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Abstract
With the introduction of concepts for virtual interaction and digital doubles, a rich scenario has been created for embodied 
avatars to strive. These avatars, more recently referred to as digital humans, have become a popular area of research, result-
ing in various techniques and methods that focus on improving the perception of their realism, fidelity, emphatic response, 
and interactivity. This survey aims to explore the literature and recent advancements on the key processes behind the crea-
tion and animation of digital human faces through the view of a general pipeline. The extensive review carried out in this 
study explores the usual data collection protocols, the main facial codification paradigms and databases, the approaches for 
digital human asset creation, facial tracking solutions for performance-driven animation, the solving process, and the final 
rendering delivery. Different quantitative evaluation methods, visual perception tests, and empathetic response evaluations 
for digital humans are also included in the survey. Additionally, the paper presents an updated summary of public and private 
frameworks for digital humans that go through the complete general pipeline presented. Finally, the condensed knowledge 
is discussed, inquiring into the possible direction of future developments in the field.
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1  Introduction

In the last decade, digital humans have become a relevant 
and consolidated subject of research as a new form of 
embodied conversational agents (ECAs), earning their place 
in the Hype Cycle of Emerging Technologies in 2021 [20]. 

There is a wide variety of applications for digital humans 
in different areas, such as customer service, government 
communication, healthcare, e-commerce, education, and 
film-making. The visual representation of a human agent 
requires a diverse set of technologies and an extensive list of 
crucial factors that must be archived, such as realistic graph-
ics [126], emphatic response [105], and a correct model that 
can make replicate the facial expressions and performance 
of a unique human [59].

The construction of facial models and expressions for dig-
ital humans consists of recreating all of what the human face 
does, when talking and expressing various emotions. This 
process is called facial coding [97]. Common approaches in 
recent years make use of state-of-the-art computational tech-
niques that involve Computer Vision and Machine Learning 
to improve the study, analysis, and extraction of realistic 
facial codifications from real-world face recognition of real 
subject faces. Some approaches include Artificial Networks 
and Convolutional Neural Networks models, using computer 
vision-based recognition [19, 59].

This survey explores the evolution of methods, frame-
works, and solutions for facial reconstruction and expression 
reenactment for offline animation or real-time performances 
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with digital humans. This work complements various previ-
ous exploration works by categorizing and exploring the dif-
ferent approaches and technologies involved from the view 
of a general and complete pipeline, where all the compo-
nents work together to deliver a realistic and emotional digi-
tal human. A general framework for the facial performance 
of a digital human starts by taking a real human person, 
analyzing their facial performance, extracting the unique-
ness of their facial movements inside a discrete model, and 
replicating it into a 3D model or avatar. A digital 3D model 
with a high level of detail, which can have realistic textures 
and shapes with the use of photogrammetry [44], is able to 
collect all the detailed animation inside a particular structure 
named facial rig [21]. This rig will be in charge of driving 
all the collected information inside a rendering engine [10]. 
When the digital human is visualized, a particular interac-
tion or emotional link is created between a real person and 
the virtual human to complete this entire process. This inter-
action, usually called affective computing, is necessary to 
get an empathic response [74], and is a crucial component 

that differentiates a digital human from an avatar, a charac-
ter, or a 3D interactive model.

1.1 � Related surveys and reviews

There are various outstanding surveys that cover the digi-
talization of the human face and its expressions (Table 1). 
In 2007, a survey written by Ersotelos and Dong [34] intro-
duced a brief history of the computer simulation of human 
faces and presented a comprehensive exploration of this 
area through the categorization of techniques to produce 3D 
human face models and synthesize dynamic facial expres-
sions. The survey talks extensively about facial codifications 
and refers to some of the early techniques mentioned in this 
work, however, since it is a little over a decade old, this 
survey complements it by introducing novel methods and 
recent technologies.

Later in 2013, Agianpuye and Minoi [2] published 
a survey that focuses more on the different facial anima-
tion approaches used in the literature rather than the 3D 

Table 1   Summary of related surveys and reviews

Title Year Venue Summary

Building highly realistic facial modeling and 
animation: a survey

2007 Springer
Visual
Computing

3D human face models
Dynamic facial expressions
Categorizes the approaches
Summarizes important aspects
Discusses the current limitations
Explores the trend of future research

3D Facial expression synthesis: a survey 2013 IEEE International Conference on Informa-
tion Technology in Asia

Facial animation approaches
Facial expression synthesis
Includes possible applications
Lists advantages and disadvantages

Computer facial animation: a review 2013 International Journal of Computer Theory 
and Engineering

Geometric-based modeling
Three modeling categories
Data-driven animation
Three animation categories

State of the art on monocular 3D face recon-
struction, tracking, and applications

2018 Computer Graphics Forum 3D face reconstruction
2D data tracking
Single RGB or RGB-D camera
Optimization-based reconstruction
Deformable 3D face models

3D Morphable face models-past, present, and 
future

2020 ACM Transactions on Graphics Facial reconstruction
Expression reproduction
Focus on 3D Morphable Face Models
Major contributions in last 2 decades
Mentions challenges and future work

A survey of facial capture for virtual reality 2021 IEEE Access Facial capture for Virtual Reality headsets
Overview of various types of technologies
Identifies research gaps
Includes a realism index for analysis

Facial modelling and animation: an overview 
of the state-of-the art

2022 Iraqi Journal for Electrical and Electronic 
Engineering

Techniques for realistic facial animation
Facial modeling
Animation approaches
Brief comparison of methods
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reconstruction of the face, but it includes a wide selection 
of facial expression synthesis methods, including other sta-
tistical and learning-based methods. In the same year, Ping 
et al. [90] presented a survey that reviews geometric-based 
modeling for face representations and data-driven animation 
techniques for facial animation. These surveys talk about 
some of the facial animation approaches mentioned in this 
work, as well as the same facial codifications used for that 
task, however, this survey complements both works by men-
tioning the various available solutions that offer a complete 
reconstruction and animation framework with the use of one 
or several of the discussed animation approaches.

Then, in 2018, Zollhöfer et al. [127] presented a survey 
that focused on 3D face reconstruction and tracking from 
monocular 2D data obtained through a singular RGB or 
RGB-D camera. It offers an in-depth overview of different 
optimization-based reconstruction methods. The present sur-
vey complements this work by including not only monocu-
lar data but also mentioning technologies that use multiple 
camera setups and infrared cameras.

After that, in 2020, Egger et al. [31] published a detailed 
survey on facial reconstruction and expression reproduc-
tion using 3D Morphable Face Models. This research work 
focuses on such models and all the involved methods, which 
are just briefly mentioned in this survey but complements 
the facial reconstruction subject by including various other 
methods for facial reconstruction that are used in the indus-
try and literature.

Next, in 2021, Wen et al. [120] created a survey that 
focuses on facial capture technologies and approaches for 
Virtual Reality (VR) headsets, introducing a realism index 
to evaluate and compare the explored literature. It reviews 
various facial capture methods also mentioned in this paper, 
besides, it is to the best of our knowledge the only other 
survey paper that mentions the recently available Metahu-
man Creator, which is discussed in Sect. 4.3. It is a recom-
mended read for people interested in VR-specific solutions, 
however, this survey complements its information by includ-
ing methods for different applications, as well as mentioning 
the solving, delivery, and emphatic evaluation of the facial 
capture results.

Finally, Shakir and Al-Azza [107] published a survey in 
2022 that summarizes the most common techniques used in 
the industry for realistic facial animation, offering a brief 
comparison of the different approaches. It mainly focuses 
on explaining the process involved for each of the selected 
techniques and mentioning some methods that apply them, 
so this survey complements this work by also including 
facial reconstruction techniques and introducing complete 
frameworks that apply some of the methods explored.

1.2 � Literature collection and analysis

The methodology used for the present survey starts by 
delimiting the specific subject area to focus on, which in 
this case was defined as the facial capture process from a 
development point of view. Then, the method for defining 
the eligibility criteria, information sources, search strat-
egy, selection process, and synthesis methods are based on 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) 2020 [81]. The eligibility crite-
ria process specifies the inclusion and exclusion rules for 
the review and how papers are grouped for the syntheses. 
The rules for the review protocol establish that the research 
works needed to be written in the English language, must 
be peer-reviewed, and the year of the publication had to be 
within a range of up to two decades; however, this year range 
does not apply to literature related to the background of rel-
evant topics. The range of two decades was implemented so 
as to avoid a narrow time frame that could limit the number 
of eligible studies or a too-wide time frame that could hin-
der the synthesis of the information. The research works 
reviewed were grouped according to the steps of a general 
digital human facial development pipeline, which involve 
data collection, facial codification, asset creation, facial 
tracking, solving, delivery, and evaluation.

For information sources, the most adequate databases 
were defined to be ACM Digital Library, IEEE Xplore Dig-
ital Library, and Springer Link. Google Scholar was also 
used to find other relevant articles and websites. The sources 
were first accessed on 4 August 2022, and lastly revised 
on 19 February 2023. For the search strategy, different key 
concepts were identified for the initial search terms, based 
on the previously mentioned grouping of research works. 
These terms were then used to explore relevant studies men-
tioned in up to seven previous surveys. From those research 
works, candidate search terms were defined by filtering 
through the titles, abstracts, and keywords. After search-
ing the sources with the acquired search terms the results 
yielded over 1,951,009 documents. The duplicate records 
were removed and the established eligibility criteria were 
applied, resulting in a total of 43,698 documents. Then, 
the selection process involved the screening of titles and 
abstracts, with assessments by the four authors, selecting a 
total of 1427 documents.

The documents that could be retrieved resulted in a 
knowledge base of around 768 documents. A full-text review 
was done on the remaining research works by three of the 
authors, consulting the fourth if necessary to make the final 
decision. Up to 428 documents were excluded, because the 
focus was on applications or methods outside the scope of 
this paper, and up to 211 documents were excluded because 
the terminology or methods were better explored in another 
more relevant document. Out of the final 129 references, a 
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total of 34 research papers were obtained from the ACM 
Digital Library, 33 were obtained from the IEEE Xplore 
Digital Library, and 10 were obtained from Springer Link. 
Up to 39 other research works were obtained from Google 
Scholar. Additionally, 13 other relevant websites were 
explored. Finally, the knowledge collected from the selected 
documents was synthesized into the sections of this review 
according to their grouping. Relevant data, previous sur-
veys, data sets, and similar technologies, were prepared to 
be presented in tables and figures for a suitable presentation.

1.3 � Organization

In order to understand how a general production framework 
for digital human facial reconstruction and expression syn-
thesis integrates different key processes, we need to split 
the frameworks into different areas. The processes go from 
the physical aspect of the digital human face, the expression 
set of how this digital human performs and talks, and the 
real-time delivery of data and 3D graphics, using cutting-
edge techniques to solve a real human face into a digital 
face in real-time. Therefore, the structure of the survey is 
based on seven different steps, which can be visualized in 
Fig. 1, that represent a general production pipeline for digital 
human facial performance: (1) data collection, described in 
Sect. 2, including the different types of video input and the 
acquisition protocol, (2) facial codification, introducing in 
Sect. 3, the two principal methodologies used in the indus-
try, along with the available databases, (3) digital human 
asset creation, describing essential terms and processes in 
Sect. 4, from photogrammetry, rigging controls, to recent 
frameworks, (4) facial tracking, following the popular meth-
ods and recent strides in the state-of-the-art, summarizing 
the different approaches in Sect. 5, (5) solving, a process 
described in Sect. 6.1, which interprets the information from 
the facial components to be used in a rendering engine, (6) 
delivery methods for digital humans, briefly introduced in 
Sects. 6.2 and 6.3, finalizing with (7) quantitative evaluation 
methods, visual perception tests and empathetic response 
evaluations to the final render of a digital-human, discussed 
in Sect. 7.

The remainder of the paper includes information regard-
ing the current state of digital human facial performance and 
the path it may take in the future and is structured as fol-
lows. Section 8 introduces functional frameworks for Digital 
Humans. Section 9 discusses the possible future directions 
for Digital Humans’ facial tracking. Finally, Sect. 10 offers 
a summarized conclusion on the overall presented material.

2 � Input data collection

Input data is the base of how we want digital humans to 
interact in a virtual world. There are three main types of 
input data for a digital human: video input, audio input, and 
text input. These can be considered as different research 
branches, as they propose distinct approaches for animating 
the digital human. Some high-performance methods are pro-
vided by large companies, while others are available through 
research publications. This section briefly describes some 
solutions involving video input, the other two branches are 
out of the scope of this survey.

2.1 � Video input

The use of video devices to drive face animation through 
video sequences is a technique used since the beginning 
of facial animation research and it is the most widely used 
approach in current solutions. Some devices used in the lit-
erature are webcams, digital cameras, and even smartphones. 
The most common devices used in the audiovisual industry 
have 1920 × 1080 image resolution with 30–60 frames per 
second (fps).

With the recent introduction of ARKit into the facial 
tracking scheme, the use of mobile iOS devices equipped 
with a True Depth Camera has increased. These devices can 
usually record videos with a resolution of 1920 × 1080 at 30, 
60, 120, or 240 frames per second. The True Depth Camera 
has an infrared emitter capable of projecting over 30,000 
invisible dots to create a face mesh and an infrared image 
representation of the face [77].

Infrared or hyperspectral imaging cameras have also been 
increasingly used for facial expression recognition, since the 

Fig. 1   The set of steps that conform a general pipeline for digital human facial performance
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capture performance may degrade if there is no control over 
the illumination conditions or for subjects of various skin 
colors [108]. Some commonly used brands for this type of 
camera are Ximea [46, 104], with xiQ camera models that 
can have a resolution of 1080 pixels at 170 fps, and Teledyne 
FLIR [61, 124], with camera models that have a resolution 
of 640 pixels at 50 fps with a spectral range of 7.5–14.0 μm.

These specific devices with high-resolution cameras are 
mounted in helmets right in front of the face of an actor per-
former, in a type of rig known as Head Mounted Cameras 
(HMC). The development of such rigs aims to improve the 
quality of frame processing, avoid sudden movements due 
to camera shaking, and allow for easier use in a professional 
setting.

3 � Facial codification

Different schemes exist to synthesize facial expressions for 
their replication through computer graphics. There are two 
main codification approaches, commonly used in the facial 
animation field. These codifications are the Face Anima-
tion Parameters (FAPs) [82] and the Facial Action Coding 
System (FACS) [117]. FAPs were originally designed by the 
Motion Picture Experts Group (MPEG) in 1996 as an effort 
to standardize facial animation during its fast growth in the 
animation industry. FACS is the product of a theory born in 
1978 to observe, study, and analyze how facial expressions 
can describe emotions and intentions in the field of psychol-
ogy [97]. Despite their difference in origin and antiquity, 
both are still used to replicate avatar faces in almost any pro-
fessional field regarding human facial representation [75].

3.1 � FAPs

Facial animation could be viewed as two separate problems, 
the low level that involves a parameterized facial motion 
implementation and the high level that involves creating 
streams of parameters to produce an animation sequence. 
This parameterization can mean different things for research-
ers, computer vision specialists, or artists, creating a vari-
ety of demands specific to each field. To satisfy all those 
demands, the Moving Picture Expert Group, also referred 
to as MPEG-4, focused on a set of requirements for an ideal 
parameterization that included [83]:

•	 Range of Possible facial expressions
•	 Ease of use
•	 Subtlety
•	 Orthogonality
•	 Ability to be the basis for higher level abstraction

•	 Predictability
•	 Portability
•	 Possibility of measuring the parameters
•	 Efficiency (bandwidth)

Guided by this and inspired by the Abstract Muscle Actions 
(AMA) [70], MPEG-4 created a model-based approach con-
formed by a basic data set of 68 facial animation parameters, 
abbreviated as FAPs. Among these parameters, two are high-
level involving visual phonemes and expressions, and the 
others are low-level involving the movements of the facial 
features such as the ears, eyes, nose, cheek, lips, jaw, etc. 
Each FAP represents a one-dimensional measurement where 
a positive value represents downward motion [111]. Figure 2 
shows a visualization of the feature points that conform to 
the FAPs.

MPEG-4 decided not to standardize a 3D geometric facial 
model, with the supposition that FAPs can produce good 
animation results with any reasonable model; however, face 
models could also be configured using Facial Definition 
Parameters, abbreviated as FDPs. These parameters allow 
the definition of a precise facial shape, skin texture, and 
animation rule if needed. This decision allowed MPEG-4 
to provide a flexible solution without interoperability prob-
lems [1], becoming, over several decades, the most accepted 
standard for facial control of 3D avatars and digital charac-
ters. In a facial capture process with this kind of codification, 
the FDPs are used to initialize a geometric model of the face 
and the FAPs are transmitted to deform that facial model 
according to each of their measurements [111].

3.2 � FACS

In 1872, Charles Darwin described prototypical forms for 
the display of six categories of emotions, however, due to the 
lack of systematic data collection and the anthropomorphism 

Fig. 2   The set of MPEG-4 face action parameter (FAP) key facial fea-
tures points [82]
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in his descriptions of nonhuman animals, his work on emo-
tion expression did not have a significant impact until the 
1960 s and 1970 s, when facial expression became relevant 
in psychological research. During this time Silvan Tomkins 
presented a theory of affect that positioned a central role 
to the face as a site of emotion. This led to his work with 
McCarter in 1964, which resulted in one of the largest judg-
ment studies that used posed expressions based largely on 
Darwin’s prototypes. Later, the cross-cultural work on the 
recognition of facial expressions of emotion done by Ekman 
and Izard further suggested that direct measurement of facial 
behavior was a fruitful approach to studying emotion [97].

In 1972, Ekman and Friesen performed an experiment 
to examine whether spontaneous expressions of emotion 
varied by culture and social context. An early observational 
coding system, known as the Facial Affect Scoring Tech-
nique (FAST), described the facial expressions based on the 
observed universality and operation of display rules on facial 
behavior. This approach worked with visual matches to pre-
dict configurations for particular emotions, based on the 
work of Darwin and Tomkins, making it a selective rather 
than comprehensive measurement tool with some limita-
tions. To improve on this, Ekman and Friesen developed the 
Facial Action Coding System (FACS), inspired and moti-
vated by the early work of Hjortsö in 1970, who suggested a 
taxonomy for facial movements in terms of elemental parts 
and facial muscle groups [97].

FACS describes all visually distinguishable facial activity 
using 44 unique action units (AUs), in addition to several 
categories of head and eye positions and movements. Each 
AU has a label with an arbitrary numeric code and a score 
based on a five-point intensity scale (A, B, C, D, E), for 
the timing of facial actions and the coding of facial expres-
sions in terms of events. These events are the AU-based 
description of each facial configuration, which may consist 
of one or more AUs contracted as a single display [97]. An 
example can be observed in Fig. 3. The most common way 
AUs are incorporated into 3D facial animation is through 
blendshapes, further discussed in Sect. 4.6.2. Blendshapes 
can contain sets of expression geometries as defined by AUs, 
that are then used to interpolate with the facial mesh, using 

the intensity of the AUs as the alpha of the corresponding 
expression geometry.

There exists an increased use of FACS in various fields, 
such as scientific research, animation, and computer science, 
to explore facial expressions and emotion recognition. Dur-
ing the last decades, researchers have also used FACS to 
validate digital human facial models with the aim of improv-
ing the quality of conversational agents and standardizing 
the rules of facial expression in their display [86].

3.3 � Acquisition protocol

An acquisition protocol for facial codifications is necessary 
to obtain standardized results that are comparable across 
different studies involving expression analysis. In this sense, 
MPEG-4 specifies that a particular facial action sequence is 
generated by deforming the face model in its neutral state 
according to the specified FAP values for the correspond-
ing time instant. The FAP values translate to face anima-
tion parameter units (FAPU), which represent the fractions 
of distances between key facial features, some visualized 
in Fig. 2. These distances such as eye separation, eye-nose 
separation, mouth nose separation, and mouth width, are 
defined for the face in its neutral state [80].

On the other hand, the process of applying FACS to facial 
behavior is officially performed by trained experts who make 
perceptual judgments on video sequences. To become a 
FACS-certified expert that makes accurate judgments, a 
person needs to go through approximately 100 h of train-
ing and pass a standardized test for reliability. Both these 
approaches are time-consuming, however, within the past 
decade, significant advances in computer vision have opened 
up the possibility of automatic coding of facial expressions 
at the level of detail required for behavioral studies [97].

3.4 � Databases

To design and evaluate effective solutions regarding facial 
expression analysis, a clear overview of existing data sets is 
of great importance. Especially, so when exploring recent 
strides in automation, where the availability and quality 
of the data are critical. Table 2 shows a brief description 
of popular databases used in the field of facial expression 
analysis. To the best of our knowledge, there are no data-
bases that include FAP values for facial codification. Com-
mon databases for facial expression recognition use FACS 
instead; among them, the most explored are MMI[84], 
DISFA+[71], and CK+[67]. Novel databases such as AM-
FED [73] use online video content, with a large dataset of 
1.8 million recordings of YouTubers in front of the camera. 
The work done by Benitez-Quiroz et al. [35] with Emotionet, 
also takes advantage of the access to web services and the 
cloud to annotate, classify, and code actor units from facial 

Fig. 3   An example of an expression coded by the facial action code 
system [13]
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Table 2   Public databases that use facial codification

Database Database information Affect modeling

CK+ [67] Frontal and 30 degree images
123 Subjects
10,708 frames
Controlled poses/spontaneous
Includes AU intensity codes
Includes 68 facial landmark points
Annotated by expert FACS coders

30 AU
7 Emotion categories

MMI [84] Frontal/Side photos
25 Subjects
79 series of face expressions
Controlled poses/spontaneous
Annotated by an expert FACS coder

31 AUs
6 Basic expression

DISFA+ [71] Video with stereo cameras
27 Subjects
130,828 frames
Posed/spontaneous
Includes AU intensity codes
Includes 66 facial landmark points
Annotated by an expert FACS coder

12 AUs

FEAFA+ [41] Video with stereo cameras
122 Subjects
230,184 frames
Posed/spontaneous
Includes AU intensity codes
Validated by an expert FACS coder

24 AUs

AM-FED [73] 18 M Facial videos
242 Subjects
168,359 frames
Spontaneous
Annotated by 3 certified FACS experts
and 16 trained coders
Includes 22 facial landmark points

14 AUs

EmotioNet [35] Images queried from the web
24,600 images annotated manually
950,000 images annotated automatically
In the Wild images
Includes AU intensity codes

12 AUs for automated labels
23 AUs for manual labels

GEMEP-FERA [116] 7000 audiovisual emotion portrayals
10 Subjects
Additional use of phoneme sequences

12 AUs
18 Emotion categories

D3DFACS [26] 3DMD dynamic 3D stereo camera sequences
10 Subjects
519 Sequences
Annotated by a certified FACS expert

44 AUs
20 Action Descriptors (ADs)

UNBC-McMaster Pain archive [68] Video with two digital cameras
25 Subjects
48,398 frames
Spontaneous
Includes AU intensity codes
Includes 66 facial landmark points
Annotated by expert FACS coders

10 AUs

BP4D+ [124] 3D Facial expressions
140 Subjects
Spontaneous
Includes AU intensity codes
Includes head pose and 28 facial landmarks
Includes thermal and physiological data
Annotated by expert FACS coders

34 AUs
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expressions obtained from wild origins using search engines. 
Another approach has been the use of 3D acquisition. Such 
is the case of D3DFACS [26], BP4D [124], and Bosphorus 
Database [102]. Furthermore, 3D data can also be extracted 
from single-view facial databases, for example, through the 
estimation of 3D facial feature points or the approximation 
of the face with a 3D Morphable Model [23, 101].

4 � Digital human asset creation

The most important step in defining the physical aspect of 
a digital human face is asset creation. There are different 
approaches to creating a digital face, as well as different 
methodologies to control face deformations so that it can 
create coherent facial expressions. The following subsections 
explore some of the most prevalent approaches and meth-
odologies used in the field. Sections 4.1 and 4.2 describe 
techniques used to digitally represent the physical aspect of 
a real human to use as a digital human face. Sections 4.3, 
4.4, and 4.5 present different tools and engines that aid in 
the creation of digital human assets. Finally, Sect. 4.6 sum-
marizes different methodologies used to define how human 
assets can be manipulated and deformed during animation 
and motion-tracking performances.

4.1 � Photogrammetry for digital humans

Photogrammetry is the science of obtaining reliable infor-
mation about the properties of objects and surfaces without 
physical contact with the objects, along with measuring and 
interpreting this information [103]. Photogrammetry dates 
back to 1839, with the invention of photography by Daguerre 
and Niépce, and has evolved with the introduction of new 
technology. Analog photogrammetry was born due to the 
invention of stereophotogrammetry in 1901. Analytical pho-
togrammetry came about with the emergence of comput-
ers. The recent advent of digital photogrammetry is thanks 
to storage devices with rapid access to digital images and 
microprocessor chips.

Nowadays, creative practitioners can generate accurate 
3D models through the use of photographic equipment for 
any digital application. One of the many applications of 

photogrammetry is the capture of photorealistic human digi-
tal doubles. Different perspectives on the evolution of digital 
face cloning come from the film industry and academia [88].

The film industry has been motivated to create digital 
doubles of actors to be used for difficult stunts or for the 
representation of people that are no longer living. One of the 
first Computer Graphics (CG) humans appeared in the movie 
Futureworld in 1976. Digital doubles began to become more 
common during the early 2000 s with state-of-the-art digi-
tal stuntpeople in movies, applying different techniques for 
lightning capture, subsurface scattering, and dense motion 
capture. In Spiderman 2 [100], four film cameras were 
placed at various angles around the main characters (Tobey 
Maguire and Alfred Molina) and synchronized to the strobes 
for simultaneous image capture. The images were color 
corrected and projected onto a 3D model of each subject. 
Finally, colorspace analysis captured the specular and dif-
fuse components. In The Matrix Reloaded [18], an array of 
five synchronized cameras captured the actor’s performance 
in ambient lighting. The optical flow aided in tracking the 
motion of each pixel over time in each camera view. Each 
camera has a vertex of the model projected into it to track its 
motion in 2D and to estimate the 3D position at each frame 
using triangulation.

The Academia has also been working on facial photo-
grammetry research since the 70 s. One of the first docu-
mented works is the research done by Parke in 1972 [85], 
which describes the development of a pioneering system 
made by two orthogonal photographs and patterns painted 

Table 2   (continued)

Database Database information Affect modeling

The Bosphorus Database [102] 3D Facial expressions
105 subjects
4652 face scans
Includes AU intensity codes
Includes 24 facial landmark points
Validated by expert FACS coders

28 AUs
6 Emotion categories

(a) A sample pair of facial data pho-
tographs.

(b) The resulting 3D face.

Fig. 4   Parke et  al. pioneering method for computer-generated faces 
[85]
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on the face of a performer to recover 3D facial geom-
etry (Fig. 4). Later on, Pighin et al.  [89], extended this 
method to an arbitrary number of photographs and texture 
extraction. Researchers explored the use of facial scans to 
automatically model structured face meshes augmented 
with a physically based model of skin and muscles [48, 
62, 63, 112]. The process evolved into a technique that 
allows researchers to create 3D models from multiple pho-
tographs taken from different angles and synchronized to 
capture specific expressions [69]. Most of the systems have 
up to 200 high-speed and high-resolution cameras using 
photogrammetry reconstruction software [98] that can read 
perspective variations and create three-dimensional point 
clouds.

There is research work with the aim to improve how to 
create digital humans using inverse engineering based on 
real humans into digital humans, like the process carried 
out in Alexander et al. [4] (Fig. 5). Different components of 
images are extracted from a real human face and processed 
to acquire a 3D mesh with full surface description maps such 
as skin reflectance, polygon normals, diffuse base colors, etc. 
[40]. These components aid in the construction of photore-
alistic skin with various algorithms and techniques such as 
raytracing, sub-surface Scattering [122], etc.

The photogrammetry process consists of creating a 3D 
model from photographs of the same subject doing different 
expressions (AUs). By taking pictures with constant light 
and specific landmarks, to obtain the actual size and orien-
tation of the subject, it is possible to measure the distance 
between every pixel in the image to recreate it in a point 
cloud voxel model and process that data into a 3D scanned 
model.

After processing the 3D scanned model, it is normal to 
have noise all over the mesh. It is the task of a 3D Artist 
to clean and fill noise from the mesh to keep it as clean 
and decimated as possible. Photo scanned textures can be 
projected to the mesh in order to create a texture, then, a 
scanned texture cleaning task can be added to the pipeline 
to ensure a quality texture to the 3D mesh.

The last step is wrapping, where algorithms use the 3D 
topology from the scanned mesh to fit a base geometry to the 
closest surface points for the 3D scanned model. By having 
a neutral pose topology of the subject, it is possible to repeat 
the task for the remaining scanned expressions in order to 
share the same polycount, vertices, UV maps, etc., so the 
blendshapes can be compatible with a rigging methodology.

Cross-polarization, a technique used to improve scans, 
becomes relevant due to reflectance scanning techniques that 
use a group of photographs under different lighting condi-
tions (or positions). Since skin has a reflectivity component, 
specular highlights are present in images to be processed in 
several areas based on the surface normal [43]. The cross-
polarization process depends on the linear polarization of 
the emitting light (flashes or LED lights) and the respective 
polarization filter in each camera of the system. The images 
obtained with this technique are accurate in the colors of the 
skin and the removal of undesired artifacts in the 3D mesh 
processing. Further methods can improve the quality of how 
photogrammetry scans can get skin appearance faster and 
more realistically using a single shot [96].

4.2 � 3D morphable models and generative 
adversarial networks 3D face reconstruction

Face reconstruction is the estimation from single images of 
the facial shape, texture, and other intrinsic components, 
such as albedo or normals. Blanz and Vetter [16], pro-
posed a statistical model that fits to an image of the face 
to estimate its 3D shape and texture. This statistical model 
became known in the literature as the 3D Morphable Model 
(3DMM), visualized in Fig. 6. This model and its variants 

Fig. 5   A model scanned by photogrammetry for the Digital Emily 
project [4]

Fig. 6   A visualization of the 3D Morphable Model (3DMM) where 
the goal of the fitting process is to find the shape and texture coeffi-
cients ( �i and �i ) required for the rendering ( R� ) to produce an estima-
tion ( I

model
 ) that is similar to the input image ( Iinput ) [16]
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have been the method of choice to address the problem of 
face reconstruction for a long time, a more in depth explo-
ration of this method and its application for expression 
reproduction can be found in the survey article by Egger 
et al. [31]. However, in recent years, following the advent of 
Deep Learning, novel solutions that use Generative Adver-
sarial Networks (GANs) have become available and greatly 
improve the fidelity of facial reconstructions. Some recent 
examples are Fast-GANFIT [42] and AvatarMe++ [60].

4.3 � Metahumans creator

In March of 2021, Epic Games released the initial version 
of the MetaHuman Creator [55], a tool that aids in the crea-
tion of digital human assets with photorealistic results. This 
tool represents a huge leap in the democratization of digital-
human tools, as it reduces the creation workflow to an easy-
to-use online creation tool. The detail of textures, quality of 
models, and realistic face deformations in the MetaHumans 
platform are the result of the combined knowledge generated 
by Epic Game’s recent acquisition of 3Lateral and Cubic 
Motion, becoming a new option in the horizon of tools for 
digital humans. The initial idea that MetaHumans pose is 
to democratize access to high-quality, customizable digital 
humans inside the ecosystem of Unreal Engine, which is 
easy to use, intuitive, and free.

4.4 � Digital humans in unity

During the Game Developers Conference (GDC) in March 
of 2022, Unity featured a demo, titled Enemies, to showcase 
the power and capabilities of their platform to create digital 
humans with visual quality and realism. Their work expands 
on the previous systems created for another demo, titled The 
Heretic, which featured Unity’s first realistic digital human. 
The system included facial animation systems for sequences 
of meshes captured over time, skin attachment systems, and 
shaders for skin, eyes, teeth, and hair. The recent improve-
ments included a new skin shader, more realistic eyes with 
caustics on the iris, a GPU skin attachment system for high-
density meshes, a hair solution for authoring, importing, 
simulating, and rendering strand-based hair, and tension 
technology for blood flow simulation and wrinkle maps 
[114]. These systems can bring more realism to characters, 
giving full control of the customization options; however, 
the creation of a digital human in Unity still requires a lot 
of previous work and resources to generate the initial assets.

4.5 � MakeHuman project

MakeHuman [113] is an open-source tool developed to sim-
plify the creation of virtual humans, through the manipula-
tion of controls that blend the 3D model attributes. These 

attributes are categorized into two groups, the macro-targets 
that deal with characteristics such as gender, age, height, 
weight, and ethnicity, and the detail targets that focus on 
the low-level details such as eye shape, finger length, etc. 
The MakeHuman project seeks to include other tools in the 
future that control poses, animation cycles, facial expres-
sions, hair, and clothes. However, the current system only 
allows the creation of simple 3D human characters.

4.6 � Rigging control

To control the content acquired, there are custom tools that 
manipulate the digital human’s articulated parts. Construc-
tion of a full facial rig would include bones, blendshapes, 
and detailed correction adjustments to archive a flexible 
facial model. These structures work together through a par-
allel process that performs tasks such as smoothing the data, 
handling multipliers for the expressions, providing manual 
control of facial movements, and delivering information into 
the final facial solving tool. Facial rigging methodologies 
may change from studio to studio, however, the most com-
mon approaches are described below.

4.6.1 � Bones

The bones methodology improves the movement of the skel-
eton in the characters along with the mesh (or muscles). 
Joints or bones follow a hierarchical structure from the 
head to the fingers and toes. These structures are relevant 
for facial animation to move the jaw, eyes, checks, or skin. 
The facial animation of a digital human usually uses such 
methodologies for motion capture input, more than with 
keyframe animation, since it is an easy and low-cost way to 
move real-time bodies [78].

4.6.2 � Blendshapes

The method involving blendshapes has changed and evolved 
over the years, applying different approaches for their crea-
tion, being driven, and replicated inside the digital human 
process. Blendshapes are 3D meshes created to help drive 
complex movements of parent meshes. Traditional methods 
for facial rigging include about 40–50 blendshapes (eye-
brows, mouth positions, phonemes, eyelids, etc). The con-
stant change in the blendshapes technology has come along 
with the evolution of video games, which seek to improve 
the quality of characters in real-time. The number of blend-
shapes has increased in recent years and has started to be 
related to the number of expressions based on facial codifi-
cations, with projects having about 200 total blendshapes. 
With such a large number of blendshapes, the process of 
controlling this information has left space for contemporary 
technologies to improve with deep learning [5, 91].
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4.6.3 � Hybrid approximation using advanced methods

Real production environments need complex solutions for 
realistic and better facial deformations. Therefore, profes-
sionals use hybrid solutions with a mixture of either geomet-
ric deformations or blendshapes [58]. Hybrid solutions are 
more than just locators, blendshapes, and bones, some new 
methods are developed following FACS rigging.

Skincluster, released in 2016, was created as a specific 
tool inside Autodesk Maya [25]. This tool offers improved 
binding between joints and geometry, where every vertex in 
the 3D mesh needs to be affected by a specific number of 
joints, making it possible to create more realistic character 
deformations.

Skin displacement and wrinkle maps are specific textures 
that can be generated from photogrammetry scans with the 
main objective of magnifying and reinforcing the wrinkles 
coming from facial expressions [109]. Deformation is not 
reflected in the original mesh of the face but is done by 
the shading material description thanks to specific render-
ing techniques developed in rendering engines. Color map 
blending is a recent technique used for Digital Humans to 
improve the realism of a 3D rigged face. The colors of the 
skin, particularly the diffuse map, can help create the per-
ception of blood flow variation and circulation due to skin 
stretching or compressing.

Similarly, beyond the rigging components that help drive 
the face, there are control processes that manage the inten-
sity, parameters, and predictions of the face data coming 
from facial tracking. This information is usually smoothed 
or equalized so that the expressions portrayed in the digital 
human are more natural [110].

5 � Facial tracking

Facial motion capture or facial tracking has a key role in 
emotion and expressive acquisition in 3D characters, which 
is born from the need for representation of the performance 
of actors to drive the roles of the characters [17]. To improve 
the quality, realism, and to drive emotional characters, such 
as Thanos [32] in the Avengers Endgame movie, the film 
industry invests millions of dollars into specialized hardware 
and software [50], keeping democratic options very far and 
unreliable.

To complete this task, high-performance facial expres-
sion recognition needs to take information from several face 
regions. The most common method to do this is by obtaining 
information directly from marks, which are placed on spe-
cific areas of the skin of the face [75] and are called mark-
ers. Other methods take information directly from the con-
tours of the lips, eyes, and eyebrows using computer vision 

recognition [95]. All the visual information is recorded 
directly using camera rigs, like the Head-Mounted Cameras 
(HMC), and the most advanced methods include the usage 
of Machine Learning tools to recognize expressions, fore-
cast facial movements, and drive accurate data into virtual 
characters [15].

Facial tracking to get an actor’s performance into 3D 
animation has been researched for over three decades, with 
some of the earliest documented works being the research 
by Lance [121] and the research by Valente and Dugelay 
in 2000 [115]. These initial approaches used basis func-
tions on the digital face and basic linear interpretation of 
distances between points of reflective markers in the per-
former’s eyebrows, lips, etc. The translation movement was 
tracked and processed for several hours, sometimes manu-
ally. Some commercial and professional tools in the industry 
used this method in the early the 2010 s, such as Vicon [57] 
and Faceware [87]. Following those techniques, real-time 
tracking began improving without human interaction, using 
image-based tracking and computer vision [115]. The most 
relevant tool during 2016 was Dynamyxz [118], but since 
2021 it is no longer available due to the company being sold. 
Professional applications for digital characters improved 
the portrayal of realistic facial expressions; however, that 
application still needed several hours of human interaction 
to correct interpretation errors without a reliable option to 
use in real time. Bigger contributions in facial tracking and 
expression recognition started to appear in the middle of the 
2010 decade due to the access to Kinect and RGBD cameras. 
The possibility of evaluating 3D surfaces and not just 2D 
images drastically improved how faces can be recognized 
and tracked in real-time for animation purposes. Several 
available methodologies used facial codifications as base to 
their approach, some of which are explored in the following 
Sect. 5.1 and 5.2.

5.1 � FAP‑based methods

5.1.1 � Candide‑3

Candide [99] is a deformable 3D wireframe model that 
describes a parameterized face with around 113 facial feature 
points widely used for research. This model had an exten-
sion with Candide-2  [119], through the representation of the 
entire head. The most recent actualization is Candide-3  [3], 
which corresponds better to the FAP codification.

Some research work that uses the Candide model for 
facial tracking is the following. The work done by Lefevre 
and Odobez [64], that uses the face model along a hybrid set 
of features composed of adaptive and trained features. The 
work done by Horain et al. [52], where a statistical method 
dynamically fits the Candide-3 model to the subject’s face 
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and the face parameters, encoded as FAPs, are sent to a 
remote player that animates the face avatar. And finally, the 
work done by Dornaika and Davoine [29], uses the Candide 
model and a trained auto-regressive models to track and esti-
mate temporal FAPs as a tool for facial expression analysis 
and recognition.

5.1.2 � Dynamic expression model

Early research in 2014 with RGBD images included the work 
of Bouaziz et al. [19] with a Dynamic Expression Model 
(DEM), also used by Cao et al. [22], which helped to push 
the boundaries of facial tracking with an impressive speed 
at 28–30 frames per second. A PCA model helped Bouaziz 
to generate a parametrized deformation of 3D models and 
during tracking, the generic DEM progressively adapted to 
the facial features of the user; the process is summarized 
in Fig. 7. Later in 2016, Cao integrated both 2D and 3D 
inputs, observing more robustness and efficiency in RGBD-
based algorithms. Both researches works demonstrated the 

advantage of a generic face, without pre-training, compen-
sating the inaccuracy with a 2D displacement projection of 
3D facial landmarks.

5.1.3 � Deep learning

The most relevant contributions to facial expression recogni-
tion in the computer vision field, came along with the popu-
larization of deep learning methods and the computational 
availability to process multiple data.

Some research work that uses a Deep Learning based 
solution is the work of Jia et al. [56], where a trained Artifi-
cial Neural Network (ANN) estimates 3D head orientations 
from five facial features to capture 3D head motions from 
video input. The orientations are expressed in Euler angles 
and then translated to FAPs in order to animate a talking 
avatar.

Another research work that uses Deep Learning as an 
approach for facial capture is the proposal of Guo et al. [47], 
to perform real-time RGBD-based 3D face capture. This 
approach uses a Convolutional Neural Network (CNN) 
framework composed of two different models that regress 
a face model and recover the surface details, as visualized 
in Fig. 8.

5.1.4 � ARKit

The landscape of tools and methodologies in the industry 
lacked reliable democratized solutions, however, that started 
to change with the launch of Apple’s ARKit [77], thanks to 
the accessibility of Apple smartphones to the general public. 
This attractive solution can recognize facial expressions and 
generate animations with a facial parameterization loosely 
based on FAPs. Several researchers have used this technol-
ogy as the main tool for facial animation, tracking, and rec-
ognition but lacked emphatic results due to its limitations 
[123], so Apple’s ARKit is most reliable when dealing with 
cartoonish faces.

Fig. 7   Visual representation of the dynamic expression model used in 
the research of facial tracking with RGBD cameras [19]

Fig. 8   A visualization of the 
CNN-based method for RGBD 
3D Face Capture proposed by 
Guo et al. [47]



1929A survey on the pipeline evolution of facial capture and tracking for digital humans﻿	

1 3

5.2 � FACS‑based methods

5.2.1 � DeepExpr

DeepExpr [9], is a deep learning framework that transfers 
human expressions to stylized characters. The framework 
is composed of two CNN that recognize the expression of 
humans and stylized characters independently. Then, using 
a transfer learning method by Oquab [79], the framework 
learns the mapping from humans to characters and creates 
a shared embedding feature space. Finally, with the learned 
information, human expressions are displayed in the stylized 
characters using human geometry and a perceptual model 
mapping.

5.2.2 � ExprGen

Following the work of DeepExpr by Aneja et  al.  [9], 
ExprGen [8] was developed as a system to automatically 
generate 3D stylized character expressions from humans. 
The system uses a multi-stage deep learning approach that 
uses the latent variables of human and character expression 
recognition to control a 3D animated character rig.

The ExprGen pipeline is visually summarized in Fig. 9. 
The process starts with the joint embedding obtained from 
DeepExpr, followed by a similarity analysis performed by a 
regression network, 3D-CNN, that maps the human expres-
sion onto parameters of a primary 3D character rig. Finally, 
a lightweight mechanism, Character Multi-Layer Perceptron 
(C-MLP), transfers the primary character’s expressions to 
secondary characters in a semi-supervised fashion.

This process improved how FACS expressions were 
delivered to Chartoonish characters without a real-time end-
to-end process or a realistic digital human orientation.

5.2.3 � FaceLab

FaceLab is a system created for the 2019 film Cats [7] to 
drive the animation of a 3D facial rig. The system used a 
facial reconstruction methodology that extracts the shape, 
pose, and reflectance of the face. After that, standard linear 
delta blendshapes interpolation represents the expressions, 
and iterative optimization alters the target weights. Finally, 

the process culminates with the integration of a robust ren-
dering stage.

5.2.4 � Other machine learning approaches

Navarro et al. [76], proposed a deep learning method for 
real-time facial animation. The architecture takes a video 
sequence as input and outputs a set of animation controls 
based on FACS for each frame. The framework is composed 
of two stages, face detection, and regression. Face detection 
is done with a fast variant of the Multi-task Cascaded Con-
volutional Networks (MTCNN) algorithm that localizes and 
aligns the face. The regression model uses a multitask setup 
that co-trains landmarks and FACS weights using a shared 
backbone. The regressed values finally help create synthetic 
animation sequences.

Another regression model, based on globally-optimized 
modular boosted ferns (GoMBF), is proposed by Lou et al. 
[66]. The model first locates the face and 66 facial land-
marks, then the facial shape parameters are predicted by 
fitting a parametric face model to the landmarks. Then, a 
cascade version of the GoMBF regresses the facial motion. 
Finally, the facial motion is mapped to expression vectors 
that update the facial mesh of the 3D model.

6 � Digital humans solving and delivery 
methods

The final solving and rendered display of a digital human is 
the last step in the workflow. Solving, as further detailed in 
Sect. 6.1, is where all the information from the facial codi-
fication translates to blend shapes and the bones are rotated 
and positioned [106]. Then, rendering of the 3D mesh with 
realistic materials and lights can be done for a real-time dis-
play or an offline display, as explained in Sects. 6.2 and 6.3.

6.1 � Solving

The role of the Solving step is to translate the information 
from both the face, and body components into a common 
and easy-to-interpret language for 3D rendering engine to 
handle, such as facial information based on Action Units that 

Fig. 9   Overview of ExprGen [8]: a 2D images of human facial 
expressions are pre-processed (b, c). d A CNN generates rig param-
eters corresponding to the human expression for primary characters 

(e). f A separate neural network performs primary-character-to-sec-
ondary-character expression transfer (g)
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need to be delivered as blendshape rig rotations or transla-
tions. The final relationship between facial motion capture 
methodology and the blendshapes or movements is deter-
mined by the respective codification (discrete, simple units, 
combo units, etc) and the way the facial rig is constructed.

The facial animation translator is key to having a simple 
and customizable interpretation of the facial movements 
in the facial rig, therefore, several commercial tools, such 
as Faceware [37], Unreal’s Live Link Face [33], and Face-
Good [36], offer their tools to make this possible. Table 3 
makes a quick comparison of the characteristics of these 
solutions.

6.2 � Real‑time delivery

A real-time display can improve the emphatic response 
since it incorporates the notion of interactivity to the 
experimental workflow, which is possible through recent 
real-time tools that archive high-quality results with low 
latency[10].

The industry has several options for real-time render-
ing engines, with characteristics favorable for digital 
humans. The most notable engines are Unreal Engine by 
Epic Games, Octane by OTOY Inc., Eevee by Blender, and 
Unity by Unity Tech. Furthermore, Nvidia has pushed for-
ward RTX technologies capable of performing raytracing, 
a rendering technique for three-dimensional graphics that 
simulates light interactions with various materials [92]. 
Raytracing has improved hair simulation, subsurface scat-
tering shaders, and other benefits for the render of digital 
humans. Performing retargeting before streaming into a 
rendering engine is also possible through standardized 
connections, like the ones in Motion Builder by Autodesk, 
that connect across several real-time technologies from 

companies such as Vicon, Optitrack, or Xsens [14]. Some 
options like Shogun Live, and Unreal Engine 5 IK retar-
geter  [54], allow skipping Motion Builder by directly 
connecting to Unreal Engine. Finally, with the launch of 
MetaHumans [55] as a democratized tool that allows cus-
tomization, manipulation, and real-time rendering with 
motion-capture, the use of Unreal Engine for the delivery 
of digital humans has become a standard and the main 
rendering engine.

6.3 � Offline delivery

Offline rendering does not allow the same interactivity that a 
real-time display would, but it offers higher quality graphics 
that could improve the visual realism of a digital human. As 
such, offline rendering is mostly used for cinematography, as 
a replacement for photoshoots or to present products through 
digital media [93].

In this regard, the previously mentioned engines (Unreal 
Engine, Octane, Eevee, and Unity) are useful as well, how-
ever, other popular rendering engines are better for offline 
rendering, some of them, to mention a few, are V-Ray by 
Chaos Group, Arnold by Autodesk, and Redshift by Maxon.

Given the recent technological advances in graphics cards 
and render engines, which have shown great improvements 
in performance, the gap between real-time and offline ren-
dering continues to shrink. Because of this, in the last dec-
ade, researchers have started using both traditional rendering 
engines and game engines to explore digital humans with 
increased quality and decreased rendering cost [30].

7 � Evaluation of the empathic response 
and visual perception

The final step in a digital human research workflow relies 
on perception tests and experiments designed to construct 
a solid and representative proof of concept. Digital faces 
have been able to express emotions by following realistic 
movements with anatomical precision, or through simpli-
fied forms and exaggerated actions. However, when a human 
drives a hyper-realistic avatar, many other variables need 
consideration when mimicking emotions. Emotions drive 
us, so we do not call emotions on command, so their recrea-
tion through micro-expressions is not perfect and capturing 
authentic emotions in a controlled environment is complex.

There are certain quantitative evaluation methods for 
facial reconstruction and expression reenactment. A stand-
ard metric is the geometry fitting error, defined as the point-
to-point distance between the reconstructed 3D face and 
a corresponding groundtruth face geometry  [47]. Other 
benchmarking methods depend on intermediate tasks, for 
example, facial landmark estimation or emotion recognition. 

Table 3   Comparison of the current public solutions for facial motion 
capture

Facial mocap tool Characteristics

Faceware studio Real-time
Single subject calibration
No machine learning
FAP
24,000 USD

Unreal’s Live Link Face Real-time
No subject calibration
No machine learning
FAP
Free

FaceGood Offline
Infrared camera
Artificial intelligence tracking
FAP
469 USD
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The evaluation through landmark estimation can measure 
the difference in distance between landmarks of the input 
face or expression and the 3D-generated results. The evalu-
ation through emotion recognition tasks can quantify with 
metrics, such as correlation coefficients, sign agreement, or 
accuracy, how much of the input emotion is conveyed in the 
synthesized 3D face [28]. Other metrics that evaluate image 
quality and structural similarities can be used for evaluation, 
but the output needs to be rendered into an image with the 
same alignment and lightning as the input.

These objective measures can help improve the geometry 
of facial reconstruction and expression reenactment, how-
ever, the human perception remains the ultimate benchmark 
for the facial results of digital humans [28]. Since the alike-
ness of digital humans to real humans is still a subjective and 
perceptive topic, the most common validation approaches in 
this aspect are described in Sects. 7.1 and 7.2.

7.1 � Validation of emotion elicitation with image 
or video stimuli

FACS can be mixed in several combinations and reflected 
in emphatic emotion combos, named emFACS [39]. The 
evaluation of such emFACS consists of the exhibition of sev-
eral multimedia elements, like static or dynamic images of 
digital humans, to controlled groups of volunteers that relay 
their perception of the emotions displayed. Some common 
emotions used in research are neutral, happiness, sadness, 
surprise, anger, fear, contempt, embarrassment, and pride. A 
matrix with the resulting perceived and modeled expressions 
can show the agreements and mismatches in the population.

Stimuli design testing usually employs videos and images 
to evaluate how humans perceive the emFACS model. 
Recently, interactive experiments are possible with the aid 
of real-time rendered digital humans. One such experiment 
called the “Wizard of Oz” [105], gives a set of test subjects 
the ability to talk and interact with a digital human in real-
time. Such approaches create an interesting way to expose 
a new dimension to evaluate digital human interactivity. 
Results in this field showed that interactivity improves the 
emphatic response and makes the digital human a feasible 
model to display realistic emotions [6].

7.2 � Uncanny valley perception

Another concept related to the validation of a digital human 
is the need to measure how the human eye perceives the 
uncanny valley. The uncanny valley is a concept born 
from Masahiro Mori’s hypothesis in 1970, that a person’s 
response to a human-like character would abruptly shift from 
empathy to revulsion as it approached, but failed to attain, a 
lifelike appearance [74]. A graphical representation of this 
descent into eeriness is visualized in Fig. 10.

The evaluation method for the uncanny valley usu-
ally involves a Likert scale of perception and an Analysis 
of Variance (ANOVA) of metrics like Realism, Appeal, 
Re-assuring, Familiar, Friendly, Trustworthy, and motion 
pleasant [72]. Another measuring approach is proposed by 
Ho and MacDorman [51], whose method involves indices 
developed and validated for the perceptual-cognitive dimen-
sion of humanness, along with three affective dimensions 
composed of inter-personal warmth, attractiveness, and eeri-
ness. A card sorting task, a laddering interview, an adjec-
tive evaluation, and a validation representative survey were 
applied for subjects to revise the humanness, attractiveness, 
and eeriness indices. The revised indices enable empirical 
relations among characters to be plotted similarly to Mori’s 
graph of the uncanny valley.

The quality or style used to render the digital human has 
an important role in the uncanny valley perception. If the 
digital human presents reduced photo-realism, there can be 
a direct negative impact on the emphatic perception [125]. 
However, any level of realism can be paired with some 
degree of interactivity, which could make the difference in 
the final uncanny valley perception measured.

8 � Fully functional frameworks

A fully functional framework for digital humans is the one 
that covers the whole pipeline of digital human facial track-
ing, going from asset creation, facial expression tracking, 
solving, and display of the digital human. The solutions 
available as open-source or private services are further 
explored in Sects. 8.1 and 8.2. A comparison of each of 
these frameworks can be seen on Table 4.

Fig. 10   A graph that depicts the uncanny valley, the proposed relation 
between the human likeness of an entity, and the perceiver’s affinity 
for it [74]
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Table 4   A comparison of open-
source and private frameworks

Framework Year Characteristics

HapFACS 2015 Open-source
Research
Avatars created with Haptek PeoplePutty Software
Manual control of FACS AUs on the character

FACSvatar 2018 Open-source
Research
Digital Human generated by the MakeHuman Project
Facial expressions captured using OpenFace
Solving the AU into blendshape values
Render on Unity or Blender and FACSHuman
Real-time and offline
GUI on Jupyter Notebook

AvatarSim 2019 Open-source
Research
Avatar created within the AirSim environment
Bones, FACS and Phonemes values for face motion
Unreal Engine Environment
Real-time
Windows desktop app

EMOCA 2022 Open-source
Research
Generated textured 3D Mesh
Expressions based on emotions
Real-time
Python Interface

Project Vincent 2019 Private
Research
Digital human created with photogrammetry
Deep Learning based facial capture
Render on Unreal Engine
Real-time

Renderpeople 2021 Private
Commercial
Digital Human generated with photogrammetry
FACS and phonemes based expressions
Render with Unreal Engine
Offline

Medusa – Private
Commercial
Delivers high-resolution 3D faces
Reconstruct faces in full motion using a mobile rig of cameras
Recovers per-frame dynamic appearance, such as blood flow

iClone – Private
Commercial
Large library of characters
Facial performance and full-body motion capture
Real-time
Rendering on game engines

Masquerade – Private
Research
Face model generated based on FACS
Performance capture with facial markers and stereo camera
Offline

Cubic Motion – Private
Commercial
Custom made digital human
FACS based solving
Real-time and offline
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8.1 � Open‑source solutions

8.1.1 � FACSvatar

FACSvatar [110] presents an open-source modular frame-
work that processes and animates FACS-based data in real-
time. A modified version of OpenFace 2.0 [12] provides 
FACS-based input for the framework. Then, a simple Gated 
Recurrent Unit neural network processes the information and 
enables generative data-driven facial animation. After that, 
a converted module turns the action unit data into blend-
shape values of a virtual face. Finally, a visualization engine 
animates the resulting action unit, gaze, and head rotation 
values. The framework supports visualization in renderers 
such as Blender or Unity and allows the use of models gen-
erated by the MakeHuman Project, previously discussed 
in Sect. 4.5, which has an integrated tool to create facial 
expressions, namely FACSHuman [45].

8.1.2 � AvatarSim

AvatarSim [10] is a framework that performs facial expres-
sion and lip syncing over an avatar using a video of human 
expressions and the phonemes present on a speech audio. 
There are two pipelines available to drive the expressions of 
the avatar, as observed in Fig. 11. One pipeline uses FACS 
recognition, where the video input first passes through face 
detection, then a Facial Action Unit Recognizer analyzes the 
facial regions of interest, and finally, the resulting data feeds 
the Expression Synthesizer to display the expressions on the 
avatar’s face. The other pipeline uses bone position controls, 
where the video input also passes first through face detec-
tion, then a multi-stage Deep Learning system, previously 

described in Sect. 5.2.2, retargets the facial expressions to 
a primary 3D avatar and then to the final human avatar. For 
the lip syncing, the voice is converted into a sequence of 
phonemes to synchronously play the audio and drive the 
avatar lips.

8.1.3 � EMOCA

EMOCA or Emotion Capture and Animation is a method 
proposed by Danecek, Black, and Bolkart [28], that recon-
structs a 3D face from a single image while conveying 
the emotional state of the input. The method is built on 
the DECA [38] framework, used to reconstruct a detailed 
animatable 3D face model from a single image, and the 
FLAME [65] 3D statistical head model, which has parame-
ters for identity shape, facial expression, pose, and rotations. 
Figure 12 shows a detailed visualization of the processes 
within EMOCA.

8.2 � Private solutions

8.2.1 � iClone

iClone is a real-time 3D animation software that includes a 
large library of characters and motion, as well as a variety of 
tools for full-body motion capture and real-time production 
[11]. For facial performance, the iClone workflow includes 
voice lip-sync, puppet emotive expressions, muscle-based 
face key editing, and iPhone Live Face-based facial cap-
ture. The latter introduces a real-time smoother, tracking 
data multiplier, and live retargeting tools, which allow for 
jitter-free and balanced facial triggers [53].

Table 4   (continued) Framework Year Characteristics

Renderpeople 2021 Private
Research
Custom made digital human
FACS based solving
Real-time and offline

Animatomy 2022 Private
Research
Custom made digital human
Custom muscle-based parameterization
Real-time and offline

Fig. 11   The two pipelines 
that compose the AvatarSim 
framework [10] for retargeting 
an expression from a human to 
a 3D avatar

(a) Expression Synthesis via Action Unit Recognition

(b) Expression Synthesis via Bone Position Controls
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8.2.2 � Project vincent

GianStep designed project Vincent as an experimental 
project around a digital human based on a commercial 
research framework created by a private research group in 
Korea named GXLab. Sakamoto et al. [44] developed an 
internal framework that uses photogrammetry to acquire 
a set of expressions based on the FACS methodology. The 
capture of the facial expressions is separated into 6 areas 
of the face, producing up to 35 expressions for each area. 
The scanned facial expressions are then processed into 210 
blend-shapes while maintaining the realism of the subject.

Two deep learning models are responsible for the real-
time facial performance. The first one, a facial marker 
tracker, locates and predicts the coordinate system of 3D 
markers with marker-less 2D images of facial expres-
sions. The second Network, designed as a Blend-shape 
mapper, connects with the 6 areas to find an appropriate 
blend-shape intensity for the AU with the information of 
the 3D marker coordinates. Final results are delivered in 
real-time to the 3D model inside Unreal Engine, allowing 
the achievement of a real-time representation of a digital 
human, with convincing realism [44].

8.2.3 � Disney’s Medusa

The Medusa Facial Capture system, developed by Dis-
ney Research Studios, consists of a mobile rig of cam-
eras and lights coupled with proprietary software that can 

reconstruct actors’ faces in full motion, without using tra-
ditional motion-capture markers [49].

Medusa has the capability of delivering high-resolution 
3D faces, with the ability to track individual pores and 
wrinkles over time. The software can also recover per-
frame dynamic appearance, such as the blood flow or the 
shininess of the skin, providing a very realistic virtual face 
that is ideal for creating digital humans. Medusa can be 
used to build an expression shape library or to reconstruct 
a performance dialog.

8.2.4 � Masquerade

Masquerade is a modular and expandable in-house facial 
capture system built by Digital Domain. It is capable of 
adding fine-scale details to facial motion capture data from 
low-resolution capture using head-mounted cameras. High-
resolution 4D scans become the training data on how the 
actor’s face moves, and the base from which to extract facial 
data to create a detailed face model. The Facial Action Cod-
ing System serves as the base for a module called Shape 
Propagation that can generate a 3D version of an actor’s 
head to provide up to 1500 different shapes in case a FACS 
scanning session, specific to the actor. Then for the facial 
performance capture, an actor uses 150 facial markers and a 
vertical stereo helmet camera rig [75].

Masquerade has different modules aimed at identifying, 
accurately predicting, and tracking all of the markers during 
the performance. Deformation gradients represent the pose 
of the face, which extract information regarding the bending 

Fig. 12   An overview of the EMOCA framework [28]
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and deformation of the face surface, relative to the rest of 
the pose. This also makes it possible to reuse training data 
from different marker sets. Local vertex offsets create fine-
scale detail encoding, which avoids scaling issues related to 
large-scale deformations [75].

The output from Masquerade is a moving mesh that accu-
rately matches the imagery of the actor, which improves 
through corrections during training of any missing details 
or features that are not coming through sufficiently detailed. 
The newest 2.0 version includes fully animated eyes to the 
moving mesh and also solves the mesh onto some form of 
the facial rig as part of the process. Solving is done through 
Radial Basis Function interpolation with a biharmonic ker-
nel, applied individually to small segments of the face rela-
tive to each marker, and blended using geodesic weights for 
each vertex. This makes it independent of the output resolu-
tion and has a low cost of computation and memory [75].

Masquerade is responsible for the representation of Tha-
nos in Marvel’s Avengers: Infinity War, along with another 
tool from Digital Domain for multistage facial re-targeting, 
called Direct Drive. This tool builds a deformation stack that 
employs gradient-based deformation transfer and general-
purpose mesh deformers, which constraint points on the 
mesh, resolve skin-to-bone collisions, and control the rigid-
ity of the face. This process is possible through the map-
ping of correspondences between key facial features on the 
deformed actor’s mesh and the creature’s face, as well as the 
animated facial performance from Masquerade. This combi-
nation of techniques results in realistic facial performances 
and reduced facial animation time [50].

8.2.5 � Cubic motion

Cubic Motion is a company that specializes in producing 
facial animation for video games and other media. It col-
laborated with Epic Games, Tencent, 3Lateral, and Vicon, 
for the creation of Siren, a high-fidelity digital human that 
can be driven in real-time [27]. Cubic Motion’s role in this 
collaboration was to translate the live performance of an 
actress into a live, real-time rendered character. This process 
entailed the capture of the performer, the tracking of facial 
features, the solving of digital character controls, and the 
data streaming to the game engine.

A side and forward camera rig that uses Vicon technology 
captures the performance. However, Cubic Motion’s technol-
ogy and pipeline are compatible with multiple capture types, 
such as single or stereo head-mounted cameras, 4D data, 
and depth cameras. A trained model that captures the face 
in separate segments and digitally marks the required facial 
elements handles the facial feature tracking. The obtained 
data then goes through a solving phase into the FACS-based 
facial rigs constructed via joints, blend shapes, scanned data, 
or wrinkle maps. Lateral was responsible for the facial rig 

in project Siren. The result was an impressive high-fidelity, 
real-time rendered digital human who can interact with audi-
ences and push the boundaries of current digital humans 
[27].

8.2.6 � Digital human by renderpeople

Renderpeople created a hyper-realistic copy of a real human 
actor in 2021 to showcase their technologies through a digi-
tal human called Fred [94]. They use a photogrammetry 
scanner, composed of over 300 aligned Digital Single Lens 
Reflex (DSLR) cameras, to create a set of highly detailed 3D 
meshes with textures that capture even the smallest facial 
features of the actor. Different poses and phonemes were 
recorded to digitize realistic motion sequences that cover 
all the deformations of different facial muscle areas. All of 
which are necessary to create a hyper-realistic face rig with 
realistic blendshapes. Additional to the facial data, there are 
recordings of the body motion through a motion capture 
suit, called Xsens MVN Link. The final render of the digital 
human is in Unreal Engine, where all the meshes, textures, 
rigs, and animations are combined and unified to create the 
digital human Fred.

8.2.7 � Animatomy by Wētā FX

Wētā FX proposed Animatomy [24], an end-to-end modu-
lar deformation architecture to approximately represent 
the deformation of muscle fibers and obtain anatomically 
plausible animation controls. The Animatomy system ena-
bles the automatic optimization of specific face parameters 
based on dynamic facial scans, animation driven by perfor-
mance capture, dynamic simulation, and animation transfer. 
From the 3D reconstruction of an actor’s face through pho-
togrammetry, a flesh mask is constructed by tetrahedrons. 
Then, a muscle-based parameterization is embedded in the 
mask by inversely simulating a representative set of skeletal 
face muscles. The facial expressions of the architecture are 
parameterized by a vector of strains corresponding to 178 
muscle fiber curves defined for a human face. This brings 
about a departure from the FACS-based blendshape systems 
and offers fine-grained, anatomically plausible animation 
control and straightforward animation transfer.

9 � Future directions

The improvement in the realism of digital humans that has 
been achieved in recent years by private and open projects 
has been astounding, however, overcoming the uncanny 
valley is still a work in progress. Facial motion capture 
can now achieve higher frame rates, of up to around 480 
frames, which makes it possible to add a layer of real-time 
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interactivity that can help overcome the emphatic shortcom-
ings. Additionally, as the processing power and resources 
get faster and more bountiful, higher resolutions and the use 
of multiple other technologies is feasible. This also makes 
realistic physical interaction possible with the real-time 
composition of a digital human with live-action elements.

Deep Learning solutions can obtain increasingly better 
results for various fields and diverse problems, such as pre-
viously discussed for facial reconstruction, facial expres-
sion recognition, and facial expression transfer, which can 
lead, in the near future, to new groundbreaking facial per-
formances in digital humans. Furthermore, the usage of 
4D scans for the asset creation of digital humans seems to 
be leading future trends in the direction of more realistic 
anatomic simulations and representations. Overall, private 
solutions tend to be more robust and accurate, however, with 
the advent of democratized platforms, such as MetaHumans 
by Epic Games or ARKit by Apple, the creation of digital 
humans and their performance aided by facial tracking has 
become available to a wider group of creators and research-
ers, which in turn will enrich the current landscape of tools 
and areas of application for digital humans, having a positive 
impact on other fields.

10 � Conclusions

Given the recent interest in a digital world where humans 
interact or exchange virtual experiences through the use of 
embodied avatars, digital humans have become a popular 
topic of research, bringing about recent strides in diverse 
technologies aimed at improving their quality, realism, 
emphatic response, and interactivity. These improvements 
are explored in this survey by following a conventional pipe-
line for the creation and testing of a digital human, along 
with recent and relevant frameworks developed as a com-
plete solution for digital human facial performance.

Input data collection is possible through video, audio, or 
text input. This survey, however, focused solely on video 
input for facial animation. RGBD cameras give relevant 
depth information that aided in the implementation of vari-
ous facial capture solutions. Infrared or hyperspectral cam-
eras have also positively impacted facial tracking since their 
characteristics allow for illumination-independent solutions.

Facial expression synthesis is possible by following a 
facial codification, therefore, this work focuses on two of 
the most popular codifications, FAPs and FACS. Their char-
acteristics and acquisition protocol are described, along with 
relevant databases that include FACS labeling, whose char-
acteristics are summarized.

This survey introduces different approaches to human 
asset creation. With the description of the photogramme-
try process, including the exploration of solutions based 

on Generative Adversarial Networks, and frameworks such 
as the MetaHumans Creator and the MakeHuman Project. 
Information regarding the components of a rigging control 
for the animation of digital humans is also detailed.

Facial motion capture or facial tracking is introduced, 
presenting frameworks based on the previously described 
facial codifications. The works explored include past models 
and recent advancements, showing a general description of 
the evolution of technologies in the field.

The text offers a brief description of the solving step, 
while also comparing some of the available tools that ful-
fill solving tasks. Real-time and offline rendering are two 
types of delivery methods for digital humans, so this survey 
describes their advantages and disadvantages, presenting 
some of the most popular engines.

This survey includes a general overview of the possible 
evaluation approaches to measuring the empathic response 
and perception of digital humans, while also introducing 
relevant concepts, such as the Uncanny Valley.

Fully functional frameworks are explored and classi-
fied as open-source or private solutions so that a complete 
landscape of tools is present. Finally, a brief description of 
the perceived future directions for the creation and usage of 
digital humans is explored, based on the review of methods, 
frameworks, and technology described in the survey.
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