot fingerprint within the zir-
con. Such a scenario is consistent with the zircon individual 
grain-to-grain record (Słodczyk et al. 2023) as well as the 
general overlap of the CEL zircon with both divergent and 
hot spot zircon (Fig. 3). Input of such hot magma would 
prevent the extensive fractionation of rhyolitic systems 
that is commonly observed in rifted margins. Therefore, it 
seems that the CEL zircon crystallized in rhyolites that more 
closely resemble rhyolites from Snake River Plain rather 
than those from the Bishop Tuff.

Late Paleozoic rhyolites in the regional 
tectonic context: summary

Both zircon saturation temperatures and zircon composition 
in rhyolitic magmas from the CEL are consistent with an 
important change in the tectonic regime at the Carbonifer-
ous/Permian boundary. Zircon saturation in rhyolites can be 
traced from low-temperature late-Variscan to intermediate-
temperature post-Variscan to high-temperature signatures. 
However, outstanding higher temperatures were calculated 
for some localities, e.g., for the Wysoka Kamieńska rhyolite, 
and such high temperatures are consistent with the record 
of trace elements in zircon from these rhyolites (Słodczyk 
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et al. 2023). This data suggests the presence of superheated 
mantle-derived magmas in the region.

Generally, relatively high temperatures of zircon satura-
tion coupled with a geochemical fingerprint of crystalliza-
tion in hot, dry magmas are consistent with the formation of 
the CEL rhyolites in divergent settings. A lack of extensive 
fractionation, which is typical of rhyolites formed in rifted 
margins (Basin and Range Province), but is absent in very 
primitive rifts such as Iceland may suggest that the rhyolitic 
magmas were affected by input from primitive magmas and 
evolution toward hot spot setting (such as the Snake River 
Plain). Similarities between the Snake River Plain volcanics 
in the western USA and the crystal-poor Planitz ignimbrite 
of the Chemnitz Basin were already observed by textural 
evidence, dry mineral assemblage (diopside and augite as 
predominant ferromagnesian phase), and thermobarometric 
estimations (Repstock et al. 2019). Zircon composition from 
the CEL is also consistent with the absence of amphibole 
in the crystallizing assemblage and points additionally to 
reduced conditions of crystallization. However, since the 
hot spot origin for the Snake River Plain and Yellowstone 
rhyolites is still debated, similarities in the trace element 
pattern in zircon from rhyolites of the Cenozoic Snake River 

Plain/ Yellowstone in the western USA and the CEL might 
have other complex tectonic interrelationships. Foulger et al 
(2015) suggest migration of lithospheric extension and sub-
sequent crustal thinning as causes for mantle upwelling in 
the Snake River Plain and the adjacent Yellowstone area. 
Such an alternative model could also be applied to the vol-
canics of the CEL and its adjacent basins. The latter scenario 
is consistent with the spatial and temporal trend of increas-
ing zircon saturation temperatures for progressively younger 
rhyolites (Fig. 4), which can be taken as evidence for crustal 
thinning in the Variscan foreland along the fault systems.

Perspectives

This study suggests that the CEL rhyolites formed either dur-
ing migration of lithospheric extension or within the hot spot 
setting. The evidence in favor of migrating rift is consistent 
with increasing Zr saturation temperatures with age for the 
CEL rhyolites and successively hotter and younger rhyolite 
localities arranged along a regional, linear trend (Fig. 4). 
On the other hand, punctuated rhyolite localities recording 
unusually hot temperatures (Planitz in Repstock et al. 2019; 

Fig. 6   Zircon composition from rhyolites of chosen tectonic set-
tings including the CEL (NE German and NE Polish Basin data from 
Słodczyk et  al. 2023), divergent rhyolites of the Bishop Tuff (data 

from Chamberlain et  al. 2014), the Coso Volcanic Field (data from 
Burgess et  al. 2021) and hot spot represented by the Snake River 
Plain (data as Fig. 3)
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Wysoka Kamieńska in Protas et al. 1995, Słodczyk et al. 
2023) accompanied by the record of short zircon crystal-
lization (Słodczyk et al. 2023) are more consistent with hot 
spot influence. A better definition of the spatial arrange-
ment of rhyolite localities with known ages, geochemistry, 
petrology, and in particular zircon trace element composi-
tion should better distinguish between these two scenarios. 
Areas recording high zircon saturation temperatures are of 
particular interest as they may mark important features of the 
basement. The occurence of such areas is consistent with the 
geotectonic setting of the NW European rift basins, which 
developed on relatively thin lithosphere (Mazur et al. 2021).

Conclusions

Increasing data on zircon trace element compositions iden-
tify this mineral as a valuable tool in recognizing tectonic 
setting of rhyolitic magmas formation. We showed that zir-
con composition differs between hot-dry (typical for rifted 
margins and hot spots) and cold-wet (typical for subduction 
settings) rhyolites and better records diverse sequences of 
magma evolution than whole-rock composition. We showed 
that the trace element composition of zircon from CEL and 
zircon saturation temperature are within values typical for 
divergent margin and hot spot dry-hot rhyolites. Zircon did 
not record prolonged magma evolution as observed in rhyo-
lites from continental rifted margins (Bishop–Tuff style) 
and its composition indicates important input of hotter mag-
mas before eruption. The spatial arrangement of rhyolites 
within the CEL suggests their evolution during migration 
of lithospheric extension, but occurrences of super-heated 
rhyolites in the area, require more data to fully constrain the 
setting of the rhyolite magmatism.
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