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Abstract
Image inpainting refers to the process of filling in missing regions or removing objects, and has broad application prospects. 
The rapid development of deep learning has led to new technological breakthroughs in image repair technology, continu-
ously improving the quality of image inpainting. However, when we inpaint large missing regions, the texture and structural 
features of the image cannot be comprehensively utilized. This leads to blurry images. To solve this problem, we propose an 
improved dual-stream U-Net algorithm that adds an attention mechanism to the two U-Net networks known as a dual AU-Net 
network to improve the texture details of the image. In addition, the location code (LC) of damaged regions is added to the 
network to guide network repair and accelerate the network convergence speed. Least squares GAN (LSGAN) loss is added 
to the generator’s adversarial network to capture more content details and enhance training stability. The PSNR is 33.93 and 
the SSIM is 0.931 in the CelebA and Paris datasets. This method has been proven effective when compared to other methods.
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1  Introduction

Image inpainting [1] is a technique that restores damaged 
pixel features within the image. This technique has numer-
ous practical applications, including the restoration of cul-
tural relics, calligraphy, paintings, and the removal of unde-
sired objects or interference within images [2]. In the past 
two decades, numerous image inpainting methods have been 
proposed, which use prior data and the image data itself 
for inpainting. Ideally, image repair models should have the 
following three attributes: (1) Aesthetic and visual consist-
ency in the image’s structure and texture, (2) Cohesion in the 

image content as a whole, (3) Efficient and reliable network 
training.

Numerous scholars have proposed several image inpaint-
ing methods. Initially, scholars proposed traditional meth-
ods such as partial differential equations (PDE) [1], texture 
synthesis [3, 4], and sparse representation [5] for image 
restoration. However, the PDE method is only effective for 
inpainting small regions, while texture synthesis is suitable 
for restoring larger regions but can be limited by a lack of 
sample resources. The sparse representation method ena-
bles effective noise reduction but does not maintain image 
structure continuity. Additionally, these methods are gen-
erally unable to satisfy the third attribute and prove to be 
time-consuming.

Pathak et al. [6] were the first to propose the use of 
context encoders network for image inpainting, achieving 
remarkable results that sparked the interest of many schol-
ars. With the growing success of deep learning in image 
processing, several inpainting methods have been proposed 
using neural networks. These inpainting techniques mainly 
comprise generative adversarial networks (GAN) [7–10], 
autoencoder networks [6, 11, 12], and transformer networks 
[13–15], with the capacity to achieve semantic inpainting 
results.

Generative adversarial networks (GAN) generate 
images through a continuous adversarial game between 
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the generator and discriminator. Autoencoder networks 
extract image features [16, 17] for image inpainting, while 
transformer networks [15, 18] use attention mechanisms 
to capture global context information necessary for visual 
rationality repair. While these techniques successfully 
realize the second and third attributes of image repair, the 
first attribute may not be implemented as effectively.

While these three image inpainting modes can achieve 
good results, they have certain limitations. The GAN loss 
function is often faced with the problem of not effectively 
improving network training speed. Autoencoder networks 
[19] may not accurately restore texture details in images. 
The computationally intensive nature of transformer net-
works has been recognized as a drawback [20].

Is it possible to design a network that can solve the 
aforementioned problems simultaneously? To address 
this problem, we propose an inpainting network, called 
autoencoder U-shaped generative adversarial networks 
(AU-GAN), which utilizes GAN as the main architecture 
and incorporates a dual-stream AU-Net into the generator 
to generate high-quality images. We introduce attention 
mechanism, position coding, and LSGAN (least squares 
GAN) loss into the network to monitor the texture details 
of the image, and a parallel three-branch discriminator is 
designed to reduce the computational time. This method 
enhances the visual consistency and coherence of the 
images.

Texture and structure information are essential to the 
image. Focusing solely on one aspect can result in unsat-
isfactory outcomes [21]. A dual-stream coupled U-Net 
network can be utilized to extract texture and structure 
features of an image in two distinct encoding stages. The 
network possesses location coding and attention modules 
for the missing image regions. In the decoding stage, the 
texture feature supplements the structural feature recon-
struction, and the structural feature supplements the 
image texture feature reconstruction. The two features are 
integrated to achieve a cohesive blend of image texture 
and structure information [22, 23]. The attention mod-
ule assists the U-Net encoder in effectively locating the 
image’s texture information [24] and highlighting the 
texture details [25]. Position coding of missing regions 
in U-Net allows the network to prioritize broken regions, 
leading to more efficient convergence. The discriminator 
applies a three-branch structure to recognize the repaired, 
edge, and grayscale images. In conclusion, our approach 
combines different loss functions, including LSGAN, per-
ception, reconstruction, and confrontation, to monitor the 
repair outcome. This approach provides a global evalua-
tion of image repair quality, improves training stability, 
and ensures reasonable visual consistency and coherence 
of the inpainted images.

To summarize, this article’s primary contributions are:

•	 The AU-GAN method proposed by us combines the dual-
stream AU-Net into the generator to improve the quality 
of the image. It utilizes skip connections and the texture 
information of the image to aid in the reconstruction of 
the image’s structural information. Additionally, it uti-
lizes skip connections and the structural information of 
the image to aid in the reconstruction of the image’s tex-
ture information. This approach allows the texture and 
structural information of the image to be combined and 
used to guide the image repair process.

•	 To monitor the texture details of the image, we incorpo-
rated attention mechanism, position coding, and LSGAN 
loss into the network. Through the attention mechanism, 
the AU-Net network can better extract image texture, 
while the position coding module provides the network 
with directional information of the mask. LSGAN loss, 
based on the least squares method, penalizes samples 
based on their distance from the decision boundary, 
hence supervising the network repair results.

•	 To accelerate the convergence of the network, reduce 
time costs, and improve the visual consistency of the 
image, we adopt a discriminator with a parallel three-
branch design. Among them, one branch discriminates 
the grayscale image of the repaired image, the other 
branch discriminates the edge image of the repaired 
image, and the third branch discriminates the repaired 
image. Finally, the outputs of the three branches will be 
merged for discrimination in the channel dimension.

This paper is organized as follows: Sect. 1 provides back-
ground information on inpainting and trends in image 
inpainting methods. Sect. 2 reviews prior work on inpaint-
ing and introduces the primary image inpainting method. 
Sect. 3 introduces the proposed method, including the net-
work architecture, generator, location code, discrimina-
tor, and loss function. Sect. 4 describes the experimental 
analysis conducted. Finally, Sect. 5 concludes the paper and 
presents future work.

2 � Related work

2.1 � Image inpainting based on traditional methods

Traditional image inpainting can be divided into three cat-
egories: partial differential equation (PDE) method [26], (2) 
texture synthesis method [27, 28], and (3) sparse representa-
tion method [29].

Partial differential equations The PDE methodology [1, 
30] utilizes boundary information to regulate the diffusion 
direction and rate, diffusing gradually from the missing 
boundary toward its interior. Bertalmio et al. were the first 
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to apply this method in image inpainting [1] in 2000. The 
central concept behind the PDE technology is to distrib-
ute pixel information to the missing area following the iso-
photes direction while utilizing the propagation mechanism 
to restore the image. It has generated remarkable outcomes 
in small regions.

Texture synthesis Drori et al. were the first to pioneer the 
use of texture patches as a whole to eliminate the random-
ness of pixel filling [31] in 2003. In 2004, Criminisi et al. 
proposed an exemplar [3] based on priority order for image 
inpainting. This technique computes the priority function 
using the product of confidence and data items to determine 
the priority order of the missing boundaries, finds the best 
matching patch through global search, and fills it directly. 
These methods can generate filling errors that influence the 
subsequent fillings. Additionally, the priority calculation can 
be illogical, resulting in incorrect filling order and unsatis-
factory repair outcomes. Furthermore, in cases where sample 
resources are unavailable, repair is often impossible. Barnes 
et al. introduced the PatchMatch technique [32] for image 
inpainting, which utilizes a random search to improve repair 
efficiency, but it has some limitations such as sensitivity to 
sample size. Another method relies on external databases 
[4] and proves effective in scenarios where sample images 
with adequate visual similarity can be obtained. However, 
if the restored image is missing from the sample database, 
it results in an incorrect filling, leading to an inadequate 
final result. Although the sample resources may exist, they 
can still be disrupted in complex situations such as scale, 
rotation, and illumination, and may lead to unsatisfactory 
repair results [33].

Sparse representation The main concept behind sparse rep-
resentation inpainting [34] is that filled regions and unmiss-
ing regions have similar and sparse characteristics. To obtain 
sparse coefficients, image information can be sparsely repre-
sented, and reconstruction algorithms can then be employed 
to recover the image signal, leading to complete image res-
toration [35]. This method averts the dissimilarity of a sin-
gle texture block and inserts multiple texture blocks to fill 
in similar regions. Nonetheless, missing samples make it 
impossible to fix them. Sparse representation methods can-
not incorporate semantic information; instead, they fill in 
the missing regions by applying known information in the 
image. If sample resources are unavailable for the repair 
process, filling in missing regions will become problematic. 
Hays et al. resorted to using similar samples from an image 
library [4] to fill in the missing regions. If no corresponding 
image blocks can be found in the library, it generates repair 
errors, and a lengthy search process is initiated.

2.2 �  Image inpainting based on deep learning

Deep Learning method Recently, image inpainting has 
been undergoing developments with the application of deep 
learning technology. Deep learning has a higher capacity for 
both feature learning and expression compared to conven-
tional algorithms. Additionally, it can capture more features, 
refresh various task indicators on a regular basis concerning 
computer vision, and has made significant strides in image 
inpainting. We can categorize these methods into three 
global categories: image inpainting technology based on 
GAN [9, 17, 36, 37], autoencoder [38–40], and transformer 
network [15, 18, 41].

The primary concept of image inpainting technology 
based on GAN involves continuous image generation by 
the generator while the discriminator ensures the valid-
ity of the image inpainting results. Subsequently, both the 
generator and discriminator engage in an adversarial game 
with continuous optimization. [42] incorporated photo style 
into the GAN network and introduced a new normalization 
and regularization method for the GAN generator to tackle 
issues such as speckles, thereby improving the overall image 
quality. However, this method tends to create blurry images. 
[43] proposed a network structure based on wavelet decom-
position. The method decomposes the image into various 
bands with apparent missing areas, and then uses the discrete 
wavelet transform to retain the spatial information. Lastly, 
a new normalization method is designed to fuse multi-fre-
quency features to improve image repair, but texture details 
in the restored image are not perfect. To enhance the detail 
of face images during image repair, Zhou et al. proposed to 
use a GAN network [44] with dual spatial attention modules 
and multiple discriminators. Despite achieving commend-
able results, the method is not suitable for repair of signifi-
cantly sized defects.

The image inpainting network structure based on encod-
ing and decoding is widely employed [45]. A multi-scale 
network [46] with an encoding and decoding structure 
enhances the network’s general comprehension of the 
image by extracting edges and lines of the image as prior 
information, to improve the quality of image inpainting. 
Images with significant gaps, however, show mediocre 
repair results because the line and edge effects of the 
image are roughly the same. Thus, [47] employed the 
semantic information of the images and texture as prior 
information to guide in the repair process. They also used 
a semantic intelligent communication module to refine the 
image texture to prevent texture confusion in the image. 
Nonetheless, the approach may cause distortion while fix-
ing large regions. Positing that repairing an image based 
on local texture and semantic information can often cause 
texture blur, Zhou et al. proposed a method that extracts 
key feature points [48] according to the homography of the 
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source image, clusters them, and then obtains the repaired 
image through the color space conversion module and fea-
ture fusion module. However, this method does not utilize 
the texture and structure information of the image, result-
ing in artifacts. To address this, a hierarchical network [49] 
was proposed that generates multiple coarse results with 
varying structures in the coarse stage. In the fine stage, a 
structure attention module refines each coarse result via 
texture enhancement and synthesizes the discrete struc-
ture features to combine the image texture and output the 
repaired image. The result of this method may contain 
artifacts. Guo et al. proposed a dual-stream network struc-
ture [50] for image inpainting. The structure and texture 
features of images are extracted and combined through two 
U-Net networks that interact, thereby effectively utiliz-
ing image information for image inpainting and achieving 
superior results. However, the method cannot integrate the 
image’s texture and structural information more effectively 
for inpainting large missing regions, often resulting in a 
blurred inpainted image. What sets it apart from our pro-
posed inpainting method is: (1) We incorporate attention 
mechanisms, which can enhance the visual coherence of 
image restoration. (2) We introduce position encoding to 
enable the network to perform efficient and precise repairs 
on damaged areas.

The transformer architecture has garnered significant 
attention since its introduction. Its core strength lies in the 
attention idea, which enables optimal exploitation of con-
text information. Zheng et al. creatively approached the task 
of image repair as a directionless prediction task [51] from 
sequence to sequence, leveraging the attention mechanism of 
transformers. The authors proposed a novel attention percep-
tion layer that effectively exploits high-frequency features, 
while balancing the attention between missing and visible 
areas. On a similar note, Yu et al. observed that the convo-
lutional neural network’s modeling effect [52] on remote 
context information is subpar, leading to distortion in the 
repair results. To overcome this problem, the authors inte-
grated an attention module into the network and added the 
perception mechanism and content awareness layer to the 
two U-Net network structures. Consequently, the authors 
successfully improved the inpainting network’s modeling 
ability. To conduct effective image inpainting, a multistage 
repair network [53] was developed, comprising of an autoen-
coder and a single-scale network. The network was further 
equipped with an attention mechanism at each stage, which 
aids in optimizing the feature flows from one network to the 
next. The integration of a cross-stage information exchange 
facilitated minimal data loss, leading to better image recov-
ery. However, the authors did not adequately integrate the 
attention mechanism with the texture and structure informa-
tion of the image. This limitation warrants further improve-
ment to enhance the quality of the repaired image.

Through an analysis of relevant studies, it can be found 
that the GAN network can use the generator and discrimina-
tor to continuously improve the quality of the image. Atten-
tion mechanism can increase the network’s focus on missing 
areas, while position coding can provide directional informa-
tion for the mask to the network. Therefore, it is necessary 
to combine the strengths of GAN network, attention mecha-
nism and position coding, and rationally add them to the 
network, further improving the quality of image inpainting.

3 � Method

3.1 � Network architecture

This paper proposes an image inpainting method that inte-
grates autoencoder U-shaped generative adversarial net-
works (AU-GAN) into the GAN framework. The proposed 
generator configuration consists of a two-stream AU-Net 
network structure, which utilizes the contextual transformer 
for spatially disoriented gated fusion (CTSDG) module [50] 
for bidirectional gated feature fusion (Bi-GFF) and the con-
textual feature aggregation (CFA) module. To improve net-
work training, the discriminator adopts a tripartite structure 
for discriminating the grayscale map of the inpainted result, 
the inpainted image, and the edge map of the inpainted 
image, sharing the weights of the discriminator of the three 
branches. This paper incorporates position encoding for the 
mask in the first convolutional layer of the generator. The 
structure consists of seven consecutive convolutional mod-
ules, where the encoding stage is followed by an attention 
module to capture global contextual information. The pro-
posed network diagram is presented in Fig. 1.

Following the attention module is the decoding module. 
Our approach utilizes a layer-by-layer incremental and jump-
connection approach. This approach jump-connects not only 
the levels in the decoder and the encoder corresponding to 
the scale but also the dual-stream AU-Net network employed 
to extract the structural and texture information of the image 
separately. The extracted structural features guide the texture 
reconstruction in the decoding stage, whereas the extracted 
texture features guide the reconstruction of the structural 
features of the image in the other AU-Net. Finally, the gener-
ated images are produced using Bi-GFF and CFA modules.

In AU-Net’s coding layer, the first layer does not use 
batch normalization, whereas the remaining six layers adopt 
batch normalization and average pooling to lower the net-
work’s complexity and parameter count. The activation func-
tion for each layer is LeakyReLU with � = 0.2. The added 
position encoding in the first convolutional layer allows the 
mask position information to be represented using sine and 
cosine functions with distinct frequencies. Four kernels lay-
ered masks are subsequently utilized to capture the position 
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information related to the mask. The attention module esti-
mates the attention score of each patch by calculating the 
cosine similarity between feature values. Next, the texture 
features are reconstructed based on the attention scores to 
accomplish the task of inpainting the details of image texture 
information.

The discriminator comprises a tripartite structure to eval-
uate the gray image, edge image, and generated image. Each 
branch for the discriminator has five convolution layers with 
Leaky ReLU as the activation function using the � = 0.2.

To guarantee the naturalness and plausibility of the 
inpainted image, we utilize an amalgamation of multiple 
loss functions, which include style loss, confrontation loss, 
reconstruction loss, and perception loss. In this paper, we 
utilize LSGAN loss, which is based on the least squares 
approach, to improve the network’s overall training stability.

The proposed network design and parameter settings of 
each module guarantee the network structure’s soundness, 
enhance the correlation between the known area and the 
missing area, and improve the quality of the final restored 
image.

3.2 � Generator

The generator of the network is seen as the structure of two 
intertwined AU-Nets. The damaged image is fed into the 
network, and the position encoding of the mask is added 
to the first convolutional layer, providing the network with 
mask information. Both AU-Nets contain an attention mod-
ule. This module searches for texture information in the 

background of the image to fill in missing areas and provide 
more detailed texture information for feature reconstruction.

Furthermore, the two AU-Net networks contain skip con-
nections to provide additional information for the decoding 
stage, enabling the application of complex feature informa-
tion. To enhance the interaction between separately extracted 
texture and structure features, both types of features are 
merged for decoding. This enables mutual promotion of 
texture and structure feature decoding.

3.2.1 � Location code

The location of the mask can be passed to the neural net-
work through zero padding in the convolutional neural net-
work. However, this approach has limitations. The zero 
padding can only provide the network with spatial location 
information of the image, such as the orientation of the 
mask. When the image has large missing regions, the zero 
padding becomes less effective in providing information 
to aid the network. Instead, it can lead to problems like 
ghosting in the inpainted image, thereby decreasing image 
quality. In image inpainting, the main goal is to restore 
the missing regions. Providing location information about 
the non-missing regions is unnecessary. Therefore, provid-
ing precise location information of the missing regions is 
necessary, and by adding location coding, this problem 
can be effectively solved. Position coding represents the 
position relationship between the missing and non-missing 
regions in an image. In an image, the distance and direc-
tion of the mask are denoted by Ps and Pr , respectively. For 

Fig. 1   Image inpainting network structure diagram. The network 
generates an adversarial network with the generator composed of 
AU-Net and CTSDG modules. Within AU-Net, the U-Net network is 
the primary framework, with position encoding denoting the position 
encoding of the mask, attention indicating the attention module, and 

CTSDG representing the feature fusion and context aggregation mod-
ule. Furthermore, the discriminator features a tripartite structure, with 
grayscale representing the gray image of the image and detected edge 
indicating the edge image
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a 256 × 256 mask where masked and unmasked regions 
are denoted by 0 and 1, respectively, a 3 × 3 kernel with 
values of 1 is used to calculate the mask distance D

dis
 at 

each position in the masked region. Ps is then obtained 
by clipping and applying sinusoidal position coding, as 
shown in Fig 2b. Then, the distance is clipped and mapped 
by the sinusoidal positional encoding (SPE) [54] to get 
Ps ∈ ℝ

256×256×d

where i and d denote the index of the channel, the total 
number of channels in Ps , respectively, and we set 
Dmax = 128, d = 64.

Yet, the sinusoidal location algorithm described above 
can only provide spatial location information for the miss-
ing region and can calculate the location code for a prede-
termined size. So Ps use the nearest neighbor interpolation 
to constantly adjust the size, in order to train the position 
coding that can scale to any size. For the mask direction, 
a 4 channel vector Ddir can be obtained from four differ-
ent cores, which can represent the nearest direction of 
the mask position and the unmasked position. Its value 
depends on which kernel can finish covering the mask area 
first, as shown in Fig. 2c. Then, Ddir is projected into Wdir 
with learnable embedding parameters using formula 2, and 
finally mask direction Pr is obtained. Pr is defined as:

(1)
Ps,2i = sin(clip(Ddis,0,Dmax)∕10000

i

d ),

Ps,2i+1 = cos(clip(Ddis,0,Dmax)∕10000
i

d ),

(2)Pr = Ddir ×Wdir ∈ ℝ
256×256×d,

3.2.2 � Attention module

During deconvolution coding of the image features, net-
work computation cost becomes excessive. Therefore, an 
attention module is added after the encoding of AU-Net 
for this purpose. The attention module collects texture fea-
tures to reconstruct texture details.

To be specific, given a feature map F, we first extract 
the patches of 3 × 3 pixels and calculate their cosine simi-
larities as:

Within the attention module, where the given feature 
map F are considered, the calculation of cosine similarity 
between corresponding pairs of feature pixels is computed 
by

where fi and fj correspond to the i − th and j − th patch of 
the feature map, respectively.

We then obtain the attention score of each patch:

After obtaining the attention score of each patch in the fea-
ture map, we combine the score of each patch with its cor-
responding patch to reconstruct the texture features of the 
image in this way by

where f̃i is the i-th patch of the reconstructed feature map.

3.3 �  Discriminator

In designing a GAN for image inpainting, the discrimina-
tor plays a critical role in image quality. Therefore, the dis-
criminator is designed as a three-branch structure to distin-
guish the inpainted image from the real image, grayscale 
image, and edge image. In particular, three convolution 
layers are used to apply four steps of convolution opera-
tion. The convolution kernels have a size of three, and 
sigmoidal activation functions are used. Using the Canny 
operator, the edge image of the real image is detected, 
and the gray image is detected using the weighted average 
method. Thereby, the outputs of the three branches are 
combined to identify the images and continuously improve 
the quality of restoration performed by the generator.

(3)S
i,j

contextual
=

⟨
fi

‖‖fi‖‖2
,

fj

‖‖‖fj
‖‖‖2

⟩
,

(4)Ŝ
i,j

contextual
=

exp
�
S
i,j

contextual

�

∑N

j=1
exp

�
S
i,j

contextual

� .

(5)f̃i =

N∑
j=1

fj ⋅ Ŝ
i,j

contextual
,

Fig. 2   The illustration of our masking relative position encoding. a 
Input mask, b masking distance Ddis and the all-one 3 × 3 kernel, c 
masking directions Ddir and their kernels
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3.4 �  Loss function

The model employs a mixed loss function comprising recon-
struction, confrontation, perception, style, and LSGAN loss. 
This combination ensures the consistency of inpainted con-
tents based on their weight.

The loss function formula denotes G and D as the genera-
tor and discriminator of GAN, respectively. Additionally, 
Igt , Egt , and Mgt represent the real, edge, and gray images, 
respectively. The binary mask is denoted as M, where 
Iin = Iin⊙Min represents the input of the network. Addition-
ally, Ein = Ein⊙Min represents the input of the edge graph, 
and Yin = Ygt⊙Min denotes the input of the grayscale graph. 
The generator produces two outputs: Iout and Eout , which are 
represented by Iout , Eout = G(Iin,Ein, Yin,Min).

Reconstruction loss The L1 distance between Iin and Iout is 
set to minimize the difference between them. This is shown 
in formula 6.

Perceptual loss To account for the lack of sensitivity to 
high-level semantics in the reconstruction loss, the overall 
loss is augmented with a perceptual loss. The L1 distance 
between Igt and Iout is calculated using the VGG19 network 
model in the feature space, as depicted in formula 7.

where �i denotes the feature of the i-th pooling layer as the 
input of VGG19 network.

Style loss The addition of style loss to the overall loss 
ensures that the repaired content is consistent and coher-
ent throughout the entire image. Style loss is calculated by 
measuring the L1 distance between features, as demonstrated 
in formula 8.

where �i denotes the GRAM matrix constructed by the 
feature.

Adversarial loss Adversarial loss is essential in produc-
ing visually impressive generated images. The traditional 
adversarial loss, based on maximal and minimal values, 
does not provide gradient feedback on fake samples, mak-
ing it ineffective for supervision. To counteract this, the 
LSGAN loss uses least squares to calculate the distances 

(6)L rec = �[Iout , Igt ].

(7)L perc = �

[∑
i

‖‖‖�i

(
I out

)
− �i

(
Igt

)‖‖‖1
]
,

(8)Lstyle = �

[∑
i

‖‖‖
(
�i

(
Iout

)
− �i

(
Igt

))‖‖‖1
]
,

from the decision boundary, penalizing the samples to trans-
mit gradients. This results in improved network stability and 
enhanced supervision for image inpainting. Formula 9 shows 
how the LSGAN loss is added to the network.

Intermediate losses Intermediate losses must be added to 
Fs and Ft to improve the utilization of both structural and 
texture features. Formula 10 presents the respective inter-
mediate losses.

where Fs and Ft represent structural features and texture fea-
tures, respectively, Ps and Pt represent the projection func-
tions implemented by residual blocks and convolution layers.

Overall loss To obtain clearer and more natural images, we 
combine the various loss functions introduced above to pro-
vide better supervision for image generation. The network’s 
overall loss is

The total loss function composed of various loss functions 
can effectively supervise the network to restore the image, 
and gradually improve the restored image in terms of image 
style, texture, structure, and semantic consistency according 
to different weights, where �rec , �perc , �style , �adv , and �inter 
are the trade-off parameters

4 � Experimental analysis

The CelebA and Paris datasets were used to perform experi-
ments. Results were objectively evaluated, along with neces-
sary ablation experiments.

4.1 � Experimental setup

The experiment uses the CelebA and Paris datasets in addi-
tion to the irregular dataset for the masks. The experiment 
is conducted with masks of varying sizes. The resolution 
size is 256 × 256 pixels. We assigned weight parameters to 
the loss function with values of �rec = 10 for reconstruction 

(9)

Ladv =

⎧
⎪⎪⎨⎪⎪⎩

min
D

VLSGAN(D) =
1

2
�(Iin)∼pdata(Iin)

�
(D(Iin) − 1)2

�
+

1

2
�Iin∼pIout (Iout )

�
(D(G(Iout )))

2
�
,

min
G

VLSGAN(G) =
1

2
�Iin∼pIout (Iout )

�
(D(G(Iout )) − 1)2

�
.

(10)
Linter = Lstructure + Ltexture

= BCE(Egt ,Ps(Fs)) + �1(Igt ,Pt (Ft )),

(11)
Ljoint = �recLrec + �percLperc + �styleLstyle

+ �advLadv + �interLinter ,
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loss, �perc = 0.1 for perceptual loss, �style = 250 for style loss, 
�adv = 0.1 for adversarial loss, and �inter = 1 for the interme-
diate loss.

We implemented the network architecture using PyTorch 
framework and trained it on a NVIDIA GeForce GTX 1080 
Ti GPU (12GB) with a batch size of 6. We utilized the Adam 
optimizer for optimization. The training is split into two 
stages, using a learning rate of 10−4 to train the model for 
300,000 iterations in the first stage, and fine-tuned using a 
learning rate of 5 × 10−5 for another 300,000 iterations in the 
second stage. The discriminator training rate was set at 1/10 
of that of the generator. Models were trained on CelebA and 
Paris streetscape datasets for about four days, followed by a 
fine-tuning of one day.

4.2 � Qualitative comparison

To verify the effectiveness and innovativeness of our 
method, we compared it with other state-of-the-art models 
of the same category. We used peak signal-to-noise ratio 
(PSNR) and Structure SIMilarity (SSIM) as metrics for qual-
itative comparison of results, where the higher PSNR and 
SSIM values indicate a more satisfactory inpainted result. 
The PSNR is computed using formula 12.

The term MSE refers to the mean square error between the 
original image X and the processed image Y. The variable n 

(12)

PSNR = 10 × log

�
(2n − 1)2

MSE

�

MSE =
1

mn

m−1�
i=0

n−1�
j=0

‖A(i, j) − B(i, j)‖2

represents the bit depth of the pixel value, and in the case of 
grayscale images, n = 8.

here, �x , �y , �xy,�x , and �y represent the standard deviations, 
cross-covariance, and local means for image X and image Y. 
The variables C1 and C2 denote constants.

The findings are presented in Fig. 3. In Fig. 3a, the deep 
learning method for inpainting was employed. Specifically, 
the PConv technique utilized gated convolution for image 
post-processing [39], but the resulting image structure infor-
mation was incomplete. DeepFillv2 was another method that 
employed gated convolution for generative image inpainting 
[55]. However, this approach was prone to producing blurred 
images. In contrast, the MED [24] technique employed a 
mutual encoding and decoding CNN network to leverage 
texture and structure information for image inpainting. 
Unfortunately, texture information in the repaired images 
created by the MED method was not precise enough. The 
RFR [23] method was a progressive image repair network 
that repaired the image gradually, starting from the dam-
aged edge, with the repaired results as prior information. 
However, this method also resulted in blurred images and 
unclear image structure information. Another repair network 
that integrated information on image texture and structure 
was the CTSDG [50] method, but its repair output was not 
natural enough.

While the algorithm’s score for the repaired image 
displays some objectivity, it does not provide a complete 
appraisal of the image inpainting quality. To address this 
issue, we conducted a subjective evaluation by soliciting 

(13)SSIM(x, y) =
(2�x�y + C1)(2�xy + C2)

(�2
x
+ �2

y
+ C1)(�

2
x
+ �2

y
+ C2)

Fig. 3   Qualitative comparison on CelebA and Paris StreetView: a input corrupted images, b PConv[39] c DeepFillv2 [56], d MED[24], e 
RFR[23], f CTSDG[50], g Ours, and h ground-truth images
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artificial assessments of the inpainted outcomes. Specifi-
cally, we randomly selected 30 images from the test set and 
performed inpainting with both our method and CTSDG 
method. We then asked 20 evaluators to subjectively rate 
the 30 pairs of images. The images with the majority of the 
votes represent the ones with better inpainting quality. The 
results are shown in Fig. 4, indicating that, for the most part, 
our method outperformed the CTSDG method.

To demonstrate the effectiveness of the innovative 
approaches outlined in this method, we conducted abla-
tion experiments for each approach, with the results por-
trayed in Fig. 5. Specifically, the impact of the position 
module, LSGAN loss, and attention modules is evaluated 

in Fig. 5b, c, and d, respectively. The findings indicate that 
the network requires the attention module to effectively 
restore the texture details of the image. Without positional 
encoding, the inpainted image is blurry, and the training 
process is prolonged. Moreover, without LSGAN loss, the 
overall visual effect of the repaired image is less coherent 
and inconsistent.

Figure 5e depicts the network with both location coding 
and LSGAN loss, which resulted in clearer inpainting out-
comes and reduced training time. Similarly, Fig. 5f demon-
strates that the inclusion of the attention module and position 
coding together in the network improved the texture details 
of the inpainted image and accelerated network training. 
The network with both attention module and LSGAN loss 
was developed for an enhanced texture information and a 
visually consistent and coherent effect, as shown in Fig. 5g. 
In Fig. 5h, the position coding, LSGAN loss, and attention 
module were incorporated into the network which led to 
the improvement in the network’s ability to enhance image 
details’ repair, while also speeding up network training and 
achieving a more visually consistent and coherent image.

In Fig. 6, we present the effect of position coding on the 
network’s training speed. Figure 6a depicts the loss con-
vergence diagram of the network without the incorporation 
of position coding. After 450,000 training iterations, the 
loss reaches a plateau. In contrast, Fig. 6b reveals that after 
adding position coding to the network, the loss converges 
to a fixed value approximately 150,000 iterations earlier, 
at around 300,000 training iterations.

Fig. 4   Comparison of the inpainting results of 30 images using our 
method and the CTSDG method, respectively

Fig. 5   Comparison of results of ablation experiment

Fig. 6   Comparison of conver-
gence speed of network training
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The results of the ablation experiment are shown in 
table 1. Through comparative analysis, it was found that 
attention mechanisms, positional encoding, and LSGAN 
loss all have a positive effect on image restoration. Three 
different damaged images (0–20%, 20–40%, and 40–60%) 
were repaired, and the PSNR, SSIM, and LPIPS indicators 
were used. Table 1 indicates the modules added to the net-
work with a checkmark ( ✓ ). The attention mechanism had 
the greatest impact on improving image inpainting, followed 
by the enhancement of LSGAN loss, while the positional 
encoding had the least improvement ability. Looking at the 
pairwise combination strategies, it can be seen that the posi-
tional encoding and LSGAN loss have the smallest improve-
ment, while the attention mechanism and LSGAN loss have 
the largest improvement. Using all three strategies, namely 
attention mechanisms, positional encoding, and LSGAN 
loss, resulted in the optimal inpainting of the images, which 
also confirms the effectiveness of the proposed innovative 
idea in this paper.

4.3 �  Quantitative comparison

We performed experimental comparisons on the CelebA 
dataset with different mask ratios. The mask sizes were cat-
egorized into three groups: 0–20% , 20–40% , and 40–60% . 

Our method showed better performance compared to other 
approaches for all three mask types, as shown in Table 2.

Although this model performs well in image repair, there 
are still some challenges to address. For instance, in Fig. 7, 
the first group of images lacks clarity in their structural 

Table 1   Ablation experiment of 
CelebA data set

The bold markings in the table represent the best repair results

Components Metrics

Att Pos LSG PSNR↑ SSIM↑ LPIPS↓

Mask ratio 0–20 20–40 40–60% 0–20 20–40 40–60% 0–20 20–40 40–60%

✓ 29.17 23.23 18.02 0.724 0.549 0.418 0.071 0.145 0.246
                  ✓ 30.15 24.45 18.85 0.784 0.608 0.456 0.067 0.135 0.235

✓ 31.11 25.13 19.24 0.805 0.655 0.504 0.056 0.103 0.199
         ✓      ✓ 31.58 26.12 20.45 0.875 0.701 0.545 0.035 0.097 0.185

✓      ✓ 33.01 27.43 22.70 0.902 0.788 0.609 0.030 0.087 0.179
✓               ✓ 33.54 27.91 23.05 0.915 0.781 0.618 0.028 0.081 0.170
✓      ✓      ✓ 33.93 28.10 23.54 0.931 0.793 0.623 0.024  0.071 0.165

Table 2   Quantitative 
comparison of experimental 
results

The bold markings in the table represent the best repair results

Metrics       PSNR↑       SSIM↑       LPIPS↓
0–20 20–40 40–60% 0–20 20–40 40–60% 0–20 20–40 40–60%

PConv [39] 31.89 26.48 21.32 0.899 0.750 0.588 0.046 0.107 0.214
DeepFillv2 [56] 32.48 26.93 21.70 0.906 0.757 0.569 0.040 0.107 0.214
MED [24] 32.68 27.01 21.86 0.907 0.763 0.575 0.037 0.081 0.179
RFR [23] 33.03 27.13 22.69 0.916 0.780 0.603 0.031 0.090 0.185
CTSDG [50] 33.49 27.43 22.70 0.920 0.788 0.609 0.028 0.081 0.179
Ours 33.93 28.10 23.54 0.931 0.793 0.623 0.024 0.071 0.165

Fig. 7   Poor repair results
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characteristics, and the shape of the hand in these images is 
not present in the training set, which leads to the omission 
of the finger in the repaired images. In the second group, 
the gray and white collar becomes entangled in the repair 
process, causing the model to struggle in its attempt to infer 
the clothing structure and rendering a poor quality of repair. 
Finally, the third group of images appears too vague to cap-
ture a consistent style, which limits the model’s ability to 
restore image details and texture.

5 � Conclusion

This paper proposes a dual-stream image inpainting network 
with an AU-Net module that utilizes an attention mechanism 
to extract image structure and texture features resulting in 
higher quality reconstructed images. The addition of mask 
position coding enables the network to pay greater attention 
to missing regions, improving the accuracy and efficiency 
of the inpainting process. The proposed method also incor-
porates loss of LSGAN along with perception, reconstruc-
tion, and style to comprehensively monitor image quality 
and ensure more accurate and detailed image generation. 
This method was compared with others using the CelebA 
and Paris Street View Datasets, our method outperformed 
the other models being compared.

Image inpainting is a complex problem due to the var-
ied types of images and damaged or missing information. 
Various solutions exist such as infusing information around 
the damaged regions or texture synthesis inpainting. How-
ever, image understanding is crucial for effective inpaint-
ing, and attentional mechanisms and transformer networks 
have shown promising results. The diffusion model and 
graph convolutional networks can further improve inpaint-
ing by better understanding target objects in images. Future 
research aims to incorporate more semantic understand-
ing into the image inpainting process for clear and natural 
results.
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