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Abstract
The Toarcian Oceanic Anoxic Event (T-OAE, Early Jurassic) is marked by widespread marine deoxygenation and deposition 
of organic carbon (OC)-rich strata. The genesis of the T-OAE is thought to be associated with environmental changes caused 
by the emission of 12C-enriched greenhouse gasses (CO2, CH4), manifested in a negative Toarcian carbon isotope excursion 
(nT-CIE). The nT-CIE is commonly used to stratigraphically define the T-OAE, and despite the complex interrelationship 
of the different environmental phenomena, both terms (nT-CIE and T-OAE) are commonly used interchangeable. We here 
demonstrate that occurrence of OC-rich strata is diachronous and not restricted to the nT-CIE, reflecting the interaction of 
global- and regional-scale processes. Thus, the interchangeable use of T-OAE and nT-CIE should be discarded. The nT-CIE, 
however, hosts the T-OAE climax, marked by the widest extent of OC-rich strata. Early Toarcian environmental changes, 
particularly sea level rise and rising temperatures, may have made marine areas more susceptible to develop oxygen deficient 
conditions, favoring OC-accumulation.
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Introduction

In the geological past, Earth’s oceans were repeatedly punc-
tuated by periods of severe deoxygenations, termed Oce-
anic Anoxic Events (OAEs), which in the geological record 
are manifested by the trans-regional-to-global scale occur-
rence of organic carbon (OC)-rich sedimentary rocks (black 
shales, sensu lato; Wignall 1994). Black shales are thought 
to have formed under oxygen deficient conditions (ODC) in 
marine settings (e.g., Schlanger and Jenkyns 1976; Tyson 
and Pearson 1991; Jenkyns 2010). OAEs occurred in con-
junction with periods of environmental change and intense 
biogeochemical perturbations (e.g., Jenkyns 2010). In par-
ticular, global warming has been considered as major factor 

promoting deoxygenation in marine and lacustrine settings 
(e.g., Sarmiento et al. 1998; Keeling et al. 2010).

The early Toarcian stage (Early Jurassic, c. 183 Ma) 
records the Toarcian Oceanic Anoxic Event (T-OAE), 
characterized by the global-scale occurrence of OC-rich 
strata that formed on shelf seas, in deep marine settings 
and in (mega)lakes under ODC (e.g., Jenkyns and Clayton 
1986; Jenkyns 1988; Littke et al. 1991a, b; Sundararaman 
et al. 1993; Röhl et al. 2001; Hermoso et al. 2013; Xu et al. 
2017; Remírez and Algeo 2020; Kemp et al. 2022a, b). 
Global-scale increase in OC burial manifested in a long-
lasting positive Toarcian carbon isotope excursion (pT-
CIE) that spans most of the Toarcian D. tenuicostatum and 
H. serpentinum ammonite zone (or coeval chronozones) 
(Jenkyns and Clayton 1986; Jenkyns 1988; Jenkyns et al. 
2001; Hougård et al. 2021). The pT-CIE is superimposed 
by the negative carbon isotope excursions at the Pliens-
bachian–Toarcian boundary (nP-T-CIE) and in the early 
Toarcian at the D. tenuicostatum–H. serpentinum zonal 
transition (nT-CIE), which have been recognized globally, 
making them robust chemostratigraphic markers (e.g., 
Fantasia et al. 2018; Ruebsam and Al-Husseini 2020; Al-
Suwaidi et al. 2022; Kemp et al. 2022a). Negative carbon 
isotope anomalies reflect the release of large quantities of 
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12C-enriched greenhouse gases (CO2, CH4) into the Earth’s 
ocean–atmosphere system that drove global warming (e.g., 
Hesselbo et al. 2000, 2007; Kemp et al. 2005; McElwain 
et al. 2005; Ruebsam et al. 2020a). Greenhouse gas emis-
sions and global warming triggered a cascade of severe 
environmental changes, including intensified continental 
weathering (e.g., McArthur et al. 2000; Cohen et al. 2004; 
Percival et al. 2016; Them et al. 2017), glacio-eustatic sea 
level variations (Wignall 1991; Pittet et al. 2014; Krencker 
et al. 2019, 2022; Ruebsam et al. 2019, 2020b; Nordt et al. 
2022), sluggish ocean circulation (Dera and Donnadieu 
2012; Ruvalcaba Baroni et al. 2018; Fernández-Martínez 
et al. 2023) and freshening of some paleo-shelf seas (Sælen 
et al. 1996; Röhl et al. 2001; Dera and Donnadieu 2012; 
Remírez and Algeo 2020). Environmental changes are 
considered to be important factors causing marine oxygen 
depletion, which commonly initiates deposition of OC-rich 
sediments. Environmental perturbations may thus lead to 
stratigraphic correspondence between OC-rich sediments 
and the nT-CIE.

Accordingly, numerous works use the nT-CIE synony-
mous to the T-OAE, and due to the complex interrelation-
ship of the different environmental phenomena, both terms 
(nT-CIE and T-OAE) are commonly used interchangeably. 
However, due to the complex interaction of global and local-
scale oceanographic factors, such as water depth, nutrient 
supply, basin hydrology and water column stratification, the 
stratigraphic extent of OC-rich strata defining the T-OAE is 
not restricted to the nT-CIE, but shows a high spatial and 
temporal variability (e.g., Jenkyns and Clayton 1986; Jen-
kyns 1988; McArthur et al. 2008; Ruvalcaba Baroni et al. 
2018; Fantasia et al. 2019a; Hougård et al. 2021). Conse-
quently, the T-OAE, when defined based on the stratigraphic 
distribution of OC-rich sediments, varies greatly in its strati-
graphic extent and thus in its duration.

Here, we discuss the spatio-temporal variability of early 
Toarcian OC-rich strata and redox conditions, as well as its 
stratigraphic relationship to the nT-CIE. Based on these data, 
the climax of the T-OAE can be defined as the stratigraphic 
interval in which the OC-rich deposits globally reach their 
greatest areal distribution. This interval is attributed to 
reflect the T-OAE (sensu stricto). The data further allow 
assessing global and local factors that controlled the devel-
opment of ODC and the deposition of OC-rich sediments in 
marine and lacustrine settings.

Data and methods

Data compilation and synthesis

We compiled and synthesized OC abundances (OC = TOC, 
total organic carbon) and information on (qualitative) redox 

conditions from 48 lower Toarcian sections (Fig. 1). The 
data set includes previously and newly studied sites that 
preserve a presumably (near) complete record of the early 
Toarcian (Table S1 in the supplement). Sections without 
robust carbon isotope stratigraphy as well as sections with 
evidence for major hiatuses were excluded. Mean OC abun-
dances were calculated and the redox regime was defined 
for globally correlative δ13C segments (chemostratigraphic 
units: δ13C falling limb, δ13C rising limb, δ13C valley, δ13C 
plateau; see Ruebsam and Al-Husseini 2020). Therefore, the 
data summarize OC abundances and redox conditions for 
time intervals of about 0.4 Myr (e.g., Huang and Hesselbo 
2014; Thibault et al. 2018; Ruebsam et al. 2023). Redox 
conditions were inferred from sedimentological and geo-
chemical proxies. We here distinguish: i) oxic–dysoxic (O2: 
>0.2 ml/lH2O), ii) suboxic–anoxic (O2: 0–0.2 ml/lH2O), and 

Fig. 1   a Global paleogeography during the Toarcian (Blakey 2016). b 
Paleogeography of the northwestern Tethys Shelf (NWTS) (Ruebsam 
et  al. 2022a) showing the sites included in this study (AA: Austro-
Alpine Sector; EEBS: European Epicontinental Basin System; Medi: 
Mediterranean Sector; NGPM: northern Gondwana Paleomargin). 
For abbreviations of the study sites were refer to Table S1 in the sup-
plement (AS: Arctic Shelf; eT: East Tethys Ocean; Pm: Panthalassic 
Ocean margin; PO: Panthalassic Ocean; VC: Viking Corridor; wL: 
west Laurentia shelf)
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iii) euxinic conditions (free H2S) (see Tyson and Pearson 
1991 and Fig. S1 in the supplement). Spatio-temporal pat-
terns of sedimentary OC-enrichment and redox conditions 
were illustrated as matrix plots, generated using the PAST 
software toolkit (Hammer et al. 2001).

Results and discussion

Spatio‑temporal distribution of early Toarcian 
organic carbon‑rich strata

Our data synthesis reveals a substantial spatial and tem-
poral variability of sedimentary OC abundances (mean 
abundances 0.1–15  wt.%) throughout upper Pliens-
bachian and lower Toarcian strata (Fig. 2; Table S1 in 
the supplement).

The most widespread occurrence of OC-rich strata with 
the highest OC contents is found in the northern NTWS 
area (Figs. 1, 2), a hydrogeographically restricted epi-
continental basins system, with stagnant conditions and 
freshwater stratification (e.g., Sælen et  al. 1996; Röhl 
et al. 2001; McArthur et al. 2008; Dickson et al. 2017; 
Ruvalcaba Baroni et al. 2018; Remírez and Algeo 2020; 
Fernández-Martínez et al. 2023). In this paleogeographic 
area, discrete OC-rich horizons were noted in some places 
at the Pliensbachian–Toarcian boundary and in the lower-
middle part of the lower Toarcian D. tenuicostatum Zone 
(δ13C plateau) (e.g., Röhl et  al. 2001; Ruebsam et  al. 
2022a). However, substantial OC enrichment in sedi-
ments does not occur in most localities until the onset of 
the nT-CIE (e.g., Röhl et al. 2001; Hermoso et al. 2013; 
Ruebsam et al. 2022a; also see Table S1 in the supple-
ment). At many localities of the northern NWTS, deposi-
tion of OC-rich sediments continued throughout the H. 

Fig. 2   Spatio-temporal enrichment of OC-rich strata. Stratigraphy of 
the early Toarcian, including ammonite zonation and carbon isotope 
stratigraphy (Ruebsam and Al-Husseini 2020). A positive carbon iso-
tope excursion (pT-CIE) spans most of the early Toarcian and is inter-
sected by negative carbon isotope excursions at the Pliensbachian/
Toarcian boundary (nP-T-CIE) and in the early Toarcian (nT-CIE). 
Hypothetical sea level trend from Ruebsam et  al. (2020b). Trends 
in thallium isotope values record changes of the extent in sea floor 

anoxia (Them et al. 2018). The matrix plot for mean OC abundance 
within a defined stratigraphic interval reveals a high spatio-temporal 
variability (NWTS: northwestern Tethys shelf; PO: Panthalassic 
Ocean, eT: East Tethys Ocean, PM: Panthalassic Ocean margin, wL: 
west Laurentia shelf; AS: Arctic Shelf, VC: Viking Corridor, PoB: 
Polish Basin, Cl: China (mega)lakes). Numbers at top of matrix plot 
indicate locations listed in Supplement 1
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serpentinum Zone (e.g., Röhl et al. 2001; Hermoso et al. 
2013) (Fig. 2). Exceptions are nearshore localities, such as 
the Grimmen Section (Prauss 1996), where OC-rich sedi-
ments are mostly confined to the nT-CIE onset and core 
intervals (δ13C falling limb and valley).

A different pattern of the spatio-temporal OC accumula-
tion is evident at sites in the Mediterranean sector of the 
southern NTWS (Fig. 1), a paleoceanographic area that was 
well connected to the Tethys Ocean (e.g., Dickson et al. 
2017; Ruvalcaba Baroni et al. 2018; Fernández-Martínez 
et al. 2023). Here, mean OC values generally do not exceed 
5 wt.%. Accumulation of OC occurs almost exclusively in 
sediments corresponding to the nT-CIE, with the highest 
OC concentrations documented in the nT-CIE core interval 
(δ13C valley) (e.g., Jenkyns et al. 2001; Erba et al. 2022; 
also see Table S1 in the supplement). In addition, no signifi-
cant OC enrichment occurred at many sites on the northern 
Gondwana paleomargin (southernmost NWTS, N-Africa) in 
upper Pliensbachian and lower Toarcian strata (e.g., Reolid 
et al. 2018) (Fig. 2). An exception is the area of present-day 
Tunisia, where OC-rich strata occur in the early Toarcian 
(Ruebsam et al. 2022b).

A similar pattern is observed on shelf areas in the eastern 
Tethys Ocean. In the Qiangtang Basin (NE Tethys margin), 
OC-rich strata occur at a local scale in the nT-CIE interval 
and in an interval potentially corresponding to the nP-T-CIE 
(e.g., Fu et al. 2017; Xia and Mansour 2022). Sediments of 
the Sewa Section in the Qiangtang Basin lack TOC-enrich-
ment and evidence for OC accumulation (Fu et al. 2021), 
which point to spatial variations in depositional conditions 
within the basin. Sediments of the Niandua Section (SE 
Tethys margin) lack any OC-enrichment (Han et al. 2022) 
(Figs. 1, 2). In the deep marine Sakahogi Section (Pan-
thalassic Ocean) substantial OC-enrichment (mean OC up 
to 15 wt.%) occurs in the nP-T-CIE interval (Kemp et al. 
2022a) as well as in the nT-CIE core and recovery intervals 
(δ13C valley and rising limb), whereas sediments of the other 
stratigraphic intervals are rather OC-lean (Fig. 2).

Sediments from the western Panthalassic margin (Sakur-
aguchi-dani, Japan; Izumi et al. 2018) exhibit no signifi-
cant OC-enrichment. Early Toarcian sediments from the 
southeastern Panthalassic margin (Andean Basins) are also 
mainly TOC-lean (Fantasia et al. 2018). An exception is 
the Arroyo Lapa section (Neuquén Basin), were increased 
OC contents occur in an interval that may correspond to 
the nT-CIE onset (Al-Suwaidi et al. 2016). Sites from the 
West-Laurentia shelf (northeastern Panthalassic margin, 
N-America) show a substantial OC-enrichment throughout 
lower Toarcian times (Them et al. 2017, 2018), but also 
in upmost Pliensbachian strata (Fig. 2). Interestingly, OC 
contents peak at two sites just before the onset of nT-CIE, 
while OC content decreases within the nT-CIE interval 
(Fig. 2).

Site-specific patterns of OC accumulation have been 
documented in (mega)lakes in present-day China. In some 
(mega)lakes, abundances of aquatic OC decrease in the nT-
CIE onset interval (Li et al. 2023) (Fig. 2). A decline in 
OC abundances in the nT-CIE interval was also documented 
for the Polish Basin. However, here OC abundances rather 
represent changes in the abundances in allochthonous land 
plant organic matter, which limits the comparability with 
coeval strata that is dominated by marine organic matter 
(Pienkowski et al. 2016).

Spatio‑temporal redox pattern

As with OC abundances, there is considerable spatiotemporal 
variability in redox conditions. In the deep-marine Sakahogi 
Section (Panthalassic Ocean), a decline in seafloor oxygena-
tion occurred at the Pliensbachian–Toarcian boundary and per-
sisted into the nT-CIE recovery interval (Kemp et al. 2022a). 
The formation of euxinic bottom waters is indicated for the nP-
T-CIE interval and the nT-CIE interval (Fig. 3; Table S1 in the 
supplement). Euxinic conditions also developed on the north-
ern margin of the eastern Tethys Ocean, while the shelf seas on 
the southern margin remained oxygenated (e.g., Fu et al. 2017; 
Han et al. 2022). Preferentially oxic–dysoxic conditions are 
also indicated for the western margin of the Panthalassic Ocean 
(Japan) (Izumi et al. 2018), as well as from the southeastern 
margin of the Panthalassic Ocean (Andean Basins; Fantasia 
et al. 2018). In contrast, on the western Laurentia shelf (N 
America), anoxic–euxinic conditions predominated during 
the late Pliensbachian and early Toarcian (Them et al. 2018) 
(Fig. 3; Table S1 in the supplement). On the Arctic shelf, sub-
oxic–anoxic conditions established in the nT-CIE onset inter-
val and prevailed throughout the entire early Toarcian (Suan 
et al. 2011; Table S1 in the supplement).

On the northern NWTS, where black shale deposition 
was most extensive, anoxic–euxinic conditions became 
established over almost the entire area in the nT-CIE inter-
val. In many localities, these conditions expanded into the 
H. serpentinum Zone (=H. falciferum Zone) (e.g., Littke 
et al. 1991a, b; Schouten et al. 2000; Schwark and Frim-
mel 2004; Reolid et al. 2018; Ruebsam et al. 2018; also see 
review by Kemp et al. 2022b and Table S1 in the supple-
ment). At shoals and marginal sites, suboxic–anoxic condi-
tions were restricted to the nT-CIE interval (see Table S1 
in the supplement). Within the nT-CIE interval the onset 
of ODC was diachronous (Fig. 2). Some sites (e.g., Dot-
ternhausen Section) record the development of ODC in 
the nT-CIE onset interval, while other sites (e.g., Sancerre 
Core) remained preferentially oxygenated until the nT-CIE 
core interval (Fig. S2 in the supplement). In the NE Paris 
Basin, anoxic–euxinic conditions are also indicated for the 
nP-T-CIE interval and for some horizons in the middle D. 
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tenuicostatum Zone (δ13C plateau). Evidence of short-lived 
anoxic–euxinic conditions in the middle D. tenuicostatum 
Zone also comes from the S-German Basin (Schwark and 
Frimmel 2004) (Fig. 3; Table S1 in the supplement).

At the southern NWTS, suboxic–anoxic conditions devel-
oped at some localities within the nT-CIE interval, especially 
in the nT-CIE core interval (δ13C valley) (e.g., Jenkyns et al. 
2001; also see Table S1 in the supplement). An exception is 
the Tunis Trough (N-Gondwana paleomargin), where sub-
oxic–anoxic conditions prevailed in some graben structures 
throughout the early Toarcian (Ruebsam et al. 2022b) (Fig. 3; 
Table S1 in the supplement).

Marginal sites in the Polish Basin show no evidence for 
the development of ODC. Here, shallow water depths main-
tained an efficient ventilation of the sea floor (Pienkowski 
et al. 2016). Contrasting redox conditions were observed in 
the Chinese (mega)lakes (e.g., Liu et al. 2020; Huang et al. 
2023a, b). Some lakes remained preferentially well-oxygen-
ated, while others reveal evidence for suboxic–anoxic and 
euxinic conditions. However, if documented, ODC estab-
lished in the nT-CIE core interval (Fig. 3; Table S1 in the 
supplement).

Controls on organic matter accumulation 
and redox conditions

The OC-richness and redox conditions reveal a comparable 
spatio-temporal pattern, confirming that the decline in O2 
levels at the shelf (and ocean) floor was an important factor 
promoting the preservation of labile aquatic organic matter 
and thereby the formation of OC-rich strata during the early 
Toarcian (e.g., Jenkyns 1988; Littke et al. 1991a, b; Röhl et al. 
2001; Schwark and Frimmel 2004; Song et al. 2017; also see 
review by Kemp et al. 2022b; Fig. S3 in the supplement).

Initial increases in the mean OC content, the number of 
sites with OC-rich strata, and ODC occurred in the Pliens-
bachian/Toarcian boundary interval and were followed by 
a more pronounced propagation in the nT-CIE onset inter-
val. Highest mean OC abundances, as well as the greatest 
extent of OC-rich strata and ODC occurred in the nT-CIE 
core interval (Fig. 4). Mean OC abundances, number of 
sites with OC-rich strata, and ODC remained high in the 
nT-CIE recovery and the post-nT-CIE intervals.

The stratigraphic pattern of OC enrichment and ODC 
matches trends in thallium isotope values, which are thought 

Fig. 3   Spatio-temporal redox pattern. The matrix plot illustrates spatio-temporal differences in the redox conditions for the different stratigraphic 
intervals in relation to trends in carbon isotopes, sea level and thallium isotopes (see Fig. 2 for abbreviations and details)
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to indicate the extent of anoxic sinks on a global scale (Them 
et al. 2018). The generalized trend in thallium isotope values 
records a shift towards heavier values in the Pliensbachian/
Toarcian boundary interval, followed by a positive excursion 
in approximately the upper nT-CIE onset and the nT-CIE 
core intervals (Fig. 4). Interestingly, the nT-CIE onset and 
core intervals record evidence for (short-lived/periodic) eux-
inia even at a few sites with low to moderate OC accumula-
tion (Fig. S3 in the supplement).

The pattern of declining seafloor oxygenation and OC-
enrichments match transgressive pulses that occurred at 
the Pliensbachian/Toarcian boundary intervals as well as 
in the nT-CIE onset interval (e.g., Röhl et al. 2001; Her-
moso et al. 2013; Pittet et al. 2014; Haq 2018; Krencker 
et al. 2019; Ruebsam et al. 2019, 2020b; Bodin et al. 2023). 
Most significantly, the major sea level rise that occurred in 
the early Toarcian, within the nT-CIE onset interval (e.g., 
Röhl et al. 2001; Krencker et al. 2019; Ruebsam et al. 2019), 
aligns with the strongest spread of OC enrichment and ODC 
(Fig. 4). Accordingly, a high sea level was a pre-requirement 
for maintaining ODC and OC-accumulation at shelf settings 
(e.g., Wignall 1991; Röhl et al. 2001; Hermoso et al. 2013). 
An overall high sea level may have also promoted ODC and 
OC-accumulation at the northern NWTS throughout the 
H. serpentinum Zone (approx. equal to the H. falciferum 
Zone) (e.g., Röhl et al. 2001; Hermoso et al. 2013). A high 
sea level resulted in flooding of large shelf areas with water 
depths, where the seafloor was below storm wave base. 
Here, low-energy depositional spaces formed (e.g., Wignall 
1994). On the northern NWTS, where OC accumulation 
was most extensive, development of ODC was further pro-
moted by freshwater stratification and severe hydrological 
restriction (Sælen et al. 1996; Röhl et al. 2001; McArthur 
et al. 2008; Dickson et al. 2017; Remírez and Algeo 2020; 
Fernández-Martínez et al. 2023). Freshwater stratification 
and hydrologic constraints may have weakened in the post 
nT-CIE period (upper H. serpentinum Zone and coeval 
strata), but were still sufficient to maintain ODC in bottom 
waters as long as the sea level was sufficiently high and the 
seafloor was no ventilated by wave and storm activity (e.g., 
McArthur et al. 2008). Accordingly, at the northern NWTS, 
long-lasting ODC and OC accumulation resulted from the 
very specific paleogeographic and hydrogeographical of 
this highly restricted shelf sea. Moreover, the area of the 
northern NWTS was situated in a humid climate belt with 
high precipitation rates and substantial riverine runoff (e.g., 
Rees et al. 2000; Dera et al. 2009; Ruebsam et al. 2020c). 
Riverine freshwater supply, in addition to freshwater inflow 
from the Arctic Ocean via the Viking Corridor (Sælen et al. 
1996; Bjerrum et al. 2001), contributed to stratification of 
the water column in this highly restricted shelf setting. In 
addition, riverine freshwater runoff will have contributed 
huge amounts of nutrients to the shelf sea and thereby 

stimulated and maintained marine primary productivity. 
Globally increased temperatures and increased precipita-
tion at mid-latitudes were initiated during the nT-CIE but 
persisted throughout most of the Toarcian (Dera et al. 2009, 
2011). Accordingly, at the northern NWTS, black shale 
deposition was not restricted to the nT-CIE interval. Dif-
ferences in the stratigraphic extent of OC-rich strata most 
likely reflect paleobathymetry, with black shales being most 
extensive at deep settings, being of short stratigraphic extent 
or even being absent at shallow settings.

At the southern part of the NWTS, the lack of hydrolog-
ical restriction, more arid conditions and low-to-moderate 
riverine runoff did not favor the development of freshwater 
stratification. At this shelf area, water column stratifica-
tion (if present) may have resulted from thermal strati-
fication. However, marine primary productivity appears 
to have been insufficiently high to cause prolonged ODC 
and substantial OC accumulation (Ruebsam et al. 2020d; 
Baghli et al. 2022). At the southern NWTS, OC-rich strata 
has been reported from some deep marine settings, such as 
in the Belluno Trough (Jenkyns et al. 2001; Dickson et al. 
2017) and the Lombardian Basin (Erba et al. 2022). At 
these settings sea-level variation will have had no impact 
on depositional conditions. However, sluggish ocean circu-
lation, related to changes in global climate conditions may 
have led to a decline in seafloor O2 levels and to the accu-
mulation of OC-rich strata (Dera and Donnadieu 2012; 
Ruvalcaba Baroni et al. 2018). Sluggish ocean circulation 
could have been particularly pronounced during periods 
of globally high temperatures, reduced sea ice cover, and 
lack of continental glaciation (Dera and Donnadieu 2012) 
(Fig. 4). Such conditions were most likely realized during 
the Pliensbachian/Toarcian boundary and in the nT-CIE 
core interval that both record thermal maxima in sea sur-
face temperatures and coinciding (glacio)eustatic sea level 
rises (Krencker et al. 2019; Ruebsam et al. 2019, 2020a, 
b; Nordt et al. 2022). The occurrence of OC-rich anoxic/
euxinic strata in deep oceanic areas substantiates such a 
scenario (Kemp et al. 2022a).

Prolonged ODC and OC-accumulation occurring 
throughout the entire early Toarcian on the west Laurentia 
shelf could be explained by local factors, such as upwelling 
long the eastern Panthalassic margin that may have stimu-
lated marine primary productivity (Parrish and Curtis 1982). 
The declining trend in OC accumulation and ODC, noted at 
some sites from the western Laurentia shelf, might be partly 
linked to reduced upwelling that occurred in response to 
sluggish ocean circulation. Alternatively, increased supply 
of clastics from continental areas during periods of enhanced 
weathering may have also led to the decline in the sedimen-
tary OC-content (Them et al. 2017).
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Defining the T‑OAE

The spatio-temporal variability of Toarcian OC-rich sedi-
ments and ODC shows that neither OC richness nor redox 
state are suitable parameters to precisely define a distinct 
(chrono)stratigraphic event or interval. The deposition 
of OC-rich strata occurred in response to global driving 
forces interacting with local-to-regional-scale factors. 
Accordingly, onset, termination and thus stratigraphic 
extent of OC-rich strata varied substantially. In addition, 
OC-rich sediments and the formation of ODC were not 
restricted to the nT-CIE interval, which is frequently used 
to define the T-OAE (e.g., Hesselbo et al. 2007; Fantasia 
et al. 2018, 2019a; Danise et al. 2019; Visentin et al. 2021; 
Galasso et al. 2022; Trabucho-Alexandre et al. 2022).

The nT-CIE onset (δ13C falling limb) interval, however, 
records the diachronous onset of ODC and OC accumula-
tion in a great number of marine regions, as well as sub-
stantial increase in mean sedimentary OC content. The 
widest areal extent of OC-rich strata and ODC, together 
with highest mean OC contents is seen in the nT-CIE core 
interval (δ13C valley). This observation gives some jus-
tification to the approach of equalizing the T-OAE with 
the nT-CIE.

The nT-CIE interval, in particular the onset and core 
intervals, corresponds to a period of severe environmental 
and ecosystem change, summarized by the term “Jenkyns 
Event” (Müller et al. 2017; Reolid et al. 2021). This period 
may mark a tipping point in the Earth’s climate system that 
once crossed, made marine (and lacustrine) depositional 
systems more susceptible for the development of ODC.

In general, distinct OC-enrichment and redox pattern 
can be distinguished and can be linked to specific deposi-
tional settings (Fig. 5). Open deep marine (unrestricted) 
as well as oceanic settings record a diachronous T-OAE 
within the nT-CIE interval (T-OAE—type 1). Restricted 
shelves, such as the northern NWTS, exhibit prolonged 
ODC and OC accumulation with diachronous onset in the 
nT-CIE interval, but in many localities significantly exceed 
this interval (T-OAE—type 2). Along upwelling regions 
of the western Laurentia shelf (NE Panthalassic Ocean), 
ODC and OC-accumulation persisted throughout the entire 
early Toarcian and thus pre- and post-date the nT-CIE. In 
these settings, the T-OAE is decoupled from the nT-CIE 
(T-OAE—type 3a) (Fig. 5). One could argue that such a 
pattern of prolonged anoxia and OC accumulation indi-
cates an anoxic episode rather than an anoxic event (sensu 
stricto).

In the lacustrine Ordos Basin (Chinese), where the 
accumulation of (aquatic) OC peaked before the nT-CIE 
and declined in this interval (Jin et al. 2020), ODC appear 
to have developed primarily in the nT-CIE interval (Huang 

et al. 2023a, b). Accordingly, ODC were not the major fac-
tor controlling OC-accumulation in this setting. However, 
in most Toarcian mega-lakes that have been studied so far, 
evidence for ODC and OC accumulation is restricted to the 
nT-CIE interval (e.g., Xu et al. 2017; Huang et al. 2023a, 
b; also see Table S1 in the supplement).

In the Sierra Palomera Section (Spain), ODC and OC-
accumulation peak in strata pre- and posting dating the nT-
CIE, while the nT-CIE interval is represented by OC-lean 
strata (Danise et al. 2019). The development of an OAE prior 
and/or after the nT-CIE may categorize a T-OAE—type 3b, 
which most likely reflects local depositional conditions.

Fig. 5   T-OAE, when defined as OC burial event, exhibits a substan-
tial spatio-temporal variability, whereby three main types (strati-
graphic patterns) can be distinguished. Type 1 is mainly documented 
from oceanic and open (unrestricted) shelf seas. Type 2 is charac-
teristic for the T-OAE on the northern NWTS, where deposition of 
OC-rich strata was most widespread. Locally, OC-rich strata can also 
occur in the form of distinct horizons at the Pliensbachian–Toar-
cian boundary and in the lower part of the D. tenuicostatum Zone. A 
stratigraphically extended T-OAE of the Type 3a is documented from 
the western Laurentia shelf. T-OAEs of type 3b are noted in a very 
few sites only and may reflect local-scale depositional conditions. It is 
particularly important that the OAEs of type 3a and 3b are decoupled 
from the nT-CIE. Numerous early Toarcian sections lack evidence of 
ODC and OC-accumulation. For such settings, the term OAE is inap-
propriate and should be avoided
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The high spatio-temporal variability complicates the 
exact definition of a T-OAE, in terms of a global marine 
deoxygenation event. The climax of the T-OAE, however, 
can be placed in the nT-CIE core interval, showing the high-
est mean OC abundances, as well as the widest extent of 
OC-rich strata and ODC. This interval further correlates 
with the positive thallium isotope peak that reflects the wid-
est extent of marine anoxic sinks (Them et al. 2018). We, 
therefore, attribute the nT-CIE core interval to the T-OAE 
climax, which defines the stratigraphic interval that records 
the widest extent of OC-accumulation and ODC (Figs. 4, 
5). Climate-enforced changes in environmental condition 
occurring in the nT-CIE interval and to a lesser extent in 
the Pliensbachian–Toarcian boundary interval may have 
made marine and lacustrine environments more susceptible 
to ODC, which favored the preservation and accumulation 
of OC-rich strata.

During the early Toarcian, numerous sites in different 
paleogeographic areas lack evidence for ODC and OC 
accumulation, such as most sites at the northern Gondwana 
paleomargin (e.g., Bodin et al. 2010; Krencker et al. 2019, 
2022), in Spain (Reolid et al. 2018; Silva et al. 2021), in Por-
tugal (Hesselbo et al. 2007; Fantasia et al. 2019a), in Italy 
(Fantasia et al. 2019b), or in southern America (Fantasia 
et al. 2018). At these settings no OAE developed in the early 
Toarcian. Accordingly, the stratigraphic interval that records 
the nT-CIE should not be assigned as T-OAE. Early Toar-
cian sites that record no OAE should rather be attributed to 
the Jenkyns Event, as previously suggested by Müller et al. 
(2017) and Reolid et al. (2021).

Conclusions

The early Toarcian records the global-scale occurrence of 
OC-rich strata that has been deposited under ODC (sub-
oxic/anoxic to euxinic conditions) during the T-OAE. Both 
parameters, OC-richness and redox conditions, however, 
revealed a substantial spatio-temporal variability, resulting 
from the interaction of global forcing mechanisms (e.g., cli-
mate, ocean circulation, eustatic sea level) and local basin-
scale factors (e.g., basin morphology, hydrologic restriction, 
water column stratification, nutrient supply). Therefore, 
onset and termination of OC accumulation and ODC was 
evidently diachronous and varied at basin to sub-basin scale. 
Accordingly, OC richness and ODC are inadequate param-
eters for defining a distinct (chrono)stratigraphic event, such 
as the T-OAE.

Moreover, OC-rich strata are not restricted to the nT-CIE. 
Thus the interchangeable use of T-OAE and nT-CIE (com-
monly: T-CIE), as applied by numerous works, is mislead-
ing and should be discarded. An initial increase in global 
OC-accumulation occurred in the Pliensbachian–Toarcian 

boundary interval, while a substantial spread in OC-rich 
strata occurred in the nT-CIE onset interval. Accumulation 
of OC-rich strata and ODC, as well as highest mean OC con-
tents are documented in the nT-CIE core interval, marking 
the T-OAE climax. Data indicate that early Toarcian envi-
ronmental changes turned marine (and lacustrine) environ-
ments more susceptible to ODC, favoring the preservation 
and accumulation of OC-rich strata. 
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