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Abstract
The coronavirus disease 2019, initially named 2019-nCOV (COVID-19) has been declared a global pandemic by the World 
Health Organization in March 2020. Because of the growing number of COVID patients, the world’s health infrastructure 
has collapsed, and computer-aided diagnosis has become a necessity. Most of the models proposed for the COVID-19 detec-
tion in chest X-rays do image-level analysis. These models do not identify the infected region in the images for an accurate 
and precise diagnosis. The lesion segmentation will help the medical experts to identify the infected region in the lungs. 
Therefore, in this paper, a UNet-based encoder–decoder architecture is proposed for the COVID-19 lesion segmentation in 
chest X-rays. To improve performance, the proposed model employs an attention mechanism and a convolution-based atrous 
spatial pyramid pooling module. The proposed model obtained 0.8325 and 0.7132 values of the dice similarity coefficient 
and jaccard index, respectively, and outperformed the state-of-the-art UNet model. An ablation study has been performed to 
highlight the contribution of the attention mechanism and small dilation rates in the atrous spatial pyramid pooling module.

Keywords Deep learning · ASPP module · Channel and spatial attention · Chest X-ray · COVID-19 lesion segmentation

1 Introduction

Coronavirus disease 2019, initially named as 2019-nCOV 
(COVID-19) is the deadliest disease that was first detected 
in China. It has the greatest impact on the elderly, and it 
can result in hospitalization, intubation, critical care, and 
even death [11]. Some common symptoms of COVID-19 
are fever, dry cough, sore throat, shortness of breath and 
pneumonia. With comorbidities, such as heart, respiratory 
diseases, and diabetes, the mortality rate is significant [2]. 
COVID-19 detection tests include Real-Time Reverse Tran-
scription-Polymerase Chain Reaction (RT-PCR) and Rapid 
Antibody Test (RAT). Blood samples are analyzed in RAT 
to see if antibodies are present. Although, it is not a direct 

approach to diagnosing, but it shows the immune system’s 
response. Antibodies are produced by the immune system 
to fight the infection. However, antibodies can take 9–20 
days to appear, therefore, this approach of testing COVID-
19 is ineffective. In RT-PCR swab of the patient’s throat 
is obtained, and ribonucleic acid (RNA) is extracted. The 
patient is positive for COVID-19 if it has the same genetic 
sequence as SARS-CoV-2. It is the gold standard for 
COVID-19 detection, although it is expensive and yields a 
significant false-positive rate [16]. Additionally, it also does 
not provide useful information about the current status of 
the patient’s lung.

CT-Scan (CTS) is advised for suspected COVID-19 
patients at an earlier stage of the disease since it is a reliable 
imaging technique for early diagnosis [43]. It can capture 
observable imaging characteristics, such as lung fibrosis, 
consolidation, and ground-glass opacities (GGO) [4]. On 
the other hand, CTS has some limitations, such as being 
slow in acquisition and expensive. In comparison to CTS, 
chest X-ray (CXR) is easy to capture and also affordable. 
CXRs are the common first-line imaging tool used all around 
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the world and also have less radiation exposure than CTSs.1 
Presently, CXRs and CTSs are widely used as an assisting 
imaging technique for COVID-19 prognosis, and they are 
said to have diagnostic potential in recent studies [11, 47].

Deep learning has emerged in the last decade, and it has 
proven to be superior in computer vision and pattern recog-
nition [28]. Deep learning models are cutting-edge image 
classification algorithms that gained traction after success-
fully categorizing 1,000 classes in the ImageNet dataset [12]. 
CNN models are widely used in image classification and 
segmentation applications due to their superior expression 
ability and data-driven adaptive feature extraction technique 
[20, 41, 48]. Deep learning models are commonly used in 
medical image analysis [31]. Object segmentation, detection, 
and classification are a few popular tasks on which the deep 
learning community has worked extensively.

CTSs and CXRs have been significantly used for COVID-
19 diagnosis in the last two years. Similarly, the majority 
of studies have utilized these two modalities for their deep 
learning models. The COVID-19 diagnostic studies can be 
categorized into image-level classification [2, 3, 35] and 
lesion segmentation [27]. Hassan et al. [19] have given a 
detailed review of studies done for image-level classifica-
tion in CXR images. For CTSs, there are numerous research 
studies for both image-level classification [3] and lesion seg-
mentation [6, 27]. While most of the studies with CXRs 
are focused on image-level classification [2, 35]. COVID-
19 lesion identification in CXR is also important for the 
diagnosis. The segmented lesions can aid in determining 
the severity of pneumonia and ensuring that patients receive 
subsequent follow-up. With the help of a human–machine 
collaborative approach to obtain the exact affected locations, 
the first ground-truth masks for the COVID-19 infection in 
CXRs are introduced [11]. A similar approach is also used 
by Shan et al. [46] to segment the COVID-19 lesion in CTSs. 
These two studies have shown that interactions between radi-
ologists and deep learning models can significantly reduce 
the annotation time [33].

Medical experts can use COVID-19 lesion segmentation 
to assess the current state of the illness and its severity to 
plan future treatment. The area covered by the lesion shows 
the location where pulmonary alveolar are abnormal [30]. 
Despite the great detection accuracy of COVID-19 in CXRs, 
the time required for interpretation by medical experts can 
increase the workload. However, deep learning models can 
be deployed for automatically segmenting the lesion in 
CXR. It has already been used successfully for lung seg-
mentation in X-rays [7, 49] and CTSs [1, 25]. COVID-19 
lesion segmentation in CXR is a challenging task because 

the infection region in the X-ray shows features of different 
sizes and locations. Further, the COVID-19 does not have 
any definitive contour, which makes the segmentation of the 
infected region even more difficult.

UNet [41] is the most popular encoder–decoder architec-
ture for medical image segmentation. The low- and high-
level features of images are captured by the encoder, and 
those semantic features are concatenated in the decoder 
to generate the final segmented output. The COVID-19 
lesion segmentation can localize the infection area, which 
can help the medical practitioners to analyze the severity 
of the COVID-19 infection in the lungs. However, manual 
segmentation requires a expert radiologist and is also a 
time-consuming process. In this paper, we have proposed 
the UNet-based novel encoder–decoder architecture for 
automatic COVID-19 lesion segmentation in CXRs. The 
lesion segmentation will help the radiologist to localize the 
infection in the lungs, and the obtained results show the pro-
posed model can localize the lesion accurately in CXRs. The 
attention mechanism [42] is used to exploit the recalibration 
of features in both channel-wise and spatially. Further, the 
atrous spatial pyramid pooling (ASPP) [8] module is used 
to improve the model performance with the large view field. 
We have performed the ablation study to highlight the role of 
the attention mechanism and the ASPP module in improving 
the performance of the model. To the best of our knowledge, 
no study has proposed a similar architecture for the COVID-
19 lesion segmentation in CXR images. The performance 
of the proposed model has been evaluated on both the dice 
similarity coefficient and jaccard index.

The rest of the paper is structured as: In Sect. 2, related 
work is discussed. Section 3 describes the dataset and the 
methodology. Section 4 discusses the evaluation metrics, 
implementation details and the obtained results along with 
ablation study. In Sect. 5, we have done the result analysis 
with UNet and related works followed by a conclusion in 
Sect. 6.

2  Related work

Researchers have used CXRs and CTSs with deep learn-
ing models for the diagnosis of COVID-19. Segmenting the 
infected area and image-level analysis in CXR and CTS are 
two ways to diagnose the disease. Most of the research work 
has done image-level analysis, such as Ozturk et al. [35], 
Agrawal and Choudhary [2], Ahuja et al. [3], and many oth-
ers. There are very few works that have done the segmen-
tation of the infected region for the accurate and precise 
diagnosis on the CTS [6, 27] and CXR images [11, 29]. 
Our primary focus in the proposed COVID-SegNet model 
is lesion segmentation. However, in addition, we have 1 https:// www. health. harva rd. edu/ cancer/ radia tion- risk- from- medic 

al- imagi ng.

https://www.health.harvard.edu/cancer/radiation-risk-from-medical-imaging
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discussed a few state-of-the-art works using both image-
level and lesion segmentation techniques.

Ozturk et al. [35] developed the DarkCovidNet CNN 
model for the automatic detection of COVID-19 in CXR 
images. Instead of scratch CNN model, the authors adopted 
the DarkNet-19 [40] model design as a starting point. The 
model was trained and tested on 1127 chest images includ-
ing 127 COVID-19 images. Agrawal and Choudhary [2] 
propose a deep learning approach to increase the accuracy 
of binary and three-class classification of COVID-19 in 
CXRs. Many research studies are also reported on CTSs in 
addition to CXRs. Ahuja et al. [3] proposed the COVID-19 
detection model using the transfer learning approach in CT 
scan images. For the experimental evaluation, this work used 
well-known pre-trained architectures, such as ResNet-101, 
and SqueezeNet. Ragab et al. [38] proposed the use of cap-
sule neural-based CapsNet model above traditional CNN 
because of its better generalizations and fewer parameters. It 
achieved an accuracy of 94% for the COVID-19 detection in 
CXR images. It has also outperformed the traditional CNN 
model. However, there are few research studies that have 
used unsupervised deep learning (UDL) for the COVID-19 
detection in CXR images. Mansour et al. [32] used the UDL 
variational auto-encoder model for the COVID-19 diagnosis. 
Elzeki et al. [15] has proposed the CNN with less number 
of parameters in comparison to the pre-trained network on 
three datasets. There are different techniques available for 
COVID-19 detection, such as metaheuristic optimization 
[44] and web crawling, to update the datasets [14]. In the 
above-mentioned works, these models do the image-level 
classification for COVID-19 detection.

In the following, the deep learning models developed to 
segment the COVID-19 lesion segmentation in CTS and 
CXR images are discussed. Laradji et al. [27] introduced a 
framework that trains using a consistency-based loss func-
tion on a CTS dataset labeled with point-level supervision. 
The proposed model used the ImageNet pre-trained VGG16 
architecture [48]. Meanwhile, Li et al. [29] has proposed the 
LViT model for COVID-19 infection segmentation using the 
Vision Transformer model [13]. It used the pixel-attention 
blocks to preserve the local features. The proposed model is 
trained on COVID-19 CT scans with ground truths lesions. 
The ground truth lesions were developed by physicians from 
several hospitals.

These research works have used the UNet [41] for the 
segmentation task. Laradji et al. [27] and Degerli et al. [11] 
have used the transfer learning technique in the encoder 
of the UNet. The pre-trained models used in the transfer 
learning techniques and UNet model have a large num-
ber of parameters, which makes them prone to overfitting 
on small medical datasets. While, in the proposed work, 
the COVID-SegNet model has been trained from scratch 
for COVID-19 lesion segmentation in CXR images. The 

proposed COVID-SegNet model is lightweight in terms of 
parameters in comparison to other models.

3  Dataset and methodology

In this section, we have mentioned the dataset used and 
discussed the proposed architecture for COVID-19 lesion 
segmentation. Further also, we have discussed the atten-
tion mechanism and atrous convolution-based ASPP mod-
ule before elaborating on the proposed architecture.

3.1  Dataset

In this study, we have used the QaTa-COV19 dataset [11] 
for COVID-19 infection segmentation. In this section, we 
have described the human–machine collaborative approach 
deployed by Degerli et al. [11] to obtain the ground-truth 
COVID-19 segmentation masks.

The development of various deep learning algorithms 
for image segmentation and classification has been aided 
by recent advancements in hardware. However, supervised 
deep learning methods require a substantial amount of 
annotated data. On the other hand, using the small dataset 
for training the deep learning model can lead to overfit-
ting. A manual ground-truth mask by the radiologist for 
COVID-19 infection segmentation is labor-intensive work. 
As a result, Degerli et al. [11] suggested a human–machine 
collaborative technique for COVID-19 infection segmenta-
tion. The goal of the research was to reduce human labor 
and provide better segmentation masks. They suggested 
an iterative technique with two stages. In the first stage, 
MDs manually segment COVID-19 infected regions in the 
500 CXRs. Then, the initial ground-truth masks were used 
to train multiple UNet-based models. Further, the MDs 
evaluated the segmented masks predicted by the network 
for the test set, as well as the original CXRs and the ini-
tial masks. The best segmentation masks are chosen from 
them.

On the collected lesion segmented masks from the first 
stage, five deep learning models based on UNet++ [52] 
and DLA [50] network are trained in the second stage. The 
remaining dataset is then utilized to estimate the segmen-
tation region using these models. Then, the MDs choose 
the best masks from the prediction results, and if any erro-
neous mask was found, then it was manually segmented. A 
total of 2,951 CXRs (224 × 224) with COVID-19-infected 
regions were segmented using this human–machine col-
laboration technique. Figure 1 depicts the human–machine 
collaborative approach. 
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3.2  Attention mechanism

UNet is the encoder–decoder architecture, where the encoder 
is the convolutional neural network (CNN). The CNN’s are 
effective for a variety of visual applications. The image’s high-
level features are captured by stacking convolutional layers 
with non-linear activation functions and down-sampling. 
CNN models have performed better than human experts for 
the disease classifications in CXRs [39]. The attention method 
can be used for any feature representation challenge, and it 
encourages the model to record rich contextual interactions 
to improve feature representations. So, squeeze and excitation 
network (SE) was introduced by Hu et al. [22] to calibrate 
channel-wise feature responses by explicitly modeling inter-
dependencies between channels. In this study, to leverage the 
SE blocks performance in image classification, we introduce 
the spatial and channel squeeze and excitation block (scSE) 
[42] in the encoder blocks. The scSE comprise SE [22] and 
the newly introduced channel squeeze and spatial excitation 
(sSE) blocks. SE block has the global average pooling, and due 
to this every intermediary layer has the whole receptive field 
of the input image, which is an advantage of utilizing such a 

block. Further, sSE blocks use pixel-wise spatial information 
for the fine-grained segmentation task. These sSE blocks do 
not change the receptive field but provide spatial attention to 
focus on certain regions. Figure 2 shows the scSE blocks. In 
the following, the scSE attention mechanism is explained.

Let the input feature map X is combination of channels xi 
where, X =

[

x1, x2,… , xC
]

 and xk ∈ RH×W . Here C is the num-
ber of channel, H and W is the spatial and width, respectively. 
The global average pooling performs the spatial squeeze and 
generates the vector or tensor r ∈ R1×1×C with its kth element

Then this vector r is transformed to r̂ = W1

(

𝛿
(

W2r
))

 after 
applying the dense connected layers. W1 and W2 are weights 
of densely connected layers ( W1 � RC∕p×C , W2 � RC×C∕p ), 
while p is the reduction ratio, � refers to the ReLu activation 
function. In this study, reduction ratio is set to 16. Further, to 
learn the channel-wise dependencies, the r̂ is passed through 
the Sigmoid activation layer �(r̂ ). The resultant tensor is 
shown in below equation:

(1)rk =
1

H ×W

H
∑

i

W
∑

j

xk(i, j)

Fig. 1  Human–machine collaborative approach to generate the COVID-10-infected region ground-truth masks

Fig. 2  scSE attention mecha-
nism
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In sSE, the feature map X is squeezed along the chan-
nel and exited spatially. Here, the input tensor can be 
considered as X =

[

x1,1, x1,2,… , xi,j,… , xH,W
]

 where 
xi,j ∈ R1×1×C , i and j indicates the spatial location with 
i ∈ 1, 2,… ,H, j ∈ 1, 2,… ,W . Then the convolutional oper-
ation, cop = Wsqueeze ⋆ X , generating a vector cop ∈ RH×W 
with weight Wsqueeze ∈ R1×1×C×1 . Then this scale is passed 
through the Sigmoid layer to excite X, spatially:

Each value of �(copi,j ) represents the important spatial infor-
mation of the corresponding feature map. In scSE activation, 
XcSE and XsSE are added to achieve the spatial and channel 
squeeze & excitation attention mechanism:

3.3  Atrous spatial pyramid pooling module

To perform accurate semantic segmentation, both local and 
global features are important. The encoder path in the UNet, 
on the other hand, is always confined to a smaller receptive 
field that captures the global information in the features [37]. 
The atrous convolutional layer can be used to deal with the 
small receptive field problem in the UNet encoder. Atrous 
convolution was introduced by Holschneider et al. [21] for 
efficient computing. Later, it was used in context of deep 
learning [17, 36, 45]. The atrous convolution-based deep 
learning models have been continuously investigated for 
semantic convolution. Within deep learning networks, it 
allows to deliberately control the resolution at which fea-
ture responses are generated. It also enables to effectively 
expand the field of view of filters to include more context 
without increasing the number of parameters or computa-
tion time [8]. The dilation rate is the additional parameter 
in the convolutional layer that introduces the space (zeros) 
consecutive kernel values. The dilation rate r introduces the 
(r − 1) zeros, enlarging the filter of k size to K. The formula 
for enlarged filter size (EFS) is given in the below equation.

The procedure performed does not affect the computa-
tional complexity or the number of parameters. For example, 
in a typical convolutional layer, a kernel of size 3 with a 
dilation rate of 2 is comparable to a kernel of size 5. It pro-
vides an effective technique for controlling the field of view 
and determining the appropriate trade-off between accurate 
localization (small field of view) and a large field of view. 

(2)XcSE =
[

𝜎
(

r̂1
)

x1, 𝜎
(

r̂2
)

x2,… , 𝜎
(

r32
)

zC
]

(3)
XsSE =

[

�
(

cop1,1
)

x1,1,… , �
(

copi,j
)

xi,j,

… , �
(

copH,W

)

xH,W
]

(4)XscSE = XcSE + XsSE

(5)EFSr = K = k + (k − 1) × (r − 1)

The same 5 × 5 receptive field can be obtained by stack-
ing two 3 × 3 convolutional layers, but this increases the 
number of parameters in the models and slows the training 
process. [8] proposed the atrous spatial pyramid pooling 
(ASPP) module for semantic segmentation to address the 
lost spatial problem utilizing variable dilation rates. They 
utilized the four parallel convolutional layers (3 × 3 kernels) 
with a dilation rate of 6, 12, 18, and 24. Later, in their other 
works [9, 10], they proposed the different variations in the 
ASPP module.

In our study, we have used the three parallel layers (3 × 
3 filters) with 2, 3, and 4 dilatation rates. The output of all 
three convolutional layers is concatenated and then passed 
by the convolutional layer with 1 × 1 kernel followed by 
batch normalization [24] and the ReLu activation func-
tion. We have used the ASPP module in every block of 
the encoder. Dilation rate is a critical hyper-parameter that 
must be properly selected. The behavior of the convolutional 
layer (3 × 3) can change if we employ a large dilation rate 
[37]. Specifically, for COVID-19 lesion segmentation in 
CXRs, a high dilation rate is not suitable. As can be seen in 
Figs. 3 and 4 the COVID-19 lesion area varies significantly. 
Therefore, a very high dilation rate can lead to the loss of 
fine-grained lesion contours in the lungs. For example, in 
the convolutional layer with kernel size 3 and dilation rate 
32, there will be 31 zeros (spaces) between two non-zero 
numbers. As a result, critical information will likely be lost 
totally. Figure 5a illustrate the ASPP module, and Fig. 5b 
illustrate the convolutional weight when the dilation rate 
is 1 and 2.

3.4  Proposed architecture

The proposed UNet-based encoder–decoder architecture for 
COVID-19 lesion segmentation in CXRs is shown in Fig. 6. 
The encoder is essentially a CNN that downsamples to cap-
ture high-level characteristics. In this paper, max-pooling 
has been used for downsampling the resolution of the feature 
map. There are five blocks in encoder and decoder, respec-
tively. In each encoder block, there is a convolutional block, 
a scSE block, and an ASPP module. Each convolutional 
block consists of a convolutional layer followed by batch 
normalization and the ReLU activation function. Every con-
volutional block is followed by the attention mechanism for 
the recalibration of intermediate feature maps. For the same, 
we have used the spatial and channel squeeze and excitation 
(scSE) block. These attention-based blocks can be exploited 
at any depth in the architecture. So, to gain the most from 
feature calibration, we placed scSE blocks in every encoder 
block. Further, we have introduced the ASPP module in the 
architecture to take advantage of varying receptive fields 
with different dilation rates. We have kept the dilation rate 
small, so local information is not lost. Each ASPP module 
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has three parallel 3 × 3 convolutional layers with 2,3 and 4 
dilation rates. Then, their output is concatenated and passed 
through the 1 × 1 convolutional layer, followed by the batch 
normalization and activation function. The first block of the 
encoder has 16 kernels in every convolutional layer of the 
convolutional block and the ASPP block. Thereafter, in each 

encoder block, the number of kernels in convolutional layers 
is increased by 2.

In the decoder part, there are also the five blocks cor-
responding to each encoder block in the architecture. In 
the decoder block, we have performed the upsampling to 
regain the spatial information lost during the downsampling 

Fig. 3  Qualitative results of the 
proposed model for COVID-19 
lesion segmentation on severe, 
moderate, and mild cases. a–c 
shows the prediction results 
severe and moderate cases, 
while (d) and (e) on the mild 
cases
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Fig. 4  These are the prediction 
results for moderate and mild 
cases on which the proposed 
model failed to produce accu-
rate lesion segmentation

Fig. 5  a ASPP module b Enlarged filter size when dilation rate is 1 and 2
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operation. The upsampled feature map is then fed to the 
convolutional block, and its output is concatenated with the 
feature maps of the corresponding encoder layer. This is an 
important step in localizing the high-resolution features. At 
last, these concatenated feature maps are passed through the 
residual layer. After each decoder block in the architecture 
(bottom to top), the number of feature maps in the convolu-
tional layer is dropped by half. Finally, after the last decoder 
block, there is a 1 × 1 convolutional layer with Sigmoid acti-
vation function to produce the segmented COVID-19 lesion.

4  Performance evaluation

In this section, we have discussed the metrics used to evalu-
ate the model for COVID-19 lesion segmentation, imple-
mentation details, and the obtained results.

4.1  Metrics

In this study, we have used the dice similarity coefficient 
(DSC) and jaccard index (JI) to evaluate the proposed model 
for COVID-19 lesion segmentation. We have also compared 
the predicted mask of the proposed model with the ground-
truth segmented by an expert radiologist. In the following, 
we have presented the DSC and JI equations:

where true positive values are denoted by TP, false-positive 
values are denoted by FP, and false-negative values are 
denoted by FN. If the model recognizes COVID-19 lesion 
pixels as exactly ground truth pixels, it will be TP. False-pos-
itive (FP) pixels are those that are incorrectly classified as 
COVID-19 lesion but are normal pixels, while false-negative 
(FN) pixels are those that belong to the COVID-19 lesion 
but are incorrectly identified as normal pixels.

4.2  Implementation details

Google Colaboratory, referred to asColab, is used for 
experimentation. It provides 25 GB RAM and a P100 GPU 
for 24 h. All the experiments are implemented in Python 
using the Keras library. The Adam optimizer is employed 
with a 0.0005 learning rate, and the number of epochs 
is 200 with batch size 4. We have employed a dynamic 
approach to training the model. When the model stops 
improving, the ReduceLROnPlateau technique is used to 
adjust the learning rate. The minimum rate of learning is 

(6)DSC =
2 × TP

(TP + FP) + (TP + FN)

(7)JI =
TP

(TP + FP + FN)

Fig. 6  Proposed encoder–decoder-based architecture
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fixed at 1e-6 with a 0.5 factor, and patience equals 4. The 
validation loss is monitored at every epoch, and if it does 
not improve for a continuous 25 epoch, then the training 
of the model is stopped.

Cross-entropy is the popular loss function, but in the case 
of a class-imbalance problem, the dice coefficient loss per-
forms better [18, 25]. So, in this study, we have used the 
dice coefficient loss function. Its calculation formula is 1 - 
DSC. A cross-validation approach can be used to check the 
general effectiveness of the model [23]. In the K-fold cross-
validation, the dataset is randomly divided into mutually 
exclusive K folds of equal or nearly equal size [23, 26]. The 
5-fold cross-validation method is employed in this study. 
The dataset is split into five sets, with four sets used for 
training and the fifth set used to test the model. This proce-
dure is repeated five times, with the findings for each test set 
being recorded. Finally, the proposed architecture is evalu-
ated using the average of all five results. The framework of 
the proposed study is shown in Fig. 7.

4.3  Results

In the following, we have presented and discussed the 
obtained results. In addition, we have performed the ablation 
study to demonstrate the influence of the attention mecha-
nism and ASPP module. We have also shown the effect of 
dilation rate on the results. For comparison, we have used 
the using DSC and JI values.

4.3.1  Proposed architecture

In the following, we have discussed the results obtained by 
the proposed architecture for COVID-19 lesion segmenta-
tion. We have also compared the predicted masks with the 
ground-truth masks produced by the human–machine col-
laborative approach.

In this study, we have used the ASPP module and the 
attention mechanism to gain from an expanded field of view 
and improved feature representations, respectively. Table 1 

Fig. 7  Framework of the proposed work for COVID-19 lesion segmentation
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shows the DSC and JI values obtained by the proposed 
model in each fold. The model has obtained the highest DSC 
and JI values of 0.8407 and 0.7253 in fold 3. While, the low-
est DSC and JI values of 0.8202 and 0.6952 are obtained 
in fold 1. The average DSC value of 0.8325 and JI value 
of 0.7132 is obtained by COVID-SegNet for all five-folds.

Figures 3 and 4 shows the qualitative results of our pro-
posed model for the COVID-19 lesion segmentation in 
CXRs. Figure 3a, b, and c shows the COVID-19 lesion seg-
mentation ground-truth and prediction results for the severe 
and moderate cases. In Fig. 3, it can be clearly seen that the 
proposed model is able to accurately segment the COVID-
19 lesion area for severe and moderate cases. While Fig. 3d 
and e show the prediction results on the mild COVID-19 
cases. In both, Fig. 3c and d, the model again has predicted 
correctly the COVID-19 lesion location. It has slightly 
predicted a larger lesion area in Fig. 3d and has slightly 
missed the lower region in Fig. 3e. Overall, the location of 
the COVID-19 has been predicted accurately.

Figure 4 shows the qualitative results on which the pro-
posed model failed to segment the lesion correctly. However, 
in Fig. 4a it predicted the location correctly but does not 
segment the whole lesion. While in Fig. 4b, it predicted the 
location correctly in one lung and completely missed the 
lesion in the second lung. In Fig. 4c also as in Fig. 4b, it 
correctly predicts the lesion area in the lower lungs, while 
missing the lesion in the upper lungs. In other words, the 
proposed model can segment the lesion in these unsuccess-
ful cases, but with false-negative regions. The reason for the 
failure cases can be the presence of rib-cages and clavicles 
bone in CXR images. The lesion might be beneath these 
bones, which the model may fail to predict, and this can 
result in an increase in false negatives, which results in a 
decrease in the efficiency of the model.

4.3.2  Ablation study

Table 2 shows the results obtained by different ablation stud-
ies. These studies have been conducted to investigate the 

individual contributions of the different modules in improv-
ing the results of the proposed model. In the following, stud-
ies and their results are discussed.

In these ablation studies, we have not changed the 
decoder. The purpose of this experiment is to show that 
the atrous convolution can capture the multi-scale context 
with varying dilation rates in increasing the efficiency of the 
model. Therefore, in the first study, we remove the dilation 
rate from all the convolutional layers in the ASPP block to 
evaluate the effect. Upon evaluation, the proposed model 
performance dropped to a DSC value of 0.8290 and a JI 
value of 0.7080. This drop in results shows that the multi-
scale view can help increase the performance of the model. 
The multi-scale view helps capture better feature representa-
tion to improve efficiency.

High dilation rates are used in different DeepLab versions 
[8–10] for semantic segmentation in benchmark datasets, but 
the use of high dilation rates is not recommended in medi-
cal images [37]. In the second study, we have used (3,5,7) 
the dilation rate to evaluate the effect of increased dilation 
on the results. The proposed model reported a DSC value 
of 0.8310 and a JI value of 0.7110. These findings provide 
further confirmation that the use of a high dilation rate is 
not appropriate when dealing with segmentation issues in 
medical images. Because of the high rate of dilation, there is 
an increase in distance between kernel elements, which may 
result in the loss of fine-grained information. In Qamar et al. 
[37] also, the best segmentation results for skin lesions were 
obtained with the small dilation rates. These two ablation 
studies show the importance of atrous convolution and par-
ticularly small dilation rates in increasing the performance 
of the model for segmentation in CXRs.

In the third and fourth study, we have evaluated the 
impact of the attention mechanism on the performance of 
the model. The attention mechanism helps in extracting the 
useful feature from the image. Therefore, in the third study, 
we have shown that the spatial and channel-wise attention 
increase the performance of the model. Therefore, after 
removing the scSE attention mechanism, and upon evalua-
tion, the DSC value of 0.8315 and the JI value of 0.7119 are 

Table 1  Obtained results for the COVID-19 lesion segmentation by 
proposed model

The bold values represent the results obtained by the proposed model

Dilation Rate Fold DSC JI

(2,3,4) 1 0.8202 0.6952
– 2 0.8292 0.7083
– 3 0.8407 0.7253
– 4 0.8361 0.7184
– 5 0.8364 0.7189
– Average 0.8325 0.7132

Table 2  Results of ablation studies

The bold values represent the results obtained by the proposed model

Ablation studies DSC JI

Without dilation 0.8290 0.7080
Dilation rate (3,5,7) 0.8310 0.7110
Without scSE 0.8315 0.7119
scSE replaced by SE 0.8308 0.7107
ASPP module replaced by convolu-

tional block
0.8300 0.7094

Proposed model 0.8325 0.7132
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obtained. In the fourth study, we evaluated the model with 
the SE model [22] to check how the model performs with 
the channel excitation mechanism, while the scSE attention 
mechanism employs both the channel and spatial mecha-
nisms. So, we replaced the scSE block with the SE module. 
It obtained a DSC value of 0.8308 and a JI value of 0.7107. 
These results show that spatial and channel-wise attention, 
when used together, increase the performance of the model.

In the fifth study, we replaced the ASPP block with the 
convolutional block to evaluate its contribution to the pro-
posed model. In doing so, the performance of the model 
dropped to a DSC value of 0.8300 and a JI value of 0.7094. 
These obtained results show the significant role played by 
the ASPP block in improving the performance of the pro-
posed model. So, the obtained results in these ablation stud-
ies suggest that the attention mechanism, the ASPP module, 
has individually contributed to improving the performance 
of the proposed model for COVID-19 lesion segmentation.

5  Results analysis and discussion

This section presents a comparative results, computational 
analysis of UNet and other related works with the proposed 
model.

5.1  The proposed architecture vs state‑of‑the‑art 
architectures

UNet [41] model is an encoder–decoder architecture. UNet 
is divided mainly into three parts: encoder, bridge module 
and decoder. There are four encoder–decoder blocks and a 
bridge module. Each block in the encoder consists of a two 
convolutional layer stack: ReLu activation and a max-pool-
ing layer for contraction. The bride module has two convolu-
tional layers with a ReLu activation function. In the decoder, 
the feature map is upsampled and then concatenated with 
the feature map of the corresponding encoder layer. These 
feature maps then work as an input to the stack of convo-
lutional layers. At last, the output is obtained with a 1 × 
1 convolutional layer and the Sigmoid activation function.

For the UNet training, all the hyperparameters are kept 
the same as in the proposed model except the learning rate. 
It performed badly at a 0.0005 learning rate, so we have used 
a 0.00001 learning rate. Both UNet and proposed models are 
evaluated using 5-fold cross-validation. In Table 3, we can 
see that the proposed model outperformed the original UNet 
on both DSC and JI evaluation metrics.

Apart from the UNet model, the proposed COVID-Seg-
Net model has also been compared against state-of-the-art 
Attention UNet [34], R2UNet [5], and UNet++ [51]. The 
attention UNet model obtained the DSC value of 0.8124 and 
0.6875 JI value. While R2UNet obtained the 0.8317 DSC 

value and 0.7087 JI value. Moreover, the UNet++ obtained 
a 0.8297 DSC value and a 0.7094 JI value. The COVID-
SegNet model outperformed all the state-of-the-art models 
for the COVID-19 lesion segmentation.

5.2  Comparative analysis with related works

There are numerous studies available for the COVID-19 
detection in CXRs and CTSs. Ozturk et al. [35], Agrawal and 
Choudhary [2], and Ahuja et al. [3] performed the image-
level classification for the detection of COVID-19.

In the image-level prediction, the model does not localize 
the lesion area. The lesion segmentation can help the radi-
ologist identify the severity of the patient. Therefore, Laradji 
et al. [27] proposed the deep learning model for COVID-19 
lesion segmentation in CTSs. It obtained a DSC value of 
0.730 and a JI value of 0.570 on 60 CTS images. In other 
work, Amyar et al. [6] proposed the UNet model for COVID-
19 lesion segmentation in CTSs which achieved the 0.880 
DSC value on 100 CTS images.

Most of the lesion segmentation studies use CTS images 
as modality. QaTa-COV19 dataset [11] is the only CXR 
dataset available for the COVID-19 lesion segmentation 
along with ground-truth masks. This dataset uses a unique 
human–machine collaborative approach for preparing the 
ground-truth masks of the COVID-19 lesion. Apart from 
annotating the dataset, Degerli et al. [11] have also evaluated 
different models using a five-fold cross-validation scheme. 
They have trained the three segmentation networks (UNet, 
UNet++, and DLA) with different pre-trained encoders 
(CheXNet, DenseNet-121, Inception-v3, and ResNet-50). 
Despite the lack of a powerful transfer learning approach 
and fewer parameters, our proposed model produced signifi-
cantly comparable outcomes. In some cases, the proposed 
model outperformed the pre-trained CheXNet and Incep-
tion-v3 encoder based on UNet networks on DSC values. 
The proposed model is lightweight in terms of parameters. 
It has just 6.5 million parameters. While the CheXNet and 
inception-v3 model has total 12.15 million and 29.94 mil-
lion parameters. The COVID-SegNet model is five times 
light weighted than the Inception-v3 model and two times 

Table 3  Quantitative comparison between proposed model and state-
of-the-art architectures

The bold values represent the results obtained by the proposed model

Models DSC JI

UNet 0.7950 0.6598
Attention UNet 0.8124 0.6875
R2UNet 0.8317 0.7087
UNet++ 0.8297 0.7094
Proposed Model 0.8325 0.7132
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light weighted than the CheXNet model. The training time 
of CheXNet and the Inception-v3 model is not specified in 
the articles; however, the inference time (IT) is reported. 
The training and inference time of the models on the given 
dataset can vary as they depend on the hardware’s computa-
tional power. The proposed model (IT) is 6.7 milliseconds, 
compared to 2.53 milliseconds and 2.56 milliseconds for 
Inception-v3 and CheXNet, respectively, for a single image. 
Meanwhile, Laradji et al. [27] proposed model took 1–3 s 
to label a pixel of infected region. The COVID-SegNet tool 
five hours approximately for the training. LViT [29] model 
proposed the infection segmentation using the vision trans-
former models. It obtained a 0.8366 DSC value. The DSC 
value obtained by the LViT model is slightly higher than the 
value obtained by the COVID-SegNet model. However, the 
reason for the higher value is that the LViT model has been 
evaluated with a single train-test split and not with the cross-
validation scheme as we did for COVID-SegNet. Further, for 
one-to-one comparison with the LViT model, we have also 
trained and tested the COVID-SegNet model with a single 
train-test split. And, the proposed COVID-SegNet model 
obtained 0.8472 DSC value. Again, the performance evalu-
ation with cross-validation is recommended because it gives 
generalized results for the dataset. The training and inference 
time of the LViT model is not given in the paper. Table 4, 
we have given the brief overview of the works performed for 
COVID-19 using the deep models and the proposed model.

6  Conclusion

The rapid and accurate diagnosis of highly contagious 
COVID-19 is critical in halting the virus spread. Automatic 
diagnosis can ease the burden on the medical community. 
Therefore, CXRs are used in this paper because they are less 
expensive, more accessible, and faster than other regularly 
used procedures like RT-PCR and CTS. In this paper, the 
UNet-based encoder–decoder architecture is proposed for 

the COVID-19 lesion segmentation. The COVID-19 lesion 
segmentation in CXRs will increase the diagnosis preci-
sion. The attention-based mechanism and the ASPP blocks 
are utilized to increase the performance of the model. The 
COVID-SegNet obtained 0.8325 DSC and 0.7132 JI, which 
outperformed the other models on CXR images. Further-
more, an ablation study shows that the atrous convolution, 
attention mechanism, and the ASPP module helped enhance 
the performance of the model. The limitation of the pro-
posed model is that it failed in some mild COVID-19 cases. 
However, it correctly predicts the location of the lesion by 
segmenting a portion of it. The DSC and JI values obtained 
are very low. Therefore, in future work, we will work to 
improve the DSC and JI values and the lesion segmentation 
in mild cases. The availability of annotated data is another 
issue while working in medical image analysis. Because 
the number of labeled datasets is limited and the number of 
unlabeled datasets is large, self-supervised learning is gain-
ing popularity. Genetic algorithms can also be used to opti-
mize the UNet models. Therefore, in future, self-supervised 
learning and genetic algorithms can be used for COVID-19 
lesion segmentation.
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