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Abstract The Dehsalm Cu–Mo-bearing porphyritic

granitoids belong to the Lut Block volcanic–plutonic belt

(central eastern Iran). These rocks range in composition

from gabbro-diorite to granite, with dominance of monz-

onites and quartz monzonites, and have geochemical fea-

tures of high-K calc-alkaline to shoshonitic volcanic arc

suites. Primitive mantle-normalized trace element spider

diagrams display strong enrichment in large-ion lithophile

elements such as Rb, Ba and Cs and depletions in some

high-field strength elements, e.g., Nb, Ti, Y and HREE.

Chondrite-normalized plots display significant LREE

enrichments, high LaN/YbN and a lack of Eu anomaly.

High Sr/Y and La/Yb ratios of Dehsalm intrusives reveal

that, despite their K-rich composition, these granitoids

show some resemblances with adakitic rocks. A Rb–Sr

whole rock–feldspar–biotite age of 33 ± 1 Ma was

obtained in a quartz monzonite sample and coincides,

within error, with a previous geochronological result in

Chah-Shaljami granitoids, further northwest within the Lut

Block. (87Sr/86Sr)i and eNdi isotopic ratios range from

0.70481 to 0.70508 and from ?1.5 to ?2.5, respectively,

which fits into a supra-subduction mantle wedge source for

the parental melts and indicates that crustal contribution for

magma diversification was of limited importance. Sr and

Nd isotopic compositions together with major and trace

element geochemistry point to an origin of the parental

magmas by melting of a metasomatized mantle source,

with phlogopite breakdown playing a significant role in the

geochemical fingerprints of the parental magmas; small

amounts of residual garnet in the mantle source also help to

explain some trace element patterns. Geochemical features

of Dehsalm porphyries and its association with Cu–Mo

mineralization agree with a mature continental arc setting

related to the convergence of Afghan and Lut plates during

Oligocene.

Keywords Lut Block � High-K calc-alkaline to

shoshonitic magmas � Trace element geochemistry �
Sr and Nd isotopes � Rb–Sr age � Porphyry deposits

Introduction

The Lut Block is a geotectonic unit, in eastern Iran, com-

posed of lithologies that, in general, were not significantly

affected by tectonic deformation since the Jurassic times.

This unit is surrounded by highly deformed domains of

clear oceanic affinity, with ophiolite series and flysch-type

rocks, particularly to the north, south and east (Stöcklin

1972). The present eastern border of the Lut Block would

have belonged to the active margin of the subducted

Neotethys Ocean (Dercourt et al. 2000; Golonka 2004;

Bagheri and Stampfli 2008). This ocean closed in eastern

Iran, between the Afghan and Lut plates, in the Oligocene–

Middle Miocene (Sengör and Natalin 1996). The East Iran

ophiolite complex marks the boundary between the Lut and

Afghan continental blocks (Fig. 1).

The East Iran volcanic–plutonic belt extends for

1,000 km in the N–S direction, within the Lut Block

(Figs. 1, 2). The magmatic activity, mainly with calc-

alkaline signatures as shown by Berberian (1983), began in

the middle Jurassic (165–162 Ma) and reached its peak in
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the Tertiary, especially in the middle Eocene. Volcanic and

subvolcanic rocks of Tertiary age cover large areas of the

Lut Block, attaining a thickness up to 3,000 m, and seem to

have resulted from subduction prior to the collision of the

Arabian and Eurasian plates (Camp and Griffis 1982; Tirrul

et al. 1983; Berberian et al. 1999). According to Ef-

tekharnejad (1981), magmatism in the northern Lut area

resulted from subduction beneath the Lut Block. Recently,

a two-sided asymmetric subduction model has been pro-

posed to explain the Tertiary magmatic and metallogenic

events recorded in the Lut Block (Arjmandzadeh et al.

2011). In this model, west-verging subduction beneath the

Lut Block was steeper and faster, favoring the formation of

great amounts of calc-alkaline magmas, as recorded within

the Lut Block; in contrast, east-verging subduction, under

the Afghan block, is testified by stronger tectonic defor-

mation but less important magmatism.

Various mineralization types, such as Cu–Mo–Au por-

phyry-type deposits, epithermal-type ores, Cu–Au–Ag

IOCG-type deposits, Cu and Au–Sb–Pb–Zn vein-type

deposits, Cu–Au massive sulfide-type deposits, granite-

related Sn–W–Au ores and magmatic-skarn Sn deposits,

formed during Jurassic to Tertiary stages of magmatism in

the Lut Block (e.g., Malekzadeh 2009; Arjmandzadeh et al.

2011).

The Dehsalm porphyritic granitoids belong to the East

Iran volcanic–plutonic belt (Fig. 2) and have associated

Cu–Mo porphyry-type deposits (Arjmandzadeh et al. 2013).

The purpose of this work is to present and discuss geo-

chemical (both elemental and isotopic) and geochronolog-

ical (Rb–Sr) data from those shallow intrusives, aiming at

establishing tighter constraints on the petrogenetic pro-

cesses and the geodynamic evolution of the Lut Block.

Geological setting and mineralization

The Lut Block is composed of pre-Jurassic metamorphic

rocks and Jurassic sediments, intruded by Jurassic and Ter-

tiary plutons, mainly of granitoids, and covered by Tertiary

mafic to felsic lava flows and pyroclastic materials. Mag-

matism in the Lut Block, represented by a variety of lava

Fig. 1 Modified geological

sketch map of Iran after

Berberian and King (1981). The

point indicates the location of

Dehsalm intrusives, and the box

indicates the location of the Lut

Block volcanic–plutonic belt
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flows, volcaniclastic rocks and subvolcanic and plutonic

bodies, started in the late Jurassic with the intrusion of Shah-

Kuh batholith and continued into the Quaternary (Esmaeily

2005). Most of the East Iran mineral deposits are related to

the Tertiary magmatism (Arjmandzadeh et al. 2013).

The Dehsalm intrusive complex is located about 55 km

west of Nehbandan, in the South Khorasan province. This

complex is composed essentially of stocks intrusive into

Eocene volcanics, sandstones and siltstones (Fig. 3). The

intrusive rocks range from gabbro to granite, with a clear

dominance of monzonite and quartz monzonite. Plagio-

clase is a major rock-forming mineral in most lithologies.

K-feldspar is common as phenocrysts as well as in the

matrix in the more felsic rock types; it also occurs as a

minor phase, interstitial to plagioclase and ferromagnesian

minerals in the mafic rocks. Biotite, clinopyroxene and

hornblende are the mafic silicates present, in variable

proportions, in the studied intrusions (Fig. 4a). Apatite and

oxide minerals (magnetite and lesser ilmenite) are common

accessory phases, especially in the most mafic rocks.

Most of the felsic-intermediate intrusions display a

porphyritic texture, due to the occurrence of millimeter-

sized phenocrysts of plagioclase and K-feldspar, sur-

rounded by a groundmass formed by crystals (mainly of

feldspars and quartz) no larger than tenths of millimeter. In

quartz monzonites, the length of K-feldspar phenocrysts

may attain almost 1 cm (Fig. 4b). Plagioclase phenocrysts

usually display compositional zoning (Fig. 4c), which is

most commonly of the normal type, but, especially in the

biggest ones, may also be oscillatory.

Fig. 2 Geological map of the Lut Block volcanic–plutonic belt and the location of Dehsalm intrusives. Adapted from Griffis et al. (1992)
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A pyroxene-hornblende gabbroic diorite displays a

poikilitic texture (Fig. 4d), with large irregular and opti-

cally continuous K-feldspar grains hosting several small

crystals of other minerals, dominantly plagioclase, horn-

blende and clinopyroxene.

The diorite usually contains variably oriented subhedral

plagioclase laths that define a framework whose inter-

spaces are occupied by small grains of mafic minerals, in

an intergranular-like texture. In monzodiorite composi-

tions, K-feldspar becomes a more abundant phase, but

systematically with an interstitial character.

Crosscutting relations at surface exposures and in the

diamond drill boreholes suggest that quartz monzonite

stocks were the earliest, while the biotite granite (as small

stocks and dikes) was the latest intrusions emplaced in the

Dehsalm complex.

The quartz monzonite stocks have been affected by

potassic alteration, represented by abundant secondary

biotite. The secondary biotite alteration is overprinted by

sericite–calcite–quartz alteration and cut by quartz ?

pyrite ? galena ? sphalerite ? chalcopyrite veinlets

(Fig. 5a). The quartz monzonite also hosts several

quartz ? pyrite ? magnetite ? molybdenite ? chalcopy-

rite ? anhydrite ± gold veins (Fig. 5b).

Monzonites and diorites show weak or no mineralization

potential, despite the fact that propylitization is not

uncommon in monzonites.

Granites are variably sericitized and are cut by several

types of veins and veinlets: quartz ? pyrite ? molybdenite;

quartz ? pyrite ? chalcopyrite ? arsenopyrite ± gold; and

quartz ? pyrite ? galena ? sulfosalts.

Previous studies on alteration, hydrothermal fluids

and ore-forming processes indicated the occurrence of

a Cu–Mo porphyry-type mineralization in the area

(Arjmandzadeh et al. 2013).

Analytical techniques

Major and trace element analysis

After a detailed petrographic study (using transmitted and

reflected light microscopy) of a large set of samples col-

lected in various rock units, from both surface exposures

Fig. 3 Geological map of

Dehsalm area, after

Arjmandzadeh et al. (2013)
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and drill cores, fourteen of the least altered samples were

selected for whole-rock geochemical elemental analysis.

The samples were analyzed for major elements by wave-

length-dispersive X-ray fluorescence (XRF) spectrometry

of fused disks by a Philips PW 1410 XRF spectrometer at

Ferdowsi University of Mashhad, Iran. Eleven of these

samples were analyzed for trace elements using inductively

coupled plasma-mass spectrometry (ICP-MS), following a

lithium metaborate/tetraborate fusion and nitric acid total

digestion, in the Acme Laboratories, Vancouver (Canada).

Whole-rock analytical results for major element oxides and

trace elements are listed in Table 1.

Fig. 4 a Late-stage biotite in

monzodiorite sample D4-245

(borehole). Besides forming

large anhedral grains (that

sometimes enclose plagioclase

and/or clinopyroxene crystals),

biotite also appears as thin rims

around the opaque minerals and

as patches inside clinopyroxene

(PPL-10X). b K-feldspar

megacrysts in biotite pyroxene

quartz monzonite (XPL-10X).

c Plagioclase showing complex

zonation in a pyroxene-

hornblende monzodiorite (XPL-

10X). d Poikilitic texture in

pyroxene-hornblende monzonite

intrusive body. Pyroxene and

plagioclase inclusions

distributed throughout the

K-feldspar poikilocryst

Fig. 5 a Galena and sphalerite replaced by chalcopyrite. This setting

belongs to the veins including paragenetic minerals such as quartz,

pyrite, galena, sphalerite and chalcopyrite, which formed within the

sericite–calcite–quartz alteration zone. b Molybdenite (Mo), chalco-

pyrite (Ccp) and pyrite (Py). Chalcopyrite seems to replace the other

minerals, mainly through the molybdenite cleavages (PPL-10X). This

setting belongs to the veins including paragenetic minerals such as

quartz, anhydrite, magnetite, molybdenite, chalcopyrite, pyrite and

gold
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Rb–Sr and Sm–Nd isotopic analysis

Sr and Nd isotopic compositions were determined for seven

whole-rock samples and two mineral separates (plagioclase

and biotite) of the Dehsalm granitoids at the Laboratório de

Geologia Isotópica da Universidade de Aveiro, Portugal.

Plagioclase and biotite were separated from sample D3-227

using magnetic separation procedures and purified by

handpicking under a binocular microscope. The mineral

separates were rinsed using double-distilled water and

crushed in several steps to remove inclusions and then

powdered in agate mortar. The selected powdered samples

were dissolved with HF/HNO3 in Teflon Parr acid diges-

tion bombs at 200 �C for 3 days. After evaporation of the

final solution, the samples were dissolved with HCl (6 N)

and dried. The target elements were purified using con-

ventional ion chromatography technique in two stages: (1)

separation of Sr and REE elements in ion exchange column

with AG8 50 W Bio-Rad cation exchange resin and (2)

purification of Nd from other lanthanide elements in col-

umns with Ln Resin (ElChrom Technologies) cation

exchange resin. All reagents used in the preparation of the

samples were sub-boiling distilled, and the water was

produced by a Milli-Q Element (Millipore) apparatus. Sr

was loaded on a single Ta filament with H3PO4, whereas

Nd was loaded on a Ta outer-side filament with HCl in a

triple-filament arrangement. 87Sr/86Sr and 143Nd/144Nd

isotopic ratios were determined using a Multi-Collector

Thermal Ionization Mass Spectrometer (TIMS) VG Sector

54. Data were acquired in dynamic mode with peak mea-

surements at 1–2 V for 88Sr and 0.8–1.5 V for 144Nd. Sr

and Nd isotopic ratios were corrected for mass fraction-

ation relative to 88Sr/86Sr = 0.1194 and 146Nd/144Nd =

0.7219. During this study, the SRM-987 standard gave an

average value of 87Sr/86Sr = 0.710256(16) (N = 12; conf.

lim = 95 %) and 143Nd/144Nd = 0.5121057(61) (N = 13;

conf. lim = 95 %) for the JNdi-1 standard (143Nd/144Nd

data are normalized to the La Jolla standard). The con-

centrations of Rb, Sr, Sm and Nd in the mineral separates

and in two whole-rock samples (D3-227 and De-7) were

determined by isotope dilution mass spectrometry method

(IDMS), using a 87Rb/84Sr and 150Nd/149Sm double spike.

The Rb–Sr and Sm–Nd isotopic compositions are listed in

Table 2.

Geochemistry

Major element geochemistry

The Dehsalm intrusive bodies have SiO2 contents from 52

to 69 wt% and plot mainly in the gabbroic diorite, diorite,

monzodiorite, quartz monzonite and granite domains on the

Middlemost (1985) diagram (Fig. 6). The samples plot in

the fields of high-K calc-alkaline and shoshonitic series on

the K2O versus SiO2 discrimination diagram proposed by

Peccerillo and Taylor (1976) (Fig. 7), showing a strong

potassium enrichment (1.57–5.87 K2O wt%) from the most

mafic to the most felsic compositions. Since the Na2O

(2.32–3.65 wt%) trend does not show any obvious corre-

lations with silica enrichment, the K2O/Na2O ratios

increase from 0.57 to 1.68 toward the more evolved com-

positions. On the other hand, MgO, FeOt, CaO, P2O5 and

TiO2 decrease with increasing SiO2 (Fig. 8).

As a whole, the major element variation diagrams point

to a differentiation mechanism controlled mostly by frac-

tionation of clinopyroxene, plagioclase and hornblende, in

agreement with the order of crystallization that can be

inferred from textural criteria. The expected increasing Na

contents in fractionating plagioclase with differentiation,

precluding a clear Na2O enrichment in the evolved mag-

mas, can explain the variation of K2O/Na2O ratio. Frac-

tionation of apatite, and to some extent oxide minerals (Fe–

Ti oxides), should also have played a role in magma dif-

ferentiation, as testified by the constant and regular

decreases in phosphorus, iron and titanium with increasing

SiO2 contents. Similar trends have been reported for sev-

eral porphyry copper deposits elsewhere (Mason and

McDonald 1978; Eastoe and Eadington 1986; Dilles 1987).

The Al2O3/(CaO ? Na2O ? K2O) molar ratios are

always below 1.1, showing that the Dehsalm intrusions are

metaluminous or only slightly peraluminous, as is expected

in both M- and I-type granitoids but not in S-type grani-

toids (White and Chappell 1983; Chappell and White

1992).

The Dehsalm intrusions have MgO contents from

0.92 to 4.6 wt%, and the magnesium numbers

(Mg# = 100 * Mg/[Mg ? Fe], using atomic proportions)

are moderately high, ranging from 40.1 to 55.6.

Trace element geochemistry

Primitive mantle-normalized trace element spider diagrams

display strong enrichments in large-ion lithophile elements

(LILE) and those incompatible elements that behave sim-

ilarly to LILE (Th and U) (Fig. 9). The most characteristic

high-field strength elements (HFSE)—e.g., Nb, Zr, Y, Ti

and HREE—have, compared to LILE, clearly lower nor-

malized values; Nb and Ti, in particular, display negative

anomalies (Fig. 9). These features are typical of subduc-

tion-related magmas, such as the calc-alkaline volcanic

arcs of continental active margins (e.g., Gill 1981; Pearce

1983; Wilson 1989; Walker et al. 2001). High Sr and low

Nb, Ta and Ti contents, as in the Dehsalm intrusions, are

thought to be due to the absence of plagioclase and pres-

ence of Fe–Ti oxides in the residue in the source area of the
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parental magmas (Martin 1999); Nb and Ta impoverish-

ment has also been attributed to earlier depletion events in

the mantle source rocks (Woodhead et al. 1993; Gust et al.

1997). In the case of Ti, and taking into account the geo-

chemical and petrographic evidence discussed above, its

negative anomalies are also related to the fractionation of

oxides. The phosphorus negative anomalies in the studied

samples can be explained by fractionation of apatite.

Rare-earth element patterns of the Dehsalm intrusives in

chondrite-normalized plots display high degrees of REE

fractionation, with strong enrichment in LREE (Fig. 10), as

testified by the range of LaN/YbN values between 14.5 and

22.6. Their strong resemblance to each other suggests a

common magma source and a similar trend of evolution.

Most of the studied rocks have Eu/Eu* ratios from 0.88

to 0.99 (Table 1). Normally, a negative Eu anomaly

develops with magma differentiation due to fractional

crystallization of early, calcium-rich, plagioclase (Hen-

derson 1984). However, at high fO2 conditions, Eu will be

present mainly as Eu3? and, therefore, only small amounts

of Eu2? will be available for incorporation in plagioclase

(Drake and Weill 1975). This may be the explanation for

the lack of distinct negative Eu anomalies in the Dehsalm

intrusions. The occurrence of high fO2 conditions during

magma differentiation is further supported by petrographic

evidence, since oxides (especially magnetite) are common

minerals in the most mafic compositions, and also by

Harker diagrams for FeOt and TiO2 (Fig. 8), showing clear

negative slopes as is typical of magma suites where the

oxide minerals’ fractionation has a significant role since the

early stages of differentiation (e.g., Miyashiro 1974; Mi-

yashiro and Shido 1975; McBirney 1993).

In agreement with the metaluminous and high-K calc-

alkaline characteristics of the Dehsalm granitoids, almost

all samples plot in the volcanic arc granites domain in the

diagrams proposed by Pearce et al. (1984), with a tendency

toward the syn-collision granites (Fig. 11). Low Rb/Sr

ratios, with the mean value of 0.15, also fit into the

described geochemical signature.

The Sr/Y and La/Yb ratios are high (31.6–72.2 and

21.5–33.5, respectively) and overlap the values reported for

adakites (Kepezhinskas et al. 1997; Castillo et al. 1999).

However, when the compositions are plotted in the Sr/Y–Y

and La/Yb–Yb discrimination diagrams (Fig. 12a, b), Y

and Yb contents are generally higher than expected in

typical adakites. More importantly, two of the most typical

features of adakites, as shown by Defant and Drummond

(1990), are high Na2O contents (3.5–7.5 wt%) and low

K2O/Na2O ratio (*0.42), which clearly contrast with the

K-rich compositions of the Dehsalm intrusives. The

hypothesis that K enrichment could be mainly an effect of

hydrothermal alteration is not supported by immobile trace

element information, since the Dehsalm samples plot, inT
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the Th–Co diagram (Hastie et al. 2007), in the high-K calc-

alkaline and shoshonitic series fields (Fig. 13).

Therefore, a suitable petrogenetic model for the Deh-

salm granitoids must reconcile both their shoshonitic nat-

ure, as revealed by petrography and most of the

geochemical data, and the ‘‘adakitic’’ affinity, suggested by

some trace element features. A recently defined (Xiao and

Clemens 2007) category of adakites (C-type) displays

K-rich compositions; however, as will be discussed below,

the features of the Dehsalm granitoids show that these

rocks are also distinct from C-type adakites.T
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Fig. 6 Na2O?K2O versus SiO2 diagram. Fields after Middlemost

(1985)

Fig. 7 K2O versus SiO2 diagram. Fields after Peccerillo and Taylor

(1976)
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Rb–Sr and Sm–Nd isotope geology

One of the least altered samples—D3-227—was selected

for Rb–Sr geochronology. Biotite and plagioclase con-

centrates were obtained, and together with the whole-rock

analysis, their Rb–Sr compositions gave an age of

33 ± 1 Ma (Fig. 14). Since the plagioclase and whole-rock

data plot close to each other, the result is strongly depen-

dent on the Sr isotopic composition of biotite and,

accordingly, it must be viewed mainly as a biotite Rb–Sr

age. An identical age within error (34 ± 1 Ma) was

obtained (Arjmandzadeh et al. 2011) for a shallow felsic

intrusive from Chah-Shaljami (*85 km to the northwest of

Fig. 8 Harker diagrams for the

intrusive rocks of Dehsalm

Fig. 9 Primitive mantle-normalized trace element spider diagram

(Sun and McDonough 1989) for Dehsalm intrusives
Fig. 10 Chondrite-normalized diagram (Boynton 1984), showing

significant LREE enrichments and high degrees of REE fractionation

for Dehsalm intrusives
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Dehsalm, again in the Lut Block; Fig. 2), which belongs to

a magmatic suite displaying geochemical features similar

to those shown by the granitoids studied in the present

work.

Considering that the Dehsalm granitoids are subvolca-

nic, their post-emplacement cooling should have been fast

and, therefore, the 33 Ma age may be considered as dating

the magmatic event. As such, initial isotopic ratios and e
values were calculated for 33 Ma.

Sr and Nd isotopic compositions were determined for

seven whole-rock samples. Initial 87Sr/86Sr and eNd

values are tightly clustered in the ranges from 0.70470 to

0.70508 and from ?1.5 to ?2.5, respectively. In the

eNdi versus (87Sr/86Sr)i diagram (Fig. 15), this cluster

plots to the right of the so-called mantle array and

overlaps the field of island-arc basalts. These isotopic

compositions also overlap almost perfectly the isotopic

data obtained for Chah-Shaljami samples (Arjmandzadeh

et al. 2011).

The very similar initial Sr and Nd isotopic compositions

in the seven-sample cluster suggest that the Dehsalm

intrusions are co-genetic, deriving from the same parental

magmas by magmatic differentiation processes. Taking

into account the IAB-like isotopic compositions of the

studied rocks, the parental magmas may have been formed

by partial melting in a supra-subduction mantle wedge

(Stolz et al. 1996). The occurrence of gabbroic rocks in the

Dehsalm suite provides additional evidence in favor of an

origin of the parental magmas by melting of mantle peri-

dotites, rather than by melting of mafic crust.

Fig. 11 Plot of the

compositions of the Dehsalm

intrusives on the geotectonic

setting discrimination diagrams

of Pearce et al. (1984) for

granitoid rocks. WPG within-

plate granites, VAG volcanic arc

granites, ORG ocean ridge

granites, syn-COLG syn-

collisional granites

Fig. 12 a Plot of Dehsalm

intrusives on Y versus Sr/Y

diagram. Fields after Defant and

Drummond (1990). b Plot of

Dehsalm intrusives on Yb

versus La/Yb diagram. Fields

after Defant and Drummond

(1990)
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Discussion

Origin of the parental magmas

Some relevant geochemical features of Dehsalm intru-

sives—such as the high Sr/Y and La/Yb ratios, and the low

HREE contents—are similar to those exhibited by adakites.

These characteristics could be a consequence of melting of

garnet amphibolite or eclogite facies rocks that may be

found in subducted oceanic crust (Defant and Drummond

1990). However, other sources of adakitic parental magmas

have been proposed, such as hydrous mantle peridotite

(Stern and Hanson 1991), mafic rocks at the base of

thickened lower crust (Zhang et al. 2001; Chung et al.

2003; Xiong et al. 2003; Hou et al. 2004; Wang et al. 2005;

Guo et al. 2006) or delaminated mafic lower crust (e.g.,

Kay and Kay 1993; Defant et al. 2002; Gao et al. 2004;

Guo et al. 2006; Lai et al. 2007; Liu et al. 2008a, b). Some

authors (e.g., Castillo et al. 1999; Macpherson et al. 2006)

consider that assimilation-fractional crystallization (AFC)

processes must be taken into account to explain the genesis

of the adakitic rocks.

The high Sr/Y and La/Yb ratios could be attributed to

the retention of Y and HREE in residual garnet and horn-

blende (Defant and Drummond 1990). The strong LREE/

HREE fractionation in adakites is classically interpreted as

reflecting the presence of garnet and amphibole in the

residue resulting from the partial melting of their source,

whereas those minerals are not residual phases during the

genesis of typical of the most common calc-alkaline

magmas (Martin 1986). In this case, although not truly

adakitic, the Dehsalm suite could be related to a garnet-

and/or amphibole-bearing magma source.

The Ti–Nb–Ta negative anomalies are typical of all

types of calc-alkaline magmas, and they may be explained

by residual hornblende and/or Fe–Ti oxides (rutile,

ilmenite) in the source of the parental magmas (Pearce and

Norry 1979). However, since Nb and Ta are both highly

incompatible in typical mantle assemblages and immobile

during metasomatic events, their anomalies can, alterna-

tively, be explained by the addition of slab components to

Fig. 13 Plot of Deshalm intrusives in the Th–Co diagram. Fields

after Hastie et al. (2007). Subhorizontal boundaries separate fields of

magma series typical of subduction-related settings. Subvertical

boundaries separate fields of volcanic rocks in those settings

Fig. 14 Plot of the whole rock–plagioclase–biotite isochron of

sample D3-227

Fig. 15 eNdi-(
87Sr/86Sr)i diagram for the Dehsalm intrusive rocks.

The field of Cenozoic subducted oceanic crust-derived adakites was

defined after Defant et al. (1992), Kay et al. (1993), Sajona et al.

(2000) and Aguillón-Robles et al. (2001). The data for adakitic rocks

directly derived from a thick lower crust are after Atherton and

Petford (1993), Muir et al. (1995) and Petford and Atherton (1996).

MORB mid-ocean ridge basalts, DM depleted mantle, OIB ocean-

island basalts, IAB island-arc basalts. Initial ratios calculated for

33 Ma
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the mantle wedge causing increase in several incompatible

elements (namely LILE), but not in Nb and Ta (e.g., Turner

et al. 2003; Wang et al. 2006; Tamura et al. 2011).

The plot of the Dehsalm samples on the eNdi—

(87Sr/86Sr)i diagram (Fig. 15) shows that their composi-

tions do not fit into an origin of the parental magmas by

melting of thick lower crust or Cenozoic subducted oceanic

crust as proposed for typical adakites. In contrast, they

have Sr and Nd isotopic composition very similar to those

of normal island-arc basalts, pointing to melting in a

mantle wedge followed by magmatic differentiation.

Experimental studies demonstrate that Mg# is a useful

index to discriminate melts purely derived from the crust

from those coming from the mantle. Adakitic magmas,

whether derived directly from partial melting of the sub-

ducted oceanic slab (MORB) or from lower crustal mafic

rocks, usually show low Mg# (\40), regardless of melting

degrees (Rapp and Watson 1995), while the studied intru-

sives have moderately high Mg#, varying from 40.1 to

55.6, thus providing additional evidence for the involve-

ment of a mantle source in the origin of the parental melts.

The occurrence, at Dehsalm, of mafic lithologies, with

gabbro-dioritic compositions, also supports the hypothesis

of a peridotitic mantle source.

The studied rocks, although displaying some resem-

blances with adakites, are markedly enriched in some

elements, such as K and Rb, revealing a high-K calc-

alkaline to shoshonitic signature.

The high potassium contents can be explained by

decomposition of a K-rich phase (probably phlogopite)

during the partial melting of a previously metasomatized

mantle peridotite (Conceição and Green 2004).

Ascent of magmas through thickened continental crust

could have been the cause of crustal contamination

resulting in higher Rb/Sr and LILE/HFSE ratios and

increase in K2O and Th contents due to assimilation and

fractional crystallization (AFC) processes (Esperanca et al.

1992). However, if such mechanisms had extensively

occurred, significant variation in Sr–Nd isotopic composi-

tion would become evident and correlations of isotopic

ratios with SiO2 should be expected (Castillo et al. 1999).

In addition, the very restricted range of both (87Sr/86Sr)i

and eNdi precludes assimilation and fractional crystalliza-

tion (AFC) as a major process in the generation of the

diverse magma compositions of the Dehsalm suite. As

such, high Rb/Sr and K2O values are most likely attributed

to the source geochemistry. Ionov and Hofmann (1995)

have shown from mantle xenoliths that amphiboles can

have high K and very low Rb concentration while coex-

isting phlogopite is rich in both K and Rb. Thus, a strong

participation of phlogopite decomposition (but not neces-

sarily its complete melting) in the generation of the

parental magmas would account for the potassium-rich

nature and high Rb/Sr ratios displayed by the Dehsalm

intrusives. Metasomatism of mantle peridotite by slab

melts produces orthopyroxene, clinopyroxene, garnet,

phlogopite, and richterite or pargasite (Sen and Dunn 1994;

Rapp et al. 1999; Prouteau et al. 2001).

Hypotheses on the processes in the mantle source suffer

from the fact that, as is common in studies on subduction-

related magmatism (e.g., Turner et al. 2003, 2011), none of

the Dehsalm samples (Mg# B 55.6) represents directly a

primary magma and, consequently, magma differentiation

has also played a role even in the most mafic compositions.

However, taking the complete set of geochemical evidence

into account, probably the parental magmas originated by

partial melting of metasomatized mantle peridotite. Con-

tribution of phlogopite breakdown to the primitive melts

would cause the high potassium contents, responsible for

the shoshonitic signature of the studied rocks. Additionally,

residual garnet and amphibole may have enhanced the

LREE/HREE fractionation. The amphibole contribution

could have taken place also as low-P fractionation, and

therefore, its presence in the mantle source is not required.

The role of garnet as a residual mantle phase is also

debatable, taking into account that the high LREE/HREE

ratios are accompanied by only small HREE fractionation

(Fig. 10). In fact, Lin et al. (1989) have shown that, in

some cases, melting processes in spinel peridotite sources

may produce magmas with LREE enrichment but flat

HREE. Turner et al. (2003) used the Tb/Yb ratio as an

indicator of the participation of garnet in residual assem-

blages, and according to their modelling for the genesis of

parental magmas of K-rich suites in a volcanic arc setting,

Tb/Yb values around 0.4 (such as those obtained in the

Dehsalm rocks) fit into a scenario of small amounts

(*3 %) of residual garnet.

C-type adakites (Xiao and Clemens 2007), which have

some geochemical resemblance to the studied rocks, have

been interpreted as post-collisional granitoids resulting

from melting of K-rich (meta-)basaltic, dioritic or tonalitic

rocks at the base of overthickened crust and under a very

strong geothermal gradient. Examples studied by Xiao and

Clemens (2007) correspond to silicic magmas, with

low Mg# and an isotope signature suggesting a source

with a long crustal residence period (eNdi = -18.7;
87Sr/86Sri = 0.708048). In contrast, Dehsalm rocks include

lithologies more mafic than typical C-type adakites and

have relatively high Mg#, positive eNdi values and low
87Sr/86Sri ratios. Moreover, several lines of evidence

suggest that during the Oligocene, the Lut Block was at

the Neothethysian margin of the central Iran microconti-

nent (Shafiei et al. 2009) and not in a post-collisional

setting.
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Tectonomagmatic and metallogenic implications

Arjmandzadeh et al. (2011) recently proposed a two-sided

asymmetric subduction model to explain the tectonomag-

matic setting of the Lut Block. This model relates the

voluminous Tertiary magmatism within the Lut Block to

fast west-directed subduction and the abundant structural

evidence in the Afghan Block to slower eastward subduc-

tion, in agreement with the correlation between conver-

gence rate and volume of magmatism along subduction

zones that Tatsumi and Eggins (1995) have shown to exist.

The larger volumes of subduction predicted along west-

directed slabs should favor the formation of greater

amounts of arc-related magmas, as reported within the Lut

Block.

A period of important magmatism and mineralization

took place from middle Eocene to early Oligocene in the

Lut Block. The location of major Tertiary mineralization

occurrences within the Lut Block is shown in Fig. 16.

Tarkian et al. (1983) ascribed an island-arc signature to late

Eocene (42 Ma) to mid-Oligocene (31.4 Ma) volcanic

rocks of Khur and Shurab from the Ferdows and Mud

areas. K-rich calc-alkaline to shoshonitic andesitic rocks

from Qaleh-Zari Cu–Au–Ag IOCG were dated at

40.5 ± 2 Ma by Kluyver et al. (1978). The Hired intru-

sion-hosted Au deposit is reported by Eshraghi et al. (2010)

to be related to a post-Eocene quartz diorite porphyry stock

intruded into Eocene andesitic volcanic, pyroclastic and

sedimentary rocks. Malekzadeh (2009) inferred an island-

arc tectonomagmatic setting for the middle Eocene

(39 Ma) intermediate subvolcanic rocks of the Maherabad

and Khopik Cu–Au porphyry deposit.

Chah-Shaljami porphyritic granitoids were dated by

Arjmandzadeh et al. (2011), using the Rb–Sr isotopic

systematics of minerals and whole rock, at 33.5 ± 1 Ma.

Richards et al. (2012) obtained an identical age

(33.72 ± 0.08 Ma), within error, using the 40Ar/39Ar

method in a sample from a quartz monzonite intrusion from

the same area. The Chah-Shaljami rocks constitute a suite

with high-K calc-alkaline features, although some trace

element characteristics reveal an adakitic affinity. These

granitoids plot almost completely in the field of the vol-

canic arc granites; however, they also straddle the bound-

ary to the syn-collision granites. (87Sr/86Sr)i and eNdi

isotopic ratios of Chah-Shaljami intrusives range from

0.70470 to 0.70506 and from ?1.9 to ?2.7, respectively,

which fits into a supra-subduction mantle wedge source for

the parental melts. The gathered data on alteration, min-

eralization and hydrothermal fluids together with field

evidence indicate a deep Cu-Mo porphyry system in the

Chah-Shaljami area.

The data presented in this work reveal that the Dehsalm

subvolcanics are not only contemporaneous (33 ± 1 Ma)

but also have very similar geochemical and isotope sig-

natures compared to Chah-Shaljami granitoids, revealing

that the intrusions of the two areas are testimonies of the

Fig. 16 Major Tertiary mineralization occurrences associated with

the Eocene–Miocene magmatism within the Lut Block. 1 Dehsalm

Cu–Mo porphyry (Arjmandzadeh et al. 2013); 2 Chah-Shaljami Cu–

Mo porphyry (Arjmandzadeh et al. 2011); 3 Qlaleh zari Cu–Au–Ag

IOCG (Kluyver et al. 1978); 4 Hired Au–Sn associated with reduced

granitoids (Eshraghi et al. 2010); 5 Khopik Cu–Au porphyry

(Malekzadeh 2009); 6 Maherabad Cu–Au porphyry (Malekzadeh

2009); 7 Khur Cu–Pb–Zn–Sb vein-type mineralization (Tarkian et al.

1983); 8 Shurab Cu–Pb–Zn–Sb vein-type mineralization (Tarkian

et al. 1983)

Fig. 17 Plot of Rb/Zr–Nb for Dehsalm intrusive rocks. Fields after

Brown et al. (1984). The field of Cu–Au porphyry was drawn mainly

on the basis of Maher-abad and Khoopic prospects (after Malekzadeh

2009). The data for Chah-Shaljami are after Arjmandzadeh et al.

(2011)
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same type of magmatic processes. Additionally, studies on

the ore-forming processes in Dehsalm (Arjmandzadeh et al.

2013) concluded that a Cu–Mo porphyry-type mineraliza-

tion system also existed in this area.

A spatial and temporal relationship between tectono-

magmatic cycles in arc mineralization processes has long

been recognized, with porphyry Cu deposits typically

occurring in subduction-related settings, especially in

continental arcs (e.g., Sillitoe 1988; Sillitoe and Bonham

1984), in relation to oxidized I-type granitoids. The relative

importance of Cu and Mo in those deposits seems to be

controlled by the water content of the initial magma, the

water saturation level in each situation and the degree of

crystal fractionation required to achieve water saturation

(Candela and Holland 1984, 1986; Strong 1988; Candela

1992). Cu–Au porphyry deposits are usually considered

more typical of relatively immature arcs (Cooke et al.

1998; Laznicka 2010), although they are also found in the

Andean arc, as in the Maricunga belt, Chile (Vila and

Sillitoe 1991).

The plot of geochemical data obtained for igneous rocks

of the Lut Block on the Rb/Zr–Nb diagram (Brown et al.

1984; Fig. 17) agrees with that general picture. In fact,

rocks with associated Cu-Au deposits have mid-Eocene age

and lie in the island-arc field, while the Oligocene grani-

toids with Mo-bearing deposits (this work and Arjmand-

zadeh et al. 2011) display features of a more mature arc

setting (Fig. 17), probably in relation to crustal thickening

accompanying the beginning of the collision of the Afghan

and Lut plates.

Sillitoe (1998) remarked that crustal thickening associ-

ated with compressive tectonism was synchronous with the

formation of giant porphyry copper systems in central and

northern Chile, southwest Arizona, Irian Jaya and Iran. The

existence of a thick crust (40–48 km) in the Lut Block was

suggested by Dehghani and Makris (1983). More recently,

Hatzfeld and Molnar (2010) after comparing structural

evidence from the Himalaya and the adjacent Tibetan

Plateau, on the one hand, and from Zagros and the Iranian

Plateau, on the other hand, concluded that crustal thick-

ening occurred beneath short ranges that link strike-slip

faults in the region surrounding the Lut Block. Therefore,

the geodynamic setting of the Oligocene subvolcanic in-

trusives of the Lut Block seems to fit into the conditions

favorable to the genesis of important porphyry copper

deposits.

Conclusions

A Rb–Sr biotite date yields an intrusion age of 33 ± 1 Ma

for the Dehsalm granitoids in the Lut Block volcanic–

plutonic belt. These granitoids display trace element

features typical of the magmatism related to a subduction

zone, such as LILE enrichment and marked Nb, Ta and Ti

negative anomalies. Geochemical evidence shows that the

Dehsalm intrusives are high-K calc-alkaline to shoshonitic.

They also belong to the magnetite series, with mineral

potential for Cu–Mo (–Au–Pb–Zn), as detected by geo-

chemical exploration surveys (Arjmandzadeh et al. 2013).

Some geochemical resemblance, namely the high LREE/

HREE ratios, between Dehsalm granitoids and adakitic

rocks can be attributed to the presence of residual garnet

and amphibole in a mantle source. The relatively high Mg#

values discard a crustal origin (subducted slab or lower

crust) for the parental magmas. Isotope geochemistry

shows that the studied rocks are co-genetic and should be

related to each other mainly by magmatic differentiation

processes, such as fractional crystallization. Therefore, the

high K2O contents should result from the mantle source

geochemistry, rather than from important assimilation of

crustal materials. Despite the fact that no primitive melt is

directly represented by any of the studied rocks, some

hypotheses on the processes involving the mantle source

may be put forward: The parental magmas probably

derived from partial melting of metasomatized peridotite in

a supra-subduction mantle wedge; during the melting

event, phlogopite breakdown should have contributed to

some of the most important geochemical fingerprints of the

suite; garnet and amphibole possibly remained as residual

phases in the source. This study provides new evidence for

subduction beneath the Lut Block during the Tertiary. A

spatial and temporal relationship between tectono-mag-

matic cycles in the eastern Iran arc and porphyry Cu–(Mo–

Au) formation has been recognized. Cu–Au porphyry

deposits of the Lut Block seem to be related to an immature

arc geotectonic setting during the middle Eocene, while

Mo-bearing porphyry-type deposits correspond to a more

advanced stage of arc evolution and probably to crustal

thickening as a result of the beginning of Afghan and Lut

plate collision during Oligocene.
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