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Abstract
Medical image segmentation has attracted increasing attention due to its practical clinical requirements. However, the 
prevalence of small targets still poses great challenges for accurate segmentation. In this paper, we propose a novel locally 
enhanced transformer network (LET-Net) that combines the strengths of transformer and convolution to address this issue. 
LET-Net utilizes a pyramid vision transformer as its encoder and is further equipped with two novel modules to learn more 
powerful feature representation. Specifically, we design a feature-aligned local enhancement module, which encourages 
discriminative local feature learning on the condition of adjacent-level feature alignment. Moreover, to effectively recover 
high-resolution spatial information, we apply a newly designed progressive local-induced decoder. This decoder contains 
three cascaded local reconstruction and refinement modules that dynamically guide the upsampling of high-level features 
by their adaptive reconstruction kernels and further enhance feature representation through a split-attention mechanism. 
Additionally, to address the severe pixel imbalance for small targets, we design a mutual information loss that maximizes 
task-relevant information while eliminating task-irrelevant noises. Experimental results demonstrate that our LET-Net pro-
vides more effective support for small target segmentation and achieves state-of-the-art performance in polyp and breast 
lesion segmentation tasks.

Keywords Medical image segmentation · Feature alignment · Local-induced decoder · Mutual information · Transformer

1 Introduction

Multimodal medical image segmentation aims to accu-
rately identify and annotate regions of interest from images 
produced by various medical devices, such as segmenting 
polyps from colonoscopy images [1], breast lesions from 

ultrasound images [2], and focal cortical dysplasia lesions 
from magnetic resonance images [3]. It has been an essential 
procedure for computer-aided diagnosis [4], which assists 
clinicians in making accurate diagnoses, planning surgical 
procedures, and proposing treatment strategies. Hence, the 
development of automatic, accurate, and robust medical 
image segmentation methods is of great value to clinical 
practice.

However, medical image segmentation still encounters 
some challenges, one of which is the prevalence of small 
lesions. Figure 1 illustrates small lesion samples and size 
distribution histograms for several different benchmarks, 
where the ratio of lesion area to whole image is signifi-
cantly concentrated in a smaller range, with proportions in 
descending order: 0 −0.1 first, 0.1−0.2 s. Specifically, a vast 
majority of polyps and breast lesions occupy only a small 
proportion of the entire medical image. Meanwhile, some 
small lesions, e.g., early stage polyps, exhibit an inconspicu-
ous appearance. These small targets inevitably pose great 
difficulties for accurate segmentation for several reasons. 
First, small targets are prone to being lost during repeated 
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downsampling operations and are hard to recover. Second, 
there is a significant class imbalance problem in the number 
of pixels between the foreground and background, leading 
to a biased network and suboptimal performance. Whereas, 
the ability of computer-aided diagnosis to identify small 
objects is highly desired, as early detection and diagnosis 
of small lesions are crucial for successful cancer prevention 
and treatment.

Nowadays, the development of medical image segmenta-
tion has greatly advanced due to the efficient feature extrac-
tion ability of convolutional neural networks (CNNs) [5–7]. 
Modern CNN-based methods typically utilize a U-shaped 
encoder–decoder structure, where the encoder extracts 
semantic information and the decoder restores resolution to 
facilitate segmentation. Additionally, skip connections are 
employed to compensate for detailed information. Some 
advanced U-shaped works focus on the following studies, 
which include designing novel encoding blocks [8–10] to 
enhance feature representation ability, adopting attention 
mechanisms to further recalibrate features [11, 12], extract-
ing and fusing multi-scale reasonable context information to 
improve accuracy [13–15], and so on. Despite their promis-
ing performance, these methods share a common flaw, i.e., 
lacking global contexts essential for better recognition of 
target objects.

Due to their superior ability to model global contexts, 
Transformer-based architectures have become popular in 
segmentation tasks while achieving promising performance. 
Recent works [16–18] utilize vision transformers (ViT) as 
a backbone to incorporate global information. Despite their 
good performance, ViT produces single-scale low-resolu-
tion features and has a very high computational cost, which 
hampers their performance in dense prediction. In contrast 
to ViT, pyramid vision transformer (PVT) [19] inherits the 
advantages of both CNN and Transformer and produces 
hierarchical multi-scale features that are more favorable for 
segmentation. Unfortunately, Transformer-based methods 

destroy part of local features when modeling global contexts, 
which may result in imprecise predictions for small objects.

In the field of small target segmentation, a couple of 
approaches have been devised to improve the sensitivity 
of small objects. They overcome the segmentation difficul-
ties brought by small objects from multiple aspects, such as 
exploiting the complementarity between low-level spatial 
details and high-level semantics [20], multi-scale feature 
learning [21, 22], and augmenting spatial dimension strat-
egies [23–25]. Although their skip connections can com-
pensate for detail loss to some extent and even eliminate 
somewhat irrelevant noises by extra equipping with attention 
mechanisms, these methods are still insufficient, as some 
local contexts may be overwhelmed by dominant seman-
tics due to feature misalignment issues. In addition, another 
important factor that has been overlooked is how to effec-
tively restore spatial information of downsampled features. 
Most methods adopt common upsampling operations, such 
as nearest-neighbor interpolation and bilinear interpolation, 
which may still lack local spatial awareness to handle small 
object positions. As a result, they are not compatible with 
the recovery of target objects and produce suboptimal seg-
mentation performance.

In this paper, we propose a novel locally enhanced trans-
former network (LET-Net) for medical image segmentation. 
By leveraging the merits of both Transformer and CNN, 
our LET-Net can accurately segment small objects and pre-
cisely sharpen local details. First, the PVT-based encoder 
produces hierarchical multi-scale features where low-level 
features tend to retain local details, while high-level features 
provide strong global representations. Second, to further 
emphasize detailed local contexts, we propose a feature-
aligned local enhancement (FLE) module, which can learn 
discriminative local cues from adjacent-level features on 
the condition of feature alignment and then utilize the local 
enhancement block equipped with local receptive fields to 
further recalibrate features. Third, we design a progressive 

Fig. 1  An illustration of small lesion samples and size distributions 
for different medical image datasets, including polyp coloscopy 
images and breast ultrasound images. Ground truth for each image is 
represented by a green line. In a histogram, the horizontal axis repre-

sents the proportion of the entire image occupied by the lesion area, 
while the vertical axis indicates the proportion of samples with a par-
ticular lesion size relative to the total sample
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local-induced decoder that contains cascaded local recon-
struction and refinement (LRR) modules to achieve effective 
spatial recovery of high-level features under the adaptive 
guidance of reconstruction kernels and optimization of a 
split-attention mechanism. Moreover, to alleviate the class 
imbalance between foreground and background, we design 
a mutual loss based on an information-theoretic objective, 
which can impose task-relevant restrictions while reducing 
task-irrelevant noises.

The contributions of this paper mainly include: 

(1) We put forward a novel LET-Net, which combines the 
strengths of Transformer and CNN for accurate medical 
image segmentation.

(2) We propose two novel modules, FLE and LRR, to 
enhance the sensitivity of small objects. FLE can 
extract discriminative local cues under the alignment 
of adjacent-level features, while LRR enables effective 
spatial recovery by guiding upsampling of high-level 
features via its adaptive reconstruction kernels and 
recalibrating features through a split-attention mecha-
nism.

(3) To mitigate the class imbalance caused by small targets, 
we design a mutual information loss, which enables our 
model to extract task-relevant information while reduc-
ing task-irrelevant noises.

(4) By evaluating our LET-Net in challenging colorectal 
polyp segmentation and ultrasound breast segmenta-
tion, we demonstrate its state-of-the-art segmentation 
ability and strong generalization capability.

2  Related work

2.1  Medical image segmentation

With the great development of deep learning, especially 
convolutional neural networks (CNNs), various CNN-based 
methods, such as U-Net [7], have significantly improved 
the performance of medical image segmentation. These 
approaches possess the popular U-shaped encoder–decoder 
structure. To further assist precise segmentation, a battery of 
innovative improvements based on encoder–decoder archi-
tecture has emerged [26–30]. One direction is to design a 
new module for enhancing the encoder or decoder ability. 
For instance, Dai et al. [26] designed Ms RED network, 
which, respectively, employs a multi-scale residual encod-
ing fusion module (MsR-EFM) and a multi-scale residual 
decoding module (MsR-DFM) in the encoder and decoder 
stages to improve skin lesion segmentation. In the work [27], 
a selective receptive filed module (SRFM) was designed to 
obtain suitable sizes of receptive fields, thereby boosting 
breast mass segmentation. Another direction is optimizing 

skip connection to facilitate the recovery of spatial informa-
tion. UNeXt [28] proposed an encoder–decoder structure 
involving convolutional stages and tokenized MLP stages, 
achieving better segmentation performance while also 
improving the inference speed. However, these methods 
directly fuse unaligned features from different levels, which 
may hamper accuracy, especially for small objects. In this 
paper, we propose a powerful feature-aligned local enhance-
ment module, which ensures that feature maps at adjacent 
levels can be well aligned and then explore substantial local 
cues to optimally enhance the discriminative details.

2.2  Feature alignment

Feature alignment has drawn much attention and is now 
an active research topic in computer vision. Numerous 
researchers have devoted considerable effort to addressing 
this challenge [6, 31–37]. For instance, SegNet [6] utilized 
max-pooling indices computed in the encoder to perform an 
upsampling operation in the corresponding decoder stage. 
Mazzini et al. [32] proposed a guided upsampling module 
(GUM) that generates learnable guided offsets to enhance 
the upsampling operation. IndexNet [33] built a novel index-
guided encoder–decoder structure in which pooling and 
upsampling operators are guided by self-learned indices. 
AlignSeg [34] learned 2D transformation offsets by a simple 
learnable interpolation strategy to alleviate feature misalign-
ment. Huang et al. [35] designed an FaPN framework con-
sisting of feature alignment and feature selection modules, 
achieving substantial and consistent performance improve-
ments on dense prediction tasks. SFNet [31] presented a 
flow alignment module that effectively broadcasts high-level 
semantic features to high-resolution detail features by its 
semantic flow. Our method shares a similar aspect with the 
work [31], in which efficient spatial alignment is achieved by 
learning offsets. However, unlike these methods, we further 
enhance discriminative representations by subtraction under 
the premise of aligning low-resolution and high-resolution 
features, which facilitates excavating imperceptible local 
cues related to small objects.

2.3  Attention mechanism

Attention-based algorithms have been developed to assist 
in segmentation. In general, attention mechanisms can be 
categorized into channel attention, spatial attention, and self-
attention according to different focus perspectives. Inspired 
by the success of SENet [38], various networks [39–41] 
have incorporated the squeeze-and-excitation (SE) module 
to recalibrate features by modeling channel relationships, 
thereby improving segmentation performance. K. Wang 
et al. [42] proposed a dual attention network (DANet), which 
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combines position spatial attention and channel attention 
modules to capture rich contexts.

Additionally, Transformer networks based on self-atten-
tion have been popular in medical image segmentation 
[43–48]. For instance, TransUnet [43] inserted Transformer 
layers between CNN-based encoder and decoder stages to 
model global contexts, achieving excellent performances in 
multi-organ and cardiac segmentation. Wu et al. [48] pro-
posed FAT-Net with a dual encoder that is, respectively, 
based on CNNs and Transformers for skin lesion segmenta-
tion. However, the loss of local contexts may still hinder the 
prediction accuracy of Transformer-based methods. In this 
paper, we propose a feature-aligned local enhancement mod-
ule and progressive local-induced decoder, which, respec-
tively, emphasize local information and adaptively recover 
spatial information to improve predictions.

3  Method

Figure 2 illustrates our proposed LET-Net, which combines 
Transformer and CNN architectures to achieve accurate 
segmentation. In the encoder stage, we utilize a pre-trained 
pyramid vision transformer (PVT) [19] as the backbone to 
extract hierarchical multi-scale features. Then, three feature-
aligned local enhancement (FLE) modules are inserted in the 
skip connections to enhance discriminative local features. 
Afterward, we employ a novel progressive local-induced 
decoder composed of cascaded local reconstruction and 
refinement (LRR) modules to effectively recover spatial 
resolution and produce the final segmentation maps. In what 
follows, we elaborate on the key components of our model.

3.1  PVT‑based encoder

Although CNN-based methods have achieved great success 
in medical image segmentation, they have general limita-
tions in modeling global contexts. In contrast, pyramid 
vision transformer (PVT) [19] inherits the advantages of 
both Transformer and CNN while proving to be more effec-
tive for segmentation. Thus, we choose PVT as the backbone 
to obtain global receptive fields and learn effective multi-
scale features.

As shown in Fig. 2, the PVT-based encoder has four 
stages with a similar architecture. Each stage contains a 
patch embedding layer and multiple Transformer layers. 
Benefiting from its progressive shrinking pyramid and spa-
tial-reduction attention strategy, the PVT-based encoder can 
produce multi-scale feature maps with fewer memory costs. 
Specifically, given an input image X ∈ ℝ

H×W×3 , it produces 
features 

{
Ei|1 ≤ i ≤ 4

}
 , in which Ei ∈ ℝ

H∕2i+1×W∕2i+1×Ci . 
Therefore, we obtain high-resolution detail features and 
low-resolution semantic features, which are beneficial for 
segmentation.

3.2  Feature‑aligned local enhancement module

The powerful global receptive field of PVT-based encoder 
makes it challenging for our model to adequately capture 
critical local details. Although low-level features can pro-
vide some local context, directly transmitting them to the 
decoder via a simple skip connection is problematic, as 
this may introduce a large amount of irrelevant background 
information. As a solution, leveraging high-level features 
is an effective way, but one significant issue, i.e., feature 
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alignment, should be fully considered in this procedure to 
prevent local contexts from being overshadowed by global 
contexts. To this end, we propose a feature-aligned local 
enhancement (FLE) module, in which informative detailed 
features are effectively captured under the premise of fea-
ture alignment, producing discriminative representation. 
The internal structure of FLE is illustrated in Fig. 3, and it 
consists of two steps: feature-aligned discriminative learning 
and local enhancement.

Feature-aligned discriminative learning Due to the 
information gap between semantics and resolution, feature 
representation is still suboptimal when directly upsam-
pling high-level feature maps to guide low-level features. 
To obtain strong feature representations, more attention 
and effort should be given to position offset between low-
level and high-level features. Inspired by previous work 
[31], we propose a feature-aligned discriminative learning 
(FDL) block that aligns adjacent-level features and further 
excavates discriminative features, leading to high sensitiv-
ity to small objects. Within FDL, two 1 × 1 convolution 

layers are first employed to compress adjacent-level fea-
tures (i.e., Ei and Ei−1 ) into the same channel depth. Then, 
a semantic flow field is calculated by a 3 × 3 convolution 
operation, as described in Eq. 1

where fs×s(⋅) indicates s × s convolution layer followed by 
batch normalization and a ReLU activation function, while 
© and U(⋅) , respectively, represent concatenation and upsam-
pling operation. Next, according to learned semantic flow 
�i−1 , we obtain a feature-aligned high-resolution feature Ẽi 
with semantic cues, Mathematically

where Warp(⋅) indicates the mapping function, Ei is a Ci 
dimensional feature map defined on the spatial grid �i of 
the specific size 

(
H∕2i+1,W∕2i+1

)
 . Schematically as shown 

in Fig. 4, the warp procedure consists of two steps. In the 

(1)�i−1 = f3×3
(
f1×1

(
Ei−1

)
©U

(
f1×1

(
Ei

)))
,

(2)Ẽi = Warp(f1×1
(
Ei

)
,𝛥i−1),

Fig. 3  The architecture of feature-aligned local enhancement module, 
which performs two steps: First, feature-aligned discriminative learn-
ing initially produces a flow field to align adjacent features and then 

constructs discriminative representation using subtraction and a resid-
ual connection. Second, local enhancement with a dense connection 
structure is adopted to highlight local details

Fig. 4  An illustration of the 
warp procedure
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first step, each point pi−1 on the spatial grid �i−1 is mapped 
to pi on low-resolution feature, which is formulated by Eq. 3

It is worth mentioning that due to the resolution gap between 
the flow field and features (see Fig. 4), Eq. 3 contains a 
halved operation to reduce the resolution. In the second step, 
we adopt the differentiable bilinear sampling mechanism 
[49] to approximate the final feature Ẽi by linearly inter-
polating the scores of four neighboring points (top-right, 
top-left, bottom-right, and bottom-left) of pi.

After that, to enhance the discriminative local context 
representation, we further utilize subtraction, absolute value, 
and residual learning procedures. Conclusively, the final 
optimized feature Êi−1 can be expressed as follows:

Local enhancement In the PVT-based encoder, attention is 
established between each patch, allowing information to be 
blended from all other patches, even if their correlation is 
not high. Meanwhile, since small targets only occupy a por-
tion of the entire image, the global interaction in transformer 
architecture cannot fully meet the requirements of small 
target segmentation where more detailed local contexts are 
needed. Considering that the convolution operation with a 
fixed receptive field can blend the features of each patch’s 
neighboring patches, we construct a local enhancement 
(LE) block to increase the weights associated with adja-
cent patches to the center patch using convolution, thereby 
emphasizing the local features of each patch.

As shown in Fig. 3, LE has a convolution-based struc-
ture and consists of four stages. Each stage includes a 3 × 3 
convolutional layer followed by batch normalization and 
a ReLu activation layer (denoted as f3×3(⋅) ). Additionally, 

(3)pi =
pi−1 + �i−1(pi−1)

2
.

(4)Êi−1 =∣ Ei−1 − Ẽi ∣ +Ei−1.

dense connections are added to encourage feature reuse and 
strengthen local feature propagation. As a result, the fea-
ture map obtained by LE contains rich local contexts. Let 
x0 denote the initial input, and the outputs of ith stage within 
LE can be formulated as follows:

where [ ] represents the concatenation operation. In sum-
mary, LE utilizes the local receptive field of the convo-
lution operation and dense connections to achieve local 
enhancement.

3.3  Progressive local‑induced decoder

Efficient recovery of spatial information is critical in medical 
image segmentation, especially for small objects. Inspired 
by previous works [50, 51], we propose a progressive local-
induced decoder to adaptively restore feature resolution and 
detailed information. As shown in Fig. 2, the decoder con-
sists of three cascaded local reconstruction and refinement 
(LRR) modules. The internal structure of LRR is illustrated 
in Fig. 5, where two steps are performed: local-induced 
reconstruction (LR) and split-attention-based refinement 
(SAR).

Local-induced reconstruction LR aims to transfer the 
spatial detail information from low-level features into high-
level features, thereby facilitating accurate spatial recovery 
of high-level features. As shown in Fig. 5, LR first produces 
a reconstruction kernel � ∈ ℝ

k2×Hi−1×Wi−1 based on low-level 
feature Fi−1 and high-level feature Di , in which k indicates 
the neighborhood size for reconstructing local features. The 
procedure of generating the reconstruction kernel � can be 
expressed as follows:

(5)xi =

{
f3×3

(
x0
)
, i = 1,

f3×3
([
x0,⋯ , xi−1

])
, 2 ≤ i ≤ 4,

Fig. 5  The structure of local reconstruction and refinement module. It contains two blocks: local-induced reconstruction and split-attention-
based refinement



3853LET-Net: locally enhanced transformer network for medical image segmentation  

1 3

where fs×s(⋅) represents an s × s convolution layer followed 
by batch normalization and a ReLU activation function. U(⋅) , 
© , and Soft(⋅) , respectively, indicate upsampling, concatena-
tion, and Softmax activation operations. Meanwhile, another 
3 × 3 convolution and upsampling operation are applied on 
Di to obtain D̃i with the same resolution size as Fi−1 . Math-
ematically, D̃i = U

(
f3×3

(
Di

))
 . Note that, D4 = E4 here. Next, 

we optimize pixel D̃
i
[u, v] under the guidance of reconstruc-

tion kernel �[u,v] ∈ ℝ
k×k , producing refined local feature 

D̂
i
[u, v] . This can be written as Eq. 7, where r = ⌊k∕2⌋

Subsequently, D̂i and Fi−1 are concatenated together and then 
passed through two convolutional layers to produce an opti-
mized feature. Conclusively, LR overcomes the limitations 
of traditional upsampling operations in precisely recover-
ing pixel-wise prediction, since it takes full advantage of 
low-level features to adaptively predict reconstruction kernel 
and then effectively combines semantic contexts with spa-
tial information toward accurate spatial recovery. This can 
strengthen the recognition of small objects.

Split-attention-based refinement To enhance feature 
representation, we implement an SAR block in which 
grouped sub-features are further split and fed into two par-
allel branches to capture channel dependencies and pixel-
level pairwise relationships through two types of attention 
mechanisms. As shown in Fig. 5, SAR is composed of two 
basic components: a spatial attention block and a chan-
nel attention block. Given an input feature map M, SAR 
first divides it along the channel dimension to produce 
M =

{
M1,M2, ⋅ ⋅ ⋅,MG

}
 . For each Mi , valuable responses 

are specified by attention mechanisms. Specifically, Mi is 
split into two features, denoted as M1

i
 and M2

i
 , which are 

separately fed into the channel attention block and spatial 
attention block to reconstruct features. This allows our 
model to focus on “what” and “where” are valuable through 
these two blocks.

In channel attention block, global average pooling 
(denoted as GAP(⋅) ) is performed to produce channel-wise 
statistics, which can be formulated as

Then, channel-wise dependencies are captured according to 
the guidance of a compact feature, which is generated by a 
Sigmoid function (i.e., Sig(⋅) ). Mathematically

(6)� = Soft
(
f3×3

(
U(f1×1

(
Di

)
)©f1×1

(
�i−1

)))
,

(7)D̂
i
[u, v] =

r∑

m=−r

r∑

n=−r

𝜅[u,v][m, n] × D̃
i
[u + m, v + n].

(8)S = GAP(M1
i
) =

1

H ×W

H∑

m=1

W∑

n=1

M1
i
(m, n).

(9)M̃1
i
= Sig

(
W1 × S + b1

)
×M1

i
,

in which parameters W1 and b1 are used for scaling and shift-
ing S.

In spatial attention block, spatial-wise statistics are cal-
culated using Group Norm (GN) [52] on M2

i
 . The pixel-wise 

representation is then strengthened by another compact fea-
ture calculated by two parameters W2 and b2 and a Sigmoid 
function. This process can be expressed as

Next, M̃1
i
 and M̃2

i
 are optimized by an additional consistency 

embedding path and then concatenated. This procedure is 
represented as

After aggregating all sub-features, a channel shuffle [53] 
is performed to facilitate cross-group information exchange 
along the channel dimension.

3.4  Mutual information loss

As stated in the previous study [54], training models with 
only pixel-wise loss may limit segmentation performance, 
especially resulting in prediction errors for small objects. 
This is due to class imbalance between foreground and back-
ground, such that task-relevant information is overwhelmed 
by irrelevant noise. Therefore, to facilitate preserving task-
relevant information, we explore novel supervision at the 
feature level to further assist accurate segmentation. Let X 
and Y denote the input medical image and its correspond-
ing ground truth, respectively. Z represents the deep feature 
extracted from input X.

Mutual information (MI) Mutual information is a funda-
mental quantity that measures the amount of information 
shared between two random variables. Mathematically, the 
statistical dependency of Y and Z can be quantified by MI, 
which is expressed as

where p(Y , Z) is the probability distribution between Z and 
Y, while p(Z) and p(Y) are their marginals.

Mutual Information Loss Our primary objective is to 
maximize the amount of task-relevant information about Y 
in the latent feature Z while reducing irrelevant information. 
This is achieved by two mutual information terms [55, 56]. 
Formally 

Owing to the notorious difficulty of the conditional MI com-
putations, these terms are estimated by existing MI estima-
tors [56, 57]. In detail, the first term is accomplished through 

(10)M̃2
i
= Sig

(
W2 × GN

(
M2

i

)
+ b2

)
×M2

i
.

(11)M̃i =
(
M̃1

i
+M1

i
×M2

i

)
©
(
M̃2

i
+M1

i
×M2

i

)
.

(12)I(Y;Z) = �p(Y ,Z)

[
log

p(Y , Z)

p(Y)p(Z)

]
,

(13)IB(Y , Z) = Max I(Z;Y) − I(Z;X).
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the use of Pixel Position Aware (PPA) loss [57] ( LPPA ). Since 
PPA loss assigns different weights to different positions, it 
can better explore task-relevant structure information and 
give more attention to important details. The second term is 
estimated by Variational Self-Distillation (VSD) [56] ( LVSD ) 
that uses KL-divergence to compress Z and remove irrel-
evant noises, thereby addressing the effect of imbalances in 
the number of foreground and background pixels caused by 
small targets. Thus, our total loss can be expressed as

 

4  Experiments

4.1  Experimental setup

4.1.1  Implementation details

We implement our experiments based on the hardware envi-
ronment with NVIDIA GeForce RTX 3090. The AdamW 
algorithm is chosen to optimize our model’s parameters, and 
the initial learning rate is set to 1e-4. During training, a multi-
scale training strategy is employed, in which input images 
are reshaped according to a ratio of [0.75, 1, 1.25]. The total 
number of epochs and batch size are set to 200 and 16, respec-
tively. In the pre-processing step, all images and corresponding 
ground truths are resized to 352 × 352 in our experiments.

4.1.2  Datasets

To verify the capability of our proposed model, we evalu-
ate LET-Net in two medical image segmentation tasks. For 
polyp segmentation, we utilize five public benchmarks: CVC-
ClinicDB [62], Kvasir [63], CVC-ColonDB [64], ETIS-
LaribPolypDB [65], and CVC-300 [66]. To ensure a fair 
comparison, we follow the work [59] and divide large-scale 
CVC-ClinicDB and Kvasir datasets into training, validation, 
and testing datasets in a ratio of [8:1:1], while the remaining 
three datasets are used only for testing to evaluate the model’s 
generalization abilities. For breast lesion segmentation task, 
we choose the public breast ultrasound dataset (BUSIS) [67] to 
assess the effectiveness of our LET-Net. This dataset includes 
133 normal cases, 437 benign cases, and 210 malignant cases. 
We follow the same settings as work [2] to separately conduct 
experiments on benign and malignant samples.

4.1.3  Evaluation metrics

As done in recent related work of polyp segmentation [20], 
we employ both mean Dice (mDice) and mean IoU (mIoU) 
to quantitatively evaluate the performance of our model and 

(14)Ltotal = LPPA + LVSD.

other state-of-the-art methods on polyp benchmarks. For 
breast lesion segmentation, we adopt four widely used met-
rics, including Accuracy, Jaccard index, Precision, and Dice 
to validate the segmentation performance in our study. Theo-
retically, high scores for all metrics indicate better results.

4.2  Experimental results

To investigate the effectiveness of our proposed method, we 
validate LET-Net in two applications: polyp segmentation 
from coloscopy images and breast lesion segmentation from 
ultrasound images.

4.2.1  Polyp segmentation

Quantitative comparison To demonstrate the effectiveness 
of our LET-Net, we compare it to several state-of-the-art 
methods on five polyp benchmarks. Table 1 summarizes 
the quantitative experimental results in detail. From it, we 
can see that our LET-Net outperforms the other methods 
on all datasets. Concretely, on the seen CVC-ClinicDB 
dataset, it achieves significantly higher mDice and mIoU 
scores (94.5% and 89.9%, respectively). On Kvasir dataset, 
our method exceeds SANet [20] and BLE-Net [61] by 2.2% 
and 2.1% mDice improvements, respectively. The underly-
ing reason for their limited performance is that these two 
methods follow a pure CNN architecture, which lacks global 
long-range dependencies. By contrast, our method captures 
global contexts by its PVT-based encoder, and further exca-
vates valuable local information using FLE module, demon-
strating superior segmentation ability. Most importantly, our 
LET-Net still exhibits excellent generalization capabilities 
when applied to unseen datasets (i.e., CVC-ColonDB, ETIS-
LaribPolypDB, and CVC-300). Specifically, LET-Net gets 
ahead of the CNN-based SOTA CaraNet [22] by 2.2% and 
2.8% in terms of mDice and mIoU on CVC-ColonDB. Com-
pared with other Transformer-based approaches, our LET-
Net also presents excellent segmentation and generalization 
abilities. Concretely, on ETIS-LaribPolypDB dataset, we can 
observe that LET-Net achieves 4.7% and 4.2% higher mDice 
than SETR-PUP [18] and TransUnet [43], respectively. This 
performance improvement can be attributed to two factors. 
One is that our proposed FLE module compensates for the 
loss of local details in the Transformer architecture. The 
other is that the LRR module effectively recovers spatial 
information.

Visual Comparison To further evaluate the proposed 
LET-Net intuitively, we visualize some segmentation maps 
produced by our model and other methods in Fig. 6. It is 
apparent that our LET-Net can not only clearly highlight 
polyp regions but also identify small polyps more accu-
rately than other counterparts. This is mainly because our 
method effectively leverages and combines global and local 
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contexts. In addition, we introduce mutual information loss 
as an assistant to learning task-relevant representation. Fur-
thermore, we find that our LET-Net successfully deals with 
other challenging cases, including cluttered backgrounds 
(Fig. 6 (b),(c), (g), (i)) and low contrast (Fig. 6 (a),(h)). For 
example, as illustrated in Fig. 6 (b),(i), ACSNet [39] and 
PraNet [59] misidentify background tissues as polyps, but 
our LET-Net overcomes this drawback. Due to combining 
the strengths of CNN and Transformer, our LET-Net pro-
duces good segmentation performance in these scenarios. 
Overall, our model achieves leading performance.

4.2.2  Breast lesion segmentation

Quantitative comparison To further evaluate the effective-
ness of our method, we conduct extensive experiments 
in breast lesion segmentation and perform a comparative 
analysis with ten segmentation approaches. Table 2 pre-
sents the detailed quantitative comparison among differ-
ent methods on BUSIS dataset. Obviously, our LET-Net 
exhibits excellent performance in both benign and malig-
nant lesion segmentation. In benign lesion segmentation, 
LET-Net achieves 97.7% Accuracy, 74% Jaccard, 83.5% 
Precision, and 81.5% Dice. Compared with other com-
petitors, LET-Net significantly outperforms them by a 
large margin. In detail, it, respectively, excels C-Net [2], 
CPF-Net [29], and PraNet [59] by 1.6%, 4.1%, and 4.9% 

in terms of Jaccard. Meanwhile, in malignant lesion seg-
mentation, we obtain an Accuracy score of 93% and a Dice 
score of 72.7%, respectively, demonstrating the superiority 
of our LET-Net over other methods. In particular, LET-Net 
presents a significant improvement of 1.8% in Jaccard and 
2.8% in Dice compared with C-Net [2]. The reason behind 
this is that although C-Net constructs a bidirectional atten-
tion guidance network to capture both global and local 
features, long-range dependencies are not fully modeled 
due to the limitations of convolution.

Visual comparison: To intuitively demonstrate the per-
formance of our model, we present segmentation results of 
different methods in Fig. 7. We observe that other methods 
often produce segmentation maps with incomplete lesion 
structures or false positives, while our prediction maps 
are superior to others. This is mainly due to our FLE’s 
ability to facilitate discriminative local feature learning 
and the effectiveness of our proposed LRR module for 
spatial reconstruction. In addition, it is worth noting that 
our LET-Net performs well in handling various shapes 
[Fig. 7(a)–(h)] and low-contrast images [Fig. 7(d)(h)], 
which can be attributed to the powerful and robust feature 
learning ability of LET-Net.

Table 1  Comparisons between 
different method in polyp 
segmentation task. The best 
results are highlighted in bold

Method Seen dataset Unseen dataset

CVC-ClinicDB Kvasir CVC-ColonDB ETIS- Larib-
PolypDB

CVC-300

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

FCN [5] 0.825 0.747 0.775 0.686 0.578 0.481 0.379 0.313 0.660 0.558
U-Net [7] 0.842 0.775 0.818 0.746 0.512 0.444 0.398 0.335 0.710 0.627
UNet++ [30] 0.846 0.774 0.821 0.743 0.599 0.499 0.456 0.375 0.707 0.624
AttentionU-Net [11] 0.809 0.744 0.782 0.694 0.614 0.524 0.440 0.360 0.686 0.580
DCRNet [58] 0.896 0.844 0.886 0.825 0.704 0.631 0.556 0.496 0.856 0.788
SegNet [8] 0.915 0.857 0.878 0.814 0.647 0.570 0.612 0.529 0.841 0.773
SFA [1] 0.700 0.607 0.723 0.611 0.469 0.347 0.297 0.217 0.467 0.329
PraNet [59] 0.899 0.849 0.898 0.840 0.709 0.640 0.628 0.567 0.871 0.797
ACSNet [39] 0.912 0.858 0.907 0.850 0.709 0.643 0.609 0.537 0.862 0.784
EU-Net [60] 0.902 0.846 0.908 0.854 0.756 0.681 0.687 0.609 0.837 0.765
SANet [20] 0.916 0.859 0.904 0.847 0.753 0.670 0.750 0.654 0.888 0.815
BLE-Net [61] 0.926 0.878 0.905 0.854 0.731 0.658 0.673 0.594 0.879 0.805
CaraNet [22] 0.936 0.887 0.918 0.865 0.773 0.689 0.747 0.672 0.903 0.838
SETR-PUP [18] 0.934 0.885 0.911 0.854 0.773 0.690 0.726 0.646 0.889 0.814
TransUnet [43] 0.935 0.887 0.913 0.857 0.781 0.699 0.731 0.660 0.893 0.824
LET-Net(Ours) 0.945 0.899 0.926 0.876 0.795 0.717 0.773 0.698 0.907 0.839
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4.3  Ablation study

In this section, we conduct a series of ablation studies 
to verify the effectiveness of each critical component in 

our proposed LET-Net, including FLE, LRR, and mutual 
information loss.

Fig. 6  Visualization results of our LET-Net and several other methods on five polyp datasets. From top to down, the images are from CVC-
ClinicDB, Kvasir, CVC-ColonDB, ETIS-LaribPolypDB, and CVC-300, which are separated by red dashed lines

Table 2  Comparison with 
different state-of-the-art 
methods on BUSIS dataset

Method Benign lesion Malignant lesion

Accuracy Jaccard Precision Dice Accuracy Jaccard Precision Dice

U-Net [7] 0.966 0.615 0.750 0.705 0.901 0.511 0.650 0.635
STAN [21] 0.969 0.643 0.744 0.723 0.910 0.511 0.647 0.626
AttentionU-Net [11] 0.969 0.650 0.752 0.733 0.912 0.511 0.616 0.630
Abraham et al. [68] 0.969 0.667 0.767 0.748 0.915 0.541 0.675 0.658
UNet++ [30] 0.971 0.683 0.759 0.756 0.915 0.540 0.655 0.655
UNet3+ [69] 0.971 0.676 0.756 0.751 0.916 0.548 0.658 0.662
SegNet [8] 0.972 0.679 0.770 0.755 0.922 0.549 0.638 0.659
PraNet [59] 0.972 0.691 0.799 0.763 0.925 0.582 0.763 0.698
CPF-Net [29] 0.973 0.699 0.801 0.766 0.927 0.605 0.755 0.716
C-Net [2] 0.975 0.724 0.827 0.794 0.926 0.597 0.757 0.699
LET-Net(Ours) 0.977 0.740 0.835 0.815 0.930 0.615 0.772 0.727
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4.3.1  Impact of FLE and LRR modules

To validate the effectiveness of FLE and LRR modules, 
we remove them individually from our full net, resulting 
in two variants, namely w/o FLE and w/o LRR. As shown 
in Table 3, the variant without FLE (w/o FLE) achieves 
a 93.6% mDice score on CVC-ClinicDB dataset. When 
we apply the FLE module, the mDice score increases to 
94.5%. Moreover, it boosts mDice by 1.6%, 2.2%, and 

2.3% on CVC-ColonDB, ETIS-LaribPolypDB, and CVC-
300 datasets, respectively. These results indicate that our 
FLE module effectively supports accurate segmentation 
due to its ability to learn discriminative local features 
under the feature alignment condition. Furthermore, when 
comparing the second and third lines of Table 3, it can 
be seen that LRR module is also conducive to segmenta-
tion, with performance gains of 1.6% and 1.7% in terms 
of mDice and mIoU on Kvasir dataset. The main reason is 

Fig. 7  Visual comparison among different methods in breast lesion segmentation, where the segmentation results of benign and malignant 
lesions are separated by a red dashed line
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that LRR module is capable of effective spatial recovery 
via its dynamic reconstruction kernels and split-attention 
mechanism, thereby facilitating segmentation.

4.3.2  Effectiveness of mutual information loss

To validate the effectiveness and necessity of our mutual 
information loss, we retrain our proposed LET-Net with 
different loss settings. Specifically, we denote three vari-
ants, i.e., w/o LPPA , w/o LVSD , and w/o LPPA & LVSD , each of 
which removes the corresponding loss item. Note that we 
apply conventional binary-cross entropy loss to supervise 
our model when removing LPPA . Table 4 reports the quan-
titative evaluation. Comparing the first and fourth lines in 
Table 4, we can observe that our model performs poorly 
without PPA loss supervision, obtaining a 1.1% lower mIoU 
on CVC-ClinicDB dataset. Also, a similar dropping situation 
occurs with the variant w/o LVSD . Specifically, our model has 
witnessed performance degradation without LVSD , decreas-
ing mIoU by 1.5%, 1%, and 1.3%, respectively, on CVC-
ColonDB, ETIS-LaribPolypDB, and CVC-300 datasets. 
This confirms that each term in our total loss is effective for 
segmentation. The reasons can be summarized as: first, in 
contrast to binary-cross entropy loss, PPA loss can guide our 
model to pay more attention to local details by synthesizing 
local structure information of a pixel, resulting in superior 
performance. Second, LVSD assists task-relevant feature 
learning, thereby improving the sensitivity of small objects. 
In addition, it can be seen that our method outperforms w/o 
LPPA & LVSD by a large margin, achieving 2.3% mDice and 
2.5% mIoU performance gains with the help of our mutual 

information loss on CVC-ColonDB dataset. In summary, our 
experimental results fully demonstrate that mutual informa-
tion loss is beneficial for LET-Net.

5  Conclusion

In this work, we propose a novel locally enhanced trans-
former network for accurate medical image segmentation. 
Our model adopts a PVT-based encoder to extract global 
contexts and utilizes a feature-aligned local enhancement 
module to highlight detailed local contexts while effectively 
recovering high-resolution spatial information by its pro-
gressive local-induced decoder. In addition, we design a 
mutual information loss to encourage our LET-Net to learn 
powerful representations from the task-relevant perspective. 
LET-Net is validated in polyp and breast lesion segmenta-
tion and achieves state-of-the-art performance, especially 
demonstrating its ability for small target segmentation. In 
future work, we aim to apply our proposed LET-Net to other 
medical image segmentation tasks with different modali-
ties or anatomies, thereby developing our model to be more 
robust.
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Table 3  Ablation analysis w.r.t 
the effectiveness of FLE and 
LRR modules. The best results 
are shown in bold

Method Seen dataset Unseen dataset

CVC-ClinicDB Kvasir CVC-ColonDB ETIS- Larib-
PolypDB

CVC-300

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

w/o FLE 0.936 0.887 0.918 0.871 0.779 0.698 0.751 0.674 0.884 0.816
w/o LRR 0.940 0.894 0.910 0.859 0.790 0.711 0.759 0.681 0.890 0.821
LET-Net 0.945 0.899 0.926 0.876 0.795 0.717 0.773 0.698 0.907 0.839

Table 4  Ablation analysis of 
mutual information loss. The 
best results are shown in bold

Loss setting Seen dataset Unseen dataset

CVC-ClinicDB Kvasir CVC-ColonDB ETIS- Larib-
PolypDB

CVC-300

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

w/o L
PPA

0.937 0.888 0.917 0.864 0.782 0.697 0.737 0.663 0.885 0.812
w/o L

VSD

0.940 0.892 0.923 0.872 0.785 0.702 0.762 0.688 0.895 0.826
w/o L

PPA

&L
VSD

0.934 0.882 0.914 0.861 0.772 0.692 0.716 0.648 0.879 0.807
LET-Net 0.945 0.899 0.926 0.876 0.795 0.717 0.773 0.698 0.907 0.839
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adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
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