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Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused outbreaks of new coronavirus disease 
(COVID-19) around the world. Rapid and accurate detection of COVID-19 coronavirus is an important step in limiting the 
spread of the COVID-19 epidemic. To solve this problem, radiography techniques (such as chest X-rays and computed tomog-
raphy (CT)) can play an important role in the early prediction of COVID-19 patients, which will help to treat patients in a 
timely manner. We aimed to quickly develop a highly efficient lightweight CNN architecture for detecting COVID-19-infected 
patients. The purpose of this paper is to propose a robust deep learning-based system for reliably detecting COVID-19 from 
chest X-ray images. First, we evaluate the performance of various pre-trained deep learning models (InceptionV3, Xception, 
MobileNetV2, NasNet and DenseNet201) recently proposed for medical image classification. Second, a lightweight shallow 
convolutional neural network (CNN) architecture is proposed for classifying X-ray images of a patient with a low false-
negative rate. The data set used in this work contains 2,541 chest X-rays from two different public databases, which have 
confirmed COVID-19 positive and healthy cases. The performance of the proposed model is compared with the performance 
of pre-trained deep learning models. The results show that the proposed shallow CNN provides a maximum accuracy of 
99.68% and more importantly sensitivity, specificity and AUC of 99.66%, 99.70% and 99.98%. The proposed model has fewer 
parameters and low complexity compared to other deep learning models. The experimental results of our proposed method 
show that it is superior to the existing state-of-the-art methods. We believe that this model can help healthcare professionals 
to treat COVID-19 patients through improved and faster patient screening.
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1 Introduction

The outbreak of the new coronavirus shocked the world. 
The novel coronavirus or COVID-19 belongs to the “cor-
onavirus” (CoV) virus family and was previously known 
as “Severe Acute Respiratory Syndrome Coronavirus 2” 
(SARS-CoV-2). It was named COVID-19 by the World 
Health Organization (WHO) in February 2020. In the ini-
tial stage, the COVID outbreak was declared a public health 

emergency of international concern on January 30, 2020 [1], 
and was subsequently declared a pandemic by the WHO 
[2] on March 11, 2020. COVID-19 is spreading around the 
world at an unprecedented rate, and all countries are work-
ing hard to control the spread of the COVID-19 pandemic. 
To date, the number of confirmed positive COVID-19 cases 
worldwide is approximately 239,007,759 and 4,871,841 
deaths. The virus has spread to more than 190 countries, 
among which the United States, China and India are seri-
ously infected. This is the first recorded pandemic caused 
by the coronavirus. COVID-19 is a novel infectious disease 
that has created a global health crisis that profoundly affects 
our lives every day and is the greatest challenge we have 
faced since the era of the 1918 influenza pandemic. Due 
to its pathogenicity, it eventually became a major global 
health problem and spread around the world. Governments 
around the world have introduced border restrictions, social 
distancing and hygiene awareness. Most people infected 
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with the virus will experience mild to moderate respira-
tory illness, recover over time, and do not need any special 
treatment. However, some will become seriously ill and 
require medical attention. Older adults and people of any 
age with chronic conditions such as diabetes, chronic res-
piratory disease, cardiovascular disease, and chronic kidney 
disease are at increased risk for SARS-CoV-2 and the more 
serious COVID-19 infection [3, 4]. The main symptoms of 
COVID-19 are fever, cough, loss of smell, fatigue, loss of 
taste and shortness of breath [5]. In some cases, the infected 
person may have no symptoms. For this reason, detecting 
an infected person is a very difficult task. Medical facilities 
in many developed countries are exhausted due to the rapid 
increase in the number of people affected by the coronavi-
rus. They are currently facing a shortage of testing kits and 
ventilator. Many countries have announced total lockdowns 
and require their residents to stay indoors.

Due to the above-mentioned challenges and the increase 
in the number of cases, people have tried to find an accurate 
and easy way to diagnose COVID-19. Reverse Transcription 
Polymerase chain reaction (RT-PCR) is the most commonly 
used clinical screening method and is considered the gold 
standard for confirming COVID-19 cases [6]. It also has 
some key limitations. Its testing capabilities are limited, it 
is too sensitive, and any contamination of the sample can 
lead to false results. Therefore, researchers are working to 
improve the detection capabilities of real-time RT-PCR [7]. 
RT-PCR kits are expensive and take 6–9 h to confirm infec-
tion in the patient, which are long compared to the rapid 
spread rate of COVID-19. As a result, many infected cases 
cannot be detected quickly and continue to infect others 
unconsciously. RT-PCR has a high false negative rate and 
low sensitivity. According to reports, the cost of the RT-PCR 
kit is about US$120–130, and a dedicated biosafety labora-
tory is also required to accommodate the PCR machine. The 
cost per set may be between US$15,000 and US$90,000. 
These expensive screening tools with delayed test results 
can lead to disease epidemics and worsen scenarios. To 
solve this problem, recently, it has been discovered that 
medical imaging techniques such as X-rays and computer 
tomography (CT) play an important role in the examina-
tion of COVID-19 cases [8, 9]. Researchers have found 
that there are some visual markings on the lungs of patients 
with COVID-19 symptoms, such as ground glass opacities. 
These opacities can be used to distinguish between COVID-
19-infected and non-COVID-19 patients. This method has 
several advantages over current RT-PCR tests in terms of 
early detection, but it requires an expert to understand the 
X-ray image. Chest X-rays are preferable to chest CT scans 
because of the ease of use of X-ray machines in hospitals and 
the low exposure to ionizing radiation on patients. However, 
the main problem with the use of chest radiographic imag-
ing technology is that it takes a long time for radiologists to 

read and interpret chest radiographic images. This is a time-
consuming and error-prone task. Therefore, there is a strong 
need to automate chest X-ray analysis to achieve a faster and 
more accurate COVID-19 diagnosis.

Now a days, many biomedical health problems (such as 
brain tumor detection, skin cancer detection, etc.) use arti-
ficial intelligence (AI) solutions. The latest automated tech-
niques use AI technologies (mostly deep learning (DL) algo-
rithms) to improve the efficiency of X-ray imaging. In recent 
years, DL models, especially CNN, have become one of the 
most common methods in AI. CNN has proven to be more 
effective than traditional AI methods, and has been widely 
used to analyze various medical images, such as MRI [10], 
X-ray [11], and CT scan [12]. Recently, CNN has been suc-
cessfully used to detect and classify pneumonia from chest 
X-ray images [13, 14]. With its ability to extract information 
from visual elements, CNN can be used to detect COVID-19 
in patients based on chest X-rays.

1.1  Major contributions and objectives

The purpose of this article is to develop a method based on 
automatic deep learning to detect COVID-19 in chest X-rays. 
The purpose of this study is to devise a CNN based model 
that can use chest X-rays to classify COVID-19-infected 
patients. The main motivation for developing our shallow 
CNN architecture is to classify COVID-19 patients based 
on chest X-ray images while reducing the time required for 
detection and maintaining high accuracy. The main advan-
tage of this network is its simple and lightweight architecture 
with fewer parameters compared to other models. This sig-
nificantly reduces computational costs and avoids the pos-
sibility of overfitting. The proposed model requires much 
less execution time than existing models, so this model can 
run faster on low-performance computers.

The main contributions of this proposed study can be 
outlined as follows:

1. To overcome the low sensitivity of RT-PCR, this article 
uses chest X-ray images to detect and diagnose COVID-
19.

2. Shallow CNN architecture with optimized param-
eters has been proposed that can accurately classify 
patients into COVID-19 and normal patients based on 
the patient's chest X-ray. To achieve our goal, we have 
optimized the model for excellent performance and an 
easy-to-understand design.

3. The proposed model is less complex and has fewer 
parameters than other state of art models, which can sig-
nificantly reduce computational costs while maintaining 
a high level of accuracy. As a result, this model can be 
run accurately and fast on low-performance computers.
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4. The proposed Shallow CNN and five deep learning mod-
els (including InceptionV3, Xception, MobileNetV2, 
NasNet and DenseNet201) were trained and comprehen-
sively compared on the exact same experimental data set 
of chest X-ray images.

5. The proposed model outperforms the competitive mod-
els in terms of various performance measures, such as 
accuracy, precision (PPV), specificity, sensitivity or 
recall, F1-score, area under the ROC Curve (AUC), 
False Positive rate (FPR), False Negative rate (FNR), 
Negative predictive value (NPV) and Matthews correla-
tion coefficient (MCC).

2  Related work

Recently, deep learning techniques such as CNNs and 
pre-trained frameworks have been widely used to classify 
patients infected with COVID-19. Researchers have done a 
great job in a short amount of time. Subsequently, to demon-
strate the importance of X-ray images and deep learning in 
the diagnosis of COVID-19, this section will discuss some 
noteworthy studies. Wang et al. [15] proposed a deep con-
volutional neural network (DCNN) for identifying COVID-
19 cases from chest radiographs. They also introduced a 
new benchmark data set called COVIDx, which contains 
13,975 CXR images from 13,870 patient cases. The clas-
sification accuracy obtained using the model was 93.3%. 
I.D. Apostolopoulos and Mpesiana [16] proposed a set of 
existing CNN models were evaluated to classify COVID-19 
cases, and the highest test accuracy of three-classification 
and two-classification was obtained, which were 93.48 and 
98.75%, respectively. Hemdan et al. [17] proposed a model 
COVIDXnet for binary classification that achieves 90.0% 
accuracy. Due to the lack of a public COVID-19 data set, 
the proposed model was validated on 50 chest X-ray images, 
including 25 COVID-19 cases and 25 normal cases. Panwar 
et al. [18] used a neural network-based method on VGG-16 
and proposed nCOVnet to achieve an overall accuracy of 
88.10%. Afshar et al. [19] proposed a model COVID-CAPS, 
using a capsule network containing four CNNs and three 
capsule layers. They designed a capsule network to iden-
tify COVID-19 patients from chest X-ray images. The study 
used two open source data sets for binary classification and 
achieved 95.7% accuracy and 90% sensitivity. Mangal et al. 
[20] proposed a deep learning model called CovidAID to 
detect COVID-19 cases. They conducted experiments on 
CXR with 155 COVID-19 cases and reported an accuracy 
of 90.5%. Asif et al. [21] proposed a deep transfer learning-
based approach using InceptionV3 model for the detection of 
COVID-19. They achieved 97% training accuracy and 93% 
validation accuracy on chest X-ray images. Oh et al. [22] 
proposed a patch-based CNN method, which has relatively 

few trainable parameters and can be used for COVID-19 
diagnosis. Several data sets were used and achieved an 
accuracy of 88.9%. Ozturk et al. [23] proposed a model for 
detecting COVID-19 by chest X-ray radiography based on 
deep learning. They use the 17-layer Darknet CNN classi-
fier with the YOLO target detection system. Their accuracy 
of binary classification reached 98.08%, and the accuracy 
of multi-class classification reached 87.02%. Sethy et al. 
[24] uses pre-trained ResNet50 for feature extraction and 
SVM for classification. The accuracy of binary classifica-
tion reaches 95.38%. Waheed et al. [25] used a pre-trained 
VGG-16 deep learning model using synthetic data augmen-
tation techniques to classify COVID-19 from chest X-ray 
images, resulting in 95% validation accuracy. Khan et al. 
[26] proposed a CNN-based Coronet model that was used 
to classify 2, 3 and 4 classes using chest X-ray images. They 
achieved 99, 95 and 89.6% accuracy, respectively. Ucar and 
Korkmaz [27] proposed a COVIDiagnosis-Net model based 
on SqueezeNet using Bayesian optimizer to achieve 98.3% 
test accuracy in the three-class classification. They per-
formed offline data enhancement to address data imbalance 
and fine-tune the parameters to make the proposed model 
more robust. Asnaoui and Chawki [28] published a com-
parative study of seven different deep learning architectures 
for detecting COVID-19 symptoms on chest radiographs. 
Inception-ResNet V2 provided 92.18% classification accu-
racy. Shelke et al. [29] proposed a classification model for 
detecting COVID-19 using chest X-rays images. The accu-
racy obtained with DenseNet-161 is 98.9%, while ResNet-18 
achieved 76% accuracy in severity classification. However, 
they tested a very small data set of only 22 X-ray images. 
Narin et al. [30] proposed the Deep CNN ResNet-50 model 
for binary class classification and achieved 98% accuracy. 
Das et al. [31] used various applied deep transfer learning 
methods for COVID-19 detection. They achieved a training 
accuracy of 99.52% and a test accuracy of 97.40%. Song 
et al. [32] proposed a DRE-Net model based on a modi-
fied version of the ResNet-50 model. They used the Feature 
Pyramid Network (FPN) to extract details from each image 
and classified COVID and non-COVID patients with 86% 
accuracy and 93% recall rate. Wang et al. [33] modified the 
inception transfer-learning model to establish the algorithm 
and achieved internal and external accuracy of 89.5 and 
79.3%. Sedik et al. [34] performed an interesting analysis 
of the DA method that was used to perform a binary clas-
sification (“Normal” and COVID-19). However, they used 
a small data set and did not mention the data source used. 
Maghdid et al. [35] classified CXR as normal or COVID-
19 pneumonia with 94.1 and 98% accuracy, respectively, 
using a customized CNN and a pre-trained AlexNet model. 
Shui-Hua et al. [36] used rank-based average pooling to 
develop the NRAPM module and presented an improved 
data augmentation technique. They proposed DRAPNet for 
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the COVID-19 classification and achieved a micro-average 
F1-score of 95.49%. Zhang et al. [37] used different data 
augmentation techniques and proposed a multi-input DCNN 
model using the convolution block attention module. They 
achieved a very good accuracy of 98.02% for the diagnosis 
of COVID-19.

Through extensive review, it was found that deep learn-
ing models can achieve significant results from chest X-ray 
images to classify COVID-19 diseases. However, deep neu-
ral networks are computationally intensive and consume a 
lot of memory. This article proposes a shallow CNN archi-
tecture for detecting positive COVID-19 cases from non-
COVID-19 cases using CXR images. Five most successful 
pre-trained CNN models, namely, Inception-V3, Xception, 
MobileNetV2, NasNet and DenseNet201 have been taken 
into consideration based on the concept of Transfer Learning 
(TL). A comparative analysis was performed between the 
shallow CNN and the five pre-trained models, and finally the 
best performing model was obtained and compared with the 
state-of-the-art method.

3  Preliminaries

This section describes basic concepts, such as CNN and 
transfer learning techniques. Understanding and implement-
ing the proposed CNN model requires a basic knowledge of 
these concepts.

3.1  Convolutional neural network (CNN)

CNN is a deep learning method that can be used for differ-
ent tasks, such as object detection, image classification, and 
other computer vision related tasks. It is attracting attention 
in various fields including radiology. CNN uses a system 
that closely resembles a multi-layer perceptron designed to 
reduce processing requirements. CNN is made up of mul-
tiple building blocks: (1) The input layer represents the 

input image into the CNN. (2) The convolution layer is the 
core of CNN's architecture, which is used to extract fea-
tures from the input image. The convolutional layer uses a 
set of parameters, including padding, kernel size, filter, and 
stride. (3) The pooling layer reduces network parameters 
and overall computation by down-sampling the image. Pool-
ing is a down-sampling operation that reduces the size of 
each feature map to minimize the possibility of overfitting. 
There are basically two types of pooling operations: max 
pooling and average pooling. (4) Fully connected layer (FC) 
and Softmax function can classify images with probability 
values between 0 and 1. Figure 1 shows an overview of the 
CNN architecture.

3.2  Transfer learning

Transfer learning is a machine learning technique for train-
ing networks on small data sets. Where models are already 
pre-trained on very large data sets, such as ImageNet. Trans-
fer learning strategies have been successfully applied to 
solve many deep learning problems caused by insufficient 
labeled training data. Several studies have demonstrated the 
benefits of transfer learning in improving DNN performance 
and solving many difficult problems in computer vision. Fig-
ure 2 shows the concept of transfer learning. In image clas-
sification, transfer learning [38] is a technique in which a 
model trained on one task is reused for another related task, 
requiring minimal re-training or fine-tuning. For example, 
task-specific learning for COVID-19 detection on smaller 
data sets can be initiated using a CNN model trained on 
the ImageNet data set. Since deep learning requires large 
amounts of training data to learn specific patterns, the need 
for large amounts of labeled data is a big problem, especially 
in the field of medical imaging. The effectiveness of transfer 
learning can be very limited when switching data content 
from one type to another. Therefore, transfer learning in this 
case is no better than training from scratch. Transfer learning 
can be done in two ways to customize a pre-trained model. 

Fig. 1  Convolutional neural network (CNN) architecture
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Feature extraction is the process of training a network on an 
ImageNet data set. The fully connected layers of the model 
are then removed. The remaining network is then processed 
as a feature extractor. Fine-tuning is a technique that can not 
only replace the fully connected layer of the model with a 
new fully connected layer to retrain on the required data set, 
but also fine-tune all or part of the kernel.

4  Materials and methods

The main motivation for developing our proposed model 
is to automatically distinguish people with COVID-19. 
Figure 3 shows the workflow of our proposed method for 
diagnosing the COVID-19 virus in chest X-ray images. 
We present a detailed description of the proposed meth-
odology designed to detect COVID-19. It includes the 

following steps: data set collection, image preprocessing, 
training of transfer learning models using InceptionV3, 
Xcpetion, MobileNetV2, NasNet, and DenseNet201 neu-
ral networks, and the architecture of the proposed CNN 
model. The steps are then explained in more detail in the 
following subsections.

4.1  Data set

The proposed model was trained and tested on a combined 
data set, which consists of chest X-ray images taken from 
two different sources for the diagnosis of COVID-19. The 
combined data set has images of three different classes, 
COVID-19, Viral Pneumonia and Normal. This combina-
tion makes our model more reliable and less prone to biases. 
The source of the data set is as follows:

Fig. 2  Concept of fine tuning 
and feature extraction

Fig. 3  Workflow of the proposed COVID-19 automated diagnostic method using chest radiographs
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1. Chest X-ray images of patients infected with COVID-19 
have been obtained from the Kaggle COVID-19 radi-
ography database [39]. It was created by researchers 
from Dhaka University and Qatar University, as well as 
doctors and collaborators. This database is constantly 
updated, so the number of images available in these 
repositories may change in the future. This data set con-
tains 1200 chest X-ray images of COVID-19 class.

2. The second source of chest X-rays was obtained from the 
Kaggle repository [40]. It contains 1341 normal chest 
X-rays and 1345 images of viral pneumonia.

Figure 4 shows some sample images from the data set. 
A normal chest X-ray shows a clear lung and there are no 
irregular "opaque" areas. Like other pneumonia, COVID-19 
pneumonia increases lung density. This can be seen as lung 
whiteness on radiographs. The most common changes in the 
lungs include nodular shadowing, consolidation and ground 
glass opacities (GGO). They mainly affect the periphery and 
lower part of the lungs. Peripheral distribution of GGO, 
where lower lobe predilection is the most common finding 
on chest X-rays. After getting a balanced data set. The data 
set was shuffled and split into a training set and a test set. Of 
these, 80% images are used for training purposes and 20% 

images are used for testing purposes. Table 1 summarizes 
the partitions of this data set.

4.2  Data preprocessing and augmentation

The next step is to preprocess the images, because the chest 
X-ray images in the data set are of different sizes. One of the 
important steps in data preprocessing is to adjust the size 
of the X-ray image, because different CNNs have different 
input requirements. For example, the Xception and Incep-
tionV3 architecture expects an image size of 299 × 299 × 3, 
and the DenseNet201 architecture expects an input size of 
224 × 224 × 3. To accommodate the common dimensions of 
all the architectures used in this study, we first resized all 
chest X-ray images to a (224 × 224 × 3) shape. All images 
are normalized according to the pre-trained model standard. 

Fig. 4  COVID-19, viral pneumonia and normal samples of chest X-ray images from the prepared data set

Table 1  Details of the images used in the training and test set

Types Total images Training Testing

COVID-19 1200 900 300
Normal 1341 1005 336
Viral pneumonia 1345 1008 337
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Data normalization was performed for better training and 
was used to normalize the pixel values of the input images 
in the range from 0 to 1. One of the reasons for doing this 
is to help with the problem of gradient propagation. Using 
normalization speeds up the training of the CNN model and 
is more likely to stabilize the gradient propagation problem. 
The data set used for this task contains a grayscale image 
that has been rescaled by multiplying 1/255 by a pixel value. 
Image augmentation techniques are applied to images that 
increase the size of the data set to alleviate the problem of 
model overfitting. In this study, we used three augmentation 
strategies to create new training sets (horizontal flip, rota-
tion, and translation).

4.3  COVID‑19 prediction using deep transfer 
learning models

The CNN model has proven to give excellent results in a 
wide range of medical imaging applications. However, due 
to the limited availability of X-ray samples, it is difficult 
to train these models from scratch to predict COVID-19 
cases. Applying a pre-trained model using the concept of 
transfer learning can be useful in such situations. In this 
work, the transfer learning strategy has been used for a 
number of reasons, including: (1) To avoid the problem of 
overfitting due to insufficient chest X-ray images available, 

(2) To improve the prediction accuracy, and (3) Reduces 
computational complexity during the training process. In 
this study, five well-known pre-trained deep learning CNN 
InceptionV3 [41] Xception [42] MobileNetV2 [43] NasNet 
[44] and DenseNet201 [45] were trained and tested to clas-
sify COVID-19. These models were originally trained on 
the ImageNet data set and then retrained on the prepared 
data set. Fine tuning was done by removing the last layer 
in these models, flatten layer is added followed by dropout 
rate of 0.5 and finally a new fully connected layer is added 
with softmax activation function with an output size of two 
that represents two different classes (COVID-19 and nor-
mal). Data shuffling was enabled during model training to 
shuffle the data before each epoch. Five pre-trained CNN 
models are trained for 20 epochs using Adam optimizer 
with a learning rate of 0.001, and batch size set to 64. In 
all cases, the cross-entropy was used as the loss function. 
Hyperparameters play a key role in training these DL models 
and are constant to obtain fair comparisons. Figure 5 shows 
the architectures of InceptionV3, Xception, MobileNetV2, 
NasNet and DenseNet201.

4.3.1  InceptionV3

InceptionV3 [41] is a CNN-based network for classifica-
tion. The Inception module's network has additional layers 

Fig. 5  Architectures of deep transfer learning models. a InceptionV3, b Xception, c MobileNetV2, d NasNet, e DenseNet201
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consisting of 1 × 1, 3 × 3, and 5 × 5 convolutions. This allows 
the model to use all types of kernels in the image and get 
results from all of them. The InceptionV3 network has multi-
ple building blocks, where each block has multiple branches 
of convolution, pooling, concatenation, loss, and fully con-
nected layers. The architecture used is shown in Fig. 5a.

4.3.2  Xception

Xception [42] CNN was developed by Google Inc. and is 
an "advanced" version of the Inception model. The Xcep-
tion model is 36 layers deep, except for the final fully con-
nected layer. It replaces regular inception modules with 
distinguishable depth convolutions. In the classification of 
the ImageNet data set, Xception surpassed InceptionV3. Its 
parameter size is similar to the Inception Net, but it performs 
better on the ImageNet data set than the Inception Net. The 
architecture we use is shown in Fig. 5b.

4.3.3  MobileNetV2

MobileNetV2 [43] builds on the ideas of MobileNet-V1, 
which uses depth-separable convolution as effective build-
ing blocks. MobileNetV2 is an architecture designed to 
run on mobile and embedded systems or devices that lack 
compute power. It is based on an inverted residual structure 
with linear bottleneck. There are two types of blocks in the 
network. One is a residual block with a stride of 1, and the 
other is a block with a stride of 2, which is used to reduce 
the input from the previous layer. The architecture we use 
is shown in Fig. 5c.

4.3.4  NasNet

NasNet [44] refers to the neural architecture search network, 
which is a machine learning model. This idea was realized 
through the NAS concept from the Google ML group. Sev-
eral changes have been made based on the number of layers, 
weights, regularization methods, etc. to improve network 
efficiency. NasNet can efficiently work with a small data 
set (CIFAR-10) as well as a large data set (ImageNet). The 
architecture we use is shown in Fig. 5d.

4.3.5  DenseNet201

DenseNet [45] is an architecture that uses dense connec-
tions between layers through Dense Blocks, so it is called 
Densely Connected Convolutional Network. DenseNet 
has four different variants: DenseNet169, DenseNet121, 
DenseNet201, and DenseNet264. In this article, we used 
DenseNet201. Its depth is 201 layers. For each layer in 
the network, the feature maps of all previous layers are 

used as input, and the output feature maps are used as the 
input of each subsequent layer. The architecture we use is 
shown in Fig. 5e.

4.4  Architecture of proposed shallow convolutional 
neural network

Methods based on deep learning have shown better perfor-
mance than traditional machine learning methods. Recently, 
many researchers have begun to use deep learning models 
to diagnose suspected COVID-19 infections. These models 
show significantly better results. However, the main draw-
back is that these models still suffer from overfitting issues, 
large number of parameters, usually require considerable 
training time, and are costly in real-world applications. The 
main motivation for developing our shallow CNN architec-
ture is to classify COVID-19 patients based on chest X-ray 
images while reducing the time required for detection and 
maintaining high accuracy. The main advantage of this net-
work is its simple and lightweight architecture with fewer 
parameters compared to other models. This significantly 
reduces computational costs and avoids the possibility of 
overfitting. As a result, this model can run fast on low-per-
formance computer.

In this section, we propose a shallow CNN structure 
consisting of six layers for COVID-19 classification. Fig-
ure 6 shows the architecture of the proposed shallow CNN. 
Our proposed model is based on five components, namely, 
convolutional layer, pooling layer, dense layer, flatten layer 
and activation function. The details of each component of 
our proposed network and their respective parameters are 
described in next section.

4.4.1  Input layer

The input layer basically depends on the size of the image. 
The size of the chest X-ray image has different sizes in the 
data set. In our network, all images must have the same size 
and fixed at 224 × 224.

4.4.2  Convolution layers

The convolutional layer is the main component used in con-
volutional neural networks. This layer performs most of the 
calculations of the CNN model. It has some parameters and 
hyperparameters, namely, number of filters, kernel size and 
K. The network consists of two convolutional layers con-
nected to the first input layer. The first convolution layer used 
a 3 × 3 kernel size with 32 filters, and the second convolution 
layer used a 3 × 3 kernel size with 64 filters.
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4.4.3  Pooling layer

A pooling layer is a down sampling operation, usually 
applied after a convolutional layer, that provides some spa-
tial invariance. This layer can speed up the calculation and 
prevent overfitting. There are different types of pooling lay-
ers, including maximum pooling, sum pooling, and, average 
pooling. A maximum pooling layer is used in this work. 
It uses the maximum value of the window as output and 
reduces the size of the feature map. Note that we have used 
one max pooling layer for each convolution layer. Therefore, 
in our proposed model, we use two max pooling layers, and 
the window pooling size is 2 × 2. In addition, the stride of 
the max pooling operation is set to 2.

4.4.4  Flatten layer

Flattening transforms the input into a single column con-
necting the convolutional layer and the dense layer. In our 
model, we used a flattened layer after the pooling layer to 
flat the entire network.

4.4.5  Fully connected layer

After the convolution and pooling process, we use a dense 
layer in the CNN for final classification. This layer flattens 
inputs from past layers from matrices to vectors. After flat-
tening, the volume of the previous layer is input to a fully 
connected layer, such as a neural network. This layer deter-
mines the features that closely match a particular class by 
looking at the output of the previous layer. The dense layer 

is also called a fully connected layer. The output of a fully 
connected layer is provided by an activation function that 
predicts the class score. CNNs often use dense layers to map 
spatial features to image labels.

4.4.6  Activation functions

The activation function adds non-linearity to the neural net-
work and helps the neural network to learn powerful opera-
tions. The functions used are as follows:

1. We have used Rectified Linear Unit (ReLU) function 
with convolution layers. It provides decent calculations 
and avoids the vanishing gradient problem. Mathemati-
cally given as: f(x) = max (0.x).

2. We use the softmax activation function with the dense 
layer to predict the class of the input X-ray image. Soft-
max activation function can be computed as

During the training process, we used the Adam Optimizer 
with a learning rate of 0.001 to train the proposed model on 
the prepared data set. Cross entropy loss function is used to 
minimize the loss. Data shuffling is used to shuffle the data 
during training before each epoch. Batch size is one of the 
most important hyperparameters for training a model. Dur-
ing training, different batch sizes were applied, such as 16, 
20, 25, 32, 50, and 64. We aim to find out which batch size 
is the best possible result for the model. For example, in the 

(1)sof tmax(z)j =
ezj

∑K

k=1
ezk

for j = 1, ....K.

Fig. 6  Proposed CNN architecture for the classification of COVID-19 patients
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beginning we started with a batch size of 16, which gives an 
accuracy of 97.95%.

5  Results and discussion

In this section, various experiments were performed on the 
data set to test the effectiveness of the proposed deep learn-
ing models. We conducted a comprehensive experimental 
analysis on X-ray images to predict COVID-19. All models 
were prepared and trained individually as described above. 
The proposed work is implemented using the Keras package 
with Python and TensorFlow. The experiment was conducted 
on a Google Colaboratory with a Tesla P100–PCIe 16 GB 
graphics card, an Intel Core i5 processor with a 2.4 GHz 
CPU, 16 GB of RAM, and a 128 GB hard disk.

5.1  Performance evaluation metrics

Performance evaluation metrics are very important for 
evaluating the performance of deep learning classification 
models. After the training phase was completed, the per-
formance of each model on the test data set was evaluated 
and compared based on ten performance metrics: accuracy, 
precision (PPV), specificity, sensitivity or recall, F1-score, 
area under the ROC Curve (AUC), False Positive rate (FPR), 
False Negative rate (FNR), Negative predictive value (NPV) 
and Matthews correlation coefficient (MCC):

These metrics are calculated from different parameters of 
the confusion matrix, including "True Positive" (TP), "True 

(2)Accuracy =
TN + TP

TN + TP + FN + FP
,

(3)Precision(PPV) =
TP

TP + FP
,

(4)Specif icity =
TN

TN + FP
,

(5)Sensitivity(Recall) =
TP

TP + FN
,

(6)F1 − Score = 2 ×
Precision × Recall

Precision + Recall
,

(7)NegativePredictiveValue(NPV) =
TN

TN + FN
,

(8)MCC =
(TP × TN − FP × FN)

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Negative" (TN), "False Positive" (FP) and "False Negative" 
(FN). TP represent the number of COVID-19 images iden-
tified as COVID-19, TN represent the number of normal 
images identified as normal, FP represent the number of 
normal images that are incorrectly identified as COVID-19 
images, FN represent the number of COVID-19 images that 
are incorrectly identified as normal.

5.2  Hyperparameter optimization

The main goal of this task is to design a robust model with 
fewer parameters to classify COVID-19 patients while 
reducing the time required for detection and maintaining 
high accuracy. This can only be achieved by finding the best 
hyperparameter configuration so that the best accuracy can 
be obtained. Table 2 presents the hyperparameters used to 
train the proposed CNN model and the pretrained model.

5.3  Classification performance of deep transfer 
learning models

Since the release of the COVID-19 data set, the research on 
chest X-ray images used to accurately predict COVID-19 
infection has attracted much attention. Different techniques 
have been used to develop robust diagnostic models using 
deep learning methods. The concept of transfer learning has 
been widely used in CNN-based models. However, most of 
the earlier methods were estimated using unbalanced data. 
In addition, in some cases, data are limited for evaluating 
methods. In this study, we comprehensively evaluated the 
effectiveness of the five most effective CNN models. A large 
number of experiments were performed on the chest X-ray 
data set to determine the best model for predicting COVID-
19 infection in X-ray images. Independently, five versions of 
the pre-trained CNN model: InceptionV3, Xception, NasNet, 
MobileNetV2, and DenseNet201 on the ImageNet data set 
were fine-tuned on the chest X-ray data set. Table 3 compares 

Table 2  Model’s parameter configuration

Metrics Proposed CNN Pretrained models

Input shape 224 × 224 224 × 224
Shuffling Each epoch Each epoch
Optimizer Adam Adam
Batch size 16, 20, 25, 32, 50, 64 64
Learning rate 0.001 0.001
Epoch 20 20
Re-scaling 1/255 1/255
Flip Horizontal

Vertical
Horizontal
Vertical

Activation Softmax (Final Classifica-
tion Layer)

Softmax (Final 
Classification 
Layer)
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the detailed classification results of all networks in terms of 
various metrics. The same amount of data was selected for 
both groups to handle the problem of data imbalance. From 
Table 3, it is clear that all pre-trained models performed very 
well in the classification of COVID-19 and normal images. 
MobileNetV2 delivers outstanding test accuracy of 99.37% 
while achieving 99.33, 99.40, 99.33 and 99.32% in preci-
sion, specificity, recall and F1-score, respectively. The accu-
racy of DenseNet201 on the test set reaches 99.21%. It also 
achieved precision, specificity, recall and F1-score of 99.66, 
99.77, 98.66 and 99.15%. The Xception Network was the 
third best performer for COVID-19 prediction, with 99.65% 
precision, 96.33% sensitivity, 99.70% specificity, 97.96% 
F1 score, 98.11% accuracy, and 99.06 AUC. %. The low-
est performance was achieved with the InceptionV3 model 
with 96.22% test accuracy, 93.66% recall, 98.24% precision, 
and 96.53% F1-score. DenseNet201 and MobileNetV2 out-
perform other pre-trained models in almost all performance 
metric, including accuracy, precision, specificity, recall, 
f1-score, NPV and AUC.

Table 4 shows the confusion matrix for the studied pre-
trained models on a test set containing COVID-19 and 
normal samples. True Positive (TP), False Positive (FP), 
True Negative (TN), and False Negative (FN) values are 
calculated for COVID-19 cases. We can conclude that our 
MobileNetV2 model only made 4 misclassifications in the 
test data set. These misclassifications have occurred in the 
COVID-19 class and the normal class. We see that out of 

636 tests, our model is correct in 632 tests. By testing the 
DenseNet201 model on the test set, 4 images infected with 
COVID-19 were incorrectly identified as normal images, 
and 1 normal image was incorrectly classified as a COVID-
19 positive case.

5.4  Classification performance of proposed shallow 
CNN

This study constructs binary classification experiments to 
evaluate the classification performance of the proposed 
model and demonstrate its effectiveness. We conducted 
two different experiments on two different data sets. These 
experiments can be divided into (1) Binary image classifi-
cation of COVID-19 positive vs normal patients (2) Binary 
image classification of COVID-19 positive patients vs viral 
pneumonia patients.

5.4.1  Experiment 1: COVID‑19 vs normal

To analyze the performance of our proposed shallow CNN 
model, we calculated the accuracy, precision, specificity, 
sensitivity, F1 score, NPV, AUC and confusion matrix for 
different batch sizes. Batch size is one of the most important 
hyperparameters for model training. This experiment inves-
tigates the effect of various batch sizes on CNN. During the 
training period, various batch sizes such as 16, 20, 25, 32, 
50, 64 were applied. Table 5 shows the performance of our 

Table 3  Comparison of 
classification results of five 
different deep transfer learning 
models on the test data set 

Acc. Accuracy, Prec. Precision, Spec. Specificity, FPR False Positive Rate, FNR False Negative Rate

Models ACC Prec Spec Sens F1-score NPV MCC AUC 

InceptionV3 96.22 98.24 98.51 93.66 96.53 94.57 92.50 97.17
Xception 98.11 99.65 99.70 96.33 97.96 96.82 96.25 99.06
NasNet 96.85 97.29 97.61 96.00 96.77 96.47 93.69 99.12
MobileNetV2 99.37 99.33 99.40 99.33 99.32 99.40 98.73 99.82
DenseNet201 99.21 99.66 99.70 98.66 99.15 98.82 98.42 99.49

Table 4  Confusion matrices 
for the deep transfer learning 
models on the testing data set

Models TP FP TN FN Labels (actual values) Predicted values

COVID-19 Normal

InceptionV3 281 5 331 19 COVID-19 281 19
Normal 5 331

Xception 289 1 335 11 COVID-19 289 11
Normal 1 335

NasNet 288 8 328 12 COVID-19 288 12
Normal 8 328

MobileNetV2 298 2 334 2 COVID-19 298 2
Normal 2 334

DenseNet201 296 1 335 4 COVID-19 296 4
Normal 1 335
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proposed CNN model for different batch sizes in terms of 
accuracy, precision, specificity, sensitivity, F1-score, NPV, 
MCC and AUC. It can be seen from Table 5 that a higher 
accuracy of 99.68% is achieved with a batch size of 32, 
while 99.66, 99.70, 99.66 and 99.65% are achieved in terms 
of precision, specificity, sensitivity and F1-score, respec-
tively. The proposed CNN model achieved 99.21% accuracy 
from a batch size of 20, while the accuracy, sensitivity, and 
F1-scores were 99, 99.33, and 99.16%, respectively. The 
value of the false positive rate is also one of the key indica-
tors, it means that the patient is mistakenly considered posi-
tive. In addition, the rapid increase in COVID-19 pandemics 
makes patient management difficult in most countries due 
to the large number of patients. The proposed CNN model 
achieved low false positive and false negative rates of 0.298 
and 0.334%. High FPR increases problems in the healthcare 
management system. Which is sometimes not suitable for 
real positive patients.

Table 6 shows the confusion matrix of the proposed CNN 
using a data set containing COVID-19 and normal samples. 
The confusion matrix clearly visualizes that shallow CNNs 
perform relatively well over other algorithms. First, we 
can see that there are very few false negative (FN) counts 
with batch sizes of 20 and 64 (i.e., 0 and 2), which helps to 
increase sensitivity. FN indicates that the model classifies 

COVID-19 patients as normal, whereas the patients are 
infected. Second, the model with batch sizes of 20 and 64 
also showed very few false positives (FP) cases (i.e., 0–3), 
which were mistaken for COVID-19 infection, resulting in 
higher specificity and precision. From Table 6, it can be seen 
that the proposed CNN with a batch size of 64 incorrectly 
classified only one COVID-19 image out of 300 images as 
normal, and only one image out of 336 images was incor-
rectly classified as COVID-19. However, for a batch size of 
20, 333 non-COVID-19 images were correctly identified as 
normal and 298 COVID-19 images were correctly identified 
as COVID-19. This shows that the model is very powerful in 
distinguishing COVID-19 images from X-ray images.

5.4.2  Experiment 2: COVID‑19 vs viral pneumonia

The proposed model mainly focuses on binary classifica-
tion of chest X-ray images for rapid and accurate detection 
of COVID-19. In this experiment, the proposed model was 
applied to classify COVID-19-infected patients from viral 
pneumonia. The goal of this experiment is to study the rela-
tionship between COVID-19 and pneumonia. We used 1341 
chest X-ray images of pneumonia-infected patients, whereas 
for COVID-19 positive patients we considered the same 
data set used in Experiment 1. The confusion matrix used 

Table 5  Comparative analysis 
of CNN model with different 
batch sizes

Acc. Accuracy, Prec. Precision, Spec. Specificity, FPR False Positive Rate, FNR False Negative Rate

Batch size Acc Prec Spec Sens F1-score FPR FNR NPV MCC AUC 

16 97.95 97.67 97.91 98.00 97.83 2.127 2.040 98.20 95.90 99.85
20 99.21 99.00 99.10 99.33 99.16 0.900 0.671 99.40 98.42 99.80
25 98.27 97.68 97.91 98.66 98.16 2.127 1.351 98.79 96.53 99.92
32 98.42 98.33 98.51 98.33 98.33 1.510 1.694 98.51 96.84 99.76
50 98.27 98.32 98.51 98.00 98.15 1.510 2.040 98.21 96.52 99.72
64 99.68 99.66 99.70 99.66 99.65 0.298 0.334 99.70 99.36 99.97

Table 6  Confusion matrices 
obtained for different batch 
sizes

Batch size TP FP TN FN Labels (actual values) Predicted values

COVID-19 Normal

16 294 7 329 6 COVID-19 294 6
Normal 7 329

20 298 3 333 2 COVID-19 298 2
Normal 3 333

25 296 7 329 4 COVID-19 296 4
Normal 7 329

32 295 5 331 5 COVID-19 295 5
Normal 5 331

50 294 5 331 6 COVID-19 294 6
Normal 5 331

64 299 1 335 1 COVID-19 299 1
Normal 1 335
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to evaluate the performance of the proposed model on the 
test set is provided in Table 7. Table 7 shows that only eleven 
images of COVID-19 out of 300 images were misclassi-

fied as pneumonia, and only ten images out of 337 images 
were misclassified as COVID-19. Based on this confusion 
matrix, the results were further analyzed against various per-
formance evaluation measures, such as accuracy precision, 
specificity, sensitivity, F1-score, and MCC, as detailed in 
Table 8. From the results obtained, we can conclude that the 
proposed model can identify patients with COVID-19 with 

an accuracy of 96.70%. In addition, accuracy, sensitivity and 
F-1 reached 96.66%, 96.33 and 96.49%, respectively.

5.4.3  Evaluation on imbalanced data set

When we estimate the incidence of COVID-19, it becomes 
clear that the data we encounter in real life will be imbal-
anced; as a result, models for the minority class tend to 
have low predictive accuracy. Medical data sets are often 
imbalanced due to lack of data. In this section, we per-
formed another set of experimental tests to further dem-
onstrate the effectiveness of our proposed model on the 
data imbalance problem, classifying COVID-19 vs nor-
mal cases and COVID-19 vs viral pneumonia cases. We 
reduced the sample for COVID-19 to get better results 
with a small number of COVID-19 images. In this experi-
ment, 640 COVID-19 and 1341 normal X-ray images were 
considered for COVID-19 vs normal cases. 654 COVID-19 
and 1345 pneumonia X-ray images were considered for 
COVID-19 vs pneumonia cases. We can see that the num-
ber of images in each class is different. Using the equation 
below, we calculated the imbalance ratio of our data set. If 
the imbalance rate is greater than 1.5, the data set can be 
considered imbalanced [46]:

The overall results are shown in Tables 9 and 10, where 
Table 9 shows the classwise results along with the confu-
sion matrix, and the results are further analyzed using dif-
ferent performance evaluation metrics detailed in Table 10. 
It is noted that when the sample size of the target class 
(COVID-19) decreases, the results do not deviate much. 
We achieved 97.74% accuracy for COVID-19 vs normal 

(9)Imbalance Ratio (COVID − 19 vs Normal) =
1341(Majority class)

640(Minority class)
= 2.09

(10)Imbalance Ratio (COVID − 19 vs Pneuomonia) =
1345(Majority class)

654(Minority class)
= 2.06

Table 7  Confusion matrix for COVID-19 vs viral pneumonia

Actual class Predicted class

COVID-19 Pneumonia

COVID-19 TP = 289 FN = 11
Pneumonia FP = 10 TN = 327

Table 8  Performance metrics 
of the proposed model on the 
COVID-19 vs viral pneumonia 
test set

Metrics Proposed CNN

Accuracy 96.70
Precision 96.66
Specificity 97.03
Sensitivity 96.33
F1-score 96.49
FPR 0.029
FNR 0.036
NPV 96.75
MCC 93.38

Table 9  Classwise results 
and confusion matrix for 
imbalanced distribution of 
COVID-19 data

Class Precision Sensitivity F1-score Labels (actual values) Predicted values

COVID-19 Normal
COVID-19 0.96 0.97 0.96 COVID-19 145 5
Normal 0.99 0.98 0.98 Normal 6 330

COVID-19 Pneumonia
COVID-19 0.94 0.91 0.92 COVID-19 140 14
Pneumonia 0.96 0.97 0.97 Pneumonia 9 328
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cases and 95.32% for COVID-19 vs pneumonia on such 
an imbalanced data set. It is clear that the proposed model 
is able to counter the class imbalance, as there are fewer 
cases of COVID-19 than cases of normal and pneumonia.

5.5  Performance comparison of the proposed CNN 
with pretrained models

The three best classification models based on deep transfer 
learning previously evaluated in Sect. 5.2 were selected and 
compared with the performance of the proposed shallow 
CNN. Figure 7 presents the overall performance analysis of 
the proposed CNN and the other pretrained models along 
with the model sizes. MobileNetV2 performed best, followed 

by DenseNet201 and Xception. MobileNetV2 achieved an 
overall accuracy of 99.37%. The proposed shallow CNN 
produces maximum accuracy (99.68%) due to its shallow 
configuration. The DenseNet201 and Xception architectures 
are capable of providing the same precision and specificity 
as the proposed model. The proposed model competes with 
other pre-trained models in terms of sensitivity, specific-
ity, precision and F1-score. The proposed model consists 
of 420,712 parameters and has less storage space than other 
models. MobileNetV2 consists of 3,329,218 parameters and 
takes up about 14 mb of disk space. Xception consists of 
21,062,186 parameters and occupies 88 mb of storage space. 
DenseNet201 requires 18,510,146 parameters and occupies 
approximately 77 Mb of storage space. Proposed model 
parameters are 98% less than Xception, 97.72% less than 
DenseNet201, 87.36% less than MobileNetV2. The proposed 
shallow architecture continues to perform well compared to 
other pre-trained deep CNN architectures due to its light-
weight computation. The confusion matrix (Fig. 8) clearly 
shows that the performance of the proposed CNN is better 
than other models.

In terms of validation accuracy and validation loss at each 
epoch, the performance of the proposed model iscompared 
with the performance of other deep CNN architectures, as 
shown in Fig. 9. It is clear that the proposed algorithm meets 
the maximum accuracy and minimum loss within 20 epoch 
counts. The excellent results achieved by our model, along 
with its simplicity and low computational cost, show that 
the model is capable of detecting COVID-19 very efficiently 
from chest X-ray images.

Table 10  Performance evaluation metrics for proposed CNN model 
on imbalanced data set

Metrics COVID-19 vs Normal COVID-19 vs 
Pneumonia

Accuracy 97.74 95.32
Precision 96.03 93.96
Specificity 98.21 97.33
Sensitivity 96.67 90.91
F1-score 96.35 92.41
FPR 0.017 0.026
FNR 0.033 0.090
NPV 98.51 95.91
MCC 94.71 89.05

Fig. 7  Performance comparison of the proposed CNN with other deep learning models
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In Fig. 10, the shallow CNN trained with the proposed 
method outperforms the entire set of pretrained CNN models 
with the least number of parameters, exactly 420,712. This 
is because the model holds the minimum depth and the total 
number of parameters involved in execution is very small 
compared to other models. As the depth increases, the total 
number of parameters increases exponentially, resulting in 
more storage space. The overall performance of the model 
is based on optimizing the hyperparameters contained in the 
network. Compared with the largest model Xception, with 
an accuracy of 98.11% and 21,062,186 million parameters, 
the Shallow CNN model achieves the best performance and 
parameter size ratio. With MobileNetV2 and Shallow CNN, 
even with a slight difference in performance, the proposed 
method still had a huge advantage with fewer parameters. 
Suppose we need COVID-19 testing in remote areas without 
adequate medical facilities. Ideally, the device needs a light-
weight model that is computationally inexpensive and pro-
vides the highest accuracy in predicting COVID-19 cases. 
With minimal performance trade-offs, the proposed model 
is a lightweight architecture with fewer parameters com-
pared to deep models. This significantly reduces the com-
putational cost and can be run efficiently on IoT and edge 
devices. The low computation time required to train and test 
the proposed CNN makes it more suitable for large-scale 

population screening, especially for diagnosing COVID-19 
infection cases in resource-limited areas.

Table 11 shows the computation cost for total training 
time and test time (in seconds). It can be seen from Table 11 
that the average training time of the proposed CNN is about 
556 s. All other deep learning models have relatively long 
training times, ranging from 1062 to 4903 s. The computa-
tion time of the proposed CNN for test data is 22.44 s, which 
is the shortest run time among other test models. The table 
shows that the proposed CNN has lower computational costs 
due to a small number of parameters and minimal depth, 
while deep models have more layers and trainable param-
eters, which leads to longer training times.

5.6  Comparison with state‑of‑the‑art methods

We also compared the results of our proposed method with 
existing methods that used a similar set of data sets. Table 12 
presents previous studies conducted in the automated diag-
nosis of COVID-19 and their comparison with our proposed 
model. It is obvious from the table below that the proposed 
model outperforms the state of art models. In addition, the 
proposed model was trained on a balanced data set with the 
same number of images, making it more robust and easier 
to combat this pandemic in the near future.

Fig. 8  Confusion matrices for a Xception, b DenseNet201, c MobileNetV2, d proposed Shallow CNN
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6  Conclusions

The COVID-19 pandemic is growing every day. As the num-
ber of cases continues to increase, it may be necessary to 

quickly test cases in batches. The rapid outbreak of COVID-
19 presents a global challenge to the scientific community, 
requiring it to develop new diagnostic tests to solve this pub-
lic health problem. Rapid diagnosis plays a key role in com-
bating pandemic situations, such as the current COVID-19. 

Fig. 9  Accuracy and loss comparison with Epoch

Fig. 10  Comparison of param-
eter sizes of proposed CNN 
with other state-of-the-art pre-
trained CNNs
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Researchers are very concerned about building a deep learn-
ing model with a lightweight architecture so that the symp-
toms of COVID-19 can be quickly and effectively identified. 
We aimed to propose a robust deep learning approach for 
detecting COVID-19 cases from chest X-rays to offer early 
and automatic detection with high accuracy and low false-
negative rate. The proposed method is a lightweight shal-
low CNN with optimized parameters designed to identify 
COVID-19 cases using chest X-ray images. The study uses 

open source chest X-rays from healthy people and patients 
with COVID-19. Our model achieves 99.68% accuracy in the 
classification of healthy and COVID-19-infected patients. 
The values for precision, sensitivity and specificity are also 
very good. The proposed approach has a precision, sensitiv-
ity, and specificity of 99.66, 99.66 and 99.70%, respectively. 
We have compared the performance of the proposed shallow 
CNN with Xception, DenseNet201, MobileNetV2 models 
and the existing techniques. The proposed method demon-
strates the superiority of this method over existing state-of-
the-art methods. Contrary to previous research work, the 
proposed model is computationally cheaper, requires fewer 
parameters, and achieves promising results on the data set. 
We believe that this study can be used as an initial screening 
that can help radiologists and healthcare professionals in 
screening COVID-19 positive cases. In the future, we will 
increase the size of the data set when it becomes available 
to make the model more robust.

Table 11  Comparison of computational time for training and testing 
in seconds

Model Training time Testing time

NasNet 3552.85 130.73
InceptionV3 1653.02 72.87
MobileNet 1062.76 59.79
DenseNet201 4903.24 245.24
Xception 1123.92 62.71
Proposed CNN 556.72 22.44

Table 12  Comparison of 
proposed method with other 
existing deep learning methods

Authors Method No. of images Accuracy (%)

Horry et al. [47] VGG-19 140 COVID-19
400 Normal

87.87

Hemdan et al. [17] COVIDX-Net 25 COVID-19
25 Normal

90

Khan et al.[26] CoroNet 284 COVID-19
310 Normal

99

Rahimzadeh et al. [48] Xception and ResNet50V2 180 COVID-19
851 Normal

91.4

Apostolopoulos et al. [16] VGG-19 224 COVID-19
504 Normal

93.4

Toğaçar et al. [49] SqueezeNet and MobileNetV2, 
SMO and SVM

295 COVID-19
65 Normal

98.25

Farooq and Hafeez [50] Covid-ResNet 68 COVID-19
660 Normal

96.23

Ozturk et al. [23] DarkCovidNet 125 COVID-19
500 Normal

98.08

Toraman et al. [51] CapsNet 231 COVID-19
500 Normal

89.1

Das et al. [31] Xception – 97.4
Mukherjee et al. [52] Lightweight CNN 168 COVID-19

168 Normal
96.28

Ucar et al. [27] COVIDiagnosis-Net 45 COVID-19
1203 Normal

98.30

Wang et al. [53] Xception + SVM 537 COVID-19
565 Normal

99.33

Gilanie et al. [54] CNN 1066 COVID-19
1341 Normal

96.68

Das et al. [55] VGG16 219 COVID-19
1341 Normal

97.67

Our proposed method Shallow CNN 1200 COVID-19 99.68
MobileNetV2 1341 Normal 99.37
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