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Abstract
We investigate the existence of solutions to viscous ergodic Mean Field Games systems in
bounded domains with Neumann boundary conditions and local, possibly aggregative cou-
plings. In particular we exploit the associated variational structure and search for constrained
minimizers of a suitable functional. Depending on the growth of the coupling, we detect
the existence of global minimizers in the mass subcritical and critical case, and of local
minimizers in the mass supercritical case, notably up to the Sobolev critical case.

Mathematics Subject Classification 35J50 · 35Q89 · 35B33 · 49N80

1 Introduction

In this work we investigate the existence of solutions to the following system arising in the
theory of viscous ergodic Mean Field Games, with Neumann boundary conditions and local
coupling

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�u + H(∇u) + λ = f (x,m(x)) on �

−�m − div(m∇H(∇u)) = 0 on �
∂u

∂n
= 0,

∂m

∂n
+ m∇H(∇u) · n = 0 on ∂�

∫

�
m = 1,

∫

�
u = 0,

(1.1)
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and their minimality properties in a suitable variational framework. Throughout the paper,
� is a bounded domain of RN , N ≥ 1, with boundary of class C3. To simplify some
computations, we suppose that |�| = 1, though all the arguments work for |�| �= 1. On the
Hamiltonian H , we assume that

C−1
H |p|γ − KH ≤ H(p) ≤ CH |p|γ + KH

∇H(p) · p − H(p) ≥ C−1
H |p|γ − CH

|∇H(p)| ≤ CH |p|γ−1 + KH

(1.2)

for some CH > 1, KH > 0, γ > 1. As for the coupling, we suppose that f : � ×
[0,+∞) −→ R is Lipschitz with respect to both variables on bounded sets of �×[0,+∞),
and

− C f m
q−1 − K f ≤ f (x,m) ≤ C f m

q−1 + K f (1.3)

for some C f > 0, K f > 0, q > 1.
Mean-Field Games (MFG) have been introduced in the seminal papers by Lasry and Lions

[22] and Huang, Caines and Malhamè, [21], with the aim of describing Nash equilibria in
differential games with infinitely many indistinguishable agents. The system (1.1) character-
izes these equilibria in an ergodic game, where the cost of a typical agent is averaged over an
infinite-time horizon. Neumann boundary conditions come from the assumption that agents’
trajectories are constrained to � by normal reflection at the boundary (as in [13, 15, 25]).

Though systems of type (1.1) have been widely investigated over the last decade [3, 5, 7,
10, 11, 19, 20, 29], it is not yet known the existence of classical solutions in the full range
q > 1. While known restrictions on q may be artificial, they are sometimes structural. Let us
briefly describe the purely quadratic case H(p) = |p|2 to clarify this point. By the classical
Hopf-Cole transformation φ = e−u/

∫
e−u = √

m, (1.1) boils down to

⎧
⎪⎨

⎪⎩

−�φ = λφ − f (x, φ2)φ on �
∂φ
∂n = 0 on ∂�
∫

�
φ2dx = 1,

which, for F ′ = f , are the Euler-Lagrange equations of the functional defined on W 1,2(�)

F(φ) =
∫

�

|∇φ|2 + F(φ2)dx constrained to
∫

�

φ2dx = 1.

In the model case F(m) = C f mq , it is well known (by the Gagliardo-Nirenberg inequality)
that 2q ≤ 2 + 4/N is necessary for F to be bounded from below when constrained to∫

φ2 = 1, while 2q < 2 + 4/(N − 2) is needed, in dimension N ≥ 3, for the compact
embedding of W 1,2(�) into L2q(�), which is crucial to set up variational methods. There
are therefore two critical values that determine three regimes, each one of exhibiting different
properties and difficulties (see also [27] and references therein). Note that when C f > 0 the
previous functional is convex, but we are not assuming here this property. In fact, we will
be mainly interested in a model case C f < 0, that corresponds to a MFG where aggregation
between agents is enforced.

In the general nonquadratic case, (1.1) borrows a variational structure associated to the
following functional and constraint (see for example [8, 30] and references therein for further
details). Let
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E(m, w) :=
⎧
⎨

⎩

∫

�

mL
(
−w

m

)
+ F(x,m) dx if (m, w) ∈ K

+∞ otherwise,
(1.4)

where

F(x,m) :=
⎧
⎨

⎩

∫ m

0
f (x, n) dn if m ≥ 0

+∞ if m < 0,
(1.5)

and

K := {
(w,m) ∈ L

γ ′q
γ ′+q−1 (�) ∩ W 1,r (�) × L1(�) s.t.

∫

�

∇m · ∇φ dx =
∫

�

w · ∇φ dx ∀φ ∈ C∞(�),

∫

�

m dx = 1,m ≥ 0 a.e.
}
, where

1

r
:= 1

γ ′ + 1

γ q
.

(1.6)

It has been first observed in [11] that for any γ > 1, two critical values of q can be identified:

q̄ = 1 + γ ′

N
(mass critical), qc =

{
1 + γ ′

N−γ ′ if γ ′ < N

+∞ if γ ′ ≥ N
(Sobolev critical).

As in the quadratic case, q ≤ q̄ is necessary for E to be bounded from below, while q <

qc = r∗ guarantees the compact embedding of W 1,r into Lq (this explains why we call this
exponent “Sobolev critical”).

Note that if γ = 2, q̄ and qc agree with the critical exponents mentioned in the previous
paragraph.

Most of the analysis on systems of type (1.1) has been carried out in the case q < qc.
By means of fixed point methods, solutions have been shown to exist in [11] in the range
q̄ ≤ q < qc under the further assumption that C f be small enough (for problems which are
set on the flat torus). No results are known when q = qc, and if q > qc solutions may even
fail to exist, at least when the system is set on the whole euclidean space.

The main goal of the present paper is to show the existence of solutions that are local
minimizers of E , in particular in the range q̄ ≤ q ≤ qc, up to the critical exponent qc. The
further property of (local) minimality obtained here may be an important feature in the study
of their stability, that is, their ability to capture the long-time behavior of the parabolic version
of (1.1). Our main result reads as follows.

Theorem 1.1 Assume that (1.2) and (1.3) hold. Suppose that either

1. 1 < q < q̄ , or
2. q = q̄ and C f ≤ Cq̄ , or
3. q̄ < q < qc and C f ≤ Cq, or
4. q = qc and C f , K f , KH ≤ Ccrit .

Then there exists a solution (u, λ,m) to the system (1.1), and m > 0.
Moreover, the pair (m,−m∇H(∇u)) is a global minimizer of E on K in cases 1 and 2,

or a minimizer of E on K ∩ {m : ‖m‖qLq < ᾱ}, for a suitable ᾱ > 0, in cases 3 and 4.

A solution to the system (1.1) is a triple (u, λ,m) ∈ C2,θ (�) × R × W 1,p(�) for all
θ ∈ (0, 1) and all p > 1 such that (u, λ) is a classical solution to the Hamilton-Jacobi
equation and m is a weak solution to the Fokker-Planck equation. The constants Cq̄ ,Cq and
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Ccrit are explicitly calculated throughout Sect. 3. We mention here that they depend on the
data q,CH , γ and also on some regularity and embedding constants CS,CE ,Cq , δ0, which
in turn depend on q,�, N .

The model Hamiltonian H(p) = |p|γ , γ > 1 clearly falls into our set of assumptions,
and we can allow for a general growth of type |p|γ with different coefficients from above
and below. We just need to be careful when q = qc: H has to be small enough for small
values of |p|. As for f , we include the model case

f (x,m) = C f a(x)mq−1 + K f b(x),

where a, b are smooth functions (with no sign condition). When q̄ ≤ q < qc we just need
C f to be small enough, while q = qc requires further smallness conditions on K f .

The way local minima are identified is inspired by [26, 28]. The functional E is minimized
first on the intersection between the constraint K and the ball {m : ‖m‖qLq ≤ ᾱ}. Estimates
based on theGagliardo-Nirenberg inequality for competitors belonging toK, which involves a
differential constraint of Fokker-Planck type, allow to choose ᾱ in away that theseminimizers
lie in fact in the open ball {m : ‖m‖qLq < ᾱ}, and therefore they give rise to solutions to
the optimality conditions (1.1). There are a few technical obstacles to produce a solution of
(1.1) from a local minimizer of E . These are worked out following a strategy that involve
a regularization of the functional and a linearization which allows to use convex duality
methods. This strategy is detailed for example in [8].Wemention that an alternative approach
to derive the MFG system from minimizers of E , based on the analysis of its subdifferential,
has been developed in [24, 25].

Note that the critical case requires further smallness assumptions on the coefficients.
There is an interesting connection between this endpoint case and another phenomenon of
criticality arising in Hamilton-Jacobi equations. If m is in a ball of Lqc , then f (m), which
is the right-hand side of the Hamilton-Jacobi equation in (1.1), will be bounded in LN/γ ′

.
Recent works [12, 16, 18] on the so-called maximal regularity of Hamilton-Jacobi equations
underlined the crucial role of the exponent N/γ ′: if the right-hand side f (m) is just bounded
in LN/γ ′

, there are counterexamples (see e.g. [12, Rmk. 1]) showing that H(∇u),�u cannot
be controlled separately in LN/γ ′

, and therefore there is no hope to deduce further regularity
via bootstrap arguments. In this sense, N/γ ′ is critical. But, if the LN/γ ′

-norm of f (m) is
small enough, then H(∇u),�u can be controlled in the same Lebesgue space, which leads to
further regularity. Additional smallness assumptions should be then expected when dealing
with the endpoint case q = qc.

A natural question concerns the uniqueness of solutions to (1.1), which is not expected in
general. We discuss here a few examples, limiting to the model nonlinearities

H(p) = 1

γ
|p|γ , L(q) = 1

γ ′ |q|γ ′
, f (x,m) = f (m) = ±C f m

q−1.

In this setting, clearly the system (1.1) admits the trivial solution (utr , λtr ,mtr ) ≡
(0, f (1), 1), which has a corresponding energy E(mtr ,−mtr∇H(∇utr )) = E(1, 0) = F(1).

First of all, if f (m) = C f mq−1, C f > 0, it is well known that (1.1) admits a unique
solution, which must coincide with the trivial one (see for example [22]). Instead, let us
assume f (m) = −C f mq−1, C f > 0: using Theorem 1.1, we infer that the existence of
multiple solutions follows whenever we can build an appropriate couple (m, w) in K (or in
K∩ Bᾱ) satisfying E(m, w) < F(1); indeed, in such case the solution found in Theorem 1.1
cannot be the trivial one. To this aim, take anyφ ∈ C2(�) such that

∫

�
φ dx = 0, and consider

m = 1+ εφ and w = ∇m. For 0 ≤ ε ≤ ε̄ small enough, we have that (m, w) ∈ K ∩ Bᾱ and
f ′(1 − ε̄‖φ‖∞) ≤ −CC f < 0. We obtain, for some 0 < ξ < ε̄,
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E(m, w) =
∫

�

mL
(
−w

m

)
dx +

∫

�

F(m) dx

= 1

γ ′

∫

�

(1 + εφ(x))1−γ ′ |ε∇φ(x)|γ ′
dx +

∫

�

F(1 + εφ(x)) dx

≤ Cεγ ′ + F(1) + ε f (1)
∫

�

φ(x) dx + ε2

2

∫

�

f ′(1 + ξφ(x))φ2(x) dx

≤ F(1) + Cεγ ′ − C ′C f ε
2.

Now, this last quantity is strictly smaller than F(1) either for γ ′ > 2 and ε small enough, or
for γ ′ ≤ 2, C f > C ε̄−(2−γ ′)/C ′ and ε = ε̄. We deduce multiplicity of solutions when

either γ < 2, or γ ≥ 2, 1 < q < q̄ andC f sufficiently large.

Wemay obtain obtain the same result when γ ≥ 2 and q ≥ q̄ , in case the largeness condition
on C f here were compatible with the smallness one in Theorem 1.1. On the other hand, if
γ ≥ 2 and C f is small enough, then uniqueness may be expected, see [14].

In case of multiplicity of solutions, a further question concerns the uniqueness of the
minimizers. This is an interesting question, which will be the object of subsequent studies.

The rest of the paper is organized as follows: in Sect. 2 we recall some notions about the
Legendre transform and some results about the Fokker-Plank andHamilton-Jacobi equations.
Moreover, for both equations we prove some a priori bounds in the critical endpoint case. In
Sect. 3we prove themain result. This is done in several steps. First, we regularize the problem,
associate a variational structure and prove the existence of (local) minimizers. Once we have
a minimum point for the energy, by a duality argument we deduce the existence of a regular
solution. Lastly, the solution to the initial problem is found by an appropriate limit procedure.

Notations. For k ∈ N and p ≥ 1 we denote by ‖u‖p and ‖u‖k,p the usual L p(�) and
Wk,p(�) norm respectively. For p ≥ 1, the exponent p′ is the conjugate exponent of p,
p′ = p

p−1 . C,C ′ and so on denote non-negative universal constants, which we need not to
specify, and which may vary from line to line.

2 Preliminaries

2.1 The Lagrangian

The Legendre-Fenchel transform LH of H is necessary for the construction of the energy
associated with the system:

L = LH (q) := sup
p∈RN

[p · q − H(p)]

Under our assumptions on H , the following properties of LH are standard:

Proposition 2.1 There exists CL > 0 such that for all p, b ∈ R
N

1. LH ∈ C2
(
R

N\{0}) and it is strictly convex.
2. 0 ≤ CL |q|γ ′ ≤ LH (q) ≤ C−1

L (|q|γ ′ + 1)

3. ∇LH (q) · q − LH (q) ≥ CL |q|γ ′ − C−1
L

4. CL |q|γ ′−1 − C−1
L ≤ |∇LH (q)| ≤ C−1

L (|q|γ ′−1 + 1)

Proof See for example [9]. ��
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The energy functional E involves the following Lagrangian term.

Proposition 2.2 The function

(m, w) −→ mL
(
−w

m

)
=

⎧
⎪⎨

⎪⎩

mL(−w
m ) if m > 0

0 if m = 0, w = 0,

+∞ otherwise,

is convex, and strictly convex if restricted to m > 0. We have,

mH(p) =
⎧
⎨

⎩

sup
w∈RN

[
−p · w − mL

(
−w

m

)]
if m �= 0

0 if m = 0.
(2.1)

Moreover

CL
|w|γ ′

mγ ′−1
≤ mL

(
−w

m

)
≤ C−1

L
|w|γ ′

mγ ′−1
+ C−1

L m. (2.2)

Proof Equation (2.1) is standard, see for example [8]. Estimate (2.2) comes directly from
Proposition 2.1. ��

2.2 Fokker–Planck equations

We deal here with the Fokker–Planck equation
⎧
⎪⎨

⎪⎩

−�m − div(mb) = 0 on �
∂m
∂n + mb · n = 0 on ∂�
∫

�
m = 1

(2.3)

where b : R → R
N will be (at least) in Ls(�;RN ), for some s > N . Solutionsm ∈ W 1,2(�)

will be in the standard weak sense:
∫

�

∇m · ∇φ dx =
∫

�

bm · ∇φ dx ∀φ ∈ W 1,2(�), (2.4)

with
∫

�
m = 1. The following existence result for b in L∞ is classical.

Theorem 2.3 Let b ∈ L∞(�;RN ). Then there exist an unique weak solution m to (2.3),
m ∈ W 1,p(�) for every p and

‖m‖1,p ≤ C = C(‖b‖∞ , p, N ,�).

Moreover, m ∈ C0,α(�) for all α ∈ (0, 1) and there exists c = c(‖b‖∞ , p, N ,�) > 0 such
that

c−1 ≤ m(x) ≤ c

for all x ∈ �.

Proof see [4, Th. II.4.4, II.4.5, II.4.7]. ��
We investigate further regularity properties, and recall the following proposition, which

is an useful W 1,p regularity result for linear equations in divergence form.
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Proposition 2.4 Let ρ ∈ L p(�), with p > 1. Suppose that
∣
∣
∣
∣

∫

�

ρ�φ dx

∣
∣
∣
∣ ≤ K ‖∇φ‖p′ (2.5)

for all φ ∈ C∞(�),
∂φ
∂n = 0 for some K > 0. Then ρ ∈ W 1,p(�) and there exists CE =

CE (N ,�, p) such that

‖ρ‖1,p ≤ CE (K + ‖ρ‖p). (2.6)

Moreover, the same estimate holds in a local form, that is, for every B2R ⊂ �,

‖ρ‖W 1,p(BR) ≤ CE,R(K + ‖ρ‖L p(B2R)). (2.7)

Proof See [1, Theorems 7.1 and 8.1]. ��
As a straightforward consequence, given w ∈ L p(�;RN ), p > 1, any weak solution

m ∈ W 1,p(�) to
⎧
⎪⎨

⎪⎩

−�m − divw = 0 on �
∂m
∂n + w · n = 0 on ∂�
∫

�
m = 1.

(2.8)

satisfies

‖m‖1,p ≤ CE (‖w‖p + ‖m‖p). (2.9)

The previous estimate, combined with the Gagliardo-Nirenberg inequality, yields the
following crucial result.

Proposition 2.5 Let (m, w) ∈ L1∩W 1,r (�)×L1(�) be a solution of (2.8), and E be defined
by

E :=
∫

�

|w|γ ′

mγ ′−1
dx,

which is assumed to be finite. Then there exists Cq > 0 such that

‖m‖1,r ≤ Cq(E + 1) (2.10)

‖m‖q ≤ Cq(E + 1). (2.11)

Moreover, if q < q̄, there exists also δ > 0 such that

‖m‖q(1+δ)
q ≤ Cq(E + 1). (2.12)

Finally, if q = q̄ , then (2.12) holds with δ = 0.

Proof The proof can be found for example in [8], and its adaption to the problem with
Neumann conditions is straightforward. ��

To conclude the section, we present a sharper estimate which will be useful in an endpoint
case of our analysis, and requires b to be controlled in LN (�) only.

Proposition 2.6 Let b ∈ L∞(�;RN ) such that ‖b‖N ≤ 1
2CECS

, where CE is defined in (2.6)
and CS is the p Sobolev Embedding constant. Then for any p < N the solution m of (2.3)
satisfies.

‖m‖1,p ≤ C = C(p, N ,�) (2.13)
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Proof By (2.9) we have that

‖m‖1,p ≤ CE (‖bm‖p + ‖m‖p).

By Hölder inequality, Sobolev Embedding and Interpolation

‖bm‖p + ‖m‖p ≤ ‖b‖N ‖m‖p∗ + ‖m‖1−θ
1 ‖m‖θ

p∗ ≤ CS ‖b‖N ‖m‖1,p + ‖m‖θ
1,p ,

for some θ = θ(p, N ) < 1, from which we can deduce the thesis using the bound assumed
on ‖b‖N . ��

2.3 Hamilton–Jacobi equations

We now consider the Hamilton–Jacobi equation
⎧
⎪⎨

⎪⎩

−�u + H(∇u) + λ = f (x) on �
∂u
∂n = 0 on ∂�
∫

�
u = 0.

(2.14)

A solution of (2.14) is a pair (u, λ) ∈ C2(�) × R that satisfies the equation pointwise.

Theorem 2.7 Let f ∈ Cα(�), 0 < α < 1. Then there exists an unique constant λ ∈ R such
that (2.14) has a unique solution in C2,α(�) and

λ = sup

{

c ∈ R s.t. ∃u ∈ C2(�̄),
∂u

∂n
= 0 on ∂� : −�u + H(∇u) + c ≤ f

}

. (2.15)

Moreover, the following estimates hold:

‖∇u‖∞ ≤K1 = K1(N ,�, ‖ f ‖∞),

‖u‖C2,α(�) ≤K2 = K2(N ,�, α, ‖ f ‖Cα(�)).

Note that the estimate holds also locally, that is, for every B2R ⊂ �,

‖∇u‖L∞(BR) ≤ K1 = K1(N ,�, R, ‖ f ‖L∞(B2R)).

The proof of this theorem is well-known in ergodic control theory, and it is typically obtained
via a limiting procedure involving a discounted problem. The crucial gradient estimate which
allows to pass to the limit in the procedure can be derived using the Bernstein method, see
for example [8, 10, 23] and references therein. Though we are not going to use directly the
characterization (2.15) of λ here, it is in fact a key step in the existence argument of Theorem
3.7, which follows some standard lines involving convex duality.

We are now interested in finding additional regularity results, which will be used in our
critical endpoint case. In particular, we are interested in finding bounds for |∇u|γ in LN/γ ′

depending on f in LN/γ ′
. This is a delicate endpoint case of the so-called Lq -maximal

regularity for Hamilton-Jacobi equations, which has been recently discussed in [13, 16] for
q ≥ N

γ ′ . We provide here a simple proof which exploits a smallness condition on f .
We start by introducing the following lemma for linear equations, and provide its standard

proof for the reader’s convenience.

Lemma 2.8 Let f ∈ L p(�) for p > 1 and let (u, λ) ∈ W 2,p(�) × R be a solution of
⎧
⎪⎨

⎪⎩

−�u + λ = f on �
∂u
∂n = 0 on ∂�
∫

�
u = 0.

(2.16)

123
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Then there exists C = C(N ,�, p) > 0 (independent of λ) such that

‖u‖2,p ≤ C ‖ f ‖p . (2.17)

Proof Using elliptic regularity (which holds up to the boundary by homogeneous Neumann
boundary conditions, see e.g. [31, Ch. 3]), we have that

‖u‖2,p ≤ C(‖ f − λ‖p + ‖u‖p). (2.18)

If we test (2.16) with a constant function, we get that necessarily

λ = 1

|�|
∫

�

f dx, (2.19)

hence we can suppose that ‖ f − λ‖p ≤ C ‖ f ‖p . Let us now claim that

‖u‖p ≤ C ‖ f ‖p . (2.20)

Indeed, suppose by contradiction that there exists a sequence (un, fn) satisfying (2.16) such
that

‖un‖p > n ‖ fn‖p . (2.21)

By (2.18) we get

n ‖ fn‖p ≤ C(‖ fn‖p + ‖un‖p), (2.22)

hence we can conclude that
‖ fn‖p
‖un‖p

→ 0. Now let vn = un‖un‖p
. Clearly ‖vn‖p = 1,

∫

�
vn = 0

and

‖vn‖2,p ≤ C

(‖ fn‖p

‖un‖p
+ 1

)

≤ C .

Hence we have that there exists a subsequence vn → v strongly in L p(�) and weakly in
W 2,p(�). Moreover, ‖v‖p = 1,

∫

�
v = 0. Now since un satisfies (2.16) we have for all

φ ∈ C∞(�)
∫

�

∇vn∇φ dx = 1

‖un‖p

∫

�

( fn − λ)φ dx ≤ C ‖ fn‖p

‖un‖p
‖φ‖p′ .

Passing to the limit we get that
∫

�
∇v∇φ dx = 0 for all φ ∈ C∞(�), hence ∇v = 0 which

implies v = K with K = 0 by the constraint. This is a contradiction with ‖v‖p = 1. ��
Using this estimate the idea is to construct a "barrier" for ∇u which we employ in a topolog-
ical fixed point argument. This means finding a value M such that no solutions exists with
‖∇u‖N (γ−1) = M .

Proposition 2.9 Under the hypothesis of Theorem 2.7, let (u, λ) be the unique solution of
(2.14). Then there exists δ0 depending on N ,�, γ, p, H such that if

KH + ‖ f ‖ N
γ ′ ≤ δ ≤ δ0,

then

either ‖∇u‖N (γ−1) < M or ‖∇u‖N (γ−1) > M (2.23)

for some M depending on δ (and N ,�, γ, p,CH). Moreover, M = M(δ) → 0 as δ → 0.
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Proof Let p = N
γ ′ , so p∗ = pγ , and assume that KH + ‖ f ‖ N

γ ′ ≤ δ ≤ δ0, with δ0 to be

chosen below. Hence by Sobolev embedding, Lemma 2.8 and assumptions on H ,

0 ≥ y := ‖∇u‖pγ ≤ ‖u‖1,pγ ≤ C ‖u‖2,p ≤ C(‖∇u‖γ
pγ + KH + ‖ f ‖p) ≤ Cyγ + C ′δ.

(2.24)

We now choose δ0 such that for every 0 < δ ≤ δ0 there exist two positive solutions
y1(δ) < y2(δ) to y = Cyγ + C ′δ. In this way (2.24) yields

either y ≤ y1(δ) ≤ y1(δ0) or y ≥ y2(δ) ≥ y2(δ0),

and we can choose M = M(δ) such that y1(δ) < M < y2(δ). Moreover, y1(δ) can be
made arbitrarily small if δ ≤ δ0 is chosen small enough, hence also M(δ) > 0 can be made
arbitrarily small. ��
Now that we have the barrier, we can use Leray-Schauder fixed point theorem to deduce the
following a priori estimate (which is in fact also an existence result).

Theorem 2.10 Under the hypothesis of Theorem 2.7, there exists δ0 > 0 such that if KH +
‖ f ‖ N

γ ′ ≤ δ ≤ δ0 then

‖∇u‖N (γ−1) < M . (2.25)

Moreover, M = M(δ) → 0 as δ → 0 (M, δ, δ0 are as in the previous proposition).

Proof Let δ0 be as in Proposition 2.23, and assume KH + ‖ f ‖ N
γ ′ ≤ δ ≤ δ0. We use Leray-

Schauder fixed point theorem (see for instance [2, Thm. 4.3.4]). Let U = {w ∈ C2(�) :
‖∇u‖N (γ−1) < M} and consider the operator T : U → C2(�) where u = T (w) is defined
by the solution of the system

⎧
⎪⎨

⎪⎩

−�u + H(∇w) + λ = f (x) on �
∂u
∂n = 0 on ∂�
∫

�
u = 0.

We claim that T is continuous and compact. Under this condition, by homotopy with the
identity, Leray-Schauder theorem asserts that either T has a fixed point in U , or there exists
s ∈ (0, 1] and u ∈ ∂U such that u = sT (u). However, the latter possibility is excluded by
Proposition 2.9: indeed, u = sT (u) yields

⎧
⎪⎨

⎪⎩

−�u + sH(∇u) + sλ = s f (x) on �
∂u
∂n = 0 on ∂�
∫

�
u = 0,

and, being 0 < s ≤ 1,

KsH + ‖s f ‖ N
γ ′ = sKH + s ‖ f ‖ N

γ ′ ≤ sδ ≤ δ;

whence Proposition 2.9 applies, replacing H(∇u), f with sH(∇u), s f respectively, and
we infer ‖∇u‖N (γ−1) �= M , in contradiction with u ∈ ∂U . Hence T has a fixed point in
U , which by Theorem 2.7 is the unique solution of (2.14), from which we can deduce the
desired estimate.
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Thus we are left to prove that T is continuous and compact. Clearly T1 : C2(�) → Cα(�)

defined by u = H(∇u) is continuous by our assumptions on H . Moreover let T2 : Cα(�) →
C2,α(�) be the operator defined by u = T2z solving

⎧
⎪⎨

⎪⎩

−�u + z + λ = f on �
∂u
∂n = 0 on ∂�
∫

�
u = 0.

This is well defined and continuous by elliptic regularity and because we supposed f ∈ Cα .
Finally, by Ascoli-Arzelà the immersion T3 : C2,α(�) → C2(�) is continuous and compact.
Hence we conclude that T = T3 ◦ T2 ◦ T1 is continuous and compact. ��

3 Existence of a solution

We are now ready prove Theorem 1.1. The proof of this theorem consists of several steps,
which are explained in detail in the following sections. Since we are dealing with local
couplings, the duality procedure to get a solution to the system (1.1) is rather delicate (as the
dual problem to the minimization of E would be related to solutions of an Hamilton-Jacobi
equation with rough right-hand side). We will introduce a family of regularized problem
with smoothing couplings, associate their energies Eε and then prove the existence of (local)
minimizers. Once we have a minimum point for the regularized energy, we will perform
the convex duality argument to deduce the existence of a regular solution. The solution to
the initial problem will be then found by an appropriate limit procedure on the regularized
sequence of solutions.

3.1 Regularization

Let us consider, for ε > 0, the following regularized system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�u + H(∇u) + λ = fε[m](x) on �

−�m − div(m∇H(∇u)) = 0 on �
∂u
∂n = 0 on ∂�
∂m
∂n + m∇H(∇u) · n = 0 on ∂�
∫

�
m = 1,

∫

�
u = 0,

(3.1)

where

fε[m](x) := f (·,m ∗ χε(·)) ∗ χε(x) =
∫

RN
χε(x − y) f

(

y,
∫

RN
m(z)χε(y − z) dz

)

dy

(3.2)

and χε is a sequence of standard symmetric mollifiers approximating the unit ( f and m are
extended to 0 outside �). We notice that given

Fε[m] :=
∫

�

F(x,m ∗ χε(x)) dx (3.3)

we have that it holds

Fε[m′] − Fε[m] =
∫ 1

0

∫

�

fε[(1 − t)m + tm′](x)(m′ − m)(x) dx (3.4)
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for m,m′ ∈ L1(�) and
∫

�
m = ∫

�
m′ = 1. This means that the regularized problem also

admits a potential. Let us observe that using the properties of mollifiers and the assumptions
on f , the following estimates hold:

− C f

q
‖m‖qq − K f ≤ Fε[m] ≤ C f

q
‖m‖qq + K f , (3.5)

and

− C f

q
sup
�

χq
ε − K f sup

�

χε ≤ F(x,m ∗ χε(x)) ≤ C f

q
sup
�

χq
ε + K f sup

�

χε. (3.6)

We now introduce the energy of the approximated system:

Eε(m, w) :=
⎧
⎨

⎩

∫

�

mL
(
−w

m

)
dx + Fε[m] if (m, w) ∈ K

+∞ otherwise.
(3.7)

3.2 Minimization of the regularized functional

Our goal now is to find a minimizer for the energy of the regularized system. Here, the
exponent q̄ comes into play. If q < q̄ , the energy can be proven to admit a global minimum.
This is the case addressed in [8]. If q = q̄, a global minimum can be found under some
condition on the coefficients. If q > q̄ , no global minima is present in general and we have to
look for local minima. Following the idea introduced in [26, 28], let us introduce, for α ≥ 1

Bα := {(m, w) ∈ K : ‖m‖qq ≤ α} (3.8)

and

Uα := {(m, w) ∈ K : ‖m‖qq = α}. (3.9)

Let us also define, for ε > 0 fixed,

cα = inf
(m,w)∈K∩Bα

Eε(m, w) (3.10)

and

ĉα = inf
(m,w)∈K∩Uα

Eε(m, w). (3.11)

We start by proving the existence of a minimum in the sets Bα , and also adapt the arguments
to prove the existence of a global minimum under the stricter assumptions.

Lemma 3.1 For allα ≥ 1, cα is achieved.Moreover, if q < q̄ or q = q̄ andC f < Cq̄ = q CL
Cq

,

then Eε has a global minimum on K.

Proof Let us begin by bounding Eε by below. Using (2.2), (2.11) and (3.5) we have:

Eε (m, w) ≥ CL

Cq
‖m‖q − CL − C f

q
‖m‖qq − K f ≥ K ′, (3.12)

since we know that ‖m‖qq ≤ α in Bα . Consider now a minimizing sequence (mn, wn) for cα .
Eventually, Eε (mn, wn) ≤ cα + 1. Hence, again by (2.2) and (3.5) we have

∫

�

|wn |γ ′

mγ ′−1
n

≤ C−1
L (cα + 1 − Fε[mn]) ≤ C−1

L

(

cα + 1 + K f + C f

q
α

)

(3.13)
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which implies that

(
∫

�
|wn |γ ′

mγ ′−1
n

)

is bounded. Using (2.10), we have that ‖mn‖1,r ≤ C . We

can use Sobolev embeddings to conclude that up to subsequences

mn → m a.e. on �, mn → m on L1(�), mn⇀m on W 1,r (�).

Then, using Hölder inequality

∫

�

|wn |
γ ′q

γ ′+q−1 dx ≤
(∫

�

|wn |γ ′

mγ ′−1
n

) q
γ ′+q−1

‖mn‖
γ ′−1

q(γ ′+q−1)
q ,

hence wn is equibounded in L
γ ′q

γ ′+q−1 (�) and so wn⇀w in L
γ ′q

γ ′+q−1 (�). By L1(�) conver-
gence ofmn we can conclude in a standard way thatm ≥ 0 and that

∫

�
m = 1. Moreover, the

convergences are strong enough to pass to the limit in the constraint K, that is, (m, w) ∈ K.
Fatou’s lemma also implies that m ∈ Bα .

To conclude, it is known that
∫

�
mL

(−w
m

)
dx is lower-semicontinuous with respect to

the weak convergence of W 1,r (�) × L
γ ′q

γ ′+q−1 (�) (indeed, one can exploit its convexity and
adapt classical results that connect convexity and lower semicontinuity, see for instance [17,
Th. 2.2.1]). Moreover, using (3.6) and the Dominated Convergence Theorem we deduce that
Fε is strongly continuous with respect to the L1(�) convergence. Hence,

Eε (m, w) ≤ lim inf
n

∫

�

mnL

(

−wn

mn

)

dx + lim
n

Fε[mn] ≤ lim inf
n

Eε (mn, wn) = cα.

Now suppose that q < q̄ . Then (2.12) holds. The proof of the existence of a minimizer is
completely analogous as before, but there is no need to restrict the set Bα . Indeed, instead of
(3.12), we can directly infer using (2.12) that

Eε (m, w) ≥ CL

Cq
‖m‖q(1+δ)

q − CL − C f

q
‖m‖qq − K f ≥ K ′. (3.14)

Moreover, we can set e = inf(m,w)∈K Eε (m, w) and argue as in (3.13), using (2.12) to
conclude that

∫

�

|wn |γ ′

mγ ′−1
n

≤ C−1
L

⎛

⎝e + 1 + K f + C f

q

(

Cq

∫

�

|wn |γ ′

mγ ′−1
n

dx + 1

) 1
1+δ

⎞

⎠

which again implies that
∫

�
|wn |γ ′

mγ ′−1
n

is bounded. Finally, if q = q̄ the previous steps are justified

provided that C f < q CL
Cq

and a global minimum exists. ��
Remark 3.2 Let (mε, wε) be a minimizer for Eε as in the previous lemma. Then, there exists
C > 0 independent of ε such that

‖mε‖q ≤ C, ‖mε‖1,r ≤ C (3.15)

and

‖wε‖ γ ′q
γ ′+q−1

≤ C . (3.16)

Indeed, when q ≤ q̄ we can use the fact that

Eε (mε, wε) ≤ Eε (1, 0) ≤ C−1
L + C f

q
+ K f (3.17)
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to conclude that inequalities (3.15) and (3.16) hold with a constant independent on ε. If
q > q̄ , the same results hold, the proof being immediate since mε ∈ Bα is only a local
minimum.

We see in the above lemma the role played by q̄. When q > q̄ , Eε is not globally bounded
from below and no globalminima exist (see the remark below). To show that a local minimum
exists in Bα , we are left to prove that the candidate obtained in the previous lemma does not
belong to Uα . To this aim, we look for ᾱ > 1 such that cᾱ < ĉᾱ .

Remark 3.3 Let us notice that if q ≥ q̄, E (and also Eε) could indeed be unbounded.
Let f (x,m(x)) = −C f m(x)q−1 − K f and q > 1+ γ ′

N . Then, there exists (mn, wn) such
that E(mn, wn) → −∞. Choosem0 ∈ C∞

0 (B1(0)) non-negative, such that
∫

B1(0)
m0 dx = 1

and
∫

B1(0)
|∇m0|γ ′

mγ ′−1
0

dx is finite. Now pick x0 ∈ � and define

mλ(x) = λNm0(λ(x − x0)) wλ(x) = ∇mλ(x) = λN+1∇m0(λ(x − x0)).

We notice that for λ > 1
dist(x0,∂�)

, then supp(mλ) ⊂ B 1
λ
(x0) and (mλ, wλ) ∈ K. Moreover

‖mλ‖qq = λN (q−1) ‖m0‖qq . Now we have, using our assumption and (2.2),

E(mλ, wλ) =
∫

�

mλL

(

−wλ

mλ

)

+ F(x,mλ) dx ≤

C−1
L

∫

�

|wλ|γ ′

mγ ′−1
λ

dx − C f

q
‖mλ‖qq − C

= λγ ′
C−1
L

∫

B1(0)

|∇m0|γ ′

mγ ′−1
0

dt − λN (q−1)C f

q
‖m0‖qq − C

and we see that under our assumptions on q for λ → +∞, the right-hand side goes to −∞.
By the above computations, we can also see that E may be unbounded in the case q = 1+ γ ′

N ,
provided that C f is large enough.

Let us go back to the existence of a local minimum in the case q > q̄ . To do so, we need to
impose some restriction on the coefficient C f , so that an α such that cα < ĉα can be found.

Theorem 3.4 Let q > q̄,

ᾱ =
(

CL

C f Cq

)q ′

, (3.18)

and suppose that

C f < min

{
CL

Cq
,
(
K ′q ′)1−q

(
CL

Cq

)q}

, (3.19)

where

K ′ := CL + C−1
L + 2K f + CL

qCq
. (3.20)

Then, there exists (mε, wε) ∈ K∩Bᾱ such that (mε, wε) is a local minimum for Eε . Moreover
it holds

Eε(mε, wε) = cᾱ−δ = cᾱ (3.21)

for all δ less than some δ̄ > 0 small enough.
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Proof Let us start the by the simple observation that if we find α2 > α1 such that ĉα2 > ĉα1 ,
then we have:

cα2 = min
α

{ĉα : 0 ≤ α ≤ α2} ≤ ĉα1 < ĉα2

and so we can conclude the existence of an interior minimum in Bα2 . We choose α1 = 1 and
α2 = ᾱ. Since C f < CL/Cq , we are sure that ᾱ > 1.
We now consider estimates for ĉα1 . We begin by noticing that by Hölder inequality we have

1 = ‖m‖1 ≤ ‖m‖q |�| 1
q′ = 1

which implies m = 1 a.e. and therefore (m, w) ≡ (1, 0) ∈ K ∩ Uα1 . Thus, using (2.2) and
(3.5) we find

ĉα1 ≤ Eε (1, 0) ≤ C−1
L + C f

q
+ K f < C−1

L + CL

qCq
+ K f . (3.22)

thanks to our assumptions on C f . Next, we rewrite (3.12) with α = ᾱ as

ĉᾱ ≥ CL

Cq
ᾱ

1
q − CL − C f

q
ᾱ − K f . (3.23)

To conclude that ĉᾱ > ĉ1, we need to check that

φ(α) := CL

Cq
α

1
q − C f

q
α > CL + C−1

L + 2K f + CL

qCq
= K ′, (3.24)

and the previous inequality holds again by the assumptions on C f (notice that ᾱ maximizes
φ). Moreover since φ is continuous, we get that some δ small enough exists so that also
ĉᾱ−δ > ĉα1 . ��
In the previous construction, the assumptions on C f are chosen to have the largest possible
α such that the energy admits an interior minimizer in Bᾱ , and ᾱ depends on the value of C f .
To treat the case q = qc, we will need to find a minimizer in Bᾱ independent of C f . This is
possible under different assumptions on C f .

Theorem 3.5 Let

α̂ =
(
Cq

CL
K ′′ + 1

)q

(3.25)

where

K ′′ = CL + C−1
L + 2K f

and suppose

C f <
qCL

Cq(α̂ + 1)
(3.26)

then the results of Theorem 3.4 hold.

Proof The proof is analogous to the one of Theorem 3.4. The only differences are the choice
of α when enforcing (3.24) (α̂ no longer maximizes φ(α)) and the last inequality in (3.22),
which is skipped. ��
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3.3 Convex duality

We now employ some convex duality arguments to obtain, from the (local) minimizer con-
structed in the previous section, a solution to the MFG system (3.1). We follow the usual
route (see e.g. [8] and references therein), which requires first to linearize the functional
(which is not convex by the presence of the possibly nonconvex Fε) around the minimizer
that we found. Given (mε, wε), which is a global minimizer of Eε onK, or a local minimizer
on K ∩ Bᾱ when q > q̄, let us introduce the following linearized functional:

Jε(m, w) =
∫

�

mL
(
−w

m

)
+ fε[mε](x)m dx . (3.27)

We notice that this functional is convex. We now prove that this functional admits the same
minimizer as Eε .

Proposition 3.6 Let (mε, wε) be a global minimizer of Eε on K or a local minimizer on
K ∩ Bᾱ as constructed above. Then

min
(m,w)∈K Jε(m, w) = Jε(mε, wε). (3.28)

Proof Let (m, w) ∈ K and consider for 0 < λ < 1

mλ = λm + (1 − λ)mε

If (mε, wε) is a local minimum, since by (3.21) mε ∈ Bᾱ−δ for some positive δ, we can
conclude that for λ small enough, mλ ∈ Bᾱ . If (mε, wε) is a global minimum this argument
holds for all λ. Hence, by minimality and convexity

Fε[mε] − Fε[mλ] ≤
∫

�

mλL

(

−wλ

mλ

)

dx −
∫

�

mεL

(

−wε

mε

)

dx

≤ λ

∫

�

mL
(
−w

m

)
dx + (1 − λ)

∫

�

mεL

(

−wε

mε

)

dx

−
∫

�

mεL

(

−wε

mε

)

dx

= λ

(∫

�

mL
(
−w

m

)
dx −

∫

�

mεL

(

−wε

mε

)

dx

)

.

Now, by (3.4), we have

Fε[mε] − Fε[mλ] =
∫ 1

0

∫

�

fε[(1 − t)mλ + tmε](x)(mε − mλ)(x) dx

= −λ

∫ 1

0

∫

�

fε[mε + λ(1 − t)(m − mε)](x)(m − mε)(x) dx .

Combining the two expressions, we can use Lipschitz estimates for fε[·](x) near mε and
send λ to 0 to conclude that

∫

�

mL
(
−w

m

)
dx −

∫

�

mεL

(

−wε

mε

)

dx ≥ −
∫

�

fε[mε](x)(mε − m)(x) dx,

which is equivalent to the minimality of Jε (globally on K). ��
Now that we have global minimizer of a convex functional, we can construct a solution of
(3.1).
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Theorem 3.7 Let (mε, wε) be a minimizer of Jε constructed above. Then mε ∈ W 1,p(�) for
all p > 1 and there exists λε ∈ R and uε ∈ C2(�) such that (uε, λε,mε) is a solution to
(3.1). Moreover,

wε = −mε∇H(∇(uε)), (3.29)

and there exists C > 0 independent of ε such that

‖mε‖q ≤ C, ‖mε‖1,r ≤ C, (3.30)

and

|λε| ≤ C . (3.31)

Proof The proof is like [8, Th. 4] with minor modifications. ��

3.4 Passage to the limit

We now wish to let ε → 0, and to do so we need some a priori estimate. We distinguish two
cases: if q < qc, we can use a blow-up argument to deduce an a priori L∞ bound onmε (that
by a bootstrap procedure yields further estimates on u,m and their derivatives). If q = qc,
the argument fails and we need to require some extra smallness on C f to obtain such bound.

The blow up argument follows the lines of [8], but we need an extra care for the presence
of the Neumann boundary conditions.

Proposition 3.8 Let (uε, λε,mε) be a solution to (3.1) constructed above, and suppose that
q < qc. Then there exist C > 0 independent of ε such that

‖mε‖∞ ≤ C . (3.32)

Proof Suppose by contradiction that

Mε = max
�

mε = mε(xε) → +∞.

Define

με := M−β
ε β:=(q − 1)

γ − 1

γ
.

We have that με → 0. Define the following rescaling
⎧
⎨

⎩
vε(x) = μ

2−γ
γ−1
ε uε(μεx + xε)

nε(x) = M−1
ε mε(μεx + xε).

We notice that nε(0) = 1 and that 0 ≤ nε(x) ≤ 1. Define also

Hε(q) = μ

γ
γ−1
ε H(μ

1
1−γ
ε q) ∇Hε(q) = με∇H(μ

1
1−γ
ε q) (3.33)

By (1.2) we get

C−1
H |p|γ − KH ≤ Hε(p) ≤ CH |p|γ + KH |∇Hε(p)| ≤ CH |p|γ−1 + KH .

(3.34)

Then, define

f̃ε(x) := μ

γ
γ−1
ε fε[mε](xε + μεx). (3.35)
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Since mε(x) ≤ Mε, we can use (1.3) to get that

∥
∥
∥ f̃ε[mε]

∥
∥
∥∞ ≤ μ

γ
γ−1
ε ‖ f (·,m ∗ χε(·)) ∗ χε‖∞ ≤ μ

γ
γ−1
ε ‖ f (·,mε ∗ χε)‖∞

≤ μ

γ
γ−1
ε C

(
‖mε ∗ χε‖q−1∞ + 1

)
≤ μ

γ
γ−1
ε

(
C ‖mε‖q−1∞ + C

)

≤ C + CM
q−1−β

γ
γ−1

ε ≤ C

by our definitions of με and β. Lastly, define

λ̃ε = μ

γ
γ−1
ε λε. (3.36)

Clearly by (3.31),
∣
∣
∣λ̃ε

∣
∣
∣ ≤ C . Now after some computations we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�vε(x) = μ

γ
γ−1
ε �uε(xμε + xε)

Hε(∇vε(x)) = μ

γ
γ−1
ε H(∇uε(xμε + xε))

�nε(x) = μ
1
β

+2
ε �mε(xμε + xε)

∇Hε(∇vε(x)) = με∇H(∇uε(xμε + xε))

div(nε∇Hε(∇vε(x))) = μ
1
β

+2
ε div(mε(xμε + xε)∇H(∇uε(xμε + xε)))

∂vε(x)
∂n = μ

1
γ−1
ε

∂uε(μεx+xε)
∂n (μεx + xε)

∂nε

∂n = μ
1
β

+1
ε

∂mε(μεx+xε)
∂n .

from which we deduce that (vε, λ̃ε, nε) is a solution of
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−�vε + Hε(∇vε) + λ̃ε = f̃ε(x) on �ε

−�nε − div(nε∇Hε(∇vε)) = 0 on �ε

∂vε

∂n = 0 on ∂�ε

∂nε

∂n + nε∇Hε(∇vε) · n = 0 on ∂�ε
∫

�ε
nε = M−1−β

ε ,
∫

�
vε = 0.

(3.37)

where �ε = {x : μεx + xε ∈ �}. We now have to distinguish two cases. Suppose first that

lim
ε→0

d (xε, ∂�)

με

= +∞.

From that we have that �ε ↑ R
N , hence for ε small enough we have that �ε ⊃ B4R(0) for

an R > 0 independent on ε. We know that λ̃ε and f̃ε(x) are uniformly bounded, thus using
Theorem2.7 (and the remark below)we can conclude that there existsC independent of ε such
that ‖∇vε‖∞ ≤ C on B2R . Now, using (3.34) we can deduce that ‖nε∇Hε(∇vε)‖∞ ≤ C .
Hence, by Proposition 2.4, for ε small enough nε is equibounded in W 1,p(BR(0)) for all
p > 1, and bySobolevEmbedding also inCθ (BR(0)), for all θ < 1.Weknow that nε(0) = 1,
therefore using equiboundness in Cθ (BR(0)). we can deduce that there exists δ > 0 and
r < R such that

∫

Br (0)
nqε (x) dx > δ > 0. Thus we have that

0 < δ ≤
∫

Br (0)
nqε (x) dx ≤ ‖nε‖qq = M−q

ε μ−N
ε ‖mε‖qq = M−q+βN

ε ‖mε‖qq . (3.38)
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Since q < qc then −q + βN < 0, and using (3.30) we have that

0 < δ ≤ M−q+βN
ε ‖mε‖qq ≤ CM−q+βN

ε → 0

which is a contradiction.
Suppose now that

lim
ε→0

d (xε, ∂�)

με

≤ C .

Up to subsequences we can suppose that xε → x̄ ∈ ∂� as ε → 0. Moreover, up to an affine
transformation we can assume x̄ = 0 ∈ ∂� and n(0) = −eN . Define x ′ = (x1, . . . , xN−1).
By the smoothness of � there exists U ⊂ R

N , � ⊂ R
N−1 and φ(x ′) ∈ C2,α(�) such that

φ(0) = 0, ∇φ(0) = 0,

∂� ∩U = {(x ′, xN ) : xN = φ(x ′)},
� ∩U = {(x ′, xN ) : xN > φ(x ′)}.

Let us now define a diffeomorfism � : RN → R
N that "straightens" the boundary. We set

yi = (�(x))i :=
{
xi − xN

∂φ
∂xi

(x ′) for 1 ≤ i ≤ N − 1

xN − φ(x ′) for i = N .
(3.39)

We can see that� is invertible in a neighborhood of 0.We now extend with an even reflection
vε and mε . We set

wε(y) = vε

(
�−1(y′, |yN |) − xε

με

)

(3.40)

ρε(y) = nε

(
�−1(y′, |yN |) − xε

με

)

. (3.41)

Due to the homogeneousNeumann boundary conditions, with some calculations it is possible
to show that ∂wε

∂ yN
|{yN=0} = 0.Moreover, one can derive thatwε, ρε satisfy an equation similar

to (3.37) in a fixed neighborhood of the boundary point p independent of ε (with coefficients
that converge to the identity as ε → 0). From this, we can repeat the above argument and
reach a contradiction. ��

Wecan see in this proof the criticality of the caseq = qc. Looking at (3.38) and the lines below,
in the case q = qc it is not possible to reach a contradiction, since M

−q+βN
ε does not vanish.

To tackle this problem, the idea is to obtain additional regularity using finer estimates for
both the Fokker-Planck and the Hamilton-Jacobi equation. Once we find uniform bounds for
mε in some L p with p > qc, the above arguments can be used to conclude again that we have
an uniform L∞ bound. This procedure requires additional assumptions on C f . Moreover we
need to have a value for ᾱ which is independent fromC f , as we have constructed in Theorem
3.5.

Below, CS is the Sobolev Embedding constant for W 1,p(�) into L p∗
(�), where p∗ is

chosen so that

p∗ < N and p∗ > 1 + γ ′

N − γ ′ .
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Proposition 3.9 Let (uε, λε,mε) be a solution to (3.1) and suppose that q = qc. Then

‖∇uε‖N (γ−1) ≤ 1

(4CECSCH )
1

γ−1

, (3.42)

where CE is defined in Proposition 2.4, provided that C f and K f are small enough (that is,
smaller than some positive constant depending on �, N , γ, q).

Proof We use Theorem 2.10, choosing δ small enough so that M(δ) ≤ (4CECSCH )
−1
γ−1 . Let

us compute the norm of fε in L
N
γ ′ (�). Using (1.3), convolution properties and the definition

of qc we have

‖ fε‖ N
γ ′ = ‖ f (x,m ∗ χε(x))‖ N

γ ′ ≤ C f
∥
∥mq−1

ε

∥
∥

N
γ ′

+ K f = C f (‖mε‖qq)
1
q′ + K f .

Now using Theorem 3.5, we know that

‖m‖qq ≤ α̂ =
(
Cq

CL
K ′′ + 1

)q

.

Hence if

C f α̂
1
q′ + K f ≤ δ

we have that ‖ fε‖ N
γ ′ ≤ δ. Thus, we can apply Theorem 2.10 to conclude. ��

Corollary 3.10 Let (uε, λε,mε) be a solution to (3.1) and suppose that q = qc. Under the
assumptions of the previous proposition, supposing in addition that

KH ≤ 1

4CECS
, (3.43)

then there exist C > 0 independent of ε such that

‖mε‖∞ ≤ C .

Proof Using Proposition 3.9 we have that ‖∇uε‖N (γ−1) ≤ 1

(2CECSCH )
1

γ−1
. Hence

‖∇H(∇uε)‖N ≤ 1

4CECS
+ KH

and we can use Proposition 2.6 to conclude that mε are uniformly bounded in W 1,p(�) for
the chosen above; in this way, by Sobolev Embeddings mε are uniformly bounded in Lq(�)

for some q > qc. Once we have this bound, we can proceed as in Proposition 3.8 to conclude
that mε is bounded in L∞. ��

Now everything is ready to prove the main result. Thanks to the uniform bounds, we use
a bootstrap procedure to obtain the regularity which is necessary to pass to the limit into the
equations.

Proof of Theorem 1.1 We set ourselves in the assumptions of the previous propositions and
theorems, in particular we require C f , K f and KH to be possibly small enough (see in
particular Lemma 3.1, Eqs. (3.19), (3.26), Proposition 3.9). We first prove the existence of a
solution by a bootstrap and limit procedure and then we show it is a minimum for the energy,
using a �-convergence argument.
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Existence of a solution. Let (uε, λε,mε) be the sequence of solutions constructed in
Theorem 3.7.We show that we can pass to the limit as ε → 0 and obtain a solution of (1.1); in
this we need to treat separately the Sobolev subcritical and critical cases. Let us first suppose
q < qc. By (3.31) we have that, up to subsequences, λε → λ. Moreover, by Proposition 3.8
we have that ‖mε‖∞ ≤ C . Hence by properties of mollifiers and (1.3) we get

‖ fε[mε]‖∞ = ‖ f (·,m ∗ χε(·)) ∗ χε‖∞ ≤ ‖ f (·,mε ∗ χε)‖∞
≤ C ‖mε ∗ χε‖q−1∞ + C ≤ C ‖mε‖q−1∞ + C ≤ C

Thus, we can conclude by Theorem 2.7, that ‖∇uε‖∞ ≤ K for some K > 0 independent
of ε. Using the estimates on H and elliptic regularity in the Hamilton-Jacobi equation we
can conclude that ‖uε‖1,p ≤ C for all p > 1. Moreover, by Sobolev embeddings, uε is
equibounded in C1,α(�) for all α ∈ (0, 1). Since ∇H(∇uε) ≤ C , we now use Theorem 2.3
to conclude that ‖mε‖1,p ≤ C for all p > 1, and therefore by Sobolev embedding mε is
equibounded in Cθ (�) for all θ ∈ (0, 1). Hence, we get that, up to subsequences, mε⇀m in
W 1,p for all p > 1 and mε → m uniformly. We can then go back to the Hamilton-Jacobi
equation and, with a similar reasoning, conclude that fε[mε](x) is equibounded in Cθ (�)

for all θ ∈ (0, 1). Hence uε is equibounded in C2,θ (�) for all θ ∈ (0, 1). Finally, we can
conclude that up to subsequences uε → u inC2(�). Now the convergences are strong enough
to pass to the limit in the equations, so we can conclude that (u, λ,m) is a solution of (1.1),
with the positivity of m coming from Theorem 2.3 and pointwise convergence.

When q = qc, we argue in the very same way, starting from Corollary 3.10.
Minimality. We are left to prove that the solutions we found are (local) minimizers of E .

We will use the fundamental theorem of �−convergence (see e.g. [6]). This says that if Eε

�−converges to E , than any converging sequence of minima for Eε converges to a minimum
for E . Notice that, since we know a priori that the sequence of minima converges, we do not
need to prove an equicoercivity result. Let us show that Eε �−converges to E on the space
X = Lq(�) ∩ W 1,r (�) × L1(�). Suppose that (mε, wε) → (m, w) in X . By properties of
mollifiers and continuity of the convolution we have mε ∗ χε → m in Lq(�). We already
remarked the semicontinuity of the Lagrangian term in Eε , moreover by (1.3) we have strong
Lq(�) continuity of m → ∫

�

∫ m
0 f (x, n) dn dx . Thus

lim inf
ε

Eε(mε, wε) = lim inf
ε

∫

�

mεL

(

−wε

mε

)

dx + lim
ε

Fε[mε]

≥
∫

�

mL
(
−w

m

)
dx +

∫

�

F(x,m) dx = E(m, w).

As for the recovery sequence, it suffices to choose (mε, wε) = (m, w) for all ε > 0 and
we clearly have that Eε(m, w) → E(m, w) by the properties of mollifiers and again by the
strong Lq(�) continuity. To finish, we know by (3.7) that a minimum (mε, wε) of Eε yields
a solution (uε, λε,mε) of (3.1) and that the relation wε = −mε∇H(∇(uε)) holds. Since we
know that (uε, λε,mε) converges in C2(�) ×R× W 1,p(�) for all p to a solution (u, λ,m)

of the original problem, we get that (mε, wε) converges in X to (u,−m∇H(∇u)). Hence,
we can conclude that the solution (u, λ,m) is such that (m,−m∇H(∇u)) is a minimum of
E (possibly restricted to Bα̂ when q > q̄). ��
Acknowledgements M.C. is partially supported by the King Abdullah University of Science and Technology
(KAUST) project CRG2021-4674 “Mean-Field Games: models, theory, and computational aspects”; A.C. is
partially supported by theEuropeanUnion’sHorizon 2020 research and innovation programmeunder theMarie
Sklodowska-Curie grant agreementNo945332;G.V. is partially supported by the projectVain-Hopeswithin the
program VALERE-Università degli Studi della Campania “Luigi Vanvitelli”, by the Portuguese government

123



  134 Page 22 of 23 M. Cirant et al.

through FCT/Portugal under the project PTDC/MAT-PUR/1788/2020; M.C. and G.V. are members of the
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM).

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Data availibility Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Agmon, S.: The L p approach to the Dirichlet problem. I. Regularity theorems. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. 13, 405–448 (1959)

2. Ambrosetti, A., David, A.: An introduction to nonlinear functional analysis and elliptic problems. In:
Progress in Nonlinear Differential Equations and their Applications, vol. 82. Birkhäuser Boston Ltd,
Boston (2011)

3. Bardi, M., Feleqi, E.: Nonlinear elliptic systems and mean field games. NoDEA Nonnlinear Differ. Equ.
Appl. 23, 23–44 (2016)

4. Bensoussan, A.: Perturbation Methods in Optimal Control. Wiley/Gauthier-Villars Series in Modern
Applied Mathematics, Wiley, Chichester (1988). (Translated from the French by C. Tomson)

5. Bernardini, Chiara, Cesaroni, Annalisa: Ergodic mean-field games with aggregation of Choquard-type.
J. Differ. Equ. 364, 296–335 (2023)

6. Braides, Andrea: �-Convergence for Beginners. Oxford Lecture Series in Mathematics and its Applica-
tions, vol. 22. Oxford University Press, Oxford (2002)

7. Cesaroni, A., Cirant, M.: Concentration of ground states in stationary mean-field games systems. Anal.
PDE 12(3), 737–787 (2019)

8. Cesaroni, A., Cirant, M.: Introduction to variational methods for viscous ergodic mean-field games with
local coupling. In: Contemporary Research in Elliptic PDEs and Related Topics. Springer INdAM Ser,
pp. 221–246. Springer, Cham (2019)

9. Cirant, M.: On the solvability of some ergodic control problems in R
d . SIAM J. Control. Optim. 52(6),

4001–4026 (2014)
10. Cirant, M.: Multi-population mean field games systems with Neumann boundary conditions. J. Math.

Pures Appl. 103(5), 1294–1315 (2015)
11. Cirant, M.: Stationary focusing mean-field games. Comm. Partial Differ. Equ. 41(8), 1324–1346 (2016)
12. Cirant, M., Goffi, A.: On the problem of maximal Lq -regularity for viscous Hamilton-Jacobi equations.

Arch. Ration. Mech. Anal. 240(3), 1521–1534 (2021)
13. Cirant, M., Goffi, A., Leonori, T.: Gradient estimates for quasilinear elliptic Neumann problems with

unbounded first-order terms, (2022)
14. Cirant, M., Porretta, A.: Long time behaviour and turnpike solutions in mildly non-monotone Mean Field

Games. ESAIM: COCV 27(86), 40 (2021)
15. Cirant, Marco, Verzini, Gianmaria: Bifurcation and segregation in quadratic two-populations mean field

games systems. ESAIM Control Optim. Calc. Var. 23(3), 1145–1177 (2017)
16. Cirant, Marco, Verzini, Gianmaria: Local Hölder and maximal regularity of solutions of elliptic equations

with superquadratic gradient terms. Adv. Math. 409, 108700 (2022)
17. Evans, L.C.:Weak convergence methods for nonlinear partial differential equations, In: CBMS Regional

Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences,
Washington, DC, The American Mathematical Society, Providence, RI, vol 74 (1990)

18. Goffi, A.: On the optimal Lq -regularity for viscous Hamilton–Jacobi equations with subquadratic growth
in the gradient. Commun. Contemp. Math., 2350019

123

http://creativecommons.org/licenses/by/4.0/


Ergodic mean field games: existence of local minimizers… Page 23 of 23   134 

19. Goffi,Alessandro, Pediconi, Francesco: Sobolev regularity for nonlinear Poisson equationswithNeumann
boundary conditions on Riemannian manifolds. Forum Math. 35(2), 431–456 (2023)

20. Gomes, D.A., Pimentel, E.A., Voskanyan, V.: Regularity Theory forMean-Field Game Systems. Springer
Briefs in Mathematics, Springer, Cham (2016)

21. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251
(2006)

22. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
23. Lions, P.-L.: Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J. Analyse

Math. 45, 234–254 (1985)
24. Mészáros, A.R., Silva, F.J.: A variational approach to second order mean field games with density con-

straints: the stationary case. J. Math. Pures Appl. 104(6), 1135–1159 (2015)
25. Mészáros, A.R., Silva, F.J.: On the variational formulation of some stationary second-order mean field

games systems. SIAM J. Math. Anal. 50(1), 1255–1277 (2018)
26. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded

domains. Nonlinearity 32(3), 1044–1072 (2019)
27. Pellacci, B., Pistoia, A., Vaira, G., Verzini, G.: Normalized concentrating solutions to nonlinear elliptic

problems. J. Differ. Equ. 275, 882–919 (2021)
28. Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded

domains. Calc. Var. Partial Differ. Equ. 56(5), 1–27 (2017)
29. Pimentel, E.A., Voskanyan, V.: Regularity for second-order stationary mean-field games. Indiana Univ.

Math. J. 66(1), 1–22 (2017)
30. Santambrogio, F.: Lecture notes on variational mean field games. In: Mean Field Games, vol. 2281, pp.

159–201. Springer, Cham (2020)
31. Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Math-

ematics, Plenum Press, New York (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Ergodic mean field games: existence of local minimizers up to the Sobolev critical case
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Lagrangian
	2.2 Fokker–Planck equations
	2.3 Hamilton–Jacobi equations

	3 Existence of a solution
	3.1 Regularization
	3.2 Minimization of the regularized functional
	3.3 Convex duality
	3.4 Passage to the limit

	Acknowledgements
	References


