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Abstract
This paper presents a study on modelling user free walk mobility in virtual reality (VR) art exhibition. The main objective is 
to investigate and model users’ mobility sequences during interactions with artwork in VR. We employ a range of machine 
learning (ML) techniques to define scenes of interest in VR, capturing user mobility patterns. Our approach utilises a long 
short-term memory (LSTM) model to effectively model and predict users’ future movements in VR environments, particu-
larly in scenarios where clear walking paths and directions are not provided to participants. The DL model demonstrates 
high accuracy in predicting user movements, enabling a better understanding of audience interactions with the artwork. It 
opens avenues for developing new VR applications, such as community-based navigation, virtual art guides, and enhanced 
virtual audience engagement. The results highlight the potential for improved user engagement and effective navigation 
within virtual environments.

Keywords  Virtual reality · Spatial knowledge · Movement · Deep learning · Navigation · Dataset

1  Introduction

VR tends to act the reality; most applications seek to simu-
late the real world by adding more elements and visuali-
sation. The development of VR headsets has extended the 
virtual environment (VE) that embeds more human char-
acteristics inside VR, such as eye tracking, hand gestures, 
and human movements. The unrestricted development of VR 

headsets towards reality adds more physical characteristics 
to VE [1].

Within a typical virtual reality environment, users can 
employ various navigation methods to move around. These 
methods include teleportation and controller-based move-
ment, as well as real walking. Real walking (RW) involves 
physically walking in the real world while wearing a VR 
headset. The user’s movements are tracked and translated 
into movements within the virtual environment, allow-
ing for a natural and intuitive way to navigate that which 
closely mimics the biomechanics of RW. Therefore, naviga-
tion is a fundamental attribute of user interaction in VR. 
Research shows that the effectiveness of VR navigation is 
often determined by the user’s previous experience [2]. A 
common challenge of VR navigation is users getting lost 
while exploring in an open VE. Machine learning (ML) 
approaches have been used to improve users’ navigating 
experience in VR. For example, Alghofaili et al. [3] devel-
oped a DL model to predict when users need navigation help 
and adaptively aid them in finding the right way. The results 
demonstrated the potential in improving the engagement of 
users in virtual navigation while effectively guiding them to 
their destinations.

The RW is a vital aspect of the immersive experience 
which adds more reality sense to the VE [4, 5]. It is an 
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immersive mobility approach for navigating VR, enhancing 
the sense of presence for participants [2, 6, 7]. Therefore, 
modelling users’ real work is a crucial aspect for studying 
user interactions in VR and supporting the future develop-
ment of intelligent applications that can adapt to users’ needs 
and preferences.

We piloted a VR real walk study in the context of fine 
art VR painting exhibitions where the audience can explore 
paintings using RW. To this end, we teamed up with a 
VR artist and developed a mobility experiment based on 
a large-scale abstract VR painting. The study’s main goal 
is to investigate and model human movements while RW 
interactions with a VR artwork take place. Therefore, we 
involved a range of human-related features in this experi-
ment. The VR painting was created by artist Goodyear using 
Google Tilt Brush [8]. The experimental environment was 
developed using a Unity3D game engine with a combination 
of hardware sensors and software tracking tools. It enables 
us to collect user data using eye gaze and body movement 
tracking capabilities to capture fine-grained user interac-
tions. The experiment was carried out with a group of par-
ticipants invited to explore an abstract VR painting while 
freely walking within 4x4 ms of physical space. Collected 
data include time-coded eye gaze, head orientation, hand 
movements, mobility, and voice comments.

Our study on user mobility in VR is designed to support 
the development of human-driven navigation tools for indi-
viduals who are new to virtual environments. As a result, 
these users will be able to navigate the virtual environment 
more effectively. We collected eye gaze, head elevation, and 
mobility movements in a purposely designed user experi-
ment. These data have been used to train and evaluate a 
DL classifier model. The classifier model takes a series of 
user’ steps on the floor space to predict their next step. We 
discuss the model’s prediction accuracy and propose differ-
ent applications of the model as human-driven navigation 
for the improved user navigation experience in future VR 
applications.

The main contributions of this paper include:

•	 Analyse user movements in an abstract VR painting user 
experiments.

•	 Utilisation of ML techniques to define scenes of interest 
in VR, enabling the modelling of user movement pat-
terns.

•	 Development and implementation of a DL model to 
effectively capture and predict participants’ mobility 
during their VR art encounters.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the background and related work in VR art, 
behavioural tracking, and modelling in VR. Section 3 intro-
duces the authors’ VR artwork, experimentation system, and 

user experiment. Data analysis and modelling are discussed 
in Sects. 4.1 and  5. Section 6 concludes the paper.

2 � Background and related work

There is an increasing adoption of alternate reality platforms 
by content creators and visual artists worldwide [9, 10]. 
Blortasia is an abstract art world in the sky where viewers 
fly freely through a surreal maze of evolving sculptures [11]. 
The authors believe the exploration through art and nature 
reduces stress, anxiety and inflammation, and has positive 
effects on attitude, behaviour, and well-being. Hayes, et al. 
[12] created a virtual replication of an actual art museum 
with features such as gaze-based main menu interaction, hot-
spot interaction, and zooming/movement in a 360-degree 
space. The authors suggested that allowing viewers to look 
around as they please and focus their attention on the inter-
action happening between the artwork and the room is some-
thing that cannot be easily replicated. In [13], Battisti, et al. 
presented a framework for a virtual museum based on the 
use of HTC VIVE. The system allows for movement in the 
virtual space via controllers as well as walking. A subjective 
experiment showed that VR, when used in a cultural heritage 
scenario, requires that the system should be designed and 
implemented by relying on multi-disciplinary competencies 
such as arts and computer science.

Pfeuffer et al. [14] investigated body motion as behav-
ioural biometrics for VR to identify a user in the context 
of authentication or to adapt the VR environment to users’ 
preferences. The authors carried out a user study where 
participants perform controlled VR tasks including point-
ing, grabbing, walking, and typing while the system moni-
tored their head, hand, and eye movement data. Classifica-
tion methods were used to associate behaviour data with 
users. Furthermore, avatars are commonly used to represent 
attendees in social VR applications. Body tracking has been 
used to animate the motions of the avatar based on the body 
movements of human controllers [15]. In [16], full visuomo-
tor synchrony is achieved using wearable trackers to study 
implicit gender bias and embodiment in VR. The gender-
based eye movement differences in indoor picture viewing 
was studied using ML classification in [17]. The authors dis-
covered that females have a more extensive search whereas 
males have more local viewing.

The RW stands as the familiar method of travel for 
humans. It helps humans to have more sense of the present 
and naturally navigate the surrounding environment [2, 4, 
18]. VR environments help users conceptualise a spatial 
reality. Different locomotion techniques within the virtual 
model can influence how people conceptualise a spatial real-
ity [19]. In a VR environment, the effect of locomotion on 
spatial cognition has already been observed through many 
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studies. Different navigation techniques cause different lev-
els of spatial awareness [20]. In a study in [21], the research-
ers examined human eye–head coordination in VR versus 
physical reality. The results showed that users move their 
heads more often in VR than in physical reality.

VR is designed to fit in a VE to control the locomotion 
experiences in a realistic and functional manner. The direc-
tion of locomotion is decided by the head-mounted display 
to point backward, forward or sideway movements [22]. The 
technology must be customised to master the body move-
ments of a human being and understand the meaning of 
every command. For instance, the use of finger movements 
such as pointing, curling, or straightening the fingers helps 
individuals to carry out real-life experiments using VR. A 
data glove put on the hands of individual helps to pass com-
mands virtually in a rush against time just like realistic life 
experiences [22, 23].

To improve the reconstruction of 3D geometry estimation 
methods based on earlier methods, ML and DL techniques 
are very tempting and very desirable options [24–26]. To 
quantify and measure VR sickness during adaptive inter-
actions in the VE, a model based on LSTM was proposed 
using dynamic information from the normal-state posture 
signals [27]. Other researchers have discussed the telepres-
ence of the participants from the perspective of behaviour 
understanding [28]. Abtahi et al. [29] have proposed differ-
ent methods to enable walking in VR, they found that the 
experiment will be more immersive when users are at the 
ground-scale level at the same time increasing the speed of 
walking to navigate more locations in VR. Physical navi-
gations (including head/body movements) are essential to 
improve user interaction and engagement in VR applications 
[30]. Recently, the LSTM provided a good contribution to 
locomotion prediction in VR [31]. The LSTM has been used 
to predict the future position after 2.5 s of the current. The 
research has shown a 65 CM average error for the prediction.

3 � Experimental design

To gather the necessary data for our research on mobility 
in VR, we selected abstract VR painting as the use case for 
constructing the VE. This choice was made as VR artwork 
often elicits unpredictable movements from viewers, given 

each individual’s unique perspective and habits when it 
comes to exploring art. The experimental VE consists of 
a 3D exhibition room with a large-scale abstract VR paint-
ing that is made of tens of thousands of brushstrokes. The 
VR artwork is placed on one-half of the room, while it is 
opposite of participants’ starting position. Participants can 
freely move their locations to observe different parts of the 
artwork from different viewing angles. Participants can 
also walk into the painting to explore the extensive content 
inside the painting behind the brushstrokes on the outside.

3.1 � Virtual environment

For this research, we designed indoor conditions to con-
struct the VR environment. There are three main elements 
in the scene: abstract painting, virtual space, and light-
ing. The abstract painting was used as a core aspect of 
the environment. Goodyear [32] is a professional VR art-
ist who has created the VR painting for this experiment. 
She has made several VR artwork exhibitions in public 
galleries. Goodyear uses Google Tilt Brush to create VR 
artwork. The painting selected for the experiment consists 
of several brushstrokes types in a range of colours. The 
brushstrokes are constricted in a virtual space that allows 
the participants to walk through. They also take different 
shapes and styles and have other light conditions. The art-
ist aims to investigate how participants split their attention 
among these brushstrokes. In previous work, we studied 
user attention modelling and eye gaze-based community 
generative art [8, 33]. In this paper, we focus on user inter-
actions related to walking and navigation.

The VE was also designed based on the artist’s require-
ments on how the artwork should be perceived and inter-
acted by the audience besides other environmental settings 
such as lighting and scaling. The VE consists of a 3D room 
that has black walls, with a paint pallet as a floor (as shown 
in Fig. 1) where the painting is placed. The room is scaled 
to suit the artwork as well the painting pallet is adjusted 
to suit the walking terrain for the environment. The light-
ing plays a critical role in imitating the appearance of the 
artwork. It was customised to produce a bright view over 
different brushes.

Fig. 1   Virtual and physical 
environment for the abstract VR 
painting experiment

(a) Artwork side view (b) Artwork side view (c) Exp. physical space
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3.2 � Physical space observations

The experiment was arranged in a university public space. 
Since the experiment aims to study human mobility and 
behaviour, the authors emphasise having appropriate space 
and conditions to achieve the research aim. The VIVE Pro 
Eye comes with two tracking-based stations that could cover 
a distance of up to 4 ms, which determines the research 
space as 16 square meters as shown in Fig. 2. We consider 
the design of physical space to match the virtual space of 
the artwork. The benefit of this matching is that it elicits a 
more immersive experience while participants are navigat-
ing in the VR.

The experiment space was surrounded by belt barriers 
that stop participants from travelling beyond the edges of 
the physical experimental space. Safety measurements were 
carried out to ensure sufficient precautions for participants 
as part of the experiment that was carried out during the 
COVID-19 pandemic.

The design of our experiment aims to incorporate more 
human factors in order to better understand behaviour. For 
our study, we chose the HTC VIVE Pro Eye as the primary 
headset, which offers a high resolution close to 2K and a 
refresh rate of 90 Hz. The 90 Hz refresh rate is particu-
larly beneficial in reducing simulator sickness, especially 
since our scene does not contain movable objects [34, 35]. 
The headset is equipped with an embedded Tobii-based eye 
tracker for eye-tracking data collection and gazed objects 
mapping, as well as externally based stations for head 

orientation and position tracking. Additionally, we incor-
porated a leap motion device to track hand movements and 
reactions in the VR headsets. The experimental system also 
supports the FOVE0 headset, which includes built-in eye-
tracking capabilities.

3.3 � Participants

Overall, the experiment attracted 35 participants, 20 female 
and 15 male (Fig. 3). The user information shows that the 
majority of the participants are aged between 16 and 25 
years. More than half of the participants stated that they do 
not play or rarely play computer games (MD—many times 
every day, OD—nnce a day, OW—once a week, RL—rarely, 
NA—not at all). Regarding their experience with VR, 15 had 
not tried VR before, while 18 had some experience. Only 
two participants claimed to be very experienced with VR. 
Similarly, only three participants, who studied fine art, had 
extensive knowledge of abstract painting, while 18 partici-
pants were familiar with this form of artwork (Fig. 3).

During the VR artwork exploration, female participants 
spent an average of 264 s, which was shorter than the aver-
age viewing time of male participants, standing at 276.9 s. 
Female viewing durations exhibited more variability, as indi-
cated by a standard deviation of 107.7 s, while male viewing 
time demonstrated less variability with a standard deviation 
of 53.3 s. Among the participants, the shortest viewing dura-
tion recorded was 75.7 s, while the longest duration lasted 
548.5 s.

Fig. 2   Floor arrangement for 
the experiment
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4 � Data exploration

This section focuses on mobility data, including head ori-
entation, and position, obtained from the experiment. The 
data processing approach involved synchronising data and 
preparing the data for further analysis and modelling.

4.1 � User movements

The experiment led to a dataset that includes: head orien-
tation, position, eye tracking, and hand tracking [36]. The 
dataset was gathered using a range of sensors, including 
headset, position-tracking base, and leap motion. The raw 
data was collected as follows: head orientation is one of 
the headset parameters. It represents the head rotation in 
the VE using four coordinates(x,y,z,w). The player’s posi-
tion is represented in two vectors in the virtual and physical 
world in (head_x, head_y, head_z) and (player_x, player_y, 
player_z) consecutively. The Pearson correlation between 
these vectors is 0.99, which indicates the tracking of the 
player in the virtual and physical world is highly mapped 
mobility. Each frame captures these vectors data during the 
experiment time. This data is also labelled and timestamped 
to have a recorded journey for the participants.

Figures in 4 show the walk paths from participants. The 
blue lines mark the edge of the artwork at ground level. The 
area to the left of a blue line is where the artwork resides, 
while the area to the right of the blue line is the open space. 
The orange lines refer to the traces of users’ walk inside the 
VE. All users started the work on the outside of the artwork. 
The two coordinates used to generate this figure are (head_x, 
head_z), which represent the head position within the exper-
imental area. It is evident in the figure that participants had 
different and distinctive walking patterns. Some participants 
preferred to stay within a small area and mainly viewed the 
artwork from a distance as how they would behave in a phys-
ical art gallery (e.g., p3703 and p1679). Some others enjoyed 
exploring wider areas by choosing to stay on the outside 
of the painting and avoiding too much direct virtual con-
tact with any brushstrokes (e.g., p2654, p7613 and p7075). 
There were also participants who were very adventurous and 
walked very deep into the artwork (e.g., p3425 and p4786).

The lack of user interactions from some participants 
reflects a major challenge in designing VR applications in 
an open VE. It is likely that many participants lacked the 
necessary knowledge and confidence to navigate the vir-
tual environment effectively, particularly when exploring an 
unfamiliar setting, such as a new abstract VR painting. We 
analyzed the raw data from the participants and compared 
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Fig. 3   Participant information
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Fig. 4   Traces of participants’ 
movements (top-down view) 
(cont.)

(a) p59 (b) p101 (c) p935 (d) p1157 (e) p1679

(f) p1719 (g) p1958 (h) p2654 (i) p2804 (j) p3003

(k) p3050 (l) p3287 (m) p3425 (n) p3703 (o) p3905

(p) p4473 (q) p4475 (r) p4646 (s) p4668 (t) p4725

(u) p4786 (v) p5170 (w) p5982 (x) p6035 (y) p6650

(z) p6762 (aa) p7067 (ab) p7075 (ac) p7613 (ad) p7672

(ae) p8725 (af) p8780 (ag) p9145 (ah) p9368 (ai) p9450
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it to the recorded comments and interview questionnaire. 
Some participants prefer to dive into other objects and 
attempt to interact by touching brushstrokes. Also, during 
the walk, participants sometimes lower their body to have 
a different view of the artwork which is reflected in the 
changes of their head elevation (head_y). There also appears 
to be a connection between the change of the head elevation 
level and the intensity of eye gaze when participants lower 
or raise their heads to get closer to some objects in the scene. 
The natural walk generates small elevation waves that can 
be recognised as a walking pattern. This pattern can help 
differentiate between walking and head movements while 
standing.

When participants navigate in the VE and change their 
location using a free walk, their views of the artwork will 
also change accordingly. The construction of the environ-
ment contains thousands of brushstrokes that fill the vir-
tual space. The brushstrokes are non-collided objects where 
participants can walk through them. The brushstrokes over-
fill the VE, where they interfere with each other to create 
artwork. The interference of the brushstrokes makes the 
brushes block brushes in behind, so participants are required 
to walk to view the rest of the artwork. We claim that par-
ticipants can have multi-views in a busy environment. The 
reason behind this claim is that a busy environment with 
many such brushes, colours, and lighting can be rendered 
or viewed from a single location, So that we assume player 
mobility can generate different views/sight angles to the 
environment. Accordingly, this could lead to different levels 
of attraction for the user. It is possible that examining the 
sub-scenes within a virtual environment could help explain 
changes in interactivity or behaviour at different stages of 
exploration.

4.2 � Data processing

Data processing is a crucial step to prepare the gathered 
dataset for modelling. It involves synchronising data from 
multiple sensors, mapping actions to interactivity based on 
game time, and handling missing values, anomalies, bias, 
and outliers. Human data processing is complex due to the 
experimental environment. Data cleaning includes removing 
redundant data, repetitive attributes, and incomplete entries, 
ensuring the data format is appropriate. Filling techniques 
are avoided for human activity data.

Removing outliers is challenging due to fluctuating 
measurements and the absence of a stable reference level 
for walking data. Sensor-generated outliers can result from 
factors like bystander interference, participants going out of 
tracking range, electromagnetic interference, or asynchro-
nous sensor geometry. We have applied statistical moving 
windows with fixed duration over the data to extract outliers 
in the data series to improve the quality of the dataset. To 

ensure all the data from the sensors have the correct times-
tamps and are all sequential, we followed mining techniques 
that verify these data based on a statistical approach. We 
have considered a threshold to maintain the difference in 
body velocity. For each position in the data series, we cre-
ated two windows with the same size of data frames, and 
considered a static size for the window to ensure the size 
covered is relevant to the distribution of the data. The edges 
of the window have no sharp change to the root variance of 
the window. We calculate the previous and next window 
velocity in equation 1 and compare the changes of the cur-
rent participant’s position Pc to previous Pc−1 and next Pc+1 
positions in a range of directions to the wp,wN , while we 
verify the change of velocity based on calculating the root 
variance for changing the locations over the playtime as in 
Eq. 2.

where wp,wN are previous and next window consecutively, 
L refers to window length, c refers to current position 
index,Δvpi refers to change of velocity for positions in the 
window, and t time during Δvpi.

where �2 is the square change in mobility of participants, n 
is the total captured frames per participant. P are positions 
set where each P has (x, z) , � is the mean of set P.

Following the data pre-processing stage, feature extrac-
tion was performed on the raw experimental data. The raw 
data collected from the experiment are captured per frame 
(in Fig. 5a). At different time slices, we found different time 
frames captured from the experiment. This can result in 
biased results, as the density of data may vary across dif-
ferent experiments. To remove the bias, data samples are 
aggregated using windows with a duration of 1 s. In each 
window, we calculate the statistical features for modelling. 
As a result, we have a dataset with the same data samples 
across all participants based on a unified timestamp as 
shown in Fig. 5b.

5 � Data modelling

5.1 � Clustering walk data

To investigate how participants navigated in VR and how 
they changed between stand, walking and elevating in dif-
ferent locations, we defined three primary keys behind 
the mobility of users in VR which are: (i) user’s personal 
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1

L

L
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(
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background such as their previous VR and gaming expe-
rience, (ii) the VE, and (iii) the physical setup. The VE 
includes the design of virtual elements and environmental 
characteristics. At the same time, the physical setup includes 
the headset and the physical space that accommodates the 
experiment. In this research, we employed these keys in the 
experiment to develop a dataset that reflects the use of vir-
tual and physical spaces.

Participants moved their locations to explore different 
parts of the artwork. As a result, any single position in the 
virtual environment could represent an individual viewpoint 
with unique brushstrokes and environmental conditions. 

Neighbouring positions show similar views as a group 
(scene), but the views are distinctive between groups. To 
comprehend the relation between the VE and participants, 
we mapped the participants’ locations in the experiment into 
clusters using K-means clustering to find the most visited 
scenes in the VE. The decision to use K-means was based 
on the nature of data as we are using Cartesian coordinates 
(x, z) for grouping.

We experimented with various clustering configura-
tions to investigate the effect of the generated scenes. The 
process took into account three factors: the distribution of 
data among these clusters, the distance among the clusters’ 

Fig. 5   Participants’ movements

(a) All Participants’ movements (x, z) aggregated in the VE
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(b) Statistical walk features using one-second fixed window
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centroids, and the diameter of the clusters. The efficiency 
of the clusters was measured based on the WCSS (within-
cluster sum of squares) value to test the number of clusters 
from 1 to 50 clusters, as shown in Fig. 6. A lower WCSS 
value indicates improved clustering results, but normally 
at the cost of a larger number of clusters. We found that 
clusters with more than 40 groups suffer from small cluster-
ing diameter, resulting in many minimal virtual space and 
a too fragmented floor space to develop a useful model. For 
clustering with less than 20 groups, the WCSS values are 
still quite significant and they may not separate distinctive 
scenes. For clusters where groups > 28 and < 32 , we found 
a good balance between WCSS and the number of clusters as 
they have an area between 5ft2 to 9ft2 per cluster.

We have used 30 clusters to maintain the three factors we 
elected to choose the number of clusters. As shown in Fig. 7, 
30 clusters help to reveal more data pattern when building 

user paths as navigating in a such number of cluster help us 
to understand user mobility. The format of the current data 
is the coordinates in the space in addition to cluster number. 
Each cluster indicates a different view that a participant vis-
ited or may visit in the future. We also ensure the clusters 
cover the entire physical and virtual space. The traces of par-
ticipants’ movements based on clustering-generated views 
are depicted in Fig. 8.

5.2 � Deep learning modelling

The DL modelling aims to discover a common pattern that 
can capture and simulate user mobility in VR. The advantage 
of DL is that it allows us to make predictions about com-
plex problems that require discovering hidden patterns and 
features in the data. We experiment with predicting users’ 
mobility in VR based on users’ previous walk steps. Both 
data from the clustering process and the original data are 
used to develop different DL-based models to compare their 
performances. Our data is time series, where each tuple is 
linked to the next. At the current stage, the data is repre-
sented as a flow path drawn from one cluster to another by 
an arrow. The data has been mined to represent a one- and 
multi-directions path to easily create subpaths that help 
models’ mobility. After the processing and clustering stage, 
the dataset has a fixed data density across all time slices. 
Each data tuple represents a participant’s data with a 1-s 
duration. The data structure consists of spatial coordinates, 
time, cluster ID, and participant ID.

It is hypothesised that users’ previous locations may serve 
as a determinant in shaping their future movements. There-
fore, it is considered a series of historical movements for the 
prediction of a user’s next location. Locations can be defined Fig. 6   WCSS clusters

Fig. 7   Participants’ movements 
in 30 clusters
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as the view or group which has been generated from the 
K-means clustering. The prediction will be based on partici-
pants’ navigation among the clusters (views) and predict the 
next potential cluster (view). To achieve the research objec-
tive, a dataset of full paths was obtained from 35 partici-
pants engaged in VR navigation. Subsequently, a segmenta-
tion process was applied to format these paths into smaller 
sub-paths, facilitating their utilisation as inputs for the DL 
model. Each sub-path is composed of a sequenced data flow 
that corresponds to the clusters visited by the respective par-
ticipant during their VR navigation. Any node on the path 
is considered as a timestep that a participant has generated 
from the experiment.

The modelling of subpaths has been tested on various 
configurations of the numbers of clusters to generate a 
series of subpaths. Due to the limited paths and views in the 
data, generating sub-paths with a high number of timesteps 

(nodes) leads to a decrease in the total number of generated 
paths. A lower number of timesteps in generated sub-path 
can lead to a model with low ML efficiency. Participants’ 
walk paths are constructed using a four timesteps sequence. 
The participants’ mobility was structured into a multiple 
subpath consisting of four sequential timesteps each, rep-
resenting the clusters they visited in a specific order. Using 
the timestamp data, the aim was to predict the next cluster 
(the fifth cluster) that the participant would likely visit. This 
predicted cluster served as the expected outcome or future 
destination.

In the initial phase of the modelling, one-hot encoded 
data was employed as input to train the DL model (see 
Fig. 9). The one-hot encoding technique was used to rep-
resent the clusters, which served as the input data for the 
prediction task. Each cluster was represented by a vector 
with elements equivalent to a cluster ID. Within this vector, 

Fig. 8   Traces of participants’ movements based on clustering-generated views. Numbers 1–30 represent the ID of the generated cluster/view
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a single element corresponding to the specific cluster was 
set to one, while all other elements were set to zero. The DL 
model was trained on this one-hot encoded input to learn 
patterns and make predictions.

The prediction of patterns was examined using a feed-for-
ward dense network (FDN). An FDN model was constructed 
to predict patterns within the same dataset. To evaluate the 
model’s performance, various configurations were tested, 
including different layers and settings for the FDN model. 
However, despite exploring these different layers and con-
figurations, the results did not show any improvement in the 
prediction accuracy (Fig. 10). The FDN model was trained 
using one-hot encoded data as input. Unfortunately, the over-
all accuracy level remained low, approximately 20% . Vari-
ous configurations were tested on the model in an attempt 
to improve results, but no enhancements in prediction were 
observed.

With the configurations of different numbers of clus-
ters, ranging from 2 to 40, the model’s performance did not 
improve significantly, reaching its peak prediction accuracy 
at Cn=30 . The utilisation of one-hot encoded inputs had lim-
ited influence on modelling mobility, resulting in an average 
testing accuracy of � = 0.32 . However, the top-K valida-
tion accuracy, which considers the top predicted classes, 
yielded better results with an average accuracy of � = 0.64 

when using Cn±1,where n = 30 . The consideration of top-K 
accuracy was based on the higher number of classes, where 
n=30, performing better than the state-of-the-art approach 
with a prediction probability equivalent to P(Ct+1) =

1

n
.

Different techniques are piloted to model the data by 
using Geo-VR location. Instead of treating clusters as cat-
egorical data, their coordinates are used as the input. The 
Geo-VR location consists of the coordinates (X, Y) for the 
VE floor, which can be mapped to the physical space coor-
dinates. Geo-VR location includes more information of the 
spatial relationship between clusters. The prediction in this 
technique is to use these coordinates as an input for the DL 
and predict the next potential cluster.

Different DL models were developed to assess the learn-
ing efficiency and data performance of various prediction 
techniques. One of these models was based on a recur-
rent neural network (RNN) called LSTM. The LSTM is a 
deep learning architecture using Keras sequential API for 
sequence data (time-series data). It includes multiple LSTM 
layers with specific parameters, followed by a “Dense” 
output layer with 30 units using the “softmax” activation 
function for classification. The model is compiled with the 
“adam” optimiser and “categorical_crossentropy” loss 
function. Evaluation metrics include “accuracy”, “top_k_
categorical_accuracy’’, and a custom metric “top3_acc” 

Fig. 9   One-hot encoded pro-
gress

Fig. 10   Accuracy results of the 
FDN model obtained through 
tenfold cross-validation
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for top-3 accuracy. This architecture is well suited for multi-
class classification tasks with 30 output classes and sequence 
data analysis, specifically designed to handle time-series 
data (see Fig. 11). Initially, the clusters were treated as cat-
egorical data, and an encoding technique known as one-hot 
encoding was applied. This approach involved representing 
each cluster as a vector, where each element corresponded 
to a cluster ID. Specifically, the element corresponding to 
the respective cluster was set to one, while all other elements 
were set to zero. The DL model was structured to receive 
N clusters as input, denoted as Ct−n,Ct−n+1,Ct−n+2, ...,Ct , 

and predict the next cluster Ct+1 . The values of ’t’ and ’n’ 
corresponded to the timestep and the number of sequen-
tial clusters or nodes in the participant’s path, respectively 
(Figure 9). The trial of Geo locations has run over the same 
procedure of generating different numbers of clustering and 
manipulating model layers. The Geo-Locations have shown 
a better performance over the one-hot encoded clusters as 
the testing accuracy average � = 0.66, with top-K accuracy 
(0.99), using Cn±1,where n = 30 as shown in Fig. 12.

It is discovered that one of the challenges for accurate 
prediction is the time step prediction in the correct order. For 
instance, the DL model may have a very accurate prediction 
of the next ten movements from a user, but the results can 
sometimes be out of order when compared with the actual 
movements done by the user. Two additional approaches 
have been applied to enhance the time step accuracy: top-K 
checker and based-nearest destination. The top-K checker is 
more efficient when calculating the model accuracy as most 
of the top(K) predictions have a true class in the data label. 
The top-K checker is more valuable to restrict the options 
for the potential prediction. It can be used for recommenda-
tions on the top(K) predicted classes that can be considered 
the range of the most likely next views. The based-nearest 
destination approach is introduced to improve and evaluate 
the prediction of walk patterns. This technique involves uti-
lising the top neighbour from the prediction vector, where 
the number of neighbours varies for each cluster, as depicted 
in Figs. 7 and 8. Implementing the based-nearest destination 
approach has led to a notable enhancement in the model’s 
performance, with an average accuracy of � = 0.90.

The impact of the number of K-means clusters on predic-
tion results was investigated. While the clustering analysis 
resulted in selecting 30 clusters, additional experiments were 
conducted using a higher number of clusters to predict par-
ticipants’ movements. This led to very complex movement Fig. 11   LSTM model

Fig. 12   Accuracy results of the 
LSTM model obtained through 
tenfold cross-validation
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patterns and no improvement to the model performance. 
Furthermore, gender information was used in combination 
with the walk data in an attempt to enhance the model based 
on the hypothesis that there is a correlation between gen-
der and user interaction in VR. However, gender did not 
show any significant impact on the model performance. This 
means that male and female participants did not exhibit sig-
nificantly different mobility patterns while exploring VR 
paintings.

To assess the accuracy of the prediction model, unseen 
data was employed for testing purposes. The testing data 
underwent the same preprocessing methods as the train-
ing data, including clustering to ensure their connection 
with the nearest centroid in the trained data clusters. This 
ensured that the testing data belonged to one of the clus-
ters previously trained. Subsequently, the testing data was 
structured into sub-paths of the same length as the trained 

data. These sub-paths were then fed into the pre-trained 
model to obtain the predicted class for each sub-path.

Figure 13 shows the original mobility (left side) of a 
holdout dataset for a group of participants compared to 
the predicted mobility (right side) using the DL model. 
The figure shows clearly that participants consider dif-
ferent navigation patterns while walk in the environment. 
Some participants chose to take shorter paths when mov-
ing within the environment, as shown in Figs. 13b, a, as 
a result, the area they explored was limited. Some other 
participants have walked deep into the VR artwork and 
reached the edges of the tracking area (physical environ-
ment) as shown in Fig. 13f, e and h. The model prediction 
shows exceptional precision results in predicting partici-
pants’ different travelling patterns in the VE based on the 
first few steps of their movements.

Fig. 13   Participants’ move-
ments (left) vs predicted move-
ments (right)
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(c) p7067 (d) p3287

(e) p8780 (f) p3003

(g) p4473 (h) p4786



	 M. Dohan et al.44  Page 14 of 16

5.3 � Discussions

The experimental environment produced a unique dataset 
that allows us to track user activities and behaviour in a 
VR environment. The DL models exhibit a high level of 
accuracy in modelling and predicting user movements in 
VR environments especially when no clear walking paths 
and directions were given to the participants. The current 
modelling consists of different sequential steps that need 
to be applied in order to obtain the required results. Differ-
ent models and techniques have been used to improve the 
prediction. We reached the best performance for the model 
using clustering, Geo-VR locations and LSTM.

The DL model has its limitations. There is a potential 
“cold start” issue, similar to that of a recommendation sys-
tem, that the model cannot draw good inferences when it has 
not yet received sufficient information. Very short mobility 
can lead to poor prediction as shown in Fig. 13b, where the 
participants are not willing to explore more views in the 
scene then the model may not predict the right next view to 
be visited. In addition, a participant visited clusters A, B, C, 
then ending in B will cause a loop in mobility in the input 
pattern. Looped movements can lead to excessive travels 
between neighbouring clusters in prediction as shown in 13f.

One of the main use cases of our DL model is a virtual 
tour guide that recommends areas for exploration to new vis-
itors of a VR exhibition. The recommendation will be based 
on the first few movements of the visitor and the modelling 
of user movements from previous visitors or artists. While 
our results show a high performance in model predictions, 
the integration of such a model in a VE for recommendation 
requires additional considerations. Firstly, the model’s Top1 
suggest for the next location (cluster) may not be immedi-
ately next to the user’s current location. So the application 
will need to provide a path for the user to travel or differ-
ent suggestions can be used from the model’s top-K results. 
Secondly, the model may suggest a path that includes loops 
(users returning to one of the previously visited locations) 
based on data from previous users. The loops can be avoided 
by considering the prediction with the lowest loss to replace 
the prediction of the model Cn+1 ; Where Cn ≠ Cn+1.

Additionally, it is important to note that the model’s gen-
eralisability can be assessed due to its consideration of an 
abstract environment without a given task to model user 
mobility. The model’s ability to use timeseries data to pre-
dict user mobility suggests that it could potentially work on 
other use cases as well. However, for successful application 
in different environments, certain prerequisites must be met. 
Specifically, the environmental setup, including the tracking 
space and real walk locomotion, must be consistent with 
the original setup used to train the model. Furthermore, the 
same data processing steps, including the modelling, should 
be employed to ensure reliable outcomes.

Our work encapsulates a sequence of data processing 
and modelling steps. Many detailed configurations and ML 
hyperparameters were tailored for the specific VR environ-
ment, physical space, and user interactions. However, the 
entire process from raw data acquisition to data preprocess-
ing and DL can be automated without human intervention. 
This is particularly important when the system is deployed 
to support a public VR exhibition where expert support is 
limited.

6 � Conclusions and future work

In this paper, we conducted a comprehensive study on user 
free walk mobility in a VR art exhibition, aiming to under-
stand user interactions with the VE and enhance the design 
of future VR applications. By analyzing complex user move-
ments, we employed a range of ML techniques to define 
scenes of interest in VR, effectively capturing user mobility 
patterns. Our LSTM model successfully modelled and pre-
dicted participants’ movements during VR art encounters, 
showcasing its strong performance in predicting future navi-
gation movements based on their previous locations. The DL 
model’s capabilities hold significant potential for artists to 
gain a deeper understanding of audience interactions within 
the artwork and pave the way for the development of inno-
vative applications, including community-based navigation, 
virtual art guides, and enriched virtual audience experiences.

Moving forward, we plan to extend our research to 
explore additional use cases beyond abstract VR painting. 
Furthermore, we aim to investigate the relationship between 
users’ real-world interactions, eye gaze, and hand gestures, 
captured during the user experiment. By continuing to study 
and model user interactions in VR, we can contribute to 
the advancement of intelligent VR applications that adapt 
to users’ needs and preferences, ultimately enhancing the 
overall VR user experience.
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