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Abstract
Medical images are a rich source of invaluable necessary information used by clinicians. Recent technologies have intro-
duced many advancements for exploiting the most of this information and use it to generate better analysis. Deep learning 
(DL) techniques have been empowered in medical images analysis using computer-assisted imaging contexts and presenting 
a lot of solutions and improvements while analyzing these images by radiologists and other specialists. In this paper, we 
present a survey of DL techniques used for variety of tasks along with the different medical image’s modalities to provide 
critical review of the recent developments in this direction. We have organized our paper to provide significant contribution 
of deep leaning traits and learn its concepts, which is in turn helpful for non-expert in medical society. Then, we present 
several applications of deep learning (e.g., segmentation, classification, detection, etc.) which are commonly used for clinical 
purposes for different anatomical site, and we also present the main key terms for DL attributes like basic architecture, data 
augmentation, transfer learning, and feature selection methods. Medical images as inputs to deep learning architectures will 
be the mainstream in the coming years, and novel DL techniques are predicted to be the core of medical images analysis. 
We conclude our paper by addressing some research challenges and the suggested solutions for them found in literature, and 
also future promises and directions for further developments.

Keywords Medical imaging · Deep learning (DL) · Medical data augmentation · Transfer learning

1 Introduction

Health no doubt is on the top of concerns hierarchy in our 
life. Through the lifetime, human has struggled of diseases 
which cause death; in our life scope, we are fighting against 
enormous number of diseases, moreover, improving life 
expectancy and health status significantly. Historically medi-
cine could not find the cure of numerous diseases due to a 
lot of reasons starting from clinical equipment and sensors 
to the analytical tools of the collected medical data. The 
fields of big data, AI, and cloud computing have played a 
missive role at each aspect of handling these data. Across 

the worldwide, Artificial Intelligence (AI) has been widely 
common and well known enough to most of the people due 
to the rapid progress achieved in almost every domain in 
our life. The importance of AI comes from the remarkable 
progress within the last 2 decades only, and it is still grow-
ing and specialists from different fields are investing. AI’s 
algorithms were attributed to the availability of big data and 
the efficiency of modern computing criteria that is provided 
lately.

This paper aims to give a holistic overview in the field 
of healthcare as an application of AI and deep learning par-
ticularly. The paper starts by giving an overview of medical 
imaging as an application of deep learning and then mov-
ing to why do we need AI in healthcare; in this section, we 
will give the key terms of how AI is used in both the main 
medical data types which are medical imaging and medical 
signals. To provide a moderate and rich general perspective, 
we will mention the well-known data which are widely used 
for generalization and the main pathologies, as well. Starting 
from classification and detection of a disease to segmenta-
tion and treatment and finally survival rate and prognostics. 
We will talk in detail about each pathology with the relevant 
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key features and the significant results found in literature. In 
the last section, we will discuss about the challenges of deep 
learning and the future scope of AI in healthcare. Gener-
ally, AI is being a fundamental path in nowadays medicine 
which is in short a software that can learn from data like 
human being and it can develop an experience systemati-
cally and finally deliver a solution or diagnostic even faster 
than humans. AI has become an assistive tool in medicine 
with benefits like error reduction, improving accuracy, fast 
computing, and better diagnosis were introduced to help 
doctors efficiently. From clinical perspective, AI is used 
now to help the doctors in decision-making due to faster 
pattern recognition from the medical data which also in turn 
are registered more precisely in computers than humans; 
moreover, AI has the ability to manage and monitor the 
patients’ data and creating a personalized medical plan for 
future treatments. Ultimately, AI has proved to be helpful 
in medical field with different levels, such as telemedicine 
diagnosis diseases, decision-making assistant, and drug dis-
covery and development. Machine learning (ML) and deep 
learning (DL) have tremendous usages in healthcare such 
as clinical decision support (CDS) system which incorpo-
rate human’s knowledge or large datasets to provide clinical 

recommendations. Another application is to analyze large 
historical data and get the insights which can predict the 
future cases of a patient using pattern identification. In this 
paper, we will highlight the top deep learning advancement 
and applications in medical imaging. Figure 1 shows the 
workflow chart of paper highlights.

2  Background concepts

2.1  Medical imaging

Deep learning in medical imaging [1] is the contemporary 
scope of AI which has the top breakthroughs in numerous 
scientific domains including computer vision [2], Natural 
Language Processing (NLP) [3] and chemical structure 
analysis, where deep learning is specialized with highly 
complicated processes. Lately due to deep learning robust-
ness while dealing with images, it has attracted big interest 
in medical imaging, and it holds big promising future for 
this field. The main idea that DL is preferable is that medical 
data are large and it has different varieties such as medical 
images, medical signals, and medical logs’ data of patients 

Fig. 1  Deep learning implementation and traits for medical imaging application
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monitoring of body sensed information. Analyzing these 
data especially historical data by learning very complex 
mathematical models and extracting meaningful information 
is the key feature where DL scheme outperformed humans. 
In other words, DL framework will not replace the doctors, 
but it will assist them in decision-making and it will enhance 
the accuracy of the final diagnosis analysis. Our workflow 
procedure is shown in Fig. 1.

2.1.1  Types of medical imaging

There are plenty of medical image types, and selecting the 
type depends on the usage, in a study which was held in 
US [4], it was found that there are some basic and widely 
used modalities of these medical images which also have 
increased, and these modalities are Magnetic Resonance 
Images (MRI), Computed Tomography (CT) scans, and 
Positron Emission Tomography (PET) to be on the top and 
some other common modalities like, X-ray, Ultrasound, and 
histology slides. Medical images are known to be so com-
plicated, and in some cases, acquisition of these images is 
considered to be long process and it needs specific technical 
implications, e.g., an MRI which may need over 100 Mega 
Byte of memory storage.

Because of a lack of standardization while image acquisi-
tion and diversity in the scanning devices’ settings, a phe-
nomenon called “distribution drift” might arise and cause 
non-standard acquisition. From a clinical need perspective, 
medical images are the key part of diagnosis of a disease and 
then the treatment too. In traditional diagnosis, a radiologist 
reviews the image, and then, he provides the doctors with a 
report of his findings. Images are an important part of the 
invasive process to be used in further treatment, e.g., surgi-
cal operations or radiology therapies for example [5, 6].

2.2  DL frameworks

Conceptually, Artificial Neural Networks (ANN) are a 
mimic of the human neuro system in the structure and work. 
Medical imaging [7] is a field by which is specialized in 
observing and analyzing the physical status of the human 
body by generating visual representations like images of 
internal tissues or some organs of the body through either 
invasive or non-invasive procedure.

2.2.1  Key technologies and deep learning

Historically, AI scheme has been proposed in 1970s and it 
has mainly the two major subcategories, such as Machine 
Learning (ML) and Deep Learning (DL). The earlier AI used 
heuristics-based techniques for extracting features from data, 
and further developments started using handcrafted features’ 
extraction and finally to supervised learning. Where basi-
cally Convolutional Neural Networks (CNN) [8] is used in 
images and specifically in medical images. CNN is known 
to be hungry for data, so it is the most suitable methodology 
for images, and the recent developments in hardware speci-
fications and GPUs have helped a lot in performing CNN 
algorithms for medical image analysis. The generalized for-
mulation of how CNN work was proposed by Lecun et al. 
[9], where they have used the error backpropagation for the 
first example of digits hand written recognition. Ultimately, 
CNNs have been the predominant architecture among all 
other algorithms which belong to AI, and the number of 
research of CNN has increased especially in medical images 
analysis and many new modalities have been proposed. In 
this section, we explain the fundamentals of DL and its 
algorithmic path in medical imaging. The commonly known 
categories of deep learning and their subcategories are dis-
cussed in this section and are shown in Fig. 2.

Fig. 2  DL basic categories as 
per paper organization



884 R. Yousef et al.

1 3

2.2.2  Supervised learning

Convolutional neural networks: CNN [10] have taken the 
major role in many aspects and have lead the work in image-
based tasks, including image reconstruction, enhancement, 
classification, segmentation, registration, and localization. 
CNNs are considered to be the most deep learning algo-
rithm regarding images and visual processing because of its 
robustness in image dimensionality reduction without los-
ing image’s important features; in this way, CNN algorithm 
deals with less parameters which mean increasing the com-
putational efficiency. Another key term about CNN is that 
this architecture is suitable for hospitals use, because it can 
handle both 2D and 3D images, because some of medical 
images modalities like X-ray images are 2D-based images, 
while MRI and CT scan images are 3-dimensional images. 
In this section, we will explain the framework of CNN archi-
tecture as the heart of deep learning in medical imaging.

Convolutional layer: Before deep learning and CNN, in 
image processing, convolution terminology was used for 
extracting specific features from an image, such as corners, 
edges (e.g., sobel filter), and noise by applying a particular 
filters or kernels on the image. This operation is done by 
sliding the filter all over the image in a sliding window form 
until all the image is covered. In CNN, usually, the startup 
layers are designed to extract low-level features, such as lines 
and edges, and the progressive layers are built up for extract-
ing higher features like full objects within an image. The 
goodness of using modern CNNs is that the filters could be 
2D or 3D filters using multiple filters to form a volume and 
this depends on the application. The main discrimination in 
CNN is that this architecture obliges the elements in a filter 
to be the network weights. The idea behind CNN architec-
ture is the convolution operation which is denoted by the 
symbol *. Equation (1) represents the convolution operation

where s(t) is the output feature map and I(t) is the original 
image to be convolved with the filter K(a).

Activation function: Activation functions are the enable 
button of a neuron; in CNN, there are multiple popular acti-
vation functions which are widely used such as, sigmoid, 
tanh, ReLU, Leaky ReLU, and Randomized ReLU. Espe-
cially, in medical imaging, most papers found in literature 
uses ReLU activation function which is defined using the 
formula

where x represents the input of a neuron.
There are other used activation functions used in CNN, 

such as sigmoid, tanh, and leaky-ReLu

(1)s(t) = I(t) ∗ K(a) = (I ∗ K)(t),

(2)f (x) = max(0, x),

Pooling layer: Mainly, this layer is used to reduce the 
parameters needed to be computed and it reduces the size 
of the image but not the number of channels. There are 
few pooling layers, such as Max-pooling, average- pool-
ing, and L2-normalization pooling, where Max-pooling is 
the widely used pooling layer. Max-pooling means taking 
the maximum value of a position of the feature map after 
convolution operation.

Fully connecter layer: This layer is the same layer that 
is used in a casual ANN where usually in such network 
each neuron is connected to all other neurons in both the 
previous and next layer’s neurons; this makes the compu-
tation very expensive. A CNN model can get the help of 
the stochastic gradient descent to learn significant associa-
tions from the existing examples used for training. Thus, 
the benefit of a CNN usage is that it gradually reduces the 
feature map size before finally is get flatten to feed the 
fully connected layer which in turn computes the prob-
ability scores of the targeted classes for the classifica-
tion. Fc-connected layer is the last layer in a CNN model, 
Furthermore, this layer processes the strongly extracted 
features from an image due to the convolutional a pooling 
layer before and finally fc-layer indicate to which class is 
an image belong to.

Recurrent neural networks: RNN is a major part from 
supervised deep learning models, and this model is specific 
with analyzing sequential data and time series. We can imag-
ine an RNN as a casual neural network, while each layer of 
it represents the observations at a particular time (t). In [11], 
RNN was used for text generating which further connected 
to speech recognition and text prediction and other applica-
tions too. RNN are recurrent, because same work is done 
for every element in a sequence and the output depends on 
the previous output computation of the previous element in 
that sequence general, the output of a layer is fed as an input 
to the new input of the same layer as it is shown in Fig. 3. 
Moreover, since the backpropagation of the output will suf-
fer of vanishing gradient with time, so commonly a network 
is evolved which is Long Short-Term Memory (LSTM).

In network and three bidirectional gated recurrent units is 
(BGRU) to help the RNN to hold long-term dependencies.

There were few papers found in the literature of RNN in 
medical imaging and particularly in segmentation, in [12], 
Chen et al. have used RNN along with CNN for segmenting 
fungal and neuronal structures from 3D images. Another 
application of RNN is in image caption generation [13], 
where these models can be used for annotating medical 
images like X-ray with text captions extracted and trained 
from radiologists’ reports [14]. RuoxuanCui et  al. [15] 
have used a combination of CNN and RNN for diagnosing 

(3)Sigmoid =
1

1 + e−x
.
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Alzheimer disease where their CNN model was used for 
classification task, after that the CNN model’s output is fed 
to an RNN model with cascaded bidirectional gated recur-
rent units (BGRU) layers to extract the longitudinal features 
of the disease. In summary, RNN is commonly used with 
a CNN model in medical imaging. In [16], authors have 
developed a novel RNN for speeding up an iterative MAP 
estimation algorithm.

2.2.3  Unsupervised deep learning

Beside the CNN as a supervised machine leaning algorithm 
in medical imaging, there are a few unsupervised learning 
algorithms for this purpose as well, such as Deep Belief 
Networks (DBNs), Autoencoders, and Generative Adver-
sarial Networks (GANs), where the last has been used for 
not only performing the image-based tasks but as a data syn-
thesis and augmentation too. Unsupervised learning models 
have been used for different medical imaging applications, 
such as motion tracking [17] general modeling, classifica-
tion improvement [18], artifact reduction [19], and medi-
cal image registration [20]. In this section, we will list the 
mostly used unsupervised learning structures.

2.2.3.1 Autoencoders Autoencoders [21, 22] are an unsu-
pervised deep learning algorithm by which this model refers 
to the important features of an input data and dismisses 
the other data. These important representations of features 
are called ‘codings’ where it is commonly called represen-

tation learning. The basic architecture is shown in Fig. 3. 
The robustness of autoencoders stems from the ability to 
reconstruct output data, which is similar to the input data, 
because it has cost function which applies penalties to the 
model when the output and input data are different. Moreo-
ver, autoencoders are considered as an automatic features 
detector, because they do not need labeled data to learn from 
due to the unsupervised manner. Autoencoders architecture 
is similar to a formal CNN model, but with the feature is that 
the number of input neurons must be equal to the number in 
the output layer. Reducing dimensionality of the raw input 
data is one of the features of autoencoders, and in some 
cases, autoencoders are used for denoising purpose [23], 
where this autoencoders are called denoising autoencoders. 
In general, there are few kinds of autoencoders used for dif-
ferent purposes, we mention here the common autoencod-
ers, for example, Sparse Autoencoders [24] where the neu-
rons in the hidden layer are deactivated through a threshold 
which means limiting the activated neurons to get a repre-
sentation in the output similar to the input where for extract-
ing most of the features from the input, most of the hidden 
layer neurons should be set to zero. Variational autoencod-
ers (VAEs) [25] are generative model with two networks 
(Encoder and Decoder) where the encoder network pro-
jects the input into latent representation using Gaussian 
distribution approximation, and the decoder network maps 
the latent representations into the output data. Contractive 
autoencoders [26] and adversarial autoencoders are mostly 
similar to a Generative Adversarial Network (GAN).

Fig. 3  Basic common deep learning architectures. A Restricted Boltzmann machine. B Recurrent Neural Network (RNN). C Autoencoders. D 
GANs
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2.2.3.2 Generative Adversarial Networks GANs [27]28 
were first introduced by Ian Goodfellow in 2014; it consists 
basically on a combination of two CNN networks: the first 
one is called Generative model and another is the discrimi-
nator model. For better understanding how GANs work, 
scientists describe the two networks as a two players who 
competing against each other, where the generator network 
tries to fool the discriminator network by generating near 
authentic data (e.g., artificial images), while the discrimina-
tor network tries to distinguish between the generator out-
put and the real data, Fig.  3. The name of the network is 
inspired from the objective of the generator to overcome the 
discriminator. After the training process, both the generator 
and discriminator networks get better, where the first gener-
ates more real data, and the second learns how to differenti-
ate between both previously mentioned data better until the 
end-point of the whole process where the discriminator net-
work is unable to distinguish between real and artificial data 
(images). In fact, the criteria by which both networks learn 
from each other are using the backpropagation for the both, 
Markov chains, and dropout too. Recently, we have seen tre-
mendous usage of GANs for different applications in medi-
cal imaging such as, synthetic images for generating new 
images and enhance the deep learning models efficiency by 
increasing the number of training images in the dataset [29], 
classification [30, 31], detection [32], segmentation [33, 
34], image-to-image translation [35], and other application 
too. In a study by Kazeminia et  al. [36], they have listed 
all the applications of GANs in medical imaging and the 
most two used applications of this unsupervised models are 
image synthesis and segmentation.

2.2.3.3 Restricted Boltzmann machines Axkley et al. were 
the first to introduce the Boltzmann machines in 1985 [37], 
Fig. 3, also known as Gibbs distribution, and further Smo-
lensky has modified it to be known as Restricted Boltzmann 
Machines (RBMs) [38]. RBMs consist on two layers of neu-
ral networks with stochastic, generative, and probabilistic 
capabilities, and they can learn probability distributions 
and internal representations from the dataset. RBMs work 
using the backpropagation path of input data for generating 
and estimating the probability distribution of the original 
input data using gradient descent loss. These unsupervised 
models are used mostly for dimensionality reduction, filter-
ing, classification, and features representation learning. In 
medical imaging, Tulder et al. [39] have modified the RBMs 
and introduced a novel convolutional RBMs for lung tissue 
classification using CT scan images; they have extracted the 
features using different methodologies (generative, discrim-
inative, or mixed) to construct the filters; after that, Random 
Forest (RF) classifier was used for the classification objec-
tive. Ultimately, a stacked version of RBMs is called Deep 
Belief Networks (DBNs) [40]. Each RBM model performs 

non-linear transformation which will again be the input for 
the next RBM model; performing this process progressively 
gives the network a lot of flexibility while expansion.

DBNs are generative models, which allow them to be 
used as a supervised or unsupervised settings. The feature 
learning is done through an unsupervised manner by doing 
the layer-by-layer pre-training. For the classification task, a 
backpropagation (gradient descent) through the RBM stacks 
is done for fine-tuning on the labeled dataset. In medical 
imaging applications, DBNs were used widely; for exam-
ple, Khatami et al. [41] used this model for classification 
of X-ray images of anatomic regions and orientations; in 
[42], AVN Reddy et al. have proposed a hybrid deep belief 
networks (DBN) for glioblastoma tumor classification from 
MRI images. Another significant application of DBNs was 
reported in [43] where they have used a novel DBNs’ frame-
work for medical images’ fusion.

2.2.4  Self‑supervised learning

Self-supervised learning is basically a subtype of unsuper-
vised Learning, by which it learns features’ representations 
using a proxy task where the data contain supervisory sig-
nals. After representation learning, it is fine-tuned using 
annotated data. The benefit of self-supervised learning is 
that it eliminates the need of humans to label the data, where 
this system extracts the visibly natural relevant context from 
the data and assign metadata with the representations as 
supervisory signals. This system matches with unsupervised 
learning, because both systems learn representations without 
using explicitly provided labels, but the difference is that 
self-supervised learning does not learn inherent structure 
of data and it is not centered around clustering, anomaly 
detection, dimensionality reduction, and density estimation. 
The genesis model of this system can retrieve the original 
image from a distorted image (e.g., non-linear gray-value 
transformation, image inpainting, image out-painting, and 
pixels shuffle) using proxy task [44]. Zhu et al. [45] have 
used self-supervised learning and its proxy task to solve 
Rubik’s cube which mainly contain three operations (rotat-
ing, masking, and ordering) the robustness of this model 
comes from that the network is robust to noise and it learns 
features that are invariant to rotation and translation. She-
koofeh et al. [46] have exploited the effectiveness of self-
supervised learning in pre-training strategy used to classify 
medical images for tow tasks (dermatology skin condition 
classification, and multi-label chest X-ray classification). 
Their study has improved the classification accuracy after 
using two self-supervised learning systems: the first one is 
trained on ImageNet dataset and the second one is trained 
on unlabeled domain specific medical images.
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2.2.5  Semi‑supervised learning

Semi-supervised learning is a system by which it stands 
in between supervised learning and unsupervised learn-
ing systems, because for example, it is used for classifica-
tion task (supervised learning) but without having all the 
data labeled (Unsupervised learning). Thus, this system 
is trained on small, labeled dataset, and then generates 
pseudo-labels to get larger dataset with labels, and the 
final model is trained by mixing up both the original data-
set and the generated one of images. Nie et al. [47] have 
proposed semi-supervised learning-based deep network for 
image segmentation, the proposed method trains adver-
sarially a segmentation model, from the confidence map 
is computed, and the semi-supervised learning strategy is 
used to generate labeled data. Another application of semi-
supervised learning is used for cardiac MRI segmentation, 
[48]. Liu et al. [49] have presented a novel relation-driven 
semi-supervised model to classify medical images, they 
have introduced a novel Sample Relation Consistency 
(SRC) paradigm to use unlabeled data by generalizing and 
modeling the relationship information between different 
samples; in their experiment, they have applied the novel 
method on two benchmark medical images for classifi-
cation, skin lesion diagnosis from ISIC 2018 challenge, 
and thorax disease classification from the publicly dataset 
ChestX-ray14, and the results have achieved the state-of-
the-art criteria.

2.2.6  Weakly (partially) supervised learning

Weak supervision is basically a branch of machine learn-
ing used to label unlabeled data by exploiting noisy, lim-
ited sources to provide supervision signal that is respon-
sible of labeling large amount of training data using 
supervised manner. In general, the new labeled data in 
“weakly-supervised learning” are imperfect, but it can 
be used to create a robust predictive model. The weakly 
supervised method uses image-level annotations and weak 
annotations (e.g., dots and scribbles) [50]. Weakly super-
vised multi-label disease system was used for classification 
task of chest X-ray [51], Also, it is used for multi-organ 
segmentation, [52] by learning single multi-class network 
from a combination of multiple datasets, where each one 
of these datasets contains partially organ labeled data and 
low sample size. Roth et al. [53] have used weakly super-
vised learning system for medical image segmentation and 
their results has speeded up the process of generating new 
training dataset used for the development purpose of deep 
learning in medical images analysis. Schleg et al. [54] have 
used this type of deep learning approach to detect abnor-
mal regions from test images. Hu et al. [55] proposed an 

end-to-end CNN approach for displacement field predic-
tion to align multiple labeled corresponding structures, 
and the proposed work was used for medical image regis-
tration of prostate cancer from T2-weighted MRI and 3D 
transrectal ultrasound images; the results reached 0.87 of 
Mean Dice score. Another application is applied in dia-
betic retinopathy detection in a retinal image dataset [56].

2.2.7  Reinforcement learning

Reinforcement learning (RL) is subtype of deep learning by 
which it takes the beneficial action toward maximizing the 
rewards of specific situation. The main difference between 
supervised learning and reinforcement learning is that in 
the first one, the training data have the answer within it, but 
in case of reinforcement learning, the agent decides how 
to act with the task where in the absence of the training 
dataset the model learn from its experience. Al Walid et al. 
[57] have used reinforcement learning for landmark locali-
zation in 3D medical images; they have introduced the par-
tial policy-based RL, by learning optimal policy of smaller 
partial domains; in this paper, the proposed method was 
used on three different localization task in 3D-CT scans and 
MR images and proved that learning the optimal behavior 
requires significantly smaller number of trials. Also in [58], 
RL was used for object detection PET images. RL was also 
used for color image classification on neuromorphic system 
[59].

2.2.7.1 Transfer learning Transfer learning is one of the 
powerful enablers of deep learning [60], which involves 
training a deep leaning model by re-using of a an already 
trained model with related or un-related large dataset. It is 
known that medical data face the problem of lacking and 
insufficient for training deep learning models perfectly, so 
Transfer learning can provide the CNN models with large 
learned features from non-medical images which in turn can 
be useful for this case [61]. Furthermore, Transfer Learning 
is a key feature for time-consuming problem while training a 
deep neural network, because it uses the freeze weights and 
hyperparameters of another model. In usual using transfer 
learning the weights which is already trained on different 
data (images) are freezed to be used for another CNN model, 
and only in the few last layers, modifications are done and 
these few last layers are trained on the real data for tuning 
the hyperparameters and weights. For these reasons, transfer 
learning was widely used in medical imaging, for example a 
classification of the interstitial lung disease [61] and detect-
ing the thoraco-abdominal lymph nodes from CT scans; it 
was found that transfer learning is efficient, even though the 
disparity between the medical images and natural images. 
Transfer learning as well could be used for different CNN 
models (e.g., VGG-16, Resnet-50, and Inception-V3), Xue 
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et  al. [62], have developed transfer learning-based model 
for these models, and furthermore, they have proposed an 
Ensembled Transfer Learning (ETL) framework for classi-
fication enhancement of cervical histopathological images. 
Overall, in many computer vision tasks, tuning the last clas-
sification layers (fully connected layers) which is called 
“shallow tuning” is probably efficient, but in medical imag-
ing, a deep tuning for more layers is needed [63], where they 
have studied the benefit of using transfer learning in four 
applications within three imaging modalities (polyp detec-
tion from colonoscopy videos, segmentation of the layers of 
carotid artery wall from ultrasound scans, and colonoscopy 
video frame classification), their study results found that 
training more CNN layers on the medical images is efficient 
more than training from the scratch.

2.3  Best deep learning models and practices

Convolutional Neural Networks (CNNs) based models are 
usually used in different ways with keeping in minds that 
CNNs remains the heart of any model; in general, CNN 
could be trained on the available dataset from the scratch 
when the available dataset is very large to perform a specific 
task (e.g., segmentation, classification, detection, etc.), or 
a pre-trained model with a large dataset (e.g., ImageNet) 
where this model could be used to train new datasets (e.g., 
CT scans) with fine-tuning some layers only; this approach 
is called transfer learning (TL) [60]. Moreover, CNN mod-
els could be used for feature extraction only from the input 
images with more representation power before proceeding 
to the next stage of processing these features. In the litera-
ture, there were commonly used CNN models which has 
proven their effectiveness, and based on these models, some 
developments have arisen; we will mention the most effi-
cient and used models of deep learning in medical images 
analysis. First, it was AlexNet which was introduced by Alex 
Krizhevsky [64] and Siyuan Lu et al. [65], have used trans-
fer learning with a pre-trained AlexNet with replacing the 
parameters of the last three layers with a random parameters 
for pathological brain detection. Another frequently used 
model is Visual Geometry Group (VGG-16) [66] where 
16 refers to the number of layers; later on, some develop-
ments were proposed for VGG-16 like VGG-19; in [67], 
they have listed medical imaging applications using differ-
ent VGGNet architectures. Inception Network [68] is one of 
the most common CNN architectures which aim to limit the 
resources consumption. And further modifications on this 
basic network were reported with new versions of it [69]. 
Gao et al. [70] have proposed a new architecture of Residual 
Inception Encoder–Decoder Neural Network (RIEDNet) for 
medical images synthesis. Later on, Inception network was 
called Google Net [71]. ResNet [72] is a powerful architec-
ture for very deep architectures sometimes over than 100 

layers, and it helps in limiting the loss of gradient in the 
deeper layers, because it adds residual connections between 
some convolutional layers Fig. 4. Some of ResNet models 
in medical imaging are mostly used for robust classification 
[73, 74], for pulmonary nodes and intracranial hemorrhage.

DenseNet exploits same aspect of residual CNN (ResNet) 
but in a compact mode for achieving good representations 
and feature extraction. Each layer of the network has in its 
input outputs from the previous layers, so comparing to a 
traditional CNN, DenseNet contains more connections (L) 
than CNN (L connections) where DenseNet has [L(L − 1)]/2 
connections. DenseNet is widely used with medical images, 
Mahmood et al.[78] have proposed a Multimodal DenseNet 
for fusing multimodal data to give the model the flexibility 
of combining information from multiple resources, and they 
have used this novel model for polyp characterization and 
landmark identification in endoscopy. Another application 
used transfer learning with DenseNet for fundus medical 
images [79].

U-net [80] is one of the most popular network archi-
tectures used mostly for segmentation, Fig. 4. The reason 
behind it is mostly used in medical images is that because it 
is able to localize and highlight the borders between classes 
(e.g., brain normal tissues and malignant tissues) by doing 
the classification for each pixel. It is called U-net, because 
the network architecture takes the shape of U alphabet and 
it contains concatenation connections; Fig. 4 shows the 
basic structure of the U-Net. Some developments of U-Net 
were U-Net +  + [75], have proposed a new architecture 
U-Net +  + for medical image segmentation, and in their 
experiments, U_Net +  + has outperformed both U-Net and 
wide U-Net architectures for multiple medical image seg-
mentation tasks, such as liver segmentation from CT scans, 
polyp segmentation in colonoscopy videos, and nuclei seg-
mentation from microscopy images. From these popular and 
basic DL models, some other models were inspired and even 
some of these models were inspired and rely on the insights 
from others (e.g., inception and ResNet); Fig. 5 shows the 
timeline of the mentioned models and other popular models 
too.

3  Deep learning applications in medical 
imaging

For the purpose of studying the most applications of deep 
learning in medical imaging, we have organized a study 
based on the most-cited papers found in literature from 2015 
to 2021; the number of surveyed literatures for segmenta-
tion, detection, classification, registration, and characteriza-
tion are: 30, 20, 30, 10, and 10, respectively. Figure 6 shows 
the pie chart of these applications.
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3.1  Image segmentation

Deep learning is used to segment different body structures 
from different imaging modalities such as, MRI, CT scans, 
PET, and ultrasound images. Segmentation means portion-
ing an image into different segments where usually these 
segments belongs to specific classes (tissue classes, organ, 

or biological structure) [81]. In general overview, for CNN 
models, there are two main approaches for segmenting a 
medical image; the first is using the entire image as an input 
and the second is using patches from the image. Segmen-
tation process of Liver tumor using CNN architecture is 
shown in Fig. 7 according to Li et al., and both the meth-
ods work well in generating an output map which provides 

Fig. 4  The basic models used in medical imaging: A ResNet architecture, B U-Net architecture [75], C CNN AlexNet architecture for breast 
cancer [76], and D Dense Net architecture [77]
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the segmented output image. Segmentation is potential for 
surgical planning and determining the exact boundaries of 
sub-regions (e.g., tumor tissues) for better guidance during 
the direct surgery resection. Most likely segmentation is 
common in neuroimaging field and with brain segmenta-
tion more than other organs in the body. Akkus et al. [82] 
have reviewed different DL models for segmentation of dif-
ferent organs with their datasets. Since CNN architecture 
can handle both 2-dimensional and 3-dimensional images, 
it is considered suitable for MRI which is in 3D scheme; 
Milleteria et al. [83] have used 3D MRI images and applier 
3D-CNN for segmenting prostate images. They have pro-
posed new CNN architecture which is V-Net which relies 
on the insights of U-Net [80] and their output results have 
achieved 0.869 dice similarity coefficient score; this is 

Fig. 5  Timeline of mostly used DL models in medical imaging

Segmenta�on
30%

Classifica�on
30%

Detec�on
20%

Registra�on
10%

Characteriza�on
10%

Fig. 6  Surveyed DL applications in medical imaging

Fig. 7  Liver tumor segmentation using CNN architecture [86]
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considered as efficient model regarding to the small dataset 
(50 MRI for training and 30 MRI for testing). Havaei et al. 
[84] have worked on Glioma segmentation from BRATS-
2013 with 2D-CNN model and this model took only 3 min 
to run. From clinical point of view, segmentation of organs 
is used for calculating clinical parameters (e.g., volume) and 
improving the performance of Computer-Aided Detection 
(CAD) to define the regions accurately. Taghanaki et al. [85] 
have listed the segmentation challenges from 2007 to 2020 
with different imaging modalities; Fig. 8 shows the number 
of these challenges. We have summarized Deep Learning 
models for segmentation for different organs in the body, 
based on the highly cited paper and variations in deep learn-
ing models shown in Table 1

3.2  Image detection/localization

Detection simply means is to identify a specific region of 
interest in an image and finally to draw a bounding box 
around it. Localization is just another terminology of detec-
tion which means to determine the location of a particular 
structure in images. In deep learning for medical images, 
analysis detection is referred as Computer-Aided Detection 
(CAD), Fig. 9. CAD is divided commonly for anatomical 
structure detection or for lesions (abnormalities) detection. 
Anatomical structure detection is a crucial task in medical 
images analysis due to determining the locations of organs 
substructures and landmarks which in turn guide for better 
organ segmentation and radiotherapy planning for analysis 
and further surgical purposes. Deep learning for organ or 
lesion detection can be either classification-based or regres-
sion-based methods; the first one is used for discriminating 
body parts, while the second method is used for determin-
ing more detailed locations information. In fact, most of 
the deep learning pathologies are connected; for example, 
Yang et al. [114] have proposed a custom CNN classifier 

for locating landmarks which is the initialization steps for 
the femur bone segmentation. In case of lesion detection 
which is considered to be clinically time-consuming for the 
radiologists and physicians and it may lead to errors due to 
the lack of data needed to find the abnormalities and also to 
the visual similarity of the normal and abnormal tissues in 
some cases (e.g., low contrast lesions in mammography). 
Thus, the potential of CAD systems comes from overcom-
ing these cons, where it reduces the times needed, compu-
tational cost, providing alternative way for the people who 
live in areas that lacks specialists and improve the efficiency 
of thereby streamlining in the clinical workflow. Some CNN 
custom models were developed specifically for lesion detec-
tion [115, 116]. Both organ anatomical structures and lesion 
detection are applicable for mostly all body’s organs (e.g., 
Brain, Eye, Chest, Abdominal, etc.), and CNN architectures 
are used for both 2D and 3D medical images. When using 
3D volumes like MRI, it is better to use patches fashion, 
because it is more efficient than sliding window fashion, 
so in this way, the whole CNN architecture will be trained 
using patches before the fully connected layer, [117]. Table 2 
shows top-cited papers with different deep learning mod-
els for both structure and lesion detection within different 
organs.

3.3  Image classification

This task is the fundamental task for the computer-aided 
diagnosis (CAD), and it aims to discover the presence of 
disease indicators. Commonly in medical images, the deep 
learning classification model’s output is a number that 
represents the disease presence or absence. A subtype of 
classification is called lesion classification and is used in 
a segmented images from the body [136]. Traditionally, 
classification used to rely on the color, shape, and texture, 
etc. but in medical images, features are more complicated 
to be categorized as these low-level features which lead to 
poor model generalization due to the high-level features 
for medical image. Recently, deep learning has provided 
an efficient way of building an n end-to-end model which 
produce classification labels-based from different medical 
images’ modalities. Because of the high resolution of medi-
cal images, expensive computational costs arise and limi-
tations in the number of deep model layers and channels; 
Lai Zhifei et al. [137] have proposed the Coding Network 
with Multilayer Perceptron (CNMP) to overcome these prob-
lems by combining high-level features extracted by CNN 
and other manually selected common features. Xiao et al. 
[138] have used parallel attention module (PAM-DenseNet) 
for COVID-10 diagnosis, and their model can learn strong 
features automatically from channel-wise and spatial-wise 
which help in making the network to automatically detect 
the infected areas in CT scans of lungs without the need 

Fig. 8  The number of challenges related to segmentation in medical 
imaging from 2007 to 2020 listed on Grand Challenges regarding the 
imaging modalities
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of manual delineation. As any deep learning application, 
classification task is performed on different body organs for 
detecting diseases’ patterns. Back in 1995, a CNN model 
was developed for detecting lung nodules from X-ray of 
chest [139]; classifying medical images is essential part for 
clinical aiding and further treatments, for example detecting 
and classifying pneumonia presence from chest X-ray scans 
[140]; CNN-based models have introduced various strati-
fies to better the classification performance especially when 
using small datasets, for example data augmentation [141, 
142]. GANs’ network was widely used for data augmenta-
tion and image synthesis [143]. Another robust strategy is 
transfer learning [61]. Rajpurkar et al. have used custom 
DenseNet for classifying 14 different diseases using chest 
X-ray from the chestXray14 dataset [129]. Li et al. have used 
3D-CNN for interpolating the missing pixels data between 
MRI and PET modalities, where they have reconstructed 
PET images from MRI images from the (ADNI) dataset 
of Alzheimer disease which contain MRI and PET images 
[144]. Xiuli Bi et al. [31] have also worked on Alzheimer 
disease diagnosing using a CNN architecture for feature 
extraction and unsupervised predictor for the final diagno-
sis results on (ADNI-1 1.5 T) dataset and achieved accuracy 
of 97.01% for AD vs. MCI, and 92.6% for MCI vs. NC. 
Another 3D-CNN architecture employed in an autoencoder 
architecture is also used to classify Alzheimer disease using 
transfer learning on a pre-trained CAD Dementia dataset, 
they have reported accuracy of 99% on the publicly data-
set ADNI, and the fine-tuning process is done in a super-
vised manner [145]. Diabetic Retinopathy (DR) could be 
diagnosed using fundus photographs of the eye, Abramoff 
et al.[146] have used custom CNN inspired from Alexnet 
and VGGNet to train a device (IDx-DR) version X2.1 on a 
dataset of 1.2 million DR images to record 0.98 AUC score. 
Figure 10 shows the classification of medical images. A few 
notable results found in literature are summarized in Table 3.

3.4  Image registration

Image registration means to allow images’ spatial alignment 
to a common anatomical field. Previously, image registration 
was done manually by clinical experts, but after deep learn-
ing, image registration has changed [176–178]. Practically, 
this task is considered main scheme in medical images, and 
it relies on aligning and establishing accurate anatomical 
correspondences between a source image and target image 
using transformations. In the main theme of image registra-
tion, both handcrafted and selected features are employed 
in a supervised manner. Wu et al. [179, 180] have employed 
unsupervised deep learning approach for learning the basis 
filters which in turn represent image’s patches and detect the 
correspondence detection for image registration. Yang et al. 
[177] have used an autoencoder architecture for predicting of 
deformation diffeomorphic metrics mapping (LDDMM) to 
get fast deformable image registration and the results shows 
improvements in computational time. Commonly, image 
registration is employed for spinal surgery or neurosurgery 
in form of localization of spinal bony or tumor landmarks to 
facilitate the spinal screw implant or tumor removal opera-
tion. Miao et al. [181] have trained a customized CNN on 
X-ray images to register 3D models of hand implant and 
knee implant onto 2D X-ray images for pose estimation. 
An overview of registration operation is shown in Table 4, 
which shows a summary of medical images registration as 
an application of deep learning.

3.5  Image characterization

Characterization of a disease within deep learning is a stage 
of computer-aided diagnosis (CADx) systems. For example, 
radiomics is an expansion of CAD systems for other tasks 
such as prognosis, staging, and cancer subtypes’ determina-
tion. In fact, characterization of a disease will rely on the 
disease type in the first place and on the clinical questions 

Fig. 9  Lesion detection algorithm flowchart [118]
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Table 2  Deep learning applications to medical imaging detection

References Organ CNN architecture Dataset Evaluation metrics Citations

Zhang et al. [119] Brain (landmarks) FCN 3D T1-weighted (MR) 
images of 700 sub-
jects(350/350)

Error (mean _ 
SD) = 2.94 _ 1.58 mm

1200 brain landmarks 
were detected

109

Zhang et al. [119] Prostate FCN 3D computed tomog-
raphy

(CT) images of 73 
subjects

Error (mean _ SD) = 
3:34 _ 2:55
7 prostate landmarks 

were detected

109

Nakao et al. [120] Brain (cerebral aneu-
rysms)

Custom CNN Locally collected MRI 
dataset

Accuracy = 94.2% 74

Tsehay et al. [121] Prostate (cancer) DCNN 196 MRI locally 
collected dataset 
(train = 144, test = 52)

0.86 = AUC 30

Korsuk Sirinukunwat-
tana et al. [122]

Abdomen (nucleus) 
colon cancer)

Spatially Constrained 
Convolutional Neural 
Network (SC-CNN)

2000 + histology images Recall = 0.827
F-score = 0.802
Median distance = 2.236

740

Setio et al. [123] Lung (pulmonary 
nodule)

Custom CNN 888 CT scans of LIDC-
IDRI dataset

Competition Perfor-
mance Metric score 
(CPM) = 0.827

AUC = 0.996

806

Li et al. [124] Lung (COVID-19) U-Net and ResNet-50 4356 chest CT exams 
from 3,322 patients

AUC = 0.96 695

Eduardo Luz et al. [125] Lung (COVID-19) EfficientNet 13,569 X-ray images overall accuracy of 
93.9%, COVID-19 
sensitivity of 96.8%

46

Kassania et al. [126] Lung (COVID-19) DenseNet -121 and 
ResNet-50

50 Chest X-ray and 150 
CT scans

DenseNet -121Accu-
racy = 99%, ResNet-50 
accuracy = 98%

67

Wang et al. [127] Breast(cancer) Autoencoder Histopathology Came-
lyon16 dataset consists 
of a total of 400 whole

slide images (WSIs)

AUC = 0.995 for clas-
sification

score of 0.7051 for the 
tumor localization

658

Dou et al. [128] Lung (Pulmonary 
Nodule)

3D-CNN LUNA16 dataset
888 CT scans

CPM score = 0.827 357

Rajpurkar et al. [129] Chest (Pneumonia) CheXnet (CNN) ChestX-ray14 dataset 
over 100,000 X-ray 
images

F1-Score = 0.435
(95% CI 0.387, 0.481),

1184

Jinlian Ma et al. [130] Thyroid(nodules) Cascade CNN 21,523 ultrasound 
images

AUC = 98.51%
confidence interval 

(CI) = 95%

78

Baka et al. [131] Vertebral U-Net Ultrasound and X-ray 
(train = 25

test = 19)

Recall = 0.88
F-means = 0.90
Accuracy = 92%

40

Alex et al. [132] Brain (Lesion) GANs MRI BraTS dataset whole tumor dice score 
of 0.69, sensitivity of 
91%

45

Bogunović et al. [133] Eye (Fluid) 112 Optical coherence 
tomography (OCT)

AUC = 1.0
Accuracy = 90%

49

Varun Gulshan et al. 
[134]

Eye (diabetic retinopa-
thy)

Inception-V3 1748 images from 
Messidor-2 dataset

AUC = 0.99,
Sensitivity = 87%,
Specificity = 98.50%

3437

Varun Gulshan et al. 
[134]

Eye (diabetic retinopa-
thy)

Inception-V3 9963 from EyePACS-1 
dataset

AUC = 0.991,
Sensitivity = 90.3
Specificity = 98.10

3437

Hoo Chang Shin et al. 
[61]

Thoraco-abdominal 
lymph node (LN)

Custom CNN 983 2D CT from 176 
patients

AUC = 0.94 for abdomen
AUC = 0.95 for medi-

astinum

3188
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related to it. There is two ways used for features extraction, 
either handcrafted features extraction or deep learned fea-
tures, in the first, radiomic features is similar to radiologist’s 
way of interpretation and analysis of medical images. These 
features might include tumor size, texture, and shape. In lit-
erature, the handcrafted features are used for many purposes, 
such as tumor aggressiveness, the probability of having can-
cer in the future, and the malignancy probability [190, 191]. 
There are two main categories for characterization, lesion 
characterization and tissue characterization. In deep learning 
applications of medical imaging, each computerized medi-
cal image requires some normalization plus customization 
to be handled and suited to the task and image modality. 
Conventional CAD is used for lesion characterization. For 
example, to track the growth of lung nodules, the charac-
terization task is needed for the nodules and the change of 
lung nodules over time, and this will help of reducing the 
false-positive of lung cancer diagnosis. Another example of 
tumor characterization is found in imaging genomics, where 
the radiomic features are used as phenotypes for associative 
analysis with genomics and histopathology. A good report 
which was done with multi-institutes’ collaboration about 
breast phenotype group through TGCA/TCIA [192–194]. 
Tissue characterization is to examine when particular tumor 
areas are not relevant. The main focus in this type of char-
acterization is on the healthy tissues that are susceptible for 
future disease; also focusing on the diffuse disease such as 
interstitial lung disease and liver disease [195]. Deep learn-
ing has used conventional texture analysis for lung tissue. 
The characterization of lung pattern using patches can be 
informative of the disease which commonly is interpreted by 

radiologists. Many researchers have employed DL models 
with different CNN architectures for interstitial lung disease 
classification characterized by lung tissue sores [149, 196]. 
CADx is not only a detection/localization task only, but it 
is classification and characterization task as well. Finding 
the likelihood of disease subtyping is the output of a DL 
model and characteristic features’ presentation of a disease 
too. For the characterization task, especially with limited 
dataset, CNN models are not trained from scratch in general, 
data augmentation is an essential tool for this application, 
and performing CNN on dynamic contrast-enhanced MRI 
is important too. For example, while using VGG-19-Net, 
researchers have used DCE-MRI temporal images with pre-
contrast, first post-contrast, and the second post-contrast MR 
images as an input to the RGB channels. Antropova et al. 
[197] have used the maximum intensity projections (MIP) 
as an input to their CNN model. Table 5 shows some high-
lighted literature of characterization which includes diagno-
sis and prognosis.

3.6  Prognosis and staging

Prognosis and staging refer to the future prediction of a dis-
ease status for example after cancer identification, further 
treatment process through biopsies which give a track on the 
stage, molecular type, and genomics which finally provides 
information about prognosis and the further treatment pro-
cess and options. Since most of the cancers are spatially het-
erogeneous, specialists and radiologists are interested about 
the information on spatial variations that medical imaging 
can provide. Mostly, many imaging biomarkers include only 

Table 2  (continued)

References Organ CNN architecture Dataset Evaluation metrics Citations

Nasrullah et al. [135] Lung (Nodules) (Custom CNN) 3D 
CMixNet with faster 
R-CNN

888 CT scan low-dosed 
lung (LUNA16 dataset)

x free response receiver-
operating characteristic 
(FROC) = 94.21%

55

Fig. 10  Classification of brain tumor using general CNN architecture
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Table 4  Deep learning applications to medical imaging for registration

Ref Anatomical structure DL architecture Dataset Transformation Citations

Miao et al. [181] Chest Custom CNN regression Total Knee Arthroplasty (TKA) 
Kinematics X-ray + Virtual 
Implant Planning System 
(VIPS) + X-ray Echo Fusion 
(XEF)

Rigid 295

De vos et al. [182] Brain Deep learning network for 
deformable image registration 
(DIRNet)

Sunnybrook Cardiac Data 
(SCD) contains 45 cardiac 
cine MRI + handwritten digits 
from the MNIST database

Deformable 267

Sun et al. [183] Brain 3D-CNN MRI (RESECT dataset) Deformable 15
Chen et al. [184] Biogeography-based Optimiza-

tion (BBO) algorithm
Retrospective Image Regis-

tration Evaluation Project 
(RIRE) with 6 modalities 
(CT, PET, MR-PD, MR-T1, 
MR-T2, MRMP-RAGE)

Geometric 
rigid trans-
formation

31

Niethammer et al. [185] Brain CNN MRI (LPBA (40) dataset 2D
3D CUMC (12), MGH(10), 

and IBSR(18) datasets)

Deformable 31

Wu et al. [186] Brain CNN MRI, LONI, ADNI databases Deformable 212
Kang et al. [187] Abdomen CNN CT low-dose Grand Challenge Contourlet 

trans-
form + wave-
let transform

486

Zhang et al. [162] Head, Abdomen, Chest CNN Private CT scans Deformable 142
Stankevièius et al. [188] Eye DNN 3153 retinal images Rigid 6
Haskins et al. [189] Prostate cancer CNN 679 MR images from the 

National Institute of Health 
(NIH)

Deformable 53

Table 5  Deep learning applications to medical imaging for characterization

References Anatomical site/task Network Dataset Citation

Aly Mohamed et al. [198] Breast (Cancer risk assessment) Customized AlexNet Mammogram images 
(Train = 14,000, test = 1850)

152

Juhun Lee et al. [199] Breast (Cancer risk assessment) Fine-tuned a pre-trained VGG-
16Net

Mammograms
604 images

42

Antropova et al. [200] Breast (Diagnosis) Pre-trained VGGNet 19 Mammograms (245), MRI(690), 
US(1125)

188

Samala et al. [201] Breast (Diagnosis) AlexNet Mammograms (train = 1545, 
test = 909) images

115

Kooi et al. [202] Breast (Solitary cyst diagnosis) VGGNet customized 1600 Mammograms lesions 93
Anthimopoulos et al. [147] Lung (Interstitial disease) Custom VGG 14,696 CT patches 849
Masood et al. [203] Lung (Pulmonary nodule staging) DFCNet LIDC-IDRI database, RIDER, 

LungCT-Diagnosis, and Lung 
Nodule Analysis (LUNA) 2016 
Dataset

92

Christodoulidis et al. [149] Lung (Interstitial disease) Custom CNN CT patches ( train = 36,106, 
test = 1050) from ALOT and 
KTH-TIPS-2b databases

200

González et al. [204] Lung and chest (prognosis of 
chronic obstructive pulmonary 
disease (COPD))

Custom CNN CT scans (train = 7983, 
test = 1000 COPDGene + 1,672 
ECLIPSE)

112

Lao et al. [205] Brain (Survival) CNN-S with transfer learning Multiparametric MRI (112 
patients

284
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the size and another simple enhancement procedures; there-
fore, the current investigators are more interested in includ-
ing radiomic features and extending the knowledge from 
medical images. Some deep learning analysis have been 
investigated in cancerous tumors for prognosis and staging 
[192, 206]. The goal of prognosis is to analyze the medi-
cal images (MRI or ultrasound) of cancer and get the better 
presentation of it by gaining the prognostic biomarkers from 
the phenotypes of the image (e.g., size, margin morphology, 
texture, shape, kinetics, and variance kinetics). For example, 
Li et al. [192] found that texture phenotype enhancement 
can characterize the tumor pattern from MRI, which lead 
to prediction of the molecular classification of the breast 
cancers; in other words, the computer-extracted phenotypes 
provide promises regarding the quality of the breast cancer 
subtypes’ discrimination which leads to distinct quantitative 
prediction in terms of the precise medicine. Moreover, with 
the enhancement of the texture entropy, the vascular uptake 
pattern related to the tumor became heterogeneous which in 
turn reflects the heterogeneous temperament of the angio-
genesis and the treatment process applicability and this is 
termed as the virtual digital biopsy location based. Gonzalez 
et al. [204] have applied DL on thoracic CT scans for pre-
diction of staging of chronic obstructive pulmonary disease 
(COPD). Hidenori et al. [207] have used CNN model for 
grading diabetic retinopathy and determining the treatment 
and prognosis which involves a non-typically visualized on 
fundoscopy of retinal area; their novel AI system suggests 
treatment and determines prognoses.

Another term related to staging and prognosis is survival 
prediction and disease outcome, Skrede et al. [208] have per-
formed DL using a large dataset over 12 million pathology 
images to predict the survival outcome for colorectal cancer 
in its early stages, a common evaluation metric is Hazard 
function which indicate the risk measures of a patient after 
treatment, and their results yield a hazard ration of 3.84 for 
poor against good prognosis in the validation set cohort of 
1122 patients, and a hazard ratio of 3.04 after adjusting for 
prognostic markers which contain T and N stages. Sillard 
et al. [209] used deep learning for predicting survival out-
comes after hepatocellular carcinoma resection.

3.7  Medical imaging in COVID‑19

Basically, after COVID-19 has been identified in 31 
December 2019 [210] and it is based on polymerase chain 
reaction (PCR) test. However, it was found that it can be 
analyzed and diagnosed through medical imaging, even 
though most radiologists’ societies do not recommend it, 
because it has similar features of various pneumonia dis-
eases. Simpson et al. [211], have prospected a potential 
use of CT scans for clinical managing, and eventually, 

they have proposed four standard categories for reporting 
COVID-19 languages. Mahmood et al. [212] have stud-
ied 12,270 patients and recommend to be subjected for 
CT screening for early detection of COVID-19 to limit 
the speedy spread of the disease. Another approach for 
classification of COVID-19 is using portable (PCXR) 
which uses chest X-ray scans instead of the expensive CT 
scans; furthermore, this has the potential of minimizing 
the chances of spreading the virus. For the identification 
of COVID-19, Pereira et al. [152] have flowed using chest 
X-ray scans using the portable manner. For the comparison 
of different screening methods, it was suggested by Sol-
dati et al. [213], which stated the Lung Ultrasound (LUS) 
is needed to be compared with chest X-ray and CT scans 
to help designing better diagnostic system to be suitable 
for the technological resources. COVID-19 has gained the 
attention of deep learning researchers who have employed 
different DL models for the main pathologies for diagnos-
ing this disease using different medical imaging modalities 
from different datasets. Starting with segmentation, a new 
proposed system for screening coronavirus disease was 
done by Butt et al. [214], who have employed 3D-CNN 
architecture for segmenting multiple volumes of CT scans; 
a classification step is included to categorize patches into 
COVID-19 from other pneumonia diseases, such as influ-
enza and a viral pneumonia. After that, Bayesian function 
is used to calculate the final analysis report. Wang et al. 
[215] have performed their CNN model on chest X-ray 
images, for extracting the feature map, classification, 
regression, and finally the needed mask for segmentation. 
Another DL model using chest X-ray scans was intro-
duced by Murphy et al. [108], using U-Net architecture 
for detecting of tuberculosis and finally classifying images, 
with AUC of 0.81. For the detection of COVID-19, Li 
et al. [124] have developed a new tool of deep learning 
to detect COVID-19 from CT scans; the main work con-
sists of few steps starting from extracting the lungs as ROI 
using U-Net, then generating features using ResNet-50, 
and finally using fully connected layer for generating the 
probability score of COVID-19 and the final results have 
reported AUC of 0.96. Another COVID-19 detection sys-
tem from X-rays and CT scans was proposed by Kassani 
et al. [126], who have used multiple models for their strat-
egy, DenseNet 121 have achieved accuracy of 99%, and 
REsNet achieved accuracy of 98% after being trained by 
LightGBM, and also, they have used other backbone mod-
els such as MobileNet, Xception, and Inception-ResNet-
V2,NASNe, and VGG-Net. For classification of COVID-
19, Wu et al. [150] have used the fusion of DL networks, 
starting from segmenting lung regions using threshold-
based method using CT scans, next using ResNet-50 
to extract the features map which further is fed to fully 
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connected layer to record AUC of 0.732 and 70% accuracy. 
Ardakani et al. [216] have compared ten DL models for 
classification of COVID-19, including AlexNet, VGG-16, 
VGG-19, GoogleNet, MobileNet, Xception, ResNet-101, 
ResNet-18, ResNet-50, and SqueezNet. Where ResNet-101 
has recorded the best results regarding sensitivity. A few 
used deep learning themes that have been used for differ-
ent applications of COVID-19 are listed in Tables 1, 2, 3.

4  Deep learning schemes

4.1  Data augmentation

It was clearly that deep learning approach performs bet-
ter than the traditional machine learning and shallow 
learning methods and other handcrafted feature extrac-
tion from images, because deep learning models learn 
image descriptors automatically for analysis. It is com-
monly possible to combine deep learning approach with 
the knowledge learned from the handcrafted features for 
analyzing medical images [153, 200, 217]. The main key 
feature of deep learning is the large-scale datasets which 
contain images from thousands of patients. Although 
some vast data of clinical images, reports, and annota-
tions are recorded and stored digitally in many hospitals 
for example, Picture Archiving and Communication sys-
tems (PACS) and Oncology Information System (OIS), in 
practice, these kinds of large-scale datasets with semantic 
labels are an efficiency measure for deep learning mod-
els used in medical imaging analysis. As it is known that 
medical images face the lack of dataset, data augmentation 
has been used to create new samples either depending on 
the existing samples or using generative models to gener-
ate new images. The new augmented samples are emerged 
with the original samples; thus, the size of the dataset is 
increased with the variation in the data points. Data aug-
mentation is used by default with deep learning due to its 
added efficiency, since it reduces the chance of overfitting 
and it eliminates the imbalanced issue while using multi-
class datasets, because it increases the number of the train-
ing samples and this also helps in generalizing the models 
and enhance the testing results. The basic data augmen-
tation techniques are simple and it was widely adopted 
in medical imaging, such as cropping, rotating, flipping, 
shearing, scaling, and translation of images [80, 218, 219]. 
Pezeshk et al. [220] have proposed mixing tool which can 
seamlessly merge a lesion patch into a CT scan or mam-
mography modality, so the merged lesion patches can be 
augmented using the basic transformations and inserted to 
the lesion shape and characteristics.

Zhang et al. [221] have used DCNN for extracting fea-
tures and obtaining image representations and similarity 
matrix too, their proposed data augmentation method is 
called unified learning of features representation, their 
model was trained on seed-labeled dataset, and authors 
intended to classify colonoscopy and upper endoscopy 
medical images. The second method to tackle limited 
datasets is to synthesize medical data using an object 
model or physics principles of image formation and using 
generative models schemes to serve as applicable medical 
examples and therefore increase the performance of any 
deep learning task at hand. The most used model for syn-
thesizing medical data is Generative Adversarial Networks 
(GANs); for example [143], GANs were used to generate 
lesion samples which increase CNN performance while 
the classification task of liver lesions. Yang et al. [222] 
used Radon Transform for objects with different modeled 
conditions by adding noise to the data for synthesizing CT 
dataset and the trained CNN model does the estimation of 
high-dose projection from low-dose. Synthesizing medical 
images is used for different purposes; for example, Chen 
et al. [223] have generating training data for noise reduc-
tion for reconstructed CT scans by applying deep learning 
algorithm by synthesizing noisy projections from patient 
images. While, CUI et al. [224] have used simulated 
dynamic PET data and used stacked sparse autoencoders 
for dynamic PET reconstruction framework.

4.2  Datasets

Deep learning models are famous to be dataset hungry, and 
the good quality of dataset has been always the key-parame-
ter for deep learning for learning computational models and 
provide trusted results. The task of deep learning models 
is more potential when handling medical data because the 
accuracy is highly needed, recently many publicly available 
datasets have been released online for evaluating the new 
developed DL models. Commonly, there are different reposi-
tories which provide useful compilations of the public data-
sets (e.g., Github, Kaggle, and other webpages). Comparing 
to the datasets for general computer vision tasks (thousands 
to million annotated images), medical imaging datasets are 
considered to be too small. According to the Conference 
on Machine Intelligence in Medical Imaging (C-MIMI) that 
was held in 2016 [225], ML and DL are starving for large-
scale annotated datasets, and the most common regularities 
and specifications (e.g., sample size, cataloging and discov-
ery, pixel data, metadata, and post-processing) related to 
medical images datasets are mentioned in this white paper. 
Therefore, different trends in medical imaging community 
have started to adopt different approaches for generating and 
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increasing the number of samples in dataset, such as gen-
erative models, data augmentation, and weakly supervised 
learning, to avoid overfitting on the small dataset and finally 
provide an end-to-end fashion reliable deep learning model. 
Martin et al. [226] have described the fundamental steps 
for preparing the medical imaging datasets for the usage 
of AI applications. Fig. 11 shows the flowchart of the pro-
cess; moreover, they have listed the current limitations and 
problem of data availability of such datasets. Examples of 
popular used databases for medical images analysis which 
exploit deep learning were listed in [227]. In this paper, we 
provide the typically mostly used datasets in the literature 
of medical imaging which are exploited by deep learning 
approaches in Table 6.

4.3  Feature’s extraction and selection

Feature extraction is the tool of converting training data 
and trying to establish as maximum features as possible to 

make deep learning algorithms much efficient and adequate. 
There are some common algorithms used for medical image 
features’ extractors, such as Gray-Level-Run-Length-Matrix 
(GLRM), Local Binary Patterns (LBP), Local Tetra Patterns 
(LTrP), Completed Local Binary Patterns (CLBP), and 
Gray-Level-Co-Occurrence Matrix (GLCM); these tech-
niques are used in the first place before applying the main 
DL algorithm for different medical imaging tasks.

GLCM: is a common used feature extractor by which 
it searches for the textural patterns and their nature within 
gray-level gradients [234]. The main extracted features 
through this technique are autocorrelation, contrast, Dissimi-
larity, correlation, cluster prominence, energy, homogeneity, 
variance, entropy, difference variance, sum variance, cluster 
shade, sum entropy, information measure of correlation.

LBP: is another famous feature extractor which uses the 
locally regional statistical features [235]. The main theme of 
this technique is to select a central pixel and the rest pixels 
along a circle are taken to be binary encoded as 0 if their val-
ues are less than the central pixel, and 1 for the pixels which 
have values greater than the central pixel. In histogram sta-
tistics, these binary codes are encoded to decimal numbers.

Gray-Level Run Length Matrix (GLRLM): this 
method removes the higher order statistical texture data. 
In case of the maximum gray dimensions G, the image is 
repeatedly re-quantizing to aggregate the network. The 
mathematical formula of GLRLM is given as follows:

where (u,v) refers to the sizes of the array values, Nr refers to 
the maximum gray-level values, and Kmax is the more length.

Raj et al. [236] have used both GLCM and GLRLM as the 
main features’ extraction techniques for extracting the opti-
mal features from the pre-processed medical images, which 
further the optimal features have improved the final results 
of classification task. Figure 12 shows the features extrac-
tion and selection types used for dimensionality reduction.

(4)K(�) = (r(u, v)∕�, 0 ≤ u ≤ Nr, 0 ≤ v ≤ Kmax,

Fig. 11  Flowchart of medical images data handling

Table 6  Public available 
datasets used for medical 
imaging

Dataset/references Anatomical organ Image modality No. of images/patients

BRATS [228] Brain MRI –
ADNI [229] Brain MRI 819 patients
ChestX-ray14 [129] Lung X-ray 30,000 + patients
LIDC-IDRI [230] Lung CT 1018 patients
ILD [231] Lung CT 120 patients
TCIA Multiple organs with cancer CT, MRI, PET 30.9 million images/37,568 patients
DRIVE [232] Eye SLO 400 patients
STARE [233] Eye SLO 400 images
ISIC 2018 Skin JPEG 2600 images
SILVER07 Liver CT –
COVIDx [169] Lung CXR 13,975 CXR images across 13,870
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4.3.1  Feature selection techniques

Analysis of Variance—ANOVA: is a statistical model by 
which it evaluates and compares two or more experiments 
averages. The idea behind this model is that the difference 
between means are substantial to evaluate the performance 
of two estimates [237]. Surendiran et al. [238] have used the 
stepwise ANOVA Discriminant Analysis (DA) for mammo-
gram masses’ classification.

The basic steps of performing ANOVA on data distri-
bution are

1. Defining Hypothesis:
2. Calculating the sum of squares
  It is used to determine the dispersion from datapoints 

and it can be written as

  ANOVA performs F test to compare the variance dif-
ference between groups and within groups. And this can 
be done using total sum of squares which is defined as 
the distance between each point from the grand mean 
x-bar.

3. Determining the degree of freedom
4. Calculating F value
5. Acceptance or rejection of null hypothesis

Principal Component Analysis (PCA): is considered 
as the most used tool for extracting structural features from 
potentially high-dimensional datasets. It extracts the eigen-
vectors (q) which are connected to (q) largest eigenval-
ues from an input distribution. PCA results develop new 
features that are independent of another. The main goal 
of PCA is to apply linear transformation for obtaining a 
new set of samples, so that the components of y are un-
correlated, [239]. The linear transform is given as follows:

where x is the input element vector ∈ RI, after that the PCA 
algorithm will choose the most significant components (y), 
and the main steps to do this are summarized as follows:

1. Standardize and normalization of the datapoints: after 
calculating the mean and standard deviation of the input 
distribution

2. Calculating the covariance matrix from the input data-
points:

(5)SumofSquares =
∑

i=0

(X
i
− X)

2

.

(6)y = ATx,

(7)Xnew =
X − mean(X)

std(X)
.

3. From the covariance matrix extract the eigenvalues:

4. Choosing k eigenvectors with the highest eigenvalues by 
sorting the eigenvalues and eigenvectors, k refers to the 
number of dimensions in the dataset

Another major feature of PCA algorithm is used for 
feature dimensionality reduction.

In medical imaging, PCA was used mostly for dimen-
sionality reduction, Wu et al. [240] have used PCA-based 
nearest neighbor for estimation of local structure distribu-
tion and extracted the entire connected tree, and in their 
results over retinal fundus data, they have achieved state-
of-the-art results by producing more information regarding 
the tree structure.

PCA was also used as a data augmentation process 
before training the discriminative CNN for different medi-
cal imaging tasks; for capturing the important characteris-
tics of natural images, different algorithms were compared 
to perform data augmentation [241] (Fig. 12).

(8)C
[
i, j
]
= cov

(
xi, xj

)
.

(9)C = V
∑

V−1
.

(10)
∑

sort
= sort(

∑
)
⋁

sort
= sort(

⋁∑

sort
).

Fig. 12  Features’ extraction and selection types used for dimensional-
ity reduction
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4.4  Evaluation metrics

For the purpose of evaluating and measuring the perfor-
mance of deep learning models while validating medical 
images, different evaluation metrics are used according 
to some specific regularities and criteria. For example, 
some particular evaluation metrics are used with specific 
tasks like Dice score and F1-score are mostly used for 
segmentation, while accuracy and sensitivity are mostly 
used for classification task. Here, we will focus on the 
most used performance measurement metrics in the lit-
erature and will cover the metrics mentioned in our tables 
of comparison.

1. The Dice coefficient is the most used metric for seg-
mentation task for validating the medical images. It is 
common also to use dice score to measure reproduc-
ibility [242]. The general formula to calculate the Dice 
coefficient is

2. Jaccard-index (similarity coefficient) [JAC]:
  Jaccard-index is a statistic metric used for finding the 

similarities between sample-sets. It is defined as the ratio 
between the size of intersection and the size of union of 
the sample-set, and the mathematical formula is given 
by

  From the formula above, we note that the JAC-index 
is always greater than the dice score and the relation 
between the two metrics is defined by

3. True-Positive Rate (TPR):
  Also is called as Sensitivity and Recall, is used to 

maximize the prediction of a particular class and it 
measures the portion of the positive voxels from the 
ground truth which also were identified as positive when 
performing segmentation process. It is given by the for-
mula

(11)Dice =
2
|||
S1
g
∩ S1

t

|||
||
|
S1
g

||
|
+ ||S

1
t
||
=

2TP

2TP + FP + FN
.

(12)JAC =

|||
S1
g
∩ S1
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|||
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1
t
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.
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4. True-Negative Rate (TNR):
  Also called specificity, it measures the number of neg-

ative voxels (background) from the ground truth which 
are also identified to be negative after the segmentation 
process, and it is given by the formula

  However, both TNR and TPR metrics are not used 
commonly for medical images’ segmentation due to 
their sensibility to the segments size.

5. Accuracy [ACC]
  Accuracy means exactly how good the DL model at 

guessing the right labels (ground truth). Accuracy is 
commonly used to validate the classification task and it 
is given using the formula

6. F1-Score:
  It is used to get the best precision and recall together; 

thus, the F1-score is called the harmonic mean of preci-
sion and recall values; it is given by the formula

  The predictive accuracy of a classification model is 
related to the F1-score; when F1-score is higher means, 
we have better classification accuracy.

7. F-beta score:
  It is a combination of advantages of precision and 

recall metrics when both the False-Negative (FN) and 
False-Positive (FP) have equal importance. F-beta-score 
is given using the same formula for F1-score by altering 
its formula a bit by including an adjustable parameter 
(beta), and the formula became

  This evaluation metric measures the effectiveness of a 
DL model according to a user who attaches beta times.

8. AUC-ROC:
  Receiver-Operating Characteristics Curve (ROC) is 

a graph between True-Positive Rate (TPR) (sensitiv-

(14)TPR = Sensitivity = Recall =
TP

TP + FN
.

(15)TNR = Specif icity =
TN

TN + FP
.

(16)

ACC =
no.ofcorrectpredictions

totalnumberofpredictions
=

TP + TN

TP + TN + FP + FN
.

(17)

F1 = (
recall−1 + Precision−1

2
)

−1

= 2.
precision.recall

precision + recall
.

(18)F� =
(
1 + �2

)
.

precision.recall
(
�2.precision

)
+ recall

.
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ity) and False-Positive Rate (FPR) (1- specificity) by 
which it shows the performance of classification model, 
and the plot is characterized at different classification 
thresholds. The biggest advantage of ROC curve is that 
its independency of the change in number of responders 
and response rate.

AUC is the area under curve of ROC, and it measures the 
2D area under the ROC curve which in turn means the integral 
of the ROC curve from 0 to the AUC measures the aggregate 
performance of classification at all the possible thresholds. 
One way to understand the AUC is as the probability that a 
model classifies random positive samples more than random 
negative samples. The ROC curve is shown in Fig. 13.

5  Discussion and conclusion

5.1  Technical challenges

In this overview paper, we have presented a review of the 
previous literature of deep learning applications in medical 
imaging. It contributed three main sections: first, we have 
presented the core of deep learning concepts considering 
the main highlights of understanding of basic frameworks 
in medical images analysis. The second section contains the 
main applications of deep learning in medical imaging (e.g., 
segmentation, detection, classification, and registration) and 
we have presented a comprehensive review of the literature. 
The criteria that we have built our overview consists of the 
mostly cited papers, the mostly recent (from 2015 to 2021), 
and the papers with better results. The third major part of 
this paper is focused on the deep learning themes regard-
ing some challenges and the future directions of address-
ing those challenges. Besides focusing on the quality of 
the mostly recent works, we have highlighted the suitable 
solutions for different challenges in this field and the future 
directions that have been concluded from different scien-
tific perspective. Medical imaging can get the benefit from 
other fields of deep learning, that have been encouraged 

from collaborative research works from computer vision 
communities, and furthermore, this collaboration is used to 
overcome the lack of medical dataset using transfer learning. 
Cho et al. [243] have answered the question of how much is 
the size of medical dataset needed to train a deep learning 
model. Creating synthetic medical images is another solution 
presented in deep learning using Variational Autoencoders 
(VAEs) and GANs for tackling the limited labeled medical 
data. For instance, Guibas et al. [244] have used 2 GANs for 
segmenting and then generating new retinal fundus images 
successfully. Another applications of GANs for segmenta-
tion and synthetic data generation were found [132, 245].

Data or class imbalance [246] is considered a critical 
problem in medical imaging, and it refers to that medical 
images that are used for training are skewed toward non-
pathological images; rare diseases have less number of train-
ing examples which cause the problem of imbalanced data 
which lead to incorrect results. Data augmentation repre-
sents good solution for this, because it increases the number 
of samples of the small classes. Away from dataset chal-
lenges strategies, there are algorithmic modification strate-
gies which are used to improve DL models’ performance for 
data imbalance issue [247].

Another important non-technical challenge is the pub-
lic reception of humans that the results are being analyzed 
using DL models (not human). In some papers in our report, 
DL models have outperformed specialists in medicine (e.g., 
dermatologists and radiologists) and mostly in image rec-
ognition tasks. Yet, a moral culpability may arise whenever 
a patient is mistakenly diagnosed or morbidity cases may 
arise too when using DL-based diagnostic, since the work 
of a DL algorithms is considered a black box. However, the 
continued development and evolving of DL models might 
take a major role in the medicine as it is involving in various 
facets of our life.

AI systems have started to emerge in hospitals from a 
clinical perspective. Bruijne [248] have presented five chal-
lenges facing the broader family of deep learning which is 
machine learning in medical imaging field including the 
data preprocessing of different modalities, interpretation of 
results to clinical practice, improving the access of medical 
data, and training the models with little training data. These 
challenges further have addressed the future directions of 
DL models improvement. Another solutions of small data-
sets were reported in [8, 249].

DL models’ architectures were found not to be the only 
factor that provides quality results, where data augmentation 
and preprocessing techniques are also substantial tools for a 
robust and efficient system. The big question is that how to 
benefit from the results of DL models for the best of medical 
images analysis in the community.

Considering the historical developments of ML tech-
niques in medical imaging gives us a future perspective 

Fig. 13  ROC and AUC graph
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how DL models will continue to improve in the same field. 
Accordingly, medical images quality and data annotations 
are crucial for proper analysis. A significant concept is the 
relevance between statistical sense and clinical sense, even 
though the statistical analysis are quiet important in research, 
but in this field, researchers should not lose the sight from 
clinical perspective; in other words, even when a good CNN 
models provides good answers from the statistical perspec-
tive, it does not mean that it will replace a radiologist even 
after using all the helping techniques like data augmentation 
and adding more layers to get better accuracies.

5.2  Future promises

After reviewing literature and the most competitive chal-
lenges that face deep leaning in medical imaging, we con-
cluded that three aspects will probably carry the revolu-
tion of DL according to most of researchers, which are 
the availability of large-scale datasets, advances in deep 
learning algorithms, and the computational power for 
data processing and evaluation of DL models. Thus, most 
of the DL techniques are directed into the above aspects 
for alleviating the DL performance more; moreover, the 
need for investigations to improve data harmonization, 
standards developments which is needed for reporting 
and evaluation, and accessibility of larger annotated data 
such as the public datasets which lead to better independ-
ent benchmarks’ services. Some of the interesting appli-
cations in medical imaging was proposed by Nie et al. 
[250], by which they have used GANs to generate or CT 
scans from MRI images for brain; the benefit of such work 
will reduce the risk of patients being exposed to ionizing 
radiation from CT scanners, which also reserve patients’ 
safety. Another significant perspective relies on increas-
ing the resolution and quality of medical images and also 
reduces the blurriness from CT scans and MRI images 
which means getting higher resolution with lower costs 
and better results, because it has lower field strength [251].

The new trends’ technology of deep learning approach 
is concerned about medical data collection. Wearable 
technologies are getting the interest of the new research 
which provide the benefits of flexibility, real-time moni-
toring of patients, and the immediate communication of 
the collected data. Whenever the data become available, 
Deep learning and AI will start to use the unsupervised 
data exploration, which in turn will provide better analy-
sis power plus suggesting better treatments’ methodolo-
gies in healthcare. In summary, the new trends of AI in 
healthcare pass through stages; the quality of performance 
(QoP) related to deep learning will lead to standardization 
in terms of wearable technology which represent the next 
stage of healthcare applications and personalized treat-
ment. Diagnosing and treatment depend on specialists, but 

with deep learning enabled, some small changes and signs 
in human body can be seen and early detection becomes 
possible which in turn will launch the treatment process 
of pre-stage of diseases. DL model optimization mainly 
focuses on the network architecture, while the standard 
term of optimization means the distribution and standardi-
zation with respect to other parts of DL (e.g., optimizers, 
loss functions, preprocessing and post-processing, etc.). In 
many cases to achieve better diagnosis, medical images are 
not sufficient, where another data are required to be com-
bined (e.g., historical medical reports, genetic information, 
lab values, and other non-image data), though by linking 
and normalizing these data with medical images will lead 
to better diagnosis of diseases, more accurately through 
analyzing these data in higher dimensions.
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