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Abstract

The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on
pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring
of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively
evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation
that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research
in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this
area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilita-
tion and assessment research which are further divided into sub-categories to capture novelties of each research. The review
discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically

assessing those abnormalities. Finally, suggestions on the future direction of research are offered.
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1 Introduction

Computer vision (CV)-based human motion modelling
and analysis has been extensively researched by the com-
munity. But, most of the research can be categorised into
pose estimation [160], human-object interaction [63, 98],
activity/gesture recognition [31, 65, 113] or human-human
interaction [53]. However, comparative analysis of human
motion has received relatively less attention from the com-
munity. Comparative analysis of human motion is necessary
for application areas like automated rehabilitation and/or
assessment of stroke, Spinal Cord Injury (SCI), Parkinson’s
Disease (PD) or patients with other physical impairments.
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Patients recovering from such impairments undergo exten-
sive physical rehabilitation and are assessed by Clinicians
(physicians, physiotherapists or occupational therapists)
that require patients to spend time with their carer(s). The
process is expensive, labour-intensive, time-consuming and
subject to human error. Statistics show that informal care for
rehabilitation is the reason behind 27% of the whole treat-
ment cost. In the case of stroke patients, this amounted to
around 2.42 billion pounds a year in the UK in 2016 [130].
Moreover, such assessments may suffer from inaccuracies
as visual progress reporting scheme is prone to inconsist-
ent perception. Inaccuracies may also arise from the sub-
jectivity of these behavioral and clinical assessments [96].
In addition, integration of assessment based on kinematic
parameters can be more robust and accurate as compared
to visual assessment by clinicians alone [17]. Body-worn
sensors or marker-based systems are expensive and can be
very intrusive to a patient’s day to day activities. Marker-
less vision-based human motion modelling and subsequent
comparison has the potential to provide home-based, inex-
pensive and unobtrusive monitoring. It also has potential
applications in sports including, but not limited to, diving
and figure skating.
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1.1 Scope of this review

This review includes relevant articles from the last 20
years that is representative of research in the domain of
vision-based physical rehabilitation and assessment. We
have focused on articles where the data captured using CV
methods has been used for comparative analysis i.e., where
intelligent processing is involved. The article also includes
articles on virtual rehabilitation and serious games involving
vision-based sensors. In virtual rehabilitation although the
role of CV is largely limited to tracking, we have focused
on articles having a secondary ‘learning’ objective. Activity
recognition methods specific to rehabilitation exercises have
been also included. Research not set in a clinical scenario
but aimed towards assessment of physical impairments have
been also covered. Existing research suggest that accurate
body joint position estimation is vital for vision-based reha-
bilitation and assessment. However, human pose estima-
tion has been extensively researched and covered in several
surveys and reviews [118, 160]. Similarly, human activity
recognition also has been widely explored by the CV com-
munity and covered in several surveys [65, 113]. Thus,
this review does not aim to cover joint position estimation
or human activity recognition methods. Also, it does not
include inertial or other non-vision sensor-based research.

2 Domain characteristics

There are many aspects to a vision-based research includ-
ing but not limited to raw data, feature extraction, feature
representation, feature comparison, statistical and stochastic
modelling (DL). However, the general flow of a research
in the domain of vision-based rehabilitation and monitor-
ing can be broadly illustrated by the Fig. 1. The illustra-
tion highlights important characteristics of this domain. It
includes, a vision-based sensor such as monocular RGB or
depth camera for sensing the data. A low-level feature such
as human joint positions. A feature encoding and representa-
tion method such as group of joint positions or combination
of human kinematic parameters. Then, the encoded features
are compared through simple graphical and statistical tech-
niques or through intelligent algorithms. Finally, assessment

Fig. 1 A very high level illus-
tration of general logical flow
for a vision based physically
impaired patient assessment
system

\

is done in the form of kinematic parameter comparisons,
pose recognition, automated clinical scoring, impairment
classification and others. Rehabilitation systems usually have
an exercise program and provide feedback. These character-
istics can be broadly described in three major parts: primary
data, feature extraction and representation, and feature com-
parison. For application of CV to rehabilitation and assess-
ment of physically impaired persons, we focus on the above
mentioned aspects. The domain characteristics w.r.t these
aspects are discussed next.

2.1 Physical impairment data

In many other vision-based human motion modelling appli-
cations including, but not limited to, human pose estima-
tion and activity recognition large-scale datasets are publicly
available. Thus, collecting data is often outside the scope
of research. But, for research in the physical impairment
domain, authors have often collected their own data. Human
movements are multidimensional and so are its abnormali-
ties. Musculo-skeletal impairments are exhibited differently
in different patients over a period of time. A multitude of
factors such as the impairment involved, extent of injury,
area affected, physiological characteristics and care provided
lead to hugely varying manifestation of impairments across
patients. This is in addition to the wide range of motion
capabilities of human beings. Clinicians have specific tests
and exercises designed for rehabilitation and assessment of
different types of motor abnormalities. Therefore, research-
ers are also required to run specific experiment to capture
data for the assessment of specific musculo-skeletal impair-
ments. Thus, most authors have captured data catering to
specific situations corresponding to their objective. Due to
difficulty in accessing patients, ethical issues and other such
issues, data is difficult to acquire and the datasets are often
small. Researchers have used alternative strategies such as
healthy persons acting like patients, use of noise to create
varied data and others. In this domain, there are a very few
publicly available datasets (Table 7) and even these are very
small when compared to datasets available for other CV
applications areas (e.g., image recognition, human activity
recognition). In this article, we highlight the target abnor-
mality, area of body affected and the corresponding data
collected for each article reviewed.
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2.2 Feature extraction and representation

The ultimate goal of musculo-skeletal patient monitoring is
to provide an automated assessment. To assess the progress
in physical rehabilitation in the case of physically impaired
persons, clinicians rely on physical characteristics such as
extent of elbow flexion, shoulder abduction, speed of motion
and others. To determine such characteristics researchers
have almost exclusively relied on estimation of human body
joint positions as primary low-level features. For automated
assessment, it is often required to compare a patient’s execu-
tion of Activities of Daily Living (ADL) or rehabilitation
exercises with a regular healthy execution. Here also, the
objective is to compare sequence of joint positions. For nor-
mal activity recognition, researchers use image-based fea-
tures including VLAD [58], Bag of Visual Words (BoVW)
[109], Dense trajectories [148] and others. These features
incorporate valuable information such as context, optical
flow and so on, which are not available when only joint posi-
tions are used as low-level features. So far, researchers have
mostly used Kinect [161] for obtaining 3D joint positions
which has its limitations as explained in [152]. Deep Convo-
lutional Neural Networks (DCNN) have been very success-
ful in 2D human pose estimation [20, 50] and more recently,
these networks are used for 3D pose estimation with much
higher accuracy [107, 157]. But research in this domain is
yet to fully explore the DCNN-based pose estimation.

Various kinematic features such as joint angle trajectory,
relative joint position, speed and acceleration are used for
establishing the clinical condition of patients. Thus, joint
position estimations have been encoded in various differ-
ent forms for feature representation. Such encoding often
comprises of simple human body kinematic features such as
relative angles, velocities, body centric coordinates and oth-
ers [127, 128]. This is useful when a specific type of impair-
ment is in consideration. For example, for discriminating
pathological gait, knee angle, step distance and other such
parameters are considered. Another approach is to quantify
the difference between patient activity and a perfect template
consisting of regular healthy activity. For this, researchers
have used statistical representations such as Hidden Markov
Model (HMM) [138] or Dynamic Time Warping (DTW)
[11, 121]. The main aim of feature representation is to select
and encode joint positions in a manner that improves the dis-
criminatory power of comparative algorithms with regards
to the given clinical condition.

2.3 Feature comparison

One of the major goals of research in vision-based physical
rehabilitation and monitoring is to provide an automated
clinical assessment of a musculo-skeletal patient’s physi-
cal condition. For many CV applications such as object

detection or activity recognition the objective is well-defined
(e.g., classification). However, for assessment of patients the
goal varies widely and often depends on the clinical require-
ments. The requirements vary from statistical analysis to
methods for automatically establishing clinical scores such
as Fugl-Meyer Assessment (FMA) [59], Unified PD Rating
Scale (UPDRS) [103] and others. For some cases simple
presentation and comparison of joint angle trajectories is
enough, but for other cases such as automated clinical scor-
ing, advanced comparison algorithms are often required. It
needs to be emphasized that researchers have mostly relied
only on joint positions as low-level features. Thus, rich
vision-based feature representations (e.g., BovW, MBH)
that can provide contextual information are not available.
Therefore, it is essential to develop techniques for compara-
tive analysis of features based only on joint positions. Such
comparisons can be done in many ways including, but not
limited to simple graphical analysis, statistical analysis,
sequence comparison, classification and regression. Meth-
ods such as graphical comparison are often simple and may
not require large datasets. On the other hand, establishing
automated clinical scoring requires advanced algorithms and
large datasets to work reliably. As explained earlier, obtain-
ing large-scale dataset for each type of abnormal motion
is difficult. Therefore, the main challenge in this area is to
maximize the applicability of advanced algorithms with
limited data.

3 Surveys and taxonomies

3.1 Surveys

Table 1 lists surveys and reviews aimed towards vision-
based physical rehabilitation and assessment. Zhou et al.
[164] surveyed human motion tracking for rehabilitation. It
focuses mainly on various vision and sensor based tracking
systems. It further discusses home-based and robot-aided
rehabilitation systems. The article does not describe algo-
rithms used for comparative evaluation or abnormal activity
detection.

Webster and Celik [152] reviewed Kinect-based research
and focused on formulation of rehabilitation exercises for
monitoring. The authors discuss elderly care and stroke
rehabilitation methods. Within elderly care, fall detection,
fall risk reduction and Kinect-based gaming are discussed.
Articles under stroke rehabilitation are categorised into eval-
uation of Kinect, rehabilitation methods and Kinect gam-
ing. Similarly, Da Gama et al. [40] also reviewed Kinect
based research. The focus of this review is on formulation
of rehabilitation experiments, subsequent monitoring of pro-
gress and analysis of various comparison techniques. Most
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Table 1 Existing reviews and surveys on vision-based physical rehabilitation and assessment research

Author References Journal Comments

Zhou et al. 2004 [164] 184 Biomedical Signal Processing and Control Highlights tracking methods

Webster et al. 2014 [152] 96 Journal of Neuroengineering and Rehabilitation Focused on Kinect-based research, elderly
care and stroke rehabilitation

Hondori et al. 2014 [96] 105 Journal of Medical Engineering Focuses on Kinect-based research and high-
lights impact of Kinect

Da Gama et al. 2015 [40] 66 Games for health journal Focuses on Kinect-based research

Sathyanarayana et al. 2018 [119] 192 Journal of Ambient Intelligence and Humanized  Patient monitoring and algorithms

Computing
Ahad et al. 2019 [2] 79 CVPR workshop Action understanding for assistive healthcare

of these techniques rely on basic methods including aver-
age angle flexion, Euclidean distance, mean error, correla-
tion coefficient and others. The authors present taxonomy
in terms of ‘Evaluative’, ‘Applicability’, ‘Validation’ and
‘Improvement’ categories. The taxonomy is based on a clini-
cal perspective. Both Webster et al. [152] and Da Gama
et al. [40] review articles from a clinical perspective where
clinical progress made by patients is a major focus. Sath-
yanarayana et al. [119] reviewed articles from a CV perspec-
tive and highlighted vision algorithms. Their taxonomy is
based on clinical application and articles include areas such
as ADL recognition or fall detection which does not always
include abnormal or impaired physical motion. Moreover,
the review does not include articles after 2014.

In the current study, existing research has been reviewed
from a CV application perspective. We highlight the mus-
culo-skeletal impairment, visual sensor, feature extraction
and comparison algorithms for each reviewed article. The
discussion focuses on algorithms used for discriminating
and assessing physically impaired activity in comparison to
regular healthy activity.

3.2 Taxonomy

In this article we develop our own taxonomy, which is neces-
sitated due to the lack of reviews in this area from a CV
application perspective. The review both categorises and
tabulates the articles for highlighting different aspects. As
discussed in Sect. 2, it focuses on the following three char-
acteristics: (1) data collection, (2) feature extraction and rep-
resentation, and (3) feature comparison. Thus, the articles
reviewed are tabulated to address these aspects. The columns
headed Target and Dataset highlight the kind of impair-
ment, area of body affected and briefly summarises the data
collected. The columns headed Sensor/Data and Feature
summarises the types of sensor data, feature extracted from
the sensor and feature representation or encoding algorithm.
We have also listed any non-vision hardware used along
with vision sensors. The last column headed Objective
summarises the comparison method and the objective from
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the application perspective. Most of the reviews on other
areas of vision-based research have focused on categorising
the discussion in terms of algorithms or techniques used.
Articles reviewed often have common goals such as activity
recognition, pose estimation and they also use common data-
sets. Thus a readily available and fair comparison between
the methods used can be drawn. But, due to the wide ranging
goal of research in the vision-based rehabilitation domain,
authors have used very different data, features and compari-
son methods. Thus, it is very difficult to categorise each
research in terms of methods or algorithms used and com-
pare them. Instead, we propose our taxonomy based on end
user application. However, discussions on each application
type have been further broken in paragraphs based on simi-
larity of methods used. The Author column in each Table
also indicates the sub-category an article is placed into.
Primarily applications are placed into two major categories,
rehabilitation and assessment. These can be further sub-cat-
egorised as listed below:

1. Rehabilitation: Automated rehabilitation system

(a) Virtual rehabilitation
(b) Direct rehabilitation

2. Assessment: Point in time assessment

(a) Comparison
(b) Categorisation
(c¢) Scoring

3.2.1 Rehabilitation

In rehabilitation systems, the primary goal is to provide an
automated home or in clinic system for patients to undergo
physical therapy, gesture therapy or other rehabilitation exer-
cises. Such a system guides patients to perform their reha-
bilitation tasks. Rehabilitation may be fully automated and/
or clinician mediated. Research in this category normally
aims to improve the patient’s physical condition. Most of
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the research in this category is of the type Virtual Reha-
bilitation. In virtual rehabilitation, a patient’s performance
in a virtual world is assessed rather than directly assessing
a patient’s physical performance. This includes an avatar
performing tasks in a virtual world and the use of serious
games for rehabilitation. Here, subjects are required to per-
form activities in a virtual world through real world move-
ments. In Direct Rehabilitation systems, users are guided
by a web-based interface to perform rehabilitation exercises,
while their movements are directly tracked through vision-
based sensor. In this case, physical performance of patient
is measured instead of their avatar’s performance or their
ability to complete tasks in a virtual world. Patient assess-
ment may be inbuilt or may require clinicians.

3.2.2 Assessment

In assessment applications, the goal is to provide a point in
time assessment of a patient’s quality of motion linked to
one or more body parts. There is no rehabilitation system
involved. Assessment may be carried out in a clinical or
non-clinical setting. Assessment application can be further
categorised into three types and based on the way a user
would receive the end output. The first type is Compari-
son where a patient’s data (e.g., kinematic parameters) are
extracted for comparison but there is no decisive automated
scoring system available. In such applications, there may be
statistical comparison like Analysis of Variance (ANOVA)
or simple graphical comparison of kinematics represented by
trajectories of an ideal vs a patient’s joint angle or position
in time. Second, we have Categorisation type applications,
which are more decisive, where the main goal is classifica-
tion. Movements may be classified as correct-incorrect or
may be classified into a few types of abnormalities. This
includes both gesture/posture and activity recognition. In the
third Scoring type applications, a decisive score is attached
to patient movements to assess their quality of motion. This
can be clinical scoring such as FMA [59] or author-pro-
posed scoring. The score may be for assessing the quality of
movement or quantify the differences from an ideal motion.
Next, we review various articles published in the domain of
monitoring and rehabilitation of musculo-skeletal patients
according to the taxonomy developed. We present all the
articles in tabular format and discuss more relevant articles
in detail.

4 Virtual rehabilitation

The objective in virtual reality and serious games-based
rehabilitation application is to provide a set of virtual tasks
that will require the user to perform therapeutic gestures,

rehabilitative or cognitive exercises (Table 2). The move-
ment of the user in the real world is tracked through devices
like Kinect, or other sensors that can accurately reproduce
a user’s movement in the virtual world, often through an
avatar. In virtual rehabilitation systems the role of CV is
largely limited to tracking. In this survey, we have focused
on works with secondary objectives related to CV such as
gesture, pose recognition or simple graphical comparison of
trajectories of the concerned body joint angle. The discus-
sion is split into non-skeleton, skeleton-based and automated
assessment systems.

4.1 Non-skeleton based

Virtual rehabilitation existed before skeleton tracking
became feasible. Early research in this area used indirect
methods for tracking human limb movements such as colour
detection, object detection and others. In 2008, Sucar et al.
[132] used skin colour to track hands for gesture therapy.
Colour markers-based skeleton tracking has been used as
a cheap alternative to inertial sensor tracking. Sucar et al.
[133], developed rehabilitation system for hand movement
of stroke patients. A total of 42 patients went through the
rehabilitation program. A green ball attached to a hand grip-
per is used for tracking as shown in Fig. 2. Participants are
required to move their arm through a simulated environment.
Stroke patients often compensate reduced hand movement
through the trunk. This trunk compensation is observed
through face tracking. Face detection and tracking is imple-
mented using Haar Cascade classifiers [147]. Authors have
also attempted to use their own skeleton tracking algorithms
for rehabilitation in virtual reality [101].

Non-skeleton based methods are inherently limited in
ability due to lack of joint positions. Mostly, such methods
are able to track single body-part such as an arm [132]. This
can be sometimes compensated by using vision-based fea-
ture extraction methods such as body tracking from silhou-
ette [83, 100]. In Natarajan et al. [100], depth information
has been used in a RANSAC-based plane fitting method
to discriminate the subject plane from background. This,
combined with morphological operations enabled the users
to select the human silhouette. In virtual rehabilitation, since
most of the assessment is done to achieve the objective of
completing the game, there is little scope for further statis-
tical or other algorithmic comparison. However, to tackle
complex decision processes, algorithms such as Partially
Observable Markov’s Decision Process (POMDP) can be
applied as in Aviles et al. [7].

4.2 Skeleton-based

With the introduction of Microsoft Kinect in 2010, skel-
eton tracking became feasible and readily accessible. Chang
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Fig.2 An example of virtual
rehabilitation where perfor-
mance in the virtual world is
considered for assessment.
Here, the hand is tracked
indirectly through the green ball
[133]

et al. [25] used Kinect to measure joint position and angle
trajectories in their proposed game for shoulder rehabilita-
tion. Each participant was required to perform 6 different
shoulder exercises which were quantified as correct or wrong
by OpenNI middleware. The authors also compared Kinect
skeletal data with OptiTrack for establishing the ground
truth. Fern et al. [52] used several common exercises of hip,
knees and shoulders in the form of a serious game called
rehabtimals. Joint rotation data over time was used to cal-
culate kinematic metrics such as Range of Motion (ROM),
Mean Error (ME) and Mean Error Relative (MER) in ROM.
Da Gama et al. [39] used joint angles calculated from Kinect
skeleton data to detect correct exercise posture. A total of 3
physiotherapists, 4 adults and 3 elderly subjects were used
to evaluate the prototype. The system was able to recognize
the correct movements 100% of the time under controlled
conditions.

Here, most authors have used their own small datasets and
thus, it is difficult to ascertain their generalisability. Owing
to availability of skeleton positions, kinematic parameters
have been used for performing statistical comparisons like
ANOVA analysis. Small datasets are not sufficient for the
application of Deep Learning (DL) algorithms but other
algorithms such as HMM, DTW could have been used for
comparing temporal sequences. Joint angle comparison is
good for posture recognition. However, time sequence com-
parison algorithms are essential for comparing joint angle
and/or joint position trajectories.

4.3 Automated assessment

Some virtual rehabilitation systems also have an integrated
automated assessment. Adams et al. [1] proposed to assess
upper limb motor function through practice of ADL in vir-
tual reality. Motor function metrics, such as duration, nor-
malized speed, Movement Arrest Period Ratio (MAPR)
obtained from skeletal tracking via Kinect were used to
calculate Wolf Motor Function Test (WMFT) [154]. This
score was co-related to the proposed Virtual Occupational
Therapy Assistant (VOTA) metrics and it was found that
the proposed metrics can be used to assess a patient’s ability
to perform ADL. With their affected arm, 14 hemiparetic
stroke patients were asked to participate in a virtual meal
preparation activity. The results indicated satisfactory cor-
relation between proposed VOTA metrics and the standard
WMEFT metrics. VRehab [8] used Long Short-Term Mem-
ory (LSTM) networks for estimating the degree of patient
impairment. For evaluation, 20 healthy subjects were filmed
using Kinect and Leap Motion Controller (LMC). Kinect
was used to provide joint positions, angles and speeds as fea-
tures while LMC provided pinch strength, average speed of
fingertips. Three different LSTM networks were trained for
regressing impairment scores for three different exercises.
The trial included five patients who were scored by the sys-
tem and 5 physiotherapists. The proposed system provided
score was shown to be very close to the average score by
physiotherapists.
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5 Direct rehabilitation systems

In direct rehabilitation systems, there is usually an exercise
regimen prescribed for patients and the purpose is to demon-
strate their functional improvement. Patients may be guided
through a web-based interface for performing tasks similar
to virtual rehabilitation type applications. However, unlike
virtual rehabilitation, a subject’s physical performance in the
physical world is considered for further assessment or feed-
back. The discussion can be split into two parts: First, where
CV sensor is exclusively used to obtain primary data and
second, where non-vision systems such as assistive robots
are used (Table 3).

5.1 Pure vision-based

Ghali et al. [57] used object detection techniques for track-
ing hand movement. A camera was placed above a kitchen
platform and movement and orientation of objects was used
as a measure to track the hand movement. Sequence of hand
movement is used to determine whether an activity such
as ‘making coffee’ is successfully completed. Kinect does
not track finger joint positions. Zariffa et al. [159] used Hu
invariant and contour signature extracted from background
subtraction as features for classification of hand grip varia-
tions. Two cameras, one for top view and one for side view,
were used to film 10 subjects against a standard background.
Several types of grips fundamental to ADL such as lateral
key grip were filmed. KNN was employed for classification.

The Kinect SDK provides advanced information such as
kinematics and gesture recognition. Authors have used this
to count the number of times correct posture was attained as
a measure of rehabilitation progress [26, 27, 67]. Lin et al.
[89] used 10 standing and 18 seated Tai-Chi regimen as
rehabilitation exercises. Rehabilitation poses of two patients
were compared to a perfect execution of Tai-Chi, for meas-
uring progress over time. Patients were rehabilitated and
monitored in two phases. First, with physiotherapists and
then with video and Kinect. Posture attained by patients
were compared through ME with target posture and subse-
quently graded. Feedback was provided to the user as shown
in Fig. 3. Each time the system’s assessment was compared
to that of a physiotherapist for validation.

Su et al. [131] proposed a fully independent Kinect Ena-
bled Home Rehabilitation (KEHR) system. The system
provided four functions, (1) rehabilitation management
software system, (2) reference exercises, (3) recording exer-
cises performed at home using Kinect and (4) evaluation
of performance. Performance was compared through DTW
and Fuzzy Logic. Four different subjects were asked to per-
form different types of shoulder rehabilitation exercises in a

@ Springer

controlled environment. Assessment was provided in form
of messages like “right hand: good”, “left hand: bad”, “too
slow” etc. Physicians and the KEHR system agreed 80% of
the time.

5.2 Multi-modal

In multi-modal applications, CV sensors (e.g, Kinect) are
combined with other assistive technologies including, but
not limited to, assistive robots and electrical stimulation.
Normally, the patients using the rehabilitation systems are
guided via visual animation or clinicians. Galeano [56]
used Functional Electro-Stimulation (FES) for assistance
while providing visual feedback through posturography
on skeletal data. Frisoli et al. [55] introduced a gaze inde-
pendent, wearable Brain-Computer Interface (BCI) driven
robotic exo-skeleton for upper limb rehabilitation in stroke
patients. The first objective was to select real world objects
by estimating eye-gaze through a vision-based eye track-
ing system. Speeded Up Robust Features (SURF) [14] was
used for object matching and Lucas-Kanade tracking algo-
rithm [91] was applied to track objects using depth data
from Kinect. The second objective was to assist patient
arm movement for moving real world objects. To achieve
this, a signal from the BCI was fed to a Support Vector
Machines (SVM) classifier to ascertain if the subject
intended to move his or her arm. Then, the signal was
used to actuate robotic-arm. Devanne et al. [42] proposed
a humanoid robot guidance system for rehabilitation from
lower back pain. A Gaussian Process Based Latent Vari-
able Model (GP-LVM) has been used to model exercise
movements from a clinician. It then models the clinician’s
activity according to patient morphology to guide the reha-
bilitating patient.

In [26, 27, 67], the goal is to count correct postures by
calculating the joint angles. This fails to tell us how close
the patient is to getting the posture correct. A slightly bet-
ter way is to compare joint angle trajectories as in Excell
et al. [49] or grading of error through ME as done by Lin
et al. [88]. To judge if an exercise is executed correctly
it is also essential to qualify the starting posture as cor-
rect [15], which is not the case in approaches mentioned
above. These approaches are mostly primitive and lack
analysis of the whole temporal sequence. Later approaches
have taken advantage of time-sequence comparison algo-
rithms such as DTW or variants of it like Open-ended
DTW (OE-DTW) [121]. These have been combined with
various grading methods for better understanding of
a patient’s state. Clinicians mostly use their experience
to judge a patient’s state without taking into account kin-
ematic parameters. Therefore, it may be beneficial to use
kinematic parameters as training data and use clinician’s
score as labels to build a model that can present a true
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Fig.3 An instance of a direct
rehabilitation systems where a
patient’s performance is directly
assessed through joint posi-
tion tracking. In [89], Tai-Chi
exercise pose is compared to a
standard pose and feedback is
provided

representative of clinicians. In automated rehabilitation, it
is not always feasible to be guided via a screen interface.
In such scenarios, other assistive technologies like BCI
and human motion imitating robots are very useful [51].
For assistive robots, it is important to work according to a
patient’s morphology as demonstrated by Devanne et al.
[42]. The authors also show us very good implementation
of the latent model needed to transfer low dimensional
latent space to high dimensional robot space through the
probabilistic model GP-LVM.

6 Comparison

Table 4 summarises articles presenting comparative analy-
sis of kinematic data obtained from vision sensors. In such
systems, there is no rehabilitation program designed for
patients. These articles are more important with regards
to CV rather than clinical objectives. Authors have drawn
comparison ranging from simple graphical visualisation,
statistical techniques to more advanced Machine Learning
(ML) algorithms. This discussion is split into three parts.
First part discusses articles where kinematic data is directly
used for comparison. Graphical and statistical comparison
highlight differences between patient and healthy subjects’
parameters. Second, applications where ML algorithms has
been used for modelling kinematic data. The third part dis-
cusses use of DL algorithms for comparative analysis of
patient motion.

6.1 Kinematics-based modelling

In this type of application, research directly use kinematic
data for comparison. Before the introduction of Kinect,
authors have used other computer vision algorithms to
extract skeleton. Leu et al. [83] used two cameras for filming
20 subjects against a standard background. Human silhouette
was extracted through background subtraction and image
segmentation. This data was compared to a standard stick
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figure model for extracting skeleton. For accuracy, the algo-
rithm was tested against standard sensor-based marker. Sim-
ple graphical comparison showed visible difference between
knee angle trajectories of regular and irregular gait. Natara-
jan et al. [100] also used their own tracking algorithm while
introducing Reha@Home. The authors argued that detection
on lower extremity joints in Kinect is not accurate enough.
Reha@Home used depth information in combination with
morphological operations to extract human silhouette. Four
different subjects with varying conditions such as multiple
sclerosis, were tested in a hospital setting both before and
after treatment. The parameters for gait analysis are hip
angle, knee angle, left and right foot step length and stride
length. Performance of the system was evaluated through
comparison with data from electrogoniometer. Graphical
trajectories of gait parameters showed visible difference
between the healthy subjects and patients.

The Toronto Rehab Stroke Pose Dataset (TRSP) [44] pre-
sents 3D joint positions consisting of upper arm movements
for both stroke patients and healthy subjects. Kinect was
used for tracking joint positions of 10 healthy subjects and
10 stroke survivors having restricted arm movements. Two
experts were recruited to annotate the dataset. The dataset
was labelled into 3 different compensatory movements and
one normal movement. Area Under Curve (AUC) values
obtained from joint angle trajectory showed substantial
measurable difference between regular healthy and physi-
cally impaired patients’ examples.

Graphical and/or statistical comparison has also been
used in situations where patients lack any specific impair-
ment. Spasojevic et al. [128] used four different body move-
ments and measurements, for discriminating PD patients
from healthy subjects. Gait, Shoulder Abduction Adduction
(SAA), Shoulder Flexion Extension (SFE) and Hand Bound-
ary Movements (HBM) were considered for body move-
ments. Speed, rigidity, ROM and symmetry ratio were used
as measurement criteria. These were combined to create a
Movement Performance Indicator (MPI) vector of size 9.
For example, only speed and rigidity was considered for gait
movement. Experiments were conducted on 12 PD patients
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Table 4 (continued)
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cation of disease stage, LDA

parameters

data
Kinect V2/ skeleton sequence SS-DTW and TCD based

K, D)

Visual feedback for corrective

UTKinect dataset [156],

Physical activity assisting

Baptista et al. 2017 [11] (S)

action

temporal sequence align-

ment

stroke patient balance

simulation

exercises

K: Kinematics-based modelling; S: Statistical modelling; D: Deep learning or Stochastic modelling, EEG: Electroencephalograph

of stage 1, 2 and 3. Subjects were filmed from the front at
a distance of 1.5 m. Ground truth was provided by physi-
otherapist. Graphical and statistical comparison based on
kinematic parameters showed visible differences between
patients and healthy subjects. Also, four ML classifiers
SVM, K-Nearest Neighbour (KNN) and Multi-Layer Per-
cepteron (MLP) were used for classification, among which
SVM and MLP performed better. In 2017, Spasojevic et al.
[127] added 16 more MPIs to the system described above.
Data from finger tracking through sensory glove was used
for 15 MPIs representing finger flexion, extension, tap-
ping and hand rotation. For gait, another MPI was added
making a vector of total 25 MPIs. Graphical comparison
as illustrated in Fig. 4 showed visible differences between
PD and healthy subjects. SVM, MLP and KNN were used
to classify PD patient stages and healthy subjects. In this
article, although ML algorithms have been used for classifi-
cation, the research presents elaborate statistical comparison
directly based on kinematic parameters.

6.2 Statistical modelling

Instead of directly comparing kinematic data, authors have
also used ML algorithms for modelling human movement,
which is subsequently compared statistically or graphically.
Tao et al. [138] used HMM modelling, for online quality of
motion assessment of gait on stairs, walking on flat surface,
sitting and standing. For discriminating skeleton sequences
using HMM, entire sequences has to be fed to a model. This
was not possible in the case of online assessment and thus,
a variable window approach [99] was adapted to address the
problem. Four different HMM models were used to extract
features from skeleton data to classify abnormalities using
SVM.

Wang et al. [150] devised a series of exercises for mus-
culo-skeletal patients targeting PD patients. Activities
include walking, walking with counting and sit to stand.
Again, skeleton information was obtained through Kinect
placed in front of the patient and on top of the table. Step
size, postural swing level, arm swing level, stepping time
were used as criteria to asses a patient’s mobility level. The
paper proposed a Temporal Alignment Spatial Summarisa-
tion (TASS) algorithm to isolate repetitive skeletal move-
ments from video stream through Skeletal Action Unit. The
SAU extracted clinically important kinematic parameters
like arm swing level and stepping time for evaluation. This
method was evaluated against the standard MSR-Action3D
[86] action recognition dataset. For clinical validation, a
single PD patient and a healthy subject were asked to per-
form walking and sit-to-stand experiment. Data from both
the experiments showed difference between the PD patient
and the healthy subject.
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Fig.4 Graphical comparison of patients and healthy subjects through kinematic parameters and joint angle trajectories [127]

Antunes et al. [6] framed the assessment problem as feed-
back to be provided to a skeleton sequence to better match a
standard execution sequence template. The system has been
evaluated on three publicly available datasets. The first,
ModifyAction used pairs of actions from UTKinect [156]
and MSR-Action3D [86] dataset. The second dataset was
SPHERE-Walking2015 [104] which contained normal walk-
ing and simulated stroke patient walking. The third dataset,
called Weight&Balance was introduced in this paper and it
presented simulated data of stroke affected arm mobility.
Data normalization was used for spatial alignment and DTW
was used for temporal alignment. The importance of this
research resides in the feedback mechanism that was pro-
vided at each instant for better execution of human action.

Baptista et al. [11] also saw the problem as essentially
finding the difference between two skeleton sequences. This
allowed them to use the publicly available UTKinect [156]
dataset to address the problem without specifically using
patient or simulated patient data. The authors used Sub-
Sequence DTW (SS-DTW) [97] and TCD [33] algorithms
to match user action to a specific template and provide feed-
back highlighting deviations from normal execution.

6.3 Introduction of stochastic methods

The area of vision-based rehabilitation and monitoring
has not seen extensive application of DL methods. This is
mainly due to a lack of large scale datasets needed to train
DL networks. In 2015, Leightley et al. [82] presented the
Kinect 3D Active (K3D) dataset which captured motions
based on common clinical assessments used to determine
altered patient movements. Fifty four subjects aged 18 to 81
were asked to perform 13 clinical tests including balance,
open and closed eyes, jump, chair stand and others. Owing to
the diverse age related conditions the subjects’ movements
varied widely for any given activity. Several algorithms were
used for action classification out of which SVM and Artifi-
cial Neural Network (ANN) achieved the best accuracy. To

assess clinical condition the activities were further analysed
in terms of average time taken to complete an action.

In the absence of a large-scale publicly available data-
set, simulating or generating data has been also considered.
Vakanski et al. [144] trained their Mixture Density Neu-
ral Network (MDNN) on the standard action recognition
UTD-MHAD dataset [28], to model human movement for
each action. Mean log-likelihoods of observed sequences
were used as the performance metric for evaluating the con-
sistency of a subject’s performance. Then, random noise
was imparted to generate deviations from standard action
and these deviations were measured. The proposed model
was programmed to be usable with skeleton data captured
through Kinect.

The articles presented above propose exclusive assess-
ment type application and often do not include any reha-
bilitation method. They have used more robust approach for
assessment in the sense that authors have compared more
kinematic parameters, used more advanced statistical analy-
sis and have used bigger datasets. For example, in rehabili-
tation type applications, many authors have chosen simple
joint angle or joint angle trajectory comparison [49, 67].
In general, authors have used better statistical comparison
including Linear Discriminant Analysis (LDA) [127, 128],
TCD [11], likelihood [104, 144], ANOVA [77]. In com-
parison type applications, we also see the implementation
of more robust kinematic parameters such as 25 different
MPIs in [127, 128], normalized sequences [64], temporally
aligned sequences [6]. As a result, such applications are able
to carry out more complex comparison including gait analy-
sis and compensatory movements, as opposed to simple ges-
ture or posture recognition of a single or few joints. We also
observe the introduction of publicly available datasets which
paves the way for competitive evaluation of the proposed
models [11, 104, 138]. However, statistical comparison does
not provide a decisive scoring or classification of a patient’s
condition. The next two sections discuss applications that
can classify or grade patient’s quality of motion.
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7 Categorisation

In this section, we review articles where the primary goal of
the research is to categorise a patient activity into discrete
categories including, but not limited to, correct/incorrect
posture and good/bad movement. In contrast to compara-
tive analysis, articles reviewed in this section are more deci-
sive in terms of providing patient assessment. Technically,
most of the articles in this section have the goal of posture
or action recognition where discrimination is done between
improper and proper execution of activities. But, it also
includes disease severity classifications, determination of
a patient’s cognitive abilities and so on. The discussion is
split into two parts: (1) hand-crafted or rule-based and (2)
statistical algorithms based (Table 5).

7.1 Rule-based

In some cases, final posture is important and simple hand-
crafted algorithms are sufficient for correct posture recog-
nition. Metcalf et al. [95] used depth frames for measuring
hand (finger) kinematics. A Kinect device was placed 80
cm above a table where subjects were filmed. Binary image
of the palm was extracted from depth and RGB data. Palm
contour was then fitted to a geometrical kinematic model
to determine joint angles. Based on the sequence of joint
key-points (finger tip, finger spaces), a grip classification
algorithm was developed. Gonzalez-Ortega et al. [62] used
computer vision for assessment of patients’ cognitive motor
abilities. Here, the goal was to see whether a patient can
understand verbal instructions and perform simple motor
tasks. A group of 10 subjects was used to provide healthy
reference while three subjects with frontal lobe injury and
two with dementia were used for rehabilitation using the
proposed system. The subjects were asked to perform 14 dif-
ferent type of movements such as “touch right eye with right
hand” in a controlled environment. Facial expression was
detected by combining skeleton data and depth image from
Kinect with AdaBoost-based face detector. Eyes and nose
were detected using HK classification [16], which is based
on curvature obtained from depth image. In psycho-motor
exercises, the final posture is important to judge whether
the subject understood the instructions. The proximity of
3D hand position to eyes, ear and nose helped in determin-
ing successful exercise execution. The result provided by
the system was compared with physicians and the overall
successful monitoring rate was 96.2%. Leightley et al. [80]
used the K3D dataset [82] for automated human mobil-
ity analysis. K-means clustering was used to create clini-
cally relevant joint groups for each action. The joint groups
containing relevant joint trajectories were classified for

@ Springer

recognizing the action. Discrimination between well-per-
formed and poorly performed action was done on the basis
of the standard deviation method proposed in Baumgartner
etal. [13].

7.2 Statistical and stochastic algorithms-based

Researchers have extensively used advanced Machine
learning (ML) algorithms for categorisation type sys-
tems. Taati et al. [136] developed an interactive system
where subjects interacted with robots for posture correc-
tion. Again, skeleton data was obtained from a Kinect
device placed 90 cm behind, and 60 cm above, the subject.
Seven healthy subjects were asked to simulate a series
of compensated mobility movements. Such movements
include shoulder hike, trunk rotation compensation, lean
forward and slouch postures. For posture classification,
a combined HMM and SVM-based algorithm was used.
An active learning strategy, which used a combination of
manual and automatic labelling, was employed to label
the data for classification. The overall accuracy was 86%.
Palma et al. [105] presented a method for detecting devia-
tions from normal movements using HMM and Multiple-
Dimension DTW (MD-DTW) [140]. The authors created
a dataset of 10 different upper and lower limb movements
such as hip abduction, elbow flexion and so on with 14
healthy subjects. Then, a cohort of 10 subjects were asked
to perform the same movements incorrectly with specified
errors. For analysis, the activities were divided into two
parts: (1) The limb moved away from the body and (2) the
limb moved towards body. HMM was found to be more
accurate for detecting error in movements when compared
to MD-DTW.

In recent times, Generative Adversarial Networks
(GANSs) have been used to generate synthetic data includ-
ing, but not limited to, human faces and human poses.
Li et al. [84] used the UI-PMRD dataset [145] to gener-
ate a synthetic dataset of incorrect human activities. Four
different GANs models were trained, which included two
Deep Convolutional GANs (DCGAN), a Wasserstein GAN
and a Recurrent GAN. A 1D Convolutional Neural Net-
work (CNN) was trained as discriminator with the GANs
and a soft-metric based on absolute differences was used
for evaluating the performance of GANs. Modelling or
replicating kinematic data through GAN is a major contri-
bution of this article, although it aims to classify physical
movements.

In categorisation type applications, authors have used
techniques ranging from very basic rule-based classifi-
cation to state-of-the-art GANs. Authors [62, 95], have
used hand-crafted algorithms to classify a patient’s stages
which are very specific conditions whereas in Leightley
et al. [80], simple standard deviation was used to classify a
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patient’s state. It is very difficult to ascertain the generalis-
ability of these applications in the abesence of comparison
through publicly available datasets. Authors have exten-
sively used ML algorithms such as SVM in categorisation
type applications [136, 163]. As primary data, authors
have mostly used only skeleton data, with exception of
Metcalf et al. [95], who have used depth data only. Some
authors have relied on kinematic parameters as extracted
features [70, 71, 81, 105]. However, others have introduced
statistical techniques for feature extraction. For example,
Junet al. [69] used PCA (Principal Component Analysis)
reduced kinematics and Zhi et al. [163] used noise reduced
kinematics. Then, these features have been used for clas-
sification through standard algorithms such as SVM, CNN
and LSTM. Use of classification algorithms have enabled
authors to grade a patient’s state rather than presenting a
simple visual, graphical or statistical comparison.

8 Scoring

In this section, we review articles which aim to provide
automated assessment of a patient’s state. This includes
both clinical (e.g., FMA, UPDRS) and author proposed
(non-clinical) scoring. For musculo-skeletal diseases,
there are often a multitude of factors that describe a
patient’s state or condition. Simple movements such as
hip abduction or individual exercises may be classified
into correct or incorrect. But, to describe a patient’s state,
clinicians often use standard scoring systems including
FMA, UPDRS and others. Scoring may be discrete or con-
tinuous. In technical terms, authors have used both clas-
sification and regression for scoring. This discussion can
be split into two parts: (1) author proposed and (2) clinical
scoring (Table 6).

8.1 Author proposed scoring

PReSenS, developed by Cuellar et al. [38] is a rehabilita-
tion exercise systems where physiotherapists can remotely
upload exercise templates to be followed by patients at
home. A complete exercise program was developed con-
sisting of two major types of exercises, posture holding
and motion. Posture was compared to a single exercise
template whereas motion was compared by the time series
matching algorithm DTW. Features such as joint angle and
joint rotation was used with DTW for action comparison.
For experiment, data from 10 healthy participants were
collected. They were asked to do diagnostic exercises,
such as arms up, arm extension and flexion, leg-up, fla-
menco and cross arm. These exercises are widely used in

physical therapy . All motion signals were summarised
using Piece-Wise Aggregation Approximation for scoring
the performance.

Khan et al. [73] used a rapid finger tapping test for clini-
cal evaluation of PD patients. A total of 387 video footage
were used from patients with advanced PD. Severity was
rated by physiotherapist on a scale of O to 3. A group of 84
healthy subjects were clinically evaluated in the same way.
Subjects were asked to tap their hands besides their face
and above their shoulders. For assessment, first the region
of interest was selected as rectangles beside the face. Face
detection was achieved by Haar Cascade classifier [147]
and motion-template gradient algorithm [18] was used to
detect hand movements. Kinematic parameters for calcu-
lating UPDRS features were extracted and classified using
SVM.

A major limitation of many assessment systems is that
they require users to sit in front of a camera and perform
exercises. It may be difficult for musculo-skeletal patients
to operate the system and perform exercises in a highly
constrained setting. Compliance may be poor in such cases
for actual patients. Venugopalan et al. [146] proposed a
rehabilitation system for traumatic brain injury where
patients can be monitored in real time. In the experiments,
two Kinect cameras and a near infra-red motion sensor
were used to film patients at home. Real-time patient data
from the system was compared with data from observation
in clinical setting to compute similarity scores. The score
was calculated through template matching based on DTW.
For evaluation, 16 videos were captured which covered six
different movements that were performed by four different
volunteers.

Liao et al. [87] proposed a log-likelihood based perfor-
mance metric to train their DL framework for assessment
of rehabilitation exercises. Low level skeleton data was
represented through a deep Auto Encoder (AE) network to
initially train a Gaussian mixture model for calculating log-
likelihood. Using the UI-PRMD dataset [145], the authors
then trained and compared the performances of CNN, RNN
and Hierarchical Neural Network (HNN) [45], where the
log-likelihood based performance metric was used as a label
to regress the network for predicting deviations from normal
actions (Fig. 5).

8.2 Clinical scoring

The ultimate goal of any assessment system is to assess the
state of a patient in terms of clinical scoring. This is a very
difficult task considering the multitude of factors involved
in assessment. Eichler et al. [47] proposed a two Kinect
camera based system for automated FMA. The two cameras
were placed at a 45 degree angle with respect to the sub-
ject. Temporal synchronization was done through a network
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Fig.5 An example of categorisation type system. Group of joints are used as encoded features for SVM. Patients are classified as mobile or
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time protocol server. From Kinect skeleton data, kinematic
features relevant to FMA were calculated. The features
included sequence time length, minimum and maximum of
each measure, average variance of each measure, difference
between start and end values of each sequence, variation of
average speed and acceleration of each measure. SVM was
used for classification. A cohort of 22 participants took part,
including 12 stroke and 10 healthy subjects. The proposed
system is able to successfully predict scores for the two
standard motions “Salute” and “Hand lift”. An ideal auto-
mated FMA system would be able to assess the full range
of impairments in both upper and lower extremity (Fig. 6).

Performance of patients also varies from time to time
during the day. Following the Abnormal Involuntary Move-
ment Scale (AIMS) protocol, Dyshel et al. [46] recorded
9 PD patients with varying severity of Levodopa-Induced
Dyskinesia (LID). The subjects performed two motor tasks
normally used for UPDRS assessment. After motion seg-
mentation and noise reduction, discriminative features
are extracted. For each joint motion, chunks are extracted
and put into distributions represented by two 30-bin his-
tograms. One histogram represents normal and the other
represents dyskinetic state. Earth Mover Distance (EMD)
is calculated and 10 motion chunks representing the highest

@ Springer

discrimination were selected. Each 10 dimensional vector
was then reduced to a single number using one of the three
methods: average motion length, average motion speed, dis-
tribution of quantized motion lengths. Soft-margin SVM-
based algorithm was used to calculate AIMS score.

Since the introduction of DeepPose [142] in 2014, CNN-
based human pose estimation has achieved very high accu-
racy. Li et al. [85] used the well-known Convolutional Pose
Machines (CPM) [153] for extracting skeleton data for ana-
lysing LID. Levodopa is used to treat PD but its prolonged
use causes motor complications (Dyskinesia). The study
involved creating a publicly available dataset involving 9
participants having LID. The skeleton data extracted using
CPM was used to generate 15 kinematic features. These fea-
tures helped to score the participants based on the UPDRS.

In above-mentioned articles, authors have relied mostly
on skeleton data obtained from Kinect, with the exception of
Li et al. [85] who have used CNN for pose extraction from
RGB data. Authors have not combined RGB and skeleton
data, which may result in improve accuracy. Mostly authors
have used kinematic parameters directly as primary features.
In Cuellar et al. [38] and Ciabattoni et al. [36] quaternion-
based pose distances has been used as primary features.
Quaternions can help in catpuring rotation in 3D and is
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Table 6 (continued)

&

Automated assessment based

Objective

Auto-encoder reduced

Feature

Kinect/ Skeleton data

Sensor

UI-PRMD dataset [145]

Dataset

General rehabilitation exer-

Target

Liao et al. 2019 [87] (A)

Author

Springer

on LSTM regressed scoring

skeleton sequence, GMM
log-likelihood based perfor-

mance metric

cises

better than the normally used Euclidean distance. Liao et al.
[87] have used Auto-encoders for dimensionality reduction
of skeleton sequences. In most applications we have seen
little application of dimensionality reduction techniques
applied to kinematic data. On applications requiring continu-
ous score Support Vector Regression (SVR) and LSTM has
been used. In order to measure a similarity score, temporal
sequence matching algorithms such as HMM and DTW have
been used. In applications requiring discrete scoring such as
UPDRS, SVM has been mainly used. It remains to be seen
how modern DL algorithms would perform classification
in such cases where large-scale datasets are not available.

9 Datasets

Table 7 summarises publicly available datasets that are cap-
tured through vision-based methods. SPHERE is a series
of datasets that presents normal and physically impaired
movements for walking, walking-up stairs and sit to stand
movements. Vakanski et al. [145] introduced the UI-PRMD
dataset consisting of 10 different physical activities com-
monly performed in physical rehabilitation or therapy sce-
narios. The dataset provides skeleton data obtained through
Kinect along with joint angles. Mean Square Error (MSE) on
joint angles has been used by authors to calculate variability
between each subject, which has also provided a benchmark
for establishing incorrect movements. Unlike other areas of
CV, most of the research is based on relatively small datasets
which are not available publicly.

10 Discussion

In this section, the methods used in articles reviewed are
discussed in terms of their usage, drawbacks and disadvan-
tages. Research in this area is very different from objec-
tives like activity recognition where the common goal is to
explore machine learning and pattern recognition techniques
to recognise various activities. Also, often the datasets used
to evaluate the models are the same and thus a direct com-
parison between the various methods employed by authors
is useful. However, due to the widely varying goals, datasets
used and types of physical impairments, such comparison
in this domain is difficult. Instead, for the benefit of read-
ers, we chose to compare the general techniques and algo-
rithms employed to achieve the goals. Following Sect. 2, we
split the discussion into data, feature encoding and feature
comparison.
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Fig.6 An illustration of scoring type systems. Extracted features
from a patient are compared to a pre-trained HSMM for automated
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clinical scoring [22]. Total score reflects the overall score of the

Table 7 Publicly available datasets that include physically impaired patient motion

whole body whereas local score includes features that assist clinicians
to localise movement errors. PatA: Patient A

Author

Impairment

Details

Sensor/Data

SPHERE-Staircase2014 [104]
SPHERE-Walking2015 [138]
SPHERE-SitStand2015 [138]
TRSP [44]

Parkinson’s pose estimation [85]
UI-PRMD [145]

KIMORE Dataset [23]

AHA-3D Dataset [5]

Walking-up stairs

Walking

Sit to stand

Stroke, compensatory movement
PD, LID, UPDRS assessment tasks
General rehabilitation exercises
Stroke, PD, back pain exercises

Senior lower body fitness

48 sequences, 12 subjects, normal
and abnormal gait

40 sequences, 10 subjects, normal
and abnormal gait

109 sequences, 10 individuals,
restricted knee, hip, freezing

10 healthy, 10 stroke 4 compensa-
tory movements

526 sequence, PD, LID patients, 4
UPDRS assessment tasks

10 subjects, 10 exercises, 10
repetitions

44 healthy, 34 patient subjects, 5
exercises 5 repetitions

11 young, 10 elderly subjects, 4
exercises

Kinect/ Open NI skeleton

Kinect/ Kinect SDK, OpenNI SDK
skeleton

Kinect/ Kinect SDK, OpenNI SDK
skeleton

Kinect, Haptic robot/ Kinect SDK
skeleton

RGB Camera/ CPM [153] skeleton

Kinect Vicon/ Kinect SDK skeleton

Kinect/ RGB, depth, skeleton

Kinect/ RGB, depth, skeleton

@ Springer
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10.1 Physical impairment data

In articles discussed in this review, authors have mostly
used Kinect-based skeleton data. The main advantage is
that Kinect provides RGB videos, depth videos and 3D joint
positions as well as posture through a very cheap and easy to
use hardware/software system. Thus, authors from domains
other than CV can take advantage of it. However, Kinect sys-
tem is not very accurate [152] and today’s DL-based solution
outperforms the Kinect system both in-terms of 2D [20, 50]
and 3D pose estimation [107, 157]. Due to the lack of direct
comparison, it is difficult to gauge the scope of improvement
in the articles reviewed with DL-based methods instead of
Kinect. Unlike other areas of CV application such as activ-
ity recognition, authors have not used RGB or depth data in
combination with skeleton information. RGB data lacks the
precise joint positions whereas skeleton data lacks informa-
tion such as optical flow, curves, edges and others. Modern
neural networks are very good at learning such information.
Combining skeleton data with RGB information guides the
DL model to focus on RGB features on the human body.
This has lead to increased accuracy in activity recognition
models [12, 143] and thus, research in this domain can also
benefit from the same. Authors have also used colour-based
tracking, including tracking the hand while holding a col-
oured ball and skin colour tracking. These methods were
in use before the introduction of Kinect, but some of them
are still in use today. They have several limitations such as
tracking only one part of body and are subject to noise, back-
ground interference. It also needs to be noted that Kinect is
no longer in production and researchers will need to switch
to other devices such the Orbec Astra [37]. Authors [37],
discuss the interchangeability and accuracy of Orbec Astra
and the Kinect device. So it is worth taking the time and
effort to switch to new devices and techniques. Authors
have also used other non-vision based devices such as BCI,
LMC which when used with vision-based devices expand
the domain of physical rehabilitation to other areas such as
BCI to support physical rehabilitation [55].

10.2 Feature encoding

Table 8 highlights the various feature encoding methods
used by authors. It also outlines their drawbacks and suggests
alternatives. Many authors have used skeleton trajectories or
kinematic parameters derived from these trajectories directly
as features for comparison. While such parameters are useful
for purposes such as posture recognition and joint mobility
determination, these are highly specific to the physical impair-
ment and thus are not generalisable and may suffer from over-
fitting. Instead of encoding kinematic parameters, the rela-
tionship between parameters such as performance metrics,

@ Springer

distances, pairwise relations and others, can be used for encod-
ing. Although these methods can produce better results, they
also suffer from the same drawbacks such as an inability to
learn, over-fitting and so on. A better alternative would be to
learn from the data instead of comparing kinematic parameters
numerically or graphically. Thus, more recently authors have
used techniques including, but not limited to, DTW, HMM
and TASS to build temporal models that can help to discrimi-
nate differences between patient and ideal pose sequences.
Authors have also attempted to encode features from RGB
videos for goals such as activity recognition. Feature encoding
techniques include, Hu moments, colour-based segmentation,
motion template gradients and so on. Mostly, these are pixel-
based techniques which suffer from noise interference and do
not work in the case of blurry images. Modern alternatives
include the use of generalised local feature descriptors such
as Scale-Invariant Feature Transform (SIFT), SURF, Oriented
FAST and rotated BRIEF (ORB) or image descriptors such
as Bag of Words (BoW), Histogram of Oriented Gradients
(HoG) and others. Modern techniques also involve DL-based
algorithms for semantic segmentation [9] which have pro-
duced state-of-the-art results but, again, these require large-
scale datasets. In the absence of large datasets, using GANs for
modelling artificial patient data can be very useful as shown
by Vakanski [84]. There are many variants of GANSs, each of
which have their own domain of applicability and limitations.
In Im et al. [68], the authors present a quantitative comparisons
of various GAN types. Instead of manually selecting joints
for recognizing abnormal motions [80] one can use attention-
mechanism [94] to learn the importance of joints for a par-
ticular impairment.

10.3 Feature comparison

In Table 9, various feature encoding methods used by authors
are highlighted along with drawbacks and possible alterna-
tives. Most basic methods used by researchers are simple
numerical and graphical comparisons of skeleton trajectories,
joint angles or other kinematic parameters. The results are hard
to generalise beyond the examples presented and may lack sta-
tistical significance. A better alternative would be to use some
statistical tests such as ANOVA analysis, Chi-squared tests etc.
Graph trajectories can be compared with methods such as KL-
divergence which could provide statistically significant results.
In general, authors have used temporal sequence comparison
algorithms like HMM, DTW, LSTM and their variants such as
HSMM (Hidden Semi-Markov Model) MD-DTW, Incremen-
tal DTW (I-DTW), SS-DTW and others. Note that these algo-
rithms can be used for sequence encoding as well as sequence
comparison. Some authors have used classification algorithms
such as K-means, SVM to compare encoded sequence gener-
ated by HMM or DTW. The same could also be done with
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Table 8 A summary of feature encoding methods used, their drawbacks and alternatives that can be used

Method

Usage

Drawbacks

Alternatives

Colour trajectory

Skeleton trajectory

Kinematic parameters

Contour signature

Hu invariant

AUC

Performance metrics (ME, MER,
RMSE, N-RMSE)

Log likelihood

SURF

Depth maps

GP-LVM

Gaussian mixture model

Gauss Laguerre transform (GLT)
Human body sillhoute

Pairwise skeleton trajectory
K-means clustering

Distances (Manhattan, Euclidean)
PCA reduced sequence

Colour segmentation

GAN generated sequences
Quaternion sequences

Motion template gradient

Autoencoder

LDA

Track body part through coloured
object

Tracking body parts
Indicates physical ability

Mark hand boundaries for grip
classification

Image boundary descriptor for
grip classification

For comparing kinematic trajec-
tories

Encoding patient sequence error
w.r.t standard template

Probabilistic encoding of skeleton
sequence

Encodes local RGB features

Body part segmentation, skeleton
detection

Dimensionality reduction of skel-
eton sequence

Encoding skeleton sequence for
performance metric

Encoding video squence in GLT
domain

Human body segmentation

Enables relative trajectory encod-
ing

Encoding kinematic parameters

Encoding patient sequence dis-
tance wrt standard template

Dimensionality reduction of skel-
eton sequence

Track body part through coloured
object

Generation of artificial data

Represent orientation and rotation
of skeleton sequence in 3D

Human motion encoding, through
successive frame sillhoute

Dimensionality reduction of
sequence

Dimensionality reduction of skel-
eton sequence

Limited skeleton tracking, prone
to background interference

Do not quantify physical charac-
teristics

Very specific to type of
impairment(s)

Cannot handle noisy, blurry
images

Cannot handle noisy, blurry
images

AUC can be same for different
curves

Over-fitting, difficult to generalize

Specific formula needed for
calculate likelihood, non trivial
estimation

Less accurate than SIFT although
faster, clutterd keypoints

Missing colour, texture, skeleton
information

Assumes independent distribu-
tions, needs strong prior

Expensive for high dimensional
data, need to set number of
clusters

Needs manual marking to select
area for transform

Cannot handle noisy, blurry
images

Overftting, cannot learn the
general trend

No of clusters needs to be manu-
ally set

Overftting, cannot learn the
general trend

Mean and covariance does not
always describe distribution

prone to background noise, inter-
ference

hard to train and converge

Contains only rotation but no scal-
ing and translation

Pixel based approaches prone to
background noise

Requires more data, not gener-
ally used for dimensionality
reduction

Needs labelled data, lot of tunable
parameters

Skeleton tracking

Kinematic parameters

None

DL based segmentation [9]

DL based segmentation [9]
Statistical analyses, KL divergence
Learnable encoding methods

KL-divergence, Cross Entropy

SIFT, ORB
Use with RGB and skeleton data
PCA, LDA, Autoencoders

Spectral clustering, Manifold
learning

SIFT, SURF, ORB etc. for keypoint
descriptors

DL based semantic segmentation
[91

Learnable encoding methods

GMM

Learnable encoding methods

LDA, autoencoder

DL based semantic segmentation
[91

Different types of GANs [68]

Affine transformation matrices

Optical flow based approaches,

graph-cut algorithm
PCA, LDA

PCA, Autoencoders

techniques such as Conditional Random Fields (CRF) and
Bayesian networks. Other techniques involve the use of gen-
erative models such as Restricted Boltzmann Machine (RBM),

Gaussian RBM (GRBM), Semi-Naive Bayes (SNB) for clas-
sification. These have largely been replaced by DL-based
algorithms such as DCNN, LSTM and TCN. To compensate

@ Springer
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for a lack of datasets, one can also look at learning from sin-
gle images [155]. When comparing sequential data with DL,
LSTM is the most popular type of architecture that has been
used. But, recently, Temporal Convolutional Networks (TCN)
[78] and Ordinary Differential Equation (ODE) networks [29]
have shown very competitive results and these two architec-
tures are being actively pursued by researchers. DCNNs have
been almost exclusively used for processing image and video
data but researchers are now exploring the use of capsule net-
works [117] for the same.

11 Conclusion

In this review, we have collected summarised and analysed
major computer vision-based research in the area of reha-
bilitation and assessment of patients having physical impair-
ments. In this article, we present our own taxonomy. To the
best of our knowledge, this is the only article to date that
has covered the latest advances in this application area, and
presented them from a CV application point of view. It par-
ticularly focuses on comparison and assessment of abnor-
mal human motions. This is especially significant due to the
wide-ranging and hugely varying manifestations of abnor-
mal or impaired human movements. We have seen simple
graphical comparison of joint angle trajectories to applica-
tion of complex algorithms such as GANs. The absence of
image, video-based, DL algorithms is quite contrasting to
other areas such as pose estimation and action/activity rec-
ognition where DL algorithms have been almost exclusively
used. This could be down to unavailability of large-scale
datasets. Also, in this domain, most articles are exclusively
focused on the use of skeletal information as raw data. This
means low-level image/video features and high-level con-
textual cues (e.g. body-objects interaction) are not a part of
the intelligent processing. Movement information deduced
from skeleton information is sparse in nature, whilst image-
based dense optical flow form video information is richer
in contextual information. Thus, research in this domain
may benefit from meaningful combination of skeleton and
spatio-temporal information linked to video data. In the case
of scoring type applications, DL-based scoring may not be
easy to adapt as it’s often more complicated for patients and
clinicians to understand. More recently, researchers have
attempted to fit existing scoring methods while training DL-
based models. CV will play a significant role in rehabilita-
tion and assessment, which is a sub-field of health and social
care. But owing to several factors such as difficulty in obtain-
ing patient data, ethical issues and so on, this area is yet to
be extensively explored by the CV community. We conclude
the discussion with recommendation for future research:
Datasets The lack of DL-based methods compared to
other applications of CV could be due to the unavailability

of large-scale publicly available datasets demonstrating
physically impaired patients’ activities. The publicly avail-
able datasets mentioned in Table 7 are relatively small as
compared to modern datasets targeting DL. For example,
the NTU-RGB dataset [123] targeted towards DL-based
activity recognition contains 60K samples and is much
larger than the datasets presented in Table 7. Therefore,
research in this domain needs publicly available large-
scale datasets to take advantage of modern DL methods.
Although datasets are indispensable, the problem can be
mitigated to a certain extent by using GANs. Data Aug-
mentation GAN (DAGAN) has been purpose-built for aug-
menting data [4]. It is based on conditional GAN and is
capable of generating unseen within-class data samples.
This is different to traditional data augmentation tech-
niques, where images/videos are rotated or translated to
augment the data. Likewise, balancing GANSs can be used
to mitigate class imbalance problems [93]. In the absence
of real data, authors have recently created fully synthetic
data from GANs. For example, Li et al. [84] generated
synthetic data for incorrect human activity from four dif-
ferent types of GANSs. Frid-Avar et al. [54] used GAN to
create synthetic data for liver-lesion classification. Besides
GAN, single-shot or few-shots learning has the potential
to learn from a small amount of data [135]. These are
often presented as Siamese networks to discriminate or
tell deviations from the reference sample [34]. In Chung
et al. [34], the authors used a two-stream convolutional
Siamese network for person re-identification. A simi-
lar approach could be adapted for assessing physically
impaired persons where deviation from regular healthy
activity could be measured through a single-shot or few-
shot learning.

Statistically significant results Simple graphical or
numerical comparison of skeleton-trajectory is not suit-
able to produce statistically significant results. In such
cases, authors can use statistical tests including, but not
limited to, ANOVA and Chi-Square. However, such sta-
tistical approaches are model-less. These approaches lack
generalisation and are not scalable. Moreover, they are
often inferior to the model-based techniques. Venugopa-
lan et al. (2013) and Liao et al. (2019) show that model-
based approaches such as DTW, Gaussian Mixture Model
(GMM) log-likelihood works better than non-model
approaches such as Euclidean distance, Mahalanobis dis-
tance and Cross-Correlation. Thus, instead of directly
comparing kinematic parameters we recommend model-
ling the data with algorithms including, but not limited
to, HMM, DTW and TASS. Moreover, a combination of
classification/regression algorithms such as SVM, Random
Forest (RF) are even better than modelling the data alone.
Taati et al. [136] model the data using HMM and use
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SVM to classify the data and show that the combination
of HMM and SVM works better than using SVM alone.

Modern DL techniques Researchers in this domain have
begun to use DL-based techniques such as CNNs and
LSTMs. However, authors have used very basic and obso-
lete architectures that fail to demonstrate the true potential
of these algorithms. CNNs used by Zhi et al. [163] and
Leightley et al. [81] are very basic in nature. Their rec-
ommendation is to use modern pre-trained CNN architec-
tures including, but not limited to, EfficientNets [137] and
NasNet [110]. Authors have introduced TCN [74, 78] as
an effective and faster alternative to LSTMs. TCN-based
networks are suitable for human activity recognition as
demonstrated by Kim et al. [74]. Similarly, ODENets [29]
are being extensively researched for processing of tem-
poral information. DL is a rapidly evolving field and the
introduction of better and efficient techniques is a regular
occurrence. For example, Graph Neural Networks first
introduced in Kipf et al. [75] has been extensively used
by authors for recent state-of-the-art activity recognition
models [124] and authors in this domain can potentially
benefit from the same.
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