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Abstract
Unsupervised 2D image-based 3D model retrieval aims at retrieving images from the gallery of 3D models by the given 2D 
images. Despite the encouraging progress made in this task, there are still two significant limitations: (1) feature alignment 
of 2D images and 3D model gallery is still difficult due to the huge gap between the two modalities. (2) The important view 
information in the 3D model gallery was ignored by the prior arts, which led to inaccurate results. To alleviate these limita-
tions, inspired by the success of vision transformers (ViT) in a great variety of vision tasks, in this paper, we propose an 
end-to-end 3D model retrieval architecture on top of ViT, termly transformer-based 3D model retrieval network (T3DRN). 
In addition, to take advantage of the valuable view information of 3D models, we present an attentive module in T3DRN 
named shared view-guided attentive module (SVAM) to guide the learning of the alignment features. The proposed method 
is tested on the challenging dataset, MI3DOR-1. The extensive experimental results have proved the superiority of our pro-
posed method to state-of-the-art methods.

Keywords 3D model retrieval · Feature alignment · Vision transformer · View-guided attentive module

1 Introduction

3D technology is developing rapidly and due to the advance-
ment of computer hardware, 3D models have been widely 
used in wide-ranging areas, such as 3D reconstruction [1], 
virtual reality [2], computer-aided medical imaging [3, 4], 
and 3D object detection [5]. Massive 3D models are gen-
erated by these applications, but it also poses great chal-
lenges for precise and efficient 3D model retrieval. The goal 
of 3D model retrieval is that given a query, a system needs 
to find similar 3D models in another gallery. The query can 
be diverse, including 2D images of different views, point 

clouds, etc. Since 2D images are easier to be obtained, the 
2D image-based 3D model retrieval has attracted much 
attention in the computer vision community.

To ensure an effective retrieval performance, many 
efforts focused on improving the performance by training 
a powerful feature extractor. One typical earlier pipeline is 
to train a deep neural network [6–9] with a great number 
of labeled annotations, but at a cost of huge labor costs. 
Later on, inspired by the unsupervised domain adaptation 
(UDA) doctrine [10–12], unsupervised 2D image-based 
3D model retrieval utilizes the 2D image data and trains 
the deep model in an unsupervised manner to transfer the 
knowledge learned from labeled 2D image source domain to 
unlabeled 3D model target domain. Specifically, [11] learned 
a domain-invariant classifier in the Gaussian manifold and 
aligned the conditional distributions of two domains in a 
dynamic manner. Zhang et al. [12] mapped the features of 
the source domain and target domain into a shared latent 
space to reduce geometric and distributed displacement 
of statistical measurement. Ganin and Lempitsky [10] 
used adversarial training domain to align the discrepancy 
between the source domain and target domain. Yue et al. 
[13] adopted pixel-level alignment to improve the perfor-
mance of domain adaptation. Chen et al. [14] proposed a 
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cross-domain adaptation via an image-level mixture method-
ology to align the distribution shift of features between two 
domains. Peng et al. [15] concentrated on centroid alignment 
between features from different image topics and enforced 
distributed alignment for the already center-aligned features.

Despite the aforementioned encouraging efforts, the 
performance of unsupervised 2D image-based 3D model 
retrieval is still far from satisfactory. There are still two 
drawbacks ignored in the prior arts as follows:

To begin with, for feature representation of both 2D 
images and 3D models, a better backbone is always encour-
aged, which draws our attention to the trendy vision trans-
formers (ViT) recently. It has proved to be a success in many 
relative computer vision and natural language processing 
(NLP) such as video event detection [16], pedestrian detec-
tion [17], person search [18, 19], and text classification [20]. 
ViT takes the image patch or word embedding as a sequence 
of tokens, and applies the self-attention mechanism to cap-
ture the internal relationships thus obtaining strong feature 
representation connected with downstream tasks. However, 
even if the wide application, the application in 2D Image-
based 3D Model Retrieval is still under-explored.

Second, the view information of 3D models is valuable 
but always ignored by the prior works. As shown in Fig. 1, 
there are 12 views for each 3D model, and the different view 
information is important indeed during the process of feature 
alignment. Therefore, in this paper, we try to mine the view 
information and integrate it into the whole retrieval process.

To tackle these two gaps above, we propose a novel end-
to-end 3D model retrieval architecture on top of ViT, dubbed 
Transformer-based 3D model retrieval network (T3DRN). 
T3DRN can effectively overcome the limitation of the dis-
crepancy and learn domain-invariant representations. To 
mine more useful view information of 3D models, we also 
present an attentive module in T3DRN named shared view-
guided attentive module (SVAM) to guide the learning pro-
cess in order to better align the two modalities. Our main 
contributions in this paper are threefold as follows:

• We propose an end-to-end unsupervised 2D image-based 
3D model retrieval framework on top of ViT, dubbed 
transformer-based 3D model retrieval network (T3DRN) 
with a distinctive property of mining proper view infor-
mation to guide the whole retrieval process.

• A novel module, termed shared view-guided attentive 
module (SVAM), which can be easily integrated into 
T3DRN, is proposed to attend to the proper view infor-
mation for the 3D model feature training.

• Qualitative and quantitative experimental results on the 
challenging unsupervised 2D image-based 3D model 
retrieval datasets show that our method outperforms the 
state-of-the-art methods.

The rest of this paper is organized as follows: To begin 
with, we review the prior works in Sect. 2. Then, in Sect. 3, 
we present the proposed methodology and expound on the 
details of T3DRN. The experimental results of our proposed 
method are demonstrated in Sect. 4 with both qualitative 
and quantitative analysis. Finally, we draw a conclusion and 
discuss future work in Sect. 5.

2  Related work

2.1  3D model retrieval

The purpose of 3D model retrieval is to measure the similar-
ity between the query sample and the samples in the dataset 
and return the relevant 3D model according to the similarity 
order. The typical 3D model retrieval methods are mainly 
divided into model-based 3D model retrieval methods and 
image-based 3D model retrieval methods. Model-based 
methods usually extract features from 3D formats, such 
as point clouds and voxels. For example, [21] utilized the 
supervised convolutional network to encode the binary voxel 
grids for 3D model representation. Wu et al. [22] represented 
a model on a 3D voxel grid using probability distributions of 

(a) View 3 (b) View5 (c) View10

Fig. 1  Examples of images of 3D models with different view information
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binary variables. Qi et al. [23] utilized the neighbor points at 
multiple scales to capture the local structure information. In 
view-based methods, the 3D model is usually projected into 
a set of 2D view images. Su et al. [24] used a CNN to extract 
the feature of each view individually and then adopted max-
pool operation on all view features to obtain a global model 
feature. Gao et al. [25] utilized patch-level features to learn 
the content information and spatial information within mul-
tiple views. Watanabe et al. [26] composed a compact repre-
sentation of an image-based shape retrieval system employ-
ing a minimum number of views for each model. However, 
the above methods require a 3D model as the query, which is 
not convenient for users when they can only obtain an image 
of the 3D model. Therefore, many researchers seek retrieval 
approaches via image-based methods.

2.2  Domain adaptation

The object of domain adaptation is to establish knowledge 
transfer from the source domain to the target domain. Unsu-
pervised domain adaptation, semi-supervised domain adap-
tation, and supervised domain adaptation are the three com-
mon categories of domain adaptation methods. Both source 
domain data and a few target domain data with labels are 
used during training in semi-supervised domain adaptation 
(SSDA) methods while all samples should be marked in 
supervised domain adaptation methods. Based on previous 
studies, [27] benefited from a subset of source domain data 
only containing samples highly relevant to the target domain 
by eliminating irrelevant source domain samples. To reduce 
the accuracy discrepancy across domains for better gener-
alizations, invariant representations and invariant optimal 
predictors were jointly learned in [28]. Unsupervised domain 
adaptation (UDA) methods seek to narrow the domain gap 
between the source and target images without any labels 
of the target images and learning domain-invariant features 
is a common strategy for unsupervised domain adaptation. 
For example, [10] added an additional domain discrimina-
tor to the conventional CNN network to enforce the domain 
alignment. Zhou et al. [29] ensured the alignment at the class 
level by matching the class centroids of the source and tar-
get domains based on eliminating the offsets at the domain 
level. Long et al. [30] utilized the joint maximum mean dif-
ference criterion and used multiple domain-specific layers 
for adaptation. Multi-layer and multi-kernel maximum mean 
discrepancies were minimized between the source and target 
domain data to resolve domain transfer issues in [31]. Wang 
et al. [32] proposed a method that by designing a robust deep 
neural network, both source and target domains can be trans-
formed to a shared feature space and the classifier trained on 

the source domain work well on the target domain. Later on, 
[33] trained a model on new target domains, while maintain-
ing its performance on the previous target domains without 
forgetting. Hoyer et al. [34] proposed a method that by train-
ing with pseudo-labels fused from multiple resolutions and 
using an overlapping sliding window mechanism, the robust-
ness of fine-grained pseudo-labels with respect to different 
contexts can be increased. The development of domain adap-
tation has also facilitated numerous close applications, such 
as fault detection [35, 36], frequency detection [37], and 
modulation classification [38, 39].

2.3  Transformer

Transformer was first invented in 2017 in [40]. Later on, 
a lot of effort was dedicated to its variants. Among them, 
vision transformer (ViT) [41] was a representative work 
that proposed transformer stacks for the image classifica-
tion task. Subsequently, many ViT-related structures have 
been proposed. In particular, [42] developed a novel ViT 
backbone with a safe training strategy for UDA. Also, the 
encoder–decoder framework of Transformer facilitated vari-
ous vision tasks, such as image captioning [43, 44], relation-
ship or attribute detection [45, 46]. For instance, [47] applied 
a Transformer-based dense captioning while [48] focused 
on textual context and higher word learning efficiency. 
Recently, due to the necessity of encoding spatial informa-
tion, the Swin Transformer [49] structure was proposed 
and also applied in many tasks [50]. The application of the 
transformer-based method for unsupervised 2D image-based 
3D model retrieval, however, is still extremely rare. Besides, 
we also elaborately design a shared view-guided attentive 
module to better arm the transformer-based architecture.

3  Methodology

The overall framework of our proposed T3DRN is shown in 
Fig. 2. It is made up of three ViT-block branches with shared 
parameters on top of [42] and a shared view-guided atten-
tive model(SVAM). In the training period, both 2D image 
data and 3D model data are sampled. The 2D image data go 
into the ViT block and be treated as a supervised classifica-
tion task regularized by cross-entropy loss. The 3D image 
data follow a contrastive learning regime; it is separated into 
two branches, the original branch and randomly perturbed 
branches, respectively. These two kinds of features are also 
extracted by ViT blocks before going to the SVAM to inter-
act with the view embeddings. These features are regularized 
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by the relative entropy loss term after SVAM. In addition, 
the adversarial training strategy in [10] is adopted to align 
the 2D image features and 3D model features. At the test 
stage, the 2D image features and the 3D model features after 
SVAM but before the final fully connected layer are taken 
for retrieval results.

In the following of this section, we will first illustrate the 
unsupervised 2D image-based 3D model retrieval problem. 
After this, we introduce our proposed transformer-based 
3D model retrieval network T3DRN. Next, we explain 
our unique shared view-guided attentive module (SVAM). 
Finally, we show our training and optimization details. 

3.1  Problem statement

The goal of unsupervised 2D image-based 3D model 
retrieval is to create the cross-domain approach capable of 
precisely finding similar 3D models given a 2D image. In 
this task, the data of 2D images contain the images and their 
labels, denoted as S = {XS, YS} , while the data of the target 
domain only contain the 3D models without labels, denoted 
as T = {Xt} . To learn better domain-invariant features with-
out labels of 3D models, we present transformer-based 3D 
model retrieval network (T3DRN), which will be introduced 
in detail in Sect. 3.2.

3.2  Transformer‑based 3D model retrieval network

We build up the transformer-based 3D model retrieval 
network on top of [42]. The T3DRN consists of ViT 
stacks (shown in Fig. 3) and a shared view-guided atten-
tive model(SVAM), which will be elaborated in Sect. 3.3. 
T3DRN is composed of three ViT-block branches for 2D 
images, 3D model images and perturbed 3D model images, 
respectively. Each ViT block comprises of 4 transformer 
layers; the implementation of each Transformer layer is as 

Fig. 2  Our presented T3DRN approach consists of three branches 
using ViT-blocks that share parameters based on [42], along with 
a shared view-guided attentive model (SVAM). During the train-
ing phase, both 2D image and 3D model data are sampled from the 
dataset. The 2D image data with labels is input to the ViT block to 
carry out a supervised classification task, which is regulated by the 
cross-entropy loss. On the other hand, the 3D image data follows a 
contrastive learning approach; it is divided into two branches: the 
original branch and randomly perturbed branches. These types of fea-

tures are also processed by ViT blocks before being directed to the 
SVAM, where they interact with the view embeddings. After SVAM, 
these features are regularized using the relative entropy loss term. 
Additionally, the adversarial training method described in [10] is 
employed to align the 2D image features with the 3D model features. 
During the testing phase, the retrieval results are obtained using the 
2D image features and the 3D model features, taken after SVAM but 
before the final fully connected layer.

Fig. 3  The detailed structure of ViT Block
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follows. For each image either from 2D image gallery or 3D 
model gallery, the patch embedding layer first transforms 
it into a token sequence including a special class token and 
image tokens [42] to get visual features. Then, they are 
added by positional encoding in [40]. We adopt the posi-
tional encoding (PE) procedure with sin and cos functions.

It should be noted that PE operation only occurs at the 
bottom of each ViT block. The dimension of PE is the 
same as the input, so PE embedding can be added directly 
to the input. After the visual features are added with PE, 
the output is denoted as F, which is input into three linear 
projectors to attain three different vectors Q, K, V. These 
three vectors are fed into the ViT block, the lth layer in a 
ViT block is given by:

where � is layer normalization on residual output, PF rep-
resents the feed-forward layer which consists of two linear 
layers with a nonlinear activation function in between. � is 
the output of assembled multi-head attention with a layer 
normalization by � . Ml

1
 and Ml

2
 are the weights trained for 

the feed-forward layers, and bl
1
 and bl

2
 are bias vectors. Fl is 

the input of the lth encoding layer. f l
t
 is given as the query to 

the encoding layer and l is the lth encoding layer. Note that 
F0 is the aforementioned visual feature F added by positional 
encodings. MA is a fine-grained component called multi-
head attention, which is composed of H parallel partial dot-
product attention components. Its realization is as follows:

where {hj|j ∈ [1,H]} refer to the index of each independent 

head. Wq

j
 , WK

j
 , WV

j
 denote the linear projectors to the input 

q, K, V for hj . WO is the weight matrix for each head. It is 
noted that when the query comes from the decoder layer, and 
both the keys and values are from the encoder layer, it rep-
resents cross-module attention. In contrast, if the queries, 
keys, and values are all from encoder or decoder, this kind 
of multi-head attention is named self-attention. A is the 
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scaled dot-product attention operation realized by the equa-
tion below.

where qi ∈ Rd is a query in all T queries that com-
poses qi , a group of keys kt ∈ Rd and values vt ∈ Rd , where 
t = 1, 2,… , T  , the output of dot-product attention is the 
weighted sum of the vt values. The weights are determined 
by the dot-products of query qi and keys kt . Specifically, kt 
and vt are placed into respective matrices K = (k1,… , kT ) 
and V = (v1,… , vT ) . d is the dimension of qi and 

√
d is to 

normalize the dot-product value.
In the end, with the output of l encoding layers, the 

encoded visual features, Fl , is the final output for the ViT 
blocks. It is noted that we also adopted the random perturba-
tion strategy and the safe training mechanism in [42]. It also 
consists of Fl

2D
 , Fl

3D
 and Fl

3Dpert
 , the latter two parts are as 

the input to the SVAM.

3.3  Shared view‑guided attentive model

To guide the training process appropriately with view infor-
mation, we first learn an adaptive view dictionary 
E = {e1, e2,… , eM} , where M is the total views in the 3D 
model dataset. With Fl

3D
 and Fl

3Dpert
 , and E, we design the 

SVAM as follows:

where F is the input features, in this scenario, it can be either 
Fl
3D

 or Fl
3Dpert

 . E′ is the corresponding embeddings of the 
view labels for each feature in F. MA, � and PF are the same 
with Eq. 1. In this way, we can compute the view-guided 
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,E

�
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,E
�

) , denoted as 
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3D

 and Fv
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 . They will be added with Fl
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 and Fl
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 as 
follow for the downstream task:

where � is a balance coefficient between the original features 
and the view-guided features.
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3.4  Training and optimization details

In this section, we show our training and optimization 
details. In order to enforce the 2D image data to be correctly 
classified, and the distributions of the representation of the 
3D models to be similar with its perturbed counterparts, 
meanwhile confusing the data between two domains, multi-
ple loss function items are leveraged during the Stochastic 
Gradient Descent [51] (SGD) at each training step in a train-
ing batch as follows:

where Lcls is the classification binary cross-entropy loss 
function of the classifier for 2D image data, Ltgt is the KL 
divergence loss in [42], Ld is the domain adversarial loss 
in [10].

4  Experimental results and discussion

To prove the reliability of our method, we carry out experi-
ments on the most popular dataset, MI3DOR-1 [31]. In this 
section, we first introduce the dataset and evaluation metrics 
followed by the implementation details, and then we pro-
vide the quantitative results of our method. Subsequently, we 
show the ablation studies. Finally, we visualize the retrieval 
results and conduct qualitative analysis.

4.1  Datasets and evaluation metrics

4.1.1  Dataset

We conduct variance experiments on the most popular 
MI3DOR-1 dataset for 3D model retrieval. The source 

(6)L = Lcls + �Ltgt − Ld,

domain is a 2D image, and the target domain is 12 views of 
each 3D model. The MI3DOR-1 dataset consists of 21,000 
2D real images and 7690 3D virtual models belonging to 21 
categories. There are 10,500 2D images and 3845 3D models 
for training, while 10,500 2D images and 3845 3D models 
for testing. The examples of MI3DOR-1 are shown in Fig. 4.

4.1.2  Evaluation metrics

Following the same evaluation criteria of the state-of-the-art 
methods, seven popular evaluation metrics are selected to 
verify the effectiveness of our experiment, including near-
est neighbor (NN), first tier (FT), second tier(ST), F-meas-
ure, discounted gain (DCG), average normalized modified 
retrieval rank (ANMRR), and area under ROC curve (AUC). 
The retrieval accuracy of the results returned by nearest 
neighbors, or the model’s accuracy that is most comparable 
to the retrieval target, can be assessed by NN. The return 
values of the first K and 2K items, respectively, are used 
to define FT and ST, where K is the number of the relevant 
retrieved objects. The recall rate of retrieval results can be 
evaluated using these two metrics. The accuracy and the 
return rate of the data from the previous K items are evalu-
ated jointly using the F measure. DCG is a statistical method 
that assigns relevant results to the top position with a higher 
weight without taking the lower results into account. The 
system’s overall quality can be reflected by AUC value. As 
a rank-based measure, ANMRR evaluates the ordering infor-
mation of related objects in the retrieved object. The higher 
value indicates better performance in terms of all evaluation 
criteria except ANMRR.

airplane bed bicycle bookshelf camera

car chair guitar keyboard knife

monitor motorcycle pistol plant radio

rifle stairs tent vase wardrobe

(a) Examples of 2D images in MI3DOR-1
dataset.

airplane bed bicycle bookshelf camera

car chair guitar keyboard knife

monitor motorcycle pistol plant radio

rifle stairs tent vase wardrobe

(b) Examples of 3D models in MI3DOR-1
dataset.

Fig. 4  Examples of MI3DOR-1 dataset
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4.2  Implementation details

These experiments are carried out on an NVIDIA GTX 
2080 Ti GPU with a memory of 11 GB. For the proposed 
method, � is set to 0.001 as [42], and the learning rate is set 
to 0.001. The image batch size is set to 32, the iteration in 
an epoch is 2,000, and the training epoch is 20. The pertur-
bation coefficient � is set as 0.2, and � in Eq. 5 is set to 0.3. 
The confidence threshold � [42] is 0.5. For the safe training 
parameters, we keep the same with [42].

4.3  Quantitative results and analysis

4.3.1  Comparative methods

We mainly compare the qualitative outcomes of our pro-
posed algorithm with a few methodologies to validate the 
effectiveness of domain alignment.

First comes the basic deep learning method AlexNet [52]. 
This method used a convolution neural network to directly 
extract features from 3D multiple views and 2D images and 
there was no transfer learning in this algorithm. Stochastic 
gradient descent with a batch size of 128 examples, momen-
tum of 0.9, and weight decay of 0.0005 are adopted during 
the pre-training.

MEDA [11] and JGSA [12] are the traditional transfer 
learning methods.MEDA jointly trained the domain-invar-
iant classifier in the Grassmann manifold and implemented 
dynamic alignment of cross-domain distributions in the man-
ifold. As to training and testing settings, [12] set the mani-
fold feature dimension d = 20, 30, 40 for Office+Caltech10, 
USPS+MNIST, and ImageNet+VOC datasets, respectively. 
The iteration number was set to T = 10 . The RBF kernel was 
used with the bandwidth set to be the variance of inputs. 
The regularization parameters were set as p = 10 , � = 10 , 
� = 0.1 , and � = 1 . As another traditional transfer learning 
method, JGSA made a constraint on the coupled projections 

of the source and target domains and projected them into a 
common low-dimensional subspace for less geometric and 
distribution shift. For the training and testing configurations, 
� = 11 , � = 1 were fixed in all the experiments, such that 
the distribution shift, subspace shift, and target variance are 
treated as equally important.

When it comes to deep transfer learning methods, there 
also exist several representative methods such as JAN [30], 
DLEA [29], DANN [10], HIFA [53], and MSTN [54]. To 
decrease the domain discrepancy in an adversarial training 
process, [30] proposed a method that makes use of the maxi-
mum mean difference criterion and multiple domain-specific 
layers, where parameter settings are � = 0 within 100 itera-
tions and then set it to the cross-validated value. This 
allowed the JDD penalty to be less sensitive to noisy signals 
at the early stages of the training process. Considering the 
feature learning and distribution alignment, DLEA imple-
mented a domain adversarial loss and a center alignment 
loss. It is noted that For the discriminator D, the identical 
architecture was utilized. The batch size was set as 128. The 
entire framework was trained with the rate decay strategy 
(the original learning rate was 0.01) in an end-to-end manner 
by SGD with 0.9 momentum. DANN deployed adversarial 
learning into transfer learning for the first time, while intro-
ducing a method to find transferable features between differ-
ent domains. To speed up the experimental procedure, the 
domain adaptator was stuck to the three fully connected lay-
ers (x → 1024 → 1024 → 2) , except for MNIST where a 
simpler (x → 100 → 2) architecture was adopted. HIFA 
sought a method to minimize the maximum mean feature 
discrepancy of the distributions of two domains for domain 
alignment. To conduct semantic transfer learning, MSTN 
minimized the Euclidean distance between category-level 
centers of source and target domains. It set � = � , where 
� =

2

1+exp(−�⋅p)
− 1 to suppress the noisy information brought 

by false labels and p is the training process.

Table 1  Comparison results 
with other methods on 
MI3DOR-1

The best results are in bold

Methods NN FT ST F DCG ANMRR AUC 

AlexNet [52] 0.424 0.323 0.469 0.099 0.345 0.667 –
DANN [10] 0.650 0.505 0.643 0.112 0.542 0.474 –
JAN [30] 0.446 0.343 0.495 0.085 0.363 0.647 –
JGSA [12] 0.612 0.443 0.599 0.116 0.473 0.541 –
MEDA [11] 0.430 0.344 0.501 0.046 0.361 0.646 –
MSTN [54] 0.789 0.622 0.779 0.154 0.657 0.358 0.557
DLEA [29] 0.764 0.558 0.716 0.143 0.597 0.421 –
HIFA [53] 0.778 0.618 0.768 0.151 0.654 0.362 –
Ours 0.801 0.632 0.787 0.155 0.667 0.348 0.569
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4.3.2  Quantitative results with other methods and analysis

We conduct extensive experiments to compare our T3DRN 
approach and other baseline methods as shown in Table 1. 
We can make an obvious observation of a significant 
improvement in NN for T3DRN, reaching 0.801. Our pro-
posed method yields a 0.023 gain of mAP against the HIFA 
in [53]. Also, compared with other baseline methods, i.e., 
DANN [10], the performance of T3DRN increases dramati-
cally by more than 60%. The results demonstrate the superi-
ority of T3DRN, which stems from the SVAM module and 
the extra proper view information captured.

4.4  Ablation studies

4.4.1  The effectiveness of SVAM

To validate the impact of our proposed SVAM module, 
we also conduct a wide range of ablation studies shown 
in Table 2. We begin with the very basic model in which 
SVAM is removed, denoted as the T3DRN-SVAM method. 
It is easy to observe a significant metric increase by around 
0.01 for all of these 7 metrics when the SVAM is plugged. 
This improvement has proved the effectiveness of SVAM 
module in terms of integrating the proper view information 
with image features thus aligning the features of 2D images 
and 3D models better than the method without SVAM.

4.4.2  The effectiveness of balance coefficient

To explore the effectiveness of the different values of 
the balance coefficient � ( � = 0.2 and � = 0.5 ), we also 
conducted relative experiment shown in Table 3. We can 
see that the retrieval performance slowly increases from 
� = 0.1 , and peaks at 0.3. This shows the importance of 
SVAM. However, if � is greater than 0.3, the performance 
begins to decrease.

Table 2  Experimental results of 
ablation studies of T3DRN and 
T3DRN-SVAM

Methods NN FT ST F DCG ANMRR AUC 

T3DRN-SVAM 0.790 0.629 0.775 0.153 0.658 0.359 0.559
T3DRN 0.801 0.632 0.787 0.155 0.667 0.348 0.569

Table 3  Experimental results 
under different balance 
coefficient � ( � = 0.2 and 
� = 0.5)

� NN FT ST F DCG ANMRR AUC 

0.1 0.776 0.605 0.742 0.142 0.643 0.369 0.537
0.2 0.781 0.610 0.759 0.147 0.658 0.359 0.559
0.3 0.801 0.632 0.787 0.155 0.667 0.348 0.569
0.4 0.794 0.625 0.776 0.153 0.651 0.360 0.553
0.5 0.790 0.621 0.761 0.144 0.645 0.367 0.541

Table 4  Experimental results 
under different perturbation 
coefficient � ( � = 0.3 and 
� = 0.5)

� NN FT ST F DCG ANMRR AUC 

0.2 0.801 0.632 0.787 0.155 0.667 0.348 0.569
0.3 0.786 0.618 0.765 0.149 0.653 0.369 0.548
0.4 0.770 0.607 0.761 0.137 0.643 0.375 0.543

Fig. 5  Qualitative results of our proposed T3DRN
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4.4.3  The effectiveness of the perturbation coefficient ̨

To explore the effectiveness of the perturbation coefficient 
� , we also show the experimental results in Table 4. It can 
be seen that the best performance appears when � is set 
as 0.2. When the � value rises, the performance decreases 
considerably. This is because a bigger perturbation value 
is likely to mislead the model learning during training.

4.5  Qualitative results and analysis

4.5.1  Qualitative results of T3DRN

The qualitative results of T3DRN are shown in Fig. 5. It is 
noticeable that our proposed T3DRN method can always 
retrieve similar 3D models, especially for the unique classes. 
This should be owed to the domain-invariant features 
learned by T3DRN with proper view information obtained 
by SVAM. For some classes that are not unique, for instance, 
the bookshelf and keyboard, the retrieval error might happen 
occasionally due to the similar appearance with other classes 
in the dataset. (With wardrobe and tent respectively).

4.5.2  Convergence process of training

To better display the convergence process of our proposed 
model, we show the loss (objective) function value of our 
proposed model during training in Fig. 6. We can observe 
that initially, the objective function value highly fluctuates 
because the model cannot align the data of two domains. 
After 10k iterations, the model starts to become more stable 
and eventually converges at around 1.3 after 40k interactions 
(Fig. 6).

4.5.3  Comparative qualitative results of T3DRN 
and T3DRN‑SVAM

The qualitative results of T3DRN are shown in Fig. 7. It 
is noticeable that our proposed T3DRN method shown in 
Fig. 7a always outperforms the T3DRN-SVAM method 
shown in Fig. 7b due to the appropriate view information 

Fig. 6  Loss (objective) function value of training

Bed

Camara

Radio

Rifle

Stairs

(a) Top-5 Qualitative results of T3DRN.

Bed

Camara

Radio

Rifle

Stairs

(b) Top-5 Qualitative results of T3DRN-

SVAM.

Fig. 7  Comparative qualitative results of T3DRN and T3DRN-SVAM (Top-5 retrieval results)
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achieved that facilitates the whole feature learning process. 
T3DRN-SVAM, however, retrieves a wrong 3D model 
(bookshelf), if it can succeed in obtaining the view infor-
mation of this shelf, this mistake may have been avoided.

5  Conclusion

In this paper, a novel end-to-end transformer-based 3D 
model retrieval network (T3DRN) for unsupervised 2D 
image-based 3D model retrieval was proposed to facilitate 
the learning of the domain-invariant features. This T3DRN 
can also capture useful view information to guide the train-
ing process. To this end, we proposed another innovative 
unit, named shared view-guided attentive module (SVAM) 
to integrate the image features with guided view informa-
tion. We tested this plug-and-play method on the most popu-
lar standard dataset and the results turn out that our method 
outperformed the state-of-the-art method by a wide margin 
in terms of all seven metrics.
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