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Abstract
Let � be a compact codimension-two submanifold of Rn , and let L be a nontrivial real line
bundle over X = R

n\�. We study the Allen–Cahn functional,

Eε(u) =
∫
X

ε
|∇u|2
2

+ (1 − |u|2)2
4ε

dx,

on the space of sections u of L . Specifically, we are interested in critical sections for this
functional and their relation to minimal hypersurfaces with boundary equal to �. We first
show that, for a family of critical sections with uniformly bounded energy, in the limit as
ε → 0, the associated family of energy measures converges to an integer rectifiable (n − 1)-
varifold V .Moreover, V is stationarywith respect to any variationwhich leaves� fixed.Away
from �, this follows from work of Hutchinson–Tonegawa; our result extends their interior
theory up to the boundary �. Under additional hypotheses, we can say more about V . When
V arises as a limit of critical sections with uniformly bounded Morse index, � := supp ‖V ‖
is a minimal hypersurface, smooth away from � and a singular set of Hausdorff dimension
at most n − 8. If the sections are globally energy minimizing and n = 3, then � is a smooth
surface with boundary, ∂� = � (at least if L is chosen correctly), and � has least area
among all surfaces with these properties. We thus obtain a new proof (originally suggested
in a paper of Fröhlich and Struwe) that the smooth version of Plateau’s problem admits a
solution for every boundary curve in R

3. This also works if 4 ≤ n ≤ 7 and � is assumed to
lie in a strictly convex hypersurface.
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1 Introduction

For a domain � in Euclidean space (or more generally a Riemannian manifold), the Allen–
Cahn energy of a function u ∈ W 1,2

loc (�) is given by

Eε(u) =
∫

�

ε
|du|2
2

+ (1 − u2)2

4ε
dx .

Such double-well functionals were first introduced by physicists as models for phase-
transition phenomena. It is nowwell known that there is a deep link between these functionals
and minimal hypersurfaces. Modica and Mortola [27] showed that, in the limit as ε → 0, the
Allen–Cahn functional �-converges to the perimeter functional on Cacciopoli sets in �. In
particular, functions which minimize Eε in compact subsets of � exhibit energy concentra-
tion on a perimeter-minimizing boundary. Modica later gave a different proof of this property
of minimizers in [28]. The results of [27, 28] were extended to sections of a real line bundle
(as opposed to functions) over a compact Riemannian manifold by Baldo–Orlandi [8]. In
that setting, sections which minimize an appropriate analogue of the Allen–Cahn functional
concentrate energy on a mass-minimizing (n − 1)-cycle. Moreover, the cycles which arise
in this way all lie in a certain mod 2 homology class determined by the chosen line bundle
(namely, the Poincaré-dual to its first Stiefel–Whitney class).

In their fundamental work [25], Hutchinson and Tonegawa considered general critical
points (not just minimizers) of the Allen–Cahn energy. They established that, in the limit
as ε → 0, critical points with uniformly bounded energy exhibit energy concentration on a
stationary integer rectifiable (n − 1)-varifold. Together with the regularity theory for stable
critical points developed in [32], this opened the door to striking geometric applications,
beginning with a new proof of the Almgren–Pitts existence theorem for minimal hypersur-
faces in Riemannian manifolds [22]. For further applications in this vein, see [5–7, 10, 12,
13, 21].

Ourfirst goal in this paper is to generalise the convergence theoryofHutchinson–Tonegawa
to sections of real line bundles over the complement of a compact codimension-two subman-
ifold � ⊂ R

n , where n ≥ 2. For n = 3 this setting was already considered by Fröhlich and
Struwe in [20]. They observed that the Allen–Cahn functional on the space of sections of
such a bundle ought to be closely related to the area functional on the space of minimal hyper-
surfaces with boundary �. Our results begin to make precise the link between the variational
theories of these two functionals.

Let us fix some notation and terminology. Let X = M\�, where M is either Rn or an
open ball B ⊂ R

n . Let L be a real line bundle over X , equipped with a bundle metric 〈·, ·〉
and a flat metric connection ∇. Given a section u ∈ W 1,2

loc (X , L), we define its Allen–Cahn
energy to be

Eε(u) =
∫
X

ε
|∇u|2
2

+ W (u)

ε
dx, W (u) := (1 − |u|2)2

4
. (1)

More generally, the energy of u in a subset � will be denoted Eε(u,�). We say that u is
critical for Eε if firstly Eε(u, K ) < ∞ for every compact K ⊂ X and secondly

d

dt

∣∣∣∣
t=0

Eε(u + tϕ) = 0
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for every section ϕ ∈ C1
0 (X , L). Equivalently, u is critical if it weakly solves the Euler–

Lagrange equation

ε2�u = (|u|2 − 1)u.

This equation is subcritical (the right-hand side is O(|u|p) for p < n+2
n−2 ), so standard elliptic

regularity theory implies that every critical section is in fact smooth.
So far our discussion has concerned an arbitrary line bundle L → X . From now on we

will always work with a specific choice of nontrivial L . When we study the local behaviour
of critical sections near �, it will suffice to work in a ball M = B such that B ∩ � is close to
an (n − 2)-plane in B. In this case, there is exactly one nontrivial line bundle over X . When
working globally, however, with M = R

n , we allow � to have more than one connected
component, and in this situation there may be many nontrivial line bundles over X . However,
only one of them detects every component of �. We recall in Sect. 2 that the space of line
bundles over X is in bijection with the elements of Hom(H1(X),Z2) 
 H1(X ,Z2). Among
these there is a unique bundle such that the nodal set of any smooth section necessarily
intersects Br (p) for every p ∈ � and r > 0; we call this the spanning bundle over X .
Equivalently, the spanning bundle corresponds to the element of H1(X ,Z2) which sends
every set of generators of H1(X) to the identity. When working globally, with M = R

n , we
always take L → X to be the spanning bundle. We will show that, as ε → 0, critical sections
of this bundle with bounded energy concentrate their energy on a stationary (n − 1)-varifold
whose support contains �. This is to be expected since, for small ε, most of the energy of a
critical section lies in a small neighbourhood of its nodal set, and for sections of the spanning
bundle any such neighbourhood contains �.

Given a critical section u for Eε , we define a corresponding energy measure

μ :=
(

ε
|∇u|2
2

+ W (u)

ε

)
dx .

Following [25], we also associate with u a diffuse (n − 1)-varifold V on M , by taking
a weighted average over smooth level sets of |u|. We defer the precise definition of V to
Sect. 3, but record here that the mass of V is given by

‖V ‖ = 1

σ

√
W (u)

2
|∇u| dx,

where 2σ is the Allen–Cahn energy of the 1-dimensional heteroclinic solution x �→
tanh( x

ε
√
2
).

Our first main result is the following.

Theorem 1.1 Let B ⊂ R
n be an open ball, where n ≥ 2, and set X = B \�. We assume X is

diffeomorphic to the complement of an (n − 2)-plane in R
n, and denote by L the nontrivial

real line bundle over X. Fix a sequence εk → 0, and for each k suppose uk is a critical
section of L for the energy Eεk . In addition, suppose there are constants C0 and C1 such that

sup
k

(
sup
X

|uk |
)

≤ C0, sup
k

Eεk (uk) ≤ C1. (2)

Possibly after passing to a subsequence, we have the following behaviour:

(i) The varifolds Vk associated to the sequence uk weak*-converge to an integer rectifiable
(n − 1)-varifold V on B. Moreover, V is stationary with respect to vector fields g ∈
C1
0 (B,Rn) such that g|� is tangent to �.
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(ii) The renormalised energy measures μk/2σ weak*-converge to ‖V ‖.
(iii) � ∩ B ⊂ supp ‖V ‖.
(iv) The density of ‖V ‖ satisfies

C−1 ≤ 
n−1(‖V ‖, p) ≤ C

(
1 + 1

dist(p, ∂B)n−1

)
(3)

for every p ∈ supp ‖V ‖, where C = C(n, �,C0,C1). In particular, ‖V ‖(�) = 0.
(v) For each b ∈ (0, 1), the sublevel sets {|uk | ≤ 1 − b} Hausdorff-converge to supp ‖V ‖

in every compact subset of B. Moreover, |uk | → 1 in C0
loc(X\ supp ‖V ‖).

By a covering argument, Theorem 1.1 and the interior theory developed in [25] imply a
corresponding global statement for critical sections of the spanning bundle.

Theorem 1.2 Suppose we are in the setting of Theorem 1.1, but where the uk are now sections
of the spanning bundle over X = R

n\�. We have all of the same conclusions, but with B
replaced byRn, and where the term involving dist(p, ∂B) does not appear in (3). In addition,
supp ‖V ‖ is compact.

After establishing Theorems 1.1 and 1.2, we turn to the regularity of the energy con-
centration set supp ‖V ‖. We restrict ourselves to the case of sections which are stable or
have bounded Morse index. Let us define these terms. Given a critical section u for Eε and
ϕ ∈ W 1,2(X , L) with compact support, the second variation of Eε at u in the direction of ϕ

is given by

d2

dt2

∣∣∣∣
t=0

Eε(u + tϕ) =
∫
X

ε|∇ϕ|2 + 2

ε
〈u, ϕ〉2 + 1

ε
(|u|2 − 1)|ϕ|2 dx .

For each precompact open � ⊂ X , the subspace of sections in W 1,2
0 (�, L) such that

d2

dt2

∣∣∣∣
t=0

Eε(u + tϕ) < 0

is finite-dimensional, and its dimension is the Morse index of u in �, denoted ind(u,�).
For an arbitrary open � ⊂ X , we define ind(u,�) to be the supremum over ind(u,�′)
for all precompact open �′ ⊂ �. We say that u is stable in � if ind(u,�) = 0. If uk is
as in Theorem 1.1, and in addition ind(uk,�) is bounded indpendently of k, then optimal
regularity of supp ‖V ‖ in � follows from [22, 32]. Alternatively, when n = 3, smoothness
of supp ‖V ‖ can be deduced from [12].

Corollary 1.3 Let uk and V be as in Theorem 1.1. Suppose in addition that n ≥ 3 and
ind(uk,�) is bounded independently of k for some open subset � ⊂ X. Then supp ‖V ‖ ∩ �

is a smooth embedded minimal hypersurface outisde a set of Hausdorff dimension at most
n − 8.

We will see that, when n = 3, if the sequence uk is minimizing then supp ‖V ‖ is also
smooth at boundary points. We do not know whether the same is true for sequences of stable
sections, but this seems unlikely without further conditions on the boundary curve. However,
when n = 3, for sections with bounded Morse index we show that the structure of V at
boundary points is severely restricted. To state the result we note that, as a consequence of
(3), at each point in its support the limiting varifold V admits a varifold tangent (this we
prove in Lemma 4.3).
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Theorem 1.4 Let uk and V be as in Theorem 1.1. Suppose in addition that n = 3 and that
ind(uk, X) is bounded independently of k. Consider a point p ∈ � ∩ B. Then every varifold
tangent to V at p is of the form

∑N
j=1 m jVPj for some N ∈ N, where the Pj are halfplanes

meeting along Tp�, VPj is the unit-multiplicity varifold induced by Pj , and the valuesm j ∈ N

are such that
∑N

j=1 m j is odd.

Note that, by Allard’s boundary regularity theorem [3], when the varifold tangent referred
to in Theorem 1.4 is a single unit-multiplicity halfplane, supp ‖V ‖ is a smooth surface with
boundary in a neighbourhood of p. This fact will play a role in our results concerning
minimizing sections and Plateau’s problem, to which we now turn.

1.1 Minimizing sections and Plateau’s problem

Plateau’s problem is to establish the existence of a surface whose area is minimal among
all those which span a given curve in R

3. Lagrange posed the problem in 1760, and Plateau
later demonstrated that solutions arise experimentally as soap films clinging to a wire frame.
Plateau’s problem is farmore subtle than it appears; to even formulate it precisely, appropriate
notions of surface and area must be decided upon, and one must specify what it means for
a surface to span a given curve. Over the last century a number of frameworks have been
developed to solve Plateau’s problem and its generalisations to higher dimensions. We refer
to Section 2 of [14] for an extensive overview of these different approaches, and point to the
particularly relevant references [4, 15–18, 23, 24, 26, 29, 30].

Theorems 1.2 and 1.4 allow us to complete a new proof (originally suggested by Fröhlich
and Struwe in [20]) that the smooth version of Plateau’s problem admits a solution for every
smooth closed curve � in R

3. That is, we show there is a compact surface �, smooth up to
its boundary, such that ∂� = � and the 2-dimensional Hausdorff measure of � is minimal
among all surfaces in this class. This result was originally established using the theory of flat
chains mod 2 [18] and Allard’s regularity theorems [2, 3]. In the approach taken here, we
instead consider sections of the spanning bundle over X = R

3\� which minimize the Allen–
Cahn energy Eε . We demonstrate that, in the limit as ε → 0, the desired Plateau solution
arises as the set where theseminimizers concentrate energy.We still rely onAllard’s theorems
to prove boundary regularity, but we expect this to be achievable using PDE arguments (as
in the interior case [12, 34]) leading to a resolution of Plateau’s problem that relies only on
level-set estimates for solutions of semilinar elliptic equations.

Let us now state our results concerning Plateau’s problem in more detail. A section u ∈
W 1,2

loc (X , L) minimizes the energy Eε if

Eε(u) = inf
{
Eε(v) : v ∈ W 1,2

loc (X , L)
}
.

Every minimizing section is also critical and hence smooth. In all dimensions, a minimizing
section exists for every ε > 0 (this was proven in [20], and we recap the argument in Sect. 6).

Theorem 1.5 Consider a smooth closed curve � ⊂ R
3. Fix a sequence εk → 0, and let

uk denote a sequence of sections of the spanning bundle over X = R
3\� which minimize

Eεk . The bounds (2) then hold automatically, so (after passing to a subsequence) we may
apply Theorem 1.2 to extract a weak*-limit of the associated varifolds, denoted V . The set
� := supp ‖V ‖ is a smooth surface with boundary, ∂� = �, and V is the unit-multiplicity
varifold induced by �. Moreover, � is area minimizing with respect to �. That is, � solves
the smooth version of Plateau’s problem for �.

123
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The smooth Plateau problem can also be posed in higher dimensions, where � is now a
compact codimension-two submanifold inRn , and one seeks an areaminimzing hypersurface
� with boundary ∂� = �. However even for n = 4 there may be no solutions. Suppose for
example that � is an embedded RP

2 in R
4. Since RP2 is not the boundary of any smooth

3-manifold, in this case � must be singular on some subset of �. The situation is different,
however, if � lies in a strictly convex hypersurface—in this case there is a smooth solution
if 4 ≤ n ≤ 7 (see [3, 5.2]). We also obtain a new proof of this statement.

Theorem 1.6 Let � denote a compact codimension-two submanifold of Rn, n ≥ 4. Fix a
sequence εk → 0, and let uk denote a sequence of sections of the spanning bundle over
X = R

n \ � which minimize Eεk . The bounds (2) then hold automatically, so (after passing
to a subsequence) we may apply Theorem 1.2 to extract a weak*-limit of the associated
varifolds, denoted V . Let � := supp ‖V ‖. We then have that � \ � is a smooth minimal
hypersurface outside a set of Hausdorff-dimension atmost n−8, and V is the unit-multiplicity
varifold induced by �. Moreover, if �′ is any compact smooth hypersurface with boundary
such that ∂�′ = �, then

Hn−1(�) ≤ Hn−1(�′).

If we additionally assume that � lies in a strictly convex hypersurface, then there is a tubular
neighbourhood of � in which � is a smooth hypersurface with boundary, and ∂� = �.
Consequently, if 4 ≤ n ≤ 7 and � lies in a strictly convex hypersurface, then � is a smooth
hypersurface with boundary which solves Plateau’s problem for �.

1.2 Key steps in the proofs

Let us first describe some of the main steps in the proof of Theorem 1.1. Here much of our
analysis follows the work of Hutchinson and Tonegawa [25], who dealt with the interior case,
but there are key differences at the boundary.

Suppose we are in the setting of Theorem 1.1, and to ease notation let εk = ε and u = uk .
In Sect. 3, we first recall (and generalise to higher dimensions) certain estimates from [20]
which provide control on u and its derivatives in a small tubular neighbourhood of �. In
particular, writing ρ(x) for the distance from x to �, we have

|u(x)|2 � ε−1ρ(x) and |∇u|2 � ε−1ρ(x)−1 (4)

at points where ρ(x) � ε. Notice that the second estimate allows |∇u|2 to blow up at
a controlled rate as we approach �. These boundary estimates are then used to derive an
almost-monotonicity formula for the rescaled energy

1

rn−1

∫
Br (p)

ε
|∇u|2
2

+ W (u)

ε
dx

in balls centered at a point p ∈ �. A similar formula for interior balls was derived in [25].
As in [25], we find that the rescaled energy is not quite monotone in r , because of a term
involving the discrepancy,

ξ := ε
|∇u|2
2

− W (u)

ε
.

As a consequence of interior estimates proven in [25], the discrepancy is bounded from
above on compact subsets of X , and decays to 0 in L1

loc(X) as ε → 0. To prove Theorem 1.1
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we need more; it will be necessary to show that ξ decays to 0 in L1
loc(B). This global

statement is more delicate than its interior counterpart because, in our setting with boundary,
ξ is typically unbounded from above near � for each ε (see the example at the conclusion
of this introduction). Despite this, by carefully combining an improved interior estimate for
ξ with the boundary estimates (4), we obtain the necessary L1

loc-decay over B. This ensures
that the almost-monotonicity improves to a genuine monotonicity in the limit as ε → 0.

With this fact in hand, in Sect. 4 we show that the diffuse varifolds associated with the
sequence u approach a limit which is stationary with respect to vector fields tangent to �

and, moreover, satisfies uniform upper and lower density bounds. The limiting varifold is
then rectifiable by Allard’s rectifiability theorem, and integral by an argument in [25]. This
concludes our discussion of Theorem 1.1. As mentioned above, Theorem 1.2 follows from
Theorem 1.1 and a covering argument.

Theorem 1.4 is proven in Sect. 5. In the setting of that theorem, it is straightforward to
show that every varifold tangent to V at p ∈ � is supported on a smooth minimal cone away
from the tangent line Tp�. Since we are in ambient dimension 3, such a cone can only consist
of a union of halfplanes meeting along Tp�, and we know that each of these occurs with
integer multiplicity by Theorem 1.1. Showing that the sum of the multiplicities is odd is the
most difficult step in the proof. Using the C2-estimate for nodal sets of stable solutions due
to Chodosh and Mantoulidis [12], we are able to show that the sum of the multiplicities is
equal to the number of zeroes of uk on a small loop winding once around �, at least when k
is large. This number is odd for topological reasons—for example, one can see this by noting
that the pullback of L to the loop is the Möbius bundle.

We now summarise the proofs of Theorems 1.5 and 1.6. These are given in Sect. 6. First,
we use the direct method to show that for every ε > 0 and compact (n − 2)-dimensional
boundary�, there exists a smooth section u of the spanning bundle L over X = R

n \� which
minimizes Eε . We show that these minimizers satisfy |u| ≤ 1, and that their energy remains
bounded as we send ε → 0. Theorem 1.2 can than be invoked to conclude that, after passing
to a subsequence, the varifolds associated to u weak*-converge to an integer rectifiable limit
V . Moreover, the analysis we conduct in Sect. 3 shows that � := ‖V ‖ contains �. The set
� \ � is smooth away from a set of Hausdorff dimension at most n − 8 by Corollary 1.3.

Our claim concerning boundary regularity is that� is a smooth hypersurface with bound-
ary in a tubular neighbourhood of �, provided � lies in a strictly convex hypersurface or
n = 3. If � lies in a strictly convex hypersurface, we can simply argue as in [3, Section 5].
For a general boundary curve in R

3 the argument is more involved. By Theorem 1.4, we
know that for each p ∈ �, the limit V has a varifold tangent supported on N halfplanes.
Since V arises from a sequence of minimizers, a standard cut-and-paste argument shows that
each of these occurs with unit multiplicity, so by Theorem 1.4, N is odd. We argue that an
array of 3 or more halfplanes cannot arise from a sequence of minimizers, and so conclude
that N = 1. It then follows that � is smooth in a neighbourhood of p, as a consequence of
Allard’s boundary regularity theorem [3].

To complete the proofs of Theorems 1.5 and 1.6, it only remains to show that the support
of the limiting varifold obtained from a sequence of minimizers has no more area than any
smooth hypersurface with boundary �. This is easily proven by contradiction—if there is
a competitor with less area, then the original sequence of sections could not have been
minimizing, since one can construct a different sequence which has less energy.

123
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1.3 An example

We conclude this introduction with the construction of a critical section for Eε which serves
as an illustrative example; its nodal set is a half-line in R

2 \ {0}, and its discrepancy is
unbounded from above.

Let L be the unique nontrivial line bundle over R2 \ {0}. For each large r > 0 and small
δ > 0 we define domains

Ar ,δ := {ρeiθ ∈ R
2 : r−1 ≤ ρ ≤ r , |θ | ≥ δ}, Ar := Ar ,0.

For each ε > 0 there is a minimizer of the Allen–Cahn energy in W 1,2
0 (Ar ,δ). Let wr ,δ

denote such a minimizer. Easy comparison arguments show that 0 < wr ,δ ≤ 1 holds almost
everywhere in Ar ,δ . Standard elliptic regularity theory then implies that wr ,δ is smooth away
from the corners of Ar ,δ . In fact we get uniform estimates which allow us to send δ → 0
and extract a limit wr in W 1,2

0 (Ar ). The limit is smooth in the interior and vanishes on
the the positive x1-axis in Ar . It is not difficult to show that wr is reflection-symmetric
through the x1-axis—this follows by applying the maximum principle to wr/w̄r , where
w̄r (x1, x2) := w̄r (x1,−x2). It follows that we can define a C1-section ur of L over Ar by
choosing unit sections e± for L over S± := R

2\{(x1, 0) : ±x1 ≥ 0} and declaring that

ur (x) · e+ = wr (x), x ∈ S+, ur (x) · e− =
{

wr (x), x ∈ S− ∩ {x2 ≥ 0}
−wr (x), x ∈ S− ∩ {x2 < 0}.

One can then check directly that ur solves the Euler–Lagrange equation

ε2�ur = (|ur |2 − 1)ur

in the weak sense, and hence is smooth in Ar . Moreover, we have uniform interior estimates
which ensure that, upon sending r → ∞, we obtain a smooth section u of L which is critical
for Eε and whose nodal set contains the positive x1-axis. In fact, for any ball B ⊂ S+, we
can use the positive minimizer in W 1,2

0 (B) as a barrier to ensure that u is nonzero in B. So
the nodal set of u is precisely the positive x1-axis. The energy of u in B1(0) \ {0} is bounded
uniformly as ε → 0. This can be seen by comparing with a Lipschitz section which agrees
with u on ∂B1(0), vanishes inside {|x | ≤ ε} and equals 1 in {2ε ≤ |x | ≤ 1 − ε}.

By [25, Proposition 3.3], the discrepancy ξ of the solution just constructed satisfies an
a priori upper bound in each ball B̄ ⊂ R

2 \ {0}. However, as we will now demonstrate, ξ(x)
becomes unbounded from above as x → 0. This is one of the key differences in behaviour
exhibited by critical sections at boundary points and in the interior, and is the main difficulty
which we must overcome in our proof of Theorem 1.1.

To see that ξ is unbounded, it is useful define v(z) := u(z2), where z is the standard
complex coordinate on R

2 \ {0}. The pullback of L by z �→ z2 is trivial, so we may view v

as a function on R2\{0}. Straightforward computations show that

ε2�v = 4|z|2(|v|2 − 1)v, (5)

and that the discrepancy of u satisfies

ξ(z2) = ε
|∇v(z)|2
8|z|2 − (1 − |v(z)|2)2

4ε
.

Moreover, since Eε(u) < ∞, v has finite W 1,2-norm in B1(0) \ {0}, and can therefore be
extended to a smooth solution of (5) in B1(0), by setting v(0) = 0. From our construction of
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u it follows that (up to a choice of signs) v is positive in {x2 > 0} and negative in {x2 < 0}.
By the Hopf lemma, we conclude that |∇v| > 0 in a neighbourhood of the origin. From the
formula for ξ above we conclude that ξ(z2) → ∞ as z → 0.

2 Real line bundles

In this section we discuss the natural correspondence between the set of vector bundles of
rank 1 over a connected manifold X and the cohomology group H1(X ,Z2). Later on, we
delve into the following two cases:

1. X = M\�, where H1(M) = H2(M) = 0 and � ⊂ M is a codimension two embedded
submanifold. This includes M 
 R

n .
2. X = M is a closed manifold.

We focus on these because of the applications we have in mind: case (1) is motivated by the
search for a line bundle that provides a setting for solving the Plateau problem with boundary
�, while case (2) allows one to generate minimal hypersurfaces in arbitrary homology classes
in closed manifolds.

2.1 Real line bundles and Hom(H1(X),Z2) � H1(X,Z2)

Given a real line bundle π : L → X , we can use a partion of unity to equip L with a bundle
metric. This allows us to define U (L) ⊂ L , the set of unitary vectors with respect to such
metrics. The restriction π : U (L) → X is a double cover of X , which is independent of
the choice of metric modulo homeomorphisms. It is a simple exercise to see that U (L) is
connected if and only if L is not the trival bundle. This observation is the first half of the
correspondence between nontrivial line bundles over X and connected double covers of X .
In the other direction, a connected double cover X̃ → X is always a normal covering space
whose group of deck transformations is Z2. In particular, such a covering is generated by a
homeomorphism ρ : X̃ → X̃ , such that ρ2 = id X̃ . It is another simple exercise to see that
the quotient L = X̃ × R / ∼, where (p, t) ∼ (ρ(p),−t), is a nontrivial line bundle over X ,
and that the two constructions above are inverse modulo homeomorphisms.

By the classification of covering spaces, connected double covers of X are in correspon-
dence with {H < π1(X) : [H : π1(X)] = 2}, i.e., the set of subgroups of π1(X) of index
2. Index two subgroups are normal, so the first isomorphism theorem for groups implies
that such subgroups correspond to elements of Hom(π1(X),Z2). Since Z2 is abelian, these
homorphisms factor through the abelianisation of π1(X), which is H1(X). This gives the
correspondence

Hom(π1(X),Z2) 
 Hom(H1(X),Z2).

Finally, by the universal coefficient theorem for cohomology, we have that

Hom(H1(X),Z2) 
 H1(X ,Z2).

Putting this all together, we have shown that there are asmany real line bundles over X as there
are elements in H1(X ,Z2). We note that the element of H1(X ,Z2) associated with a line
bundle is known as its first Stiefel–Whitney class. In many applications, H1(X) is a finitely
generated abelian group and an element of H1(X ,Z2) ∼= Hom(H1(X),Z2) is uniquely
determined by where it sends a set of generators. The relation between the generators of
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H1(X) and the global problem we want to solve in X must be treated in a case by case
fashion.

2.2 Real line bundles from classes of loopsmod 2

We begin with case (1). Let X = M\�, where M is diffeomorphic to R
n and � is a closed

submanifold of M of codimension 2. In this case,

H1(X) 
 Hn−2(�) 
 (Z⊕ · · · ⊕ Z) ⊕ (Z2 ⊕ · · · ⊕ Z2)

where the number of copies of Z and Z2 are equal to the number of orientable and non-
orientable connected components of �, respectively. There is exactly one line bundle L over
X such that the nodal set of a generic section intersects each smooth generator of H1(X)

an odd number of times. Indeed, this is the bundle corresponding to the homomorphism
H1(M) → Z2 which sends each loop in a set of generators to 1. We call this bundle the
spanning bundle over X . The spanning bundle is the only line bundle where we can hope to
solve Plateau’s problem for �. It is worth noting that the pullback of the spanning bundle to
any smooth generator of H1(M) is isomorphic to the unique nontrivial line bundle over S1,
namely the Möbius bundle.

Remark 2.1 For completeness, we summarise how the first isomorphism above arises as a
composition of several maps. Let T be a closed tubular neighborhood of�. The isomorphism
then factors as

H1(M \ �) 
 H2(M, M \ �) 
 H2(T , T \ �) 
 H2(T , ∂T ) 
 Hn−2(T ) 
 Hn−2(�).

The first map is obtained from the long exact sequence of the pair (M, M \ �):

· · · → 0 = H2(M) → H2(M, M \ �) → H1(M \ �) → H1(M) = 0 → · · ·
The second map is just the excision property. The third is a retraction of T \ � onto ∂T . The
fourth is Lefschetz duality, which generalises Poincaré duality to orientable manifolds with
boundary. Finally, the fifth and last map is the retraction of T onto �.

2.3 Real line bundles from classes of hypersurfaces mod 2

Case (2) is a lot simpler. In fact, it follows directly from Poincaré duality that H1(M,Z2) 

Hn−1(M,Z2). In particular, for each nontrivial class of (n − 1)-dimensional cycles mod 2,
there exists a unique surjective homomorphism from H1(M) to Z2. By what we disscused at
the begining of the section, each one of these homomorphisms gives rise to a real line bundle
over M . It is then a simple exercise to check that the nodal set of a generic section of this
bundle is in the mod 2 homology class which gave rise to the bundle in the first place.

3 A priori estimates for critical sections

Let L be a real line bundle over an open subset X ⊂ R
n , where n ≥ 2. We equip L with a

bundle metric 〈·, ·〉 and a flat metric connection ∇. We denote the Euclidean inner product
of two vectors g, h ∈ R

n by g · h, and write D for the Euclidean connection acting on vector
fields tangent to X . The induced metric and connection on L ⊗ T ∗X ⊗ · · · ⊗ T ∗X will also
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be denoted 〈·, ·〉 and ∇ respectively. We define a Laplacian � acting on sections of L by

�u := tr(∇∇u).

With respect to an orthonormal frame {ei }ni=1 for R
n we have

〈∇u,∇ϕ〉 =
n∑

i=1

〈∇i u,∇iϕ〉, �u =
n∑

i=1

∇i (∇i u).

Having fixed a bundle L → X as above, the class of Ck sections with compact support
in X will be denoted Ck

0 (X , L). A section lies in the space W 1,2
loc (X , L) if |u| ∈ L2

loc(X) and
there exists a section ∇u of L ⊗ T ∗X with the following properties. Firstly, |∇u| ∈ L2

loc(X)

and, secondly, given an orthonormal frame {ei }ni=1 for R
n , we have∫

X
〈∇i u, ϕ〉 dx = −

∫
X
〈u,∇iϕ〉 dx

for every 1 ≤ i ≤ n and ϕ ∈ C1
0 (X , L).

Given a constant ε > 0 and a section u ∈ W 1,2
loc (X , L) we define the energy of u in each

Borel set A ⊂ X by

Eε(u, A) :=
∫
A

ε
|∇u|2
2

+ W (u)

ε
dx, W (u) := 1

4
(1 − |u|2)2.

The total energy of u is Eε(u) := Eε(u, X). A section u ∈ W 1,2
loc (X , L) of L is defined to be

critical for Eε if Eε(u, K ) < ∞ for every compact K ⊂ X and

d

dt

∣∣∣
t=0

Eε(u + tϕ) = 0,

or equivalently

ε2
∫
X
〈∇u,∇ϕ〉 = −

∫
X
〈W ′(u), ϕ〉, W ′(u) := (|u|2 − 1)u,

for every ϕ ∈ C1
0 (X , L). Standard elliptic theory implies that any critical section u is smooth,

and hence satisfies

ε2�u = W ′(u).

Let� be a compact codimension-two submanifold ofRn . In this sectionwe always assume
either that X = R

n\�, or else
X = B \ �, where B ⊂ R

n is an open ball, and (A1)

B \ � is diffeomorphic to the complement of an (n − 2)-plane inRn .

For L → X nontrivial and positive constants C0 and C1, we are interested in the situation
where

uk is a sequence of critical sections for Eεk such that εk → 0 and (A2)

sup
k

(
sup
X

|uk |
)

≤ C0, sup
k

Eεk (uk) ≤ C1.

Our goal in this section and the next is to study how the energy of such a sequence concentrates
as εk → 0, and in particular to prove Theorems 1.1 and 1.2. We mostly work in the local
setting (A1), in which there is only one nontrivial line bundle L → X . Much of our analysis
is inspired by [25].
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3.1 Derivative estimates at the boundary

Suppose we are in the setting of (A1), and denote by L the nontrivial real line bundle over
X . We recall some key estimates from [20] concerning the pointwise behaviour of critical
sections for Eε near �. As we pointed out in the introduction, even if u is bounded, its
derivative ∇u may not be. However we have some control on the rate at which ∇u may blow
up as we approach �.

Let ρ denote the distance function to �. There is a positive constant δ0(�) such that �

admits a tubular neighbourhood of size δ0. This tubular neighbourhood is given by {ρ < δ0},
and ρ is smooth there. Given a vector field g defined in {ρ < δ0}, let us write

g⊥ := (g · grad ρ) grad ρ, g� := g − g⊥.

Proposition 3.1 Let u ∈ C∞(X , L) be a critical section for Eε such that |u| ≤ C0 and
Eε(u) < ∞. There exists a constant δ1(n, �) < δ0 with the following property. If εR < δ1
then for any nonnegative integers m = k + l, and unit vectors {ei }ki=1 and { fi }li=1 such that
e�
i = 0 and f ⊥

i = 0, we have

|∇mu(e1, . . . , ek, f1, . . . , fl)|2 ≤ Cε−1−2lρ1−2k

at every point x ∈ X satisfying ρ(x) ≤ Rε and dist(x, ∂B) ≥ 2Rε, where C =
C(n, �,C0, R,m). In particular, at every such x ∈ X we have

|u|2 ≤ Cε−1ρ and |∇u|2 ≤ Cε−1ρ−1,

where where C = C(n, �,C0, R).

Proposition 3.1 was proven for n = 3 in [20, Theorem 3.2]. The strategy is to conisder
a small normal tubular neighbourhood of �, and lift u by a map which covers this neigh-
bourhood twice (the map acts by the complex square on normal discs). The lift of u, denoted
ũ, can be represented by a function which is odd in normal directions. Finiteness of energy
ensures that ũ extends to a weak solution of the lifted Euler–Lagrange equation for all odd
test functions, not just those which compactly supported away from �. Using this fact, one
can derive L2 derivative estimates for ũ up to any order, and deduce pointwise bounds using
the Sobolev embedding theorem. Passing these to the covering map yields the estimates for
u stated in Proposition 3.1.

The same argument works in dimensions n ≥ 4, except that some extra lower-order terms
appear in the computations. The reason is that N� may not admit a parallel orthonormal
frame, even locally. However these extra terms can all be absorbed in a straightforward
manner. We describe how this works, up to the point where the argument in [20] applies.

Let δ1 < δ0 be a small positive constant to be refined as we proceed. Fix an ε > 0,
and suppose R is such that Rε < δ1. We consider an arbitrary point in p ∈ � such that
dist(p, ∂B) ≥ 2Rε. Let u be a critical section for Eε such that |u| ≤ C0 and Eε(u) < ∞.

It will be convenient to rescale. We define D(x) := x−p
Rε

and set

B̂ = D(B), �̂ := D(�), X̂ := B̂ \ �̂,

and denote by L̂ the pullback of L to X̂ via D−1. We equip L̂ with the pullback metric and
connection, still denoted 〈·, ·〉 and ∇ respectively. Let û denote the pullback of u, namely
û(x) = u(Rεx + p). The section û is critical for Eε̂ , where ε̂ := R−1. Moreover, û satisfies
|û| ≤ C0 and

Eε̂(û) = 1

(Rε)n−1 Eε(u) < ∞.
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By taking δ1 sufficiently small we can assume that �̂ is as close as we like inC∞ to the linear
subspace Tp� in any neighbourhood of the origin. In particular, wemay then chooseGaussian
coordinates for the unit tubular neighbourhood of �̂ near 0, via a map � : B2

1 × Bn−2
1 → R

n

defined as follows:

• The restriction of � to {0} × Bn−2
1 gives a system of normal coordinates on �̂.

• For all y = (z1, z2, x) in B2
1 × Bn−2

1 ,

�(y) = z1ν1(�(0, x)) + z2ν2(�(0, x)) + �(0, x),

where {ν1, ν2} is a local orthonormal frame for N �̂ which is parallel (with respect to the
induced connection on N �̂) along every radial geodesic emanating from 0.

We write � = (B2
1 \ {0}) × Bn−2

1 . Let S : � → � be defined by

S(z1, z2, x) := (z21 − z22, 2z1z2, x),

so that S acts on z by taking the complex square. We define P = S ◦ � and consider
the pullback bundle P∗ L̂ , equipped with the pullback metric and connection, still denoted
〈·, ·〉 and ∇ respectively. It is not difficult to show that P∗ L̂ is trivial, and hence admits a
globally defined unit section, which we consider to be fixed from now on. Sections of L̂
over �(�) are then in one-to-one correspondence, via the pullback P∗, with functions on �

which are odd in z. In particular, we may view ũ := P∗û as a function on � which satisfies
ũ(z, x) = −ũ(−z, x).

Let ϕ denote an arbitrary section in C1
0 (�(�), L̂), and define ϕ̃ := P∗ϕ. We write g for

the pullback of the Euclidean metric on Rn via P , so that

gi j (z, x) := ∂yi P(z, x) · ∂y j P(z, x),

and write gi j for the inverse matrix of gi j . We then have

〈û(P(z, x)), ϕ(P(z, x))〉 = ũ(z, x)ϕ̃(z, x),

and

〈∇û(P(z, x)),∇ϕ(P(z, x))〉 = gi j (z, x)∂yi ũ(z, x)∂y j ϕ̃(z, x).

Since û is critical for Eε̂,

0 =
∫

�(�)

〈∇û,∇ϕ〉 + ε̂−2(|û|2 − 1)〈û, ϕ〉 dx .

Equivalently, ũ satisfies

0 =
∫

�

(
gi j∂yi ũ∂y j ϕ̃ + ε̂−2(|ũ|2 − 1)ũϕ̃

)√| det(g)| dy. (6)

As δ1 → 0, � converges smoothly to the identity, so P converges smoothly to S. A straight-
forward computation shows that we may write

g =
⎡
⎣4|z|2 0 0

0 4|z|2 0
0 0 1

⎤
⎦ + a(z, x),
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where |z|−2a(z, x) → 0 in C∞, uniformly in x , as δ1 → 0. It follows that

√| det(g)| = 4|z|2h(z, x), g−1 = h(z, x)−1

⎡
⎢⎣

1
4|z|2 0 0

0 1
4|z|2 0

0 0 1

⎤
⎥⎦ + b(z, x)

where where h(z, x) → 1 and |z|2b(z, x) → 0 in C∞, uniformly in x , as δ1 → 0. With this
notation (6) becomes

0 =
∫

�

∂zi ũ∂zi ϕ̃ + 4|z|2
(
∂xi ũ∂xi ϕ̃ + hbi j∂yi ũ∂y j ϕ̃ + ε̂−2h(|ũ|2 − 1)ũϕ̃

)
dzdx . (7)

Moreover, the energy of u in �(�) can be expressed as
∫

�(�)

ε̂
|∇û|2
2

+ W (û)

ε̂
dx

= 1

2

∫
�

ε̂
|∂z ũ|2
2

+ 4|z|2
(

ε̂
|∂x ũ|2
2

+ ε̂hbi j
∂yi ũ∂y j ũ

2
+ h

W (ũ)

ε̂

)
dzdx,

where

|∂z ũ|2 :=
∑
i=1,2

|∂zi ũ|2, |∂x ũ|2 :=
n−2∑
i=1

|∂xi ũ|2.

We may assume δ1 is so small that

−1

2
|ξ |2 ≤ 4|z|2hbi jξiξ j ≤ 1

2
|ξ |2

for all ξ ∈ R
n , so that we obtain

∫
�

ε̂|∂z ũ|2 + 4|z|2
(

ε̂|∂x ũ|2 + h
W (ũ)

ε̂

)
dzdx ≤ 2

∫
�(�)

ε̂
|∇û|2
2

+ W (û)

ε̂
dx .

The right-hand side is finite by assumption, so we have∫
�

|∂z ũ|2 + 4|z|2|∂x ũ|2 dzdx < ∞.

Using this fact one can extend ũ to a function in W 1,2(B2
1 × Bn−2) such that (7) holds for

all ϕ̃ ∈ C1
0(B

2
1 × Bn−2

1 ) satisfying ϕ̃(−z, x) = −ϕ̃(z, x). This is achieved by introducing
cutoffs in C1

0(�) which approximate the characteristic function of B2
1 × Bn−2

1 and taking a
limit.

We may now proceed exactly as in [20, Theorem 3.2] to establish that, for every m ≥ 0
and partial derivative ∂my of order m in the variables y,

∑
i=1,2

‖∂my (∂zi ũ)‖L2(B2
1/2×Bn−2

1/2 )
≤ C(n, R,C0,m).

By the Sobolev embedding theorem, we conclude that ∂zi ũ ∈ C∞(B2
1/4 × Bn−2

1/4 ), and we
have ∑

i=1,2

‖∂zi ũ‖Cm (B2
1/4×Bn−2

1/4 )
≤ C(n, R,C0,m) (8)
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for a larger constant C . It follows that ũ is smooth in z. Consequently, ũ(z, x) = −ϕ̃(−z, x)
implies that ũ(0, x) = 0 for each x ∈ Bn−2

1/4 . From this we conclude that ũ is smooth also in
x , since we may write

ũ(z, x) =
∫ 1

0

d

dt
ũ(t z, x) dx =

∫ 1

0
z1∂z1 ũ(t z, x) + z2∂z2 ũ(t z, x) dt .

Moreover, for any m ≥ 0 and partial derivative ∂mx of order m in the variables x , we have

|∂mx ũ(z, x)| ≤ |z|
∑
i=1,2

‖∂zi ũ‖Cm (B2
1/4×Bn−2

1/4 )
≤ C(n, R,C0,m)|z|. (9)

for (z, x) ∈ B2
1/4 × Bn−2

1/4 . Now, the estimates (8) and (9) can be rewritten as estimates for
the original critical section u. This gives Proposition 3.1.

3.2 Energymonotonicity

We continue working in the setting of (A1). A crucial step in the proof of Theorem 1.1 will
be to control how the energy of critical sections concentrates in small balls around points in
the boundary �. To facilitate this analysis we establish an almost-monotonicity formula for
the rescaled energy

1

rn−1 Eε(u, Br (p))

at boundary points p ∈ �. The computations follow [25], but various error terms arising
from the boundary need to be dealt with. This is achieved using Proposition 3.1.

We first derive an inner variation identity for vector fields which are tangential on �.

Lemma 3.2 Let u ∈ C∞(X , L) be a critical section for Eε . Suppose sup |u| < ∞ and
Eε(u) < ∞, and let g ∈ C1

0 (B,Rn) be such that g|� is tangent to �. We then have

∫
X

(
ε
|∇u|2
2

+ W (u)

ε

)
div g − ε〈∇Dgu,∇u〉 dx = 0.

Proof We define the stress-energy tensor T acting on vector fields f and h by

T ( f , h) := eε(u) f · h − ε〈∇ f u,∇hu〉,
where

eε(u) = ε
|∇u|2
2

+ W (u)

ε

is the energy density. Using the Euler–Lagrange equation

ε�u = 1

ε
W ′(u),

we compute

0 = div T =
n∑

i=1

(DiT )(ei , ·),
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with respect to any orthonormal frame {ei } for Rn . It follows that

div T (g) =
n∑

i=1

T (Di g, ei ) =: T · Dg,

where T (g) denotes the vector field
∑n

i=1 T (g, ei )ei . Integrating this identity over the region
{ρ > δ} and applying the divergence theorem yields∫

{ρ>δ}
T · Dg dx = −

∫
{ρ=δ}

T (g) · grad ρ dHn−1.

Here we assume δ < δ0 so that {ρ = δ} is a smooth hypersurface. Since u has finite energy,
the dominated convergence theorem implies that the left-hand side converges to∫

X
T · Dg dx =

∫
X
eε(u) div g − ε〈∇Dgu,∇u〉 dx

as δ → 0. Therefore, to prove the claim, it suffices to establish that∫
{ρ=δ}

T (g) · grad ρ dHn−1 → 0 (10)

as δ → 0.
In the following C is a positive constant which does not depend on δ. We have

T (g) · grad ρ = eε(u)g · grad ρ − ε〈∇gu,∇grad ρu〉.
Since g|� is tangent to �, in {ρ ≤ δ} we may estimate the normal component of g by

|g⊥| ≤ Cρ.

Applying Proposition 3.1, we find that for all sufficiently small δ we have

ε|〈∇gu,∇grad ρu〉| ≤ ε|∇gu||∇grad ρu|
≤ ε(|∇g⊥u| + |∇g�u|)|∇grad ρu|
≤ C(1 + ε−1)

and

eε(u)|g · grad ρ| ≤ C(1 + ε−2ρ2 + ε−1ρ)

in {ρ ≤ δ}. These two estimates imply (10). ��
We are now ready to derive the almost-monotonicity formula for the rescaled energy at

boundary points.

Proposition 3.3 Let u ∈ C∞(X , L) be a critical section for Eε , and suppose supX |u| < ∞
and Eε(u, B) < ∞. Fix a point p ∈ � and let Br = Br (p). We then have

e�r

rn−1 E(u, Br ) − e�s

sn−1 E(u, Bs) ≥ −
∫ r

s

e�τ

(1 + n−1�τ)τ n

∫
Bτ

(
ε
|∇u|2
2

− W (u)

ε

)
dxdτ

+ ε

∫ r

s

1

(1 + n−1�τ)τ n−1

∫
∂Bτ

|∇νu|2 dHn−1dτ

for all s < r < min{r0, dist(p, ∂B)}, where r0 and � are constants which depend only on n
and �, and ν is the outward unit normal to ∂Br .
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Proof We may assume p = 0. Let r0 < δ0 be a small constant to be refined as we proceed.
We have that ρ is smooth in {ρ < r0} and the nearest point projection

π : {ρ < r0} → �

is well defined and smooth. We define

G(x) := 1

2
dist�(π(x), 0)2 + 1

2
ρ(x)2

for x ∈ Br0 , where dist� is the geodesic distance on �. This function is smooth in Br0
provided r0 is smaller than the injectivity radius of �. Note that if � were affine, we would
simply have G(x) = 1

2 |x |2. Let
g(x) = gradG(x).

Then g|� is tangential to �. Moreover, performing a Taylor expansion at the origin shows
that we can write g(x) = x + h(x) where h satisfies

|h(x)| ≤ C |x |2, |Dh(x)| ≤ C |x | (11)

for x ∈ Br0 , where C is a constant depending only on n and �.
Now suppose 0 < r < min{r0, dist(p, ∂B)}. By Lemma 3.2, for any ϕ ∈ C1

0(Br ), we
have

0 =
∫
X
eε(u) div(ϕg) − ε〈∇D(ϕg)u,∇u〉 dx .

Expanding and rearranging gives∫
X
eε(u)ϕ div g − εϕ〈∇Dgu,∇u〉 dx = −

∫
X
eε(u) grad ϕ · g − ε〈∇gu,∇grad ϕu〉 dx .

If we allow ϕ to increase to the characteristic function of Br in an appropriate manner, we
obtain∫

Br
eε(u) div g − ε〈∇Dgu,∇u〉 dx =

∫
∂Br

eε(u)(ν · g) − ε〈∇gu,∇νu〉 dHn−1.

We now insert g = x + h = rν + h, and so find that

(n − 1)
∫
Br

eε(u) −
∫
Br

(
ε
|∇u|2
2

− W (u)

ε

)
+

∫
Br

(
eε(u) div h − ε〈∇Dhu,∇u〉

)

= r
∫

∂Br
eε(u) − εr

∫
∂Br

|∇νu|2 +
∫

∂Br

(
eε(u)(ν · h) − ε〈∇hu,∇νu〉

)
.

Appealing to (11) we obtain

−
∫
Br

(
eε(u) div h − ε〈∇Dhu,∇u〉

)
≤ Cr

∫
Br

eε(u)

and ∫
∂Br

(
eε(u)(ν · h) − ε〈∇hu,∇νu〉

)
≤ Cr2

∫
∂Br

eε(u),

and so conclude that

n − 1 − Cr

1 + Cr

∫
Br

eε(u) − 1

1 + Cr

∫
Br

(
ε
|∇u|2
2

− W (u)

ε

)
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≤ r
∫

∂Br
eε(u) − 1

1 + Cr
ε

∫
∂Br

|∇νu|2.

Let � = nC . Combining the last estimate with

d

dr

(
e�r

rn−1 E(u, Br )

)
= −(n − 1 − �r)

e�r

rn
E(u, Br ) + e�r

rn−1

∫
∂Br

eε(u),

and the inequality

n − 1 − Cr

1 + Cr
≥ n − 1 − �r ,

we obtain

d

dr

(
e�r

rn−1 E(u, Br )

)
≥ − e�r

(1 + Cr)rn

∫
Br

(
ε
|∇u|2
2

− W (u)

ε

)

+ e�r

(1 + Cr)rn−1 ε

∫
∂Br

|∇νu|2.

Integrating from s to r now gives the claim. ��

3.3 Interior estimates

We will eventually show that, in the setting of (A2), the almost-monotonicity formula estab-
lished in Proposition 3.3 improves, so that the rescaled energy becomes genuinely monotone
as ε → 0. This requires showing that the terms on the right-hand of the almost-monotonicity
formula become nonnegative as ε → 0. To this end, we use the maximum principle to estab-
lish supremum and gradient estimates for solutions of the scalar Allen–Cahn equation defined
in a ball in R

n . Up to rescaling and choosing a unit section, these apply to critical sections
of L in any ball B ′ ⊂ X . Our first estimate is slightly stronger than [25, Proposition 3.2].

Lemma 3.4 Let u be a C2 function defined on B̄r+kR, where k ≥ 1 is an integer and R ≥ 2.
Suppose u solves the scalar Allen–Cahn equation �u = W ′(u), and that |u| ≤ C0. We then
have

sup
Br

|u| ≤ 1 + 21+kC0R
−2k .

Proof Let ζ be a smooth function onRn such that ζ = 2C0R−2 in Br+(k−1)R and ζ ≥ C0 on
∂Br+kR . We may assume 2C0R−2 ≤ ζ ≤ C0 and |�ζ | ≤ 2C0R−2. With the aim of deriving
a contradiction, suppose

sup
Br+(k−1)R

u ≥ 1 + 4C0R
−2.

Let ψ := u − ζ − 1. Since ψ is negative on ∂Br+kR , we have that ψ attains a maximum of
at least 2C0R−2 at some point x0 ∈ Br+kR . At the point x0,

0 ≥ �ψ

= W ′(u) − �ζ

≥ ψ

∫ 1

0
W ′′(tu + (1 − t)(ζ + 1)) dt + W ′(ζ + 1) − 2C0R

−2

> 2ψ − 2C0R
−2,
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where W ′′(u) = 3u2 − 1. This is a contradiction, so in fact

sup
Br+(k−1)R

u ≤ 1 + 4C0R
−2.

We now repeat the same argument, but with ζ chosen so that ζ = C0 on ∂Br+(k−1)R ,
ζ = 2C0R−2 in Br+(k−2)R , and |�ζ | ≤ 2C0R−2. If supBr+(k−2)R

u ≥ 1 + 8C0R−4, we

obtain a contradiction by applying the maximum principle to ψ := u − 4R−2ζ − 1, exactly
as before. Continuing in this way, we obtain the desired upper bound for u after k iterations.
The lower bound is analogous. ��

The next estimate slightly improves [25, Proposition 3.3].

Proposition 3.5 Let u ∈ C2(B̄r+3R) be a solution of�u = W ′(u) such that |u| ≤ C0. Define

ξ := |∇u|2
2

− W (u), ξ+ := max{ξ, 0}.
There are constants R0 and C depending only on n and C0 such that if R ≥ R0 then

sup
Br

ξ ≤ C max

{
R−2/3 sup

∂Br+R

ξ
2/3
+ , R−2

}
.

Moreover, for every δ > 0 there is an integer k0 = k0(δ) with the following property. If
u ∈ C∞(B̄r+(k0+2)R) is a solution of �u = W ′(u) such that |u| ≤ C0, and R ≥ R0, then
we have

sup
Br

ξ ≤ CR−2+δ,

where C = C(n,C0, δ).

Proof First observe that for R ≥ 2, Lemma 3.4 implies

sup
Br+R

|u| ≤ 1 + 8C0R
−4.

Let us define

ξG := |∇u|2
2

− W (u) − G(u),

where G : R → R is a smooth function to be chosen later. At any point where |∇u| > 0, we
have

�ξG − 2
(W ′(u) + G ′(u))

|∇u|2 ∇ξG · ∇u + 2G ′′(u)ξG

≥ G ′(u)2 + G ′(u)W ′(u) − 2G ′′(u)(W (u) + G(u)).

We set

μ := max

{
max
∂Br+R

ξ+,
125

R2

}

and

G(u) := λ(1 − u2/Q), λ := Q

(
μ

R

)2/3

,
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where Q ≥ 8 will be chosen later. Let ζ ∈ C∞(B̄r+R) be such that

ζ = 1 in Br , 0 ≤ ζ ≤ 1 in Br+R, |∇ζ | ≤ 2R−1, |�ζ | ≤ 2R−2.

Define ξ̃ := ξG + μζ .
With the aim of deriving a contradiction, suppose supBr ξG ≥ λ. It follows that supBr ξ̃ ≥

λ + μ. On the other hand, ξ̃ ≤ μ on ∂Br+R , so we conclude that ξ̃ attains an interior
mamximum at some point x0 ∈ Br+R . At the point x0 we have

|∇u| ≥ λ1/2, |∇ξG | = μ|∇ζ | ≤ 2μR−1, �ξG = −μ�ζ ≤ 2μR−2.

Therefore, at x0,

�ξG − 2
(W ′(u) + G ′(u))

|∇u|2 ∇ξG · ∇u + 2G ′′(u)ξG

≤ 2μR−2 + 4μ|W ′(u)|λ−1/2R−1 + 8μQ−1λ1/2R−1,

and

G ′(u)2 + G ′(u)W ′(u) − 2G ′′(u)(W (u) + G(u))

≥ 4Q−2λ2u2 − 2Q−1λuW ′(u) + 4Q−1λW (u).

Consequently, at the point x0,

2μR−2 + 4μ|W ′(u)|λ−1/2R−1 + 8μQ−1λ1/2R−1

≥ 4Q−2λ2u2 − 2Q−1λuW ′(u) + 4Q−1λW (u). (12)

We consider three cases.
Case 1. If |u(x0)| ∈ [0, 1/2] then (12) gives

2μR−2 + 4μαλ−1/2R−1 + 8μQ−1λ1/2R−1 ≥ 2Q−1λW (u) ≥ 4βQ−1λ,

where

α := max
s∈[0,1/2] |W

′(s)|, β := W (1/2).

Inserting λ = Q(μ/R)2/3, we obtain

2μR−2 + 4αμ2/3Q−1/2R−2/3 + 8μ4/3Q−1/2R−4/3 ≥ 4βμ2/3R−2/3,

and hence

2μ1/3R−4/3 + 4αQ−1/2 + 8Q−1/2μ4/3R−2/3 ≥ 4β.

Since u is smooth and bounded in Br+3R , standard elliptic estimates imply that μ can be
bounded from above in terms of n and C0, so we obtain a contradiction provided that Q and
R are sufficiently large depending on n, C0, α and β.
Case 2. If instead |u(x0)| ∈ [1/2, 1], we estimate

4Q−2λ2u2 − 2Q−1λuW ′(u) + 4Q−1λW (u) ≥ Q−2λ2 + Q−1λ|W ′(u)|,
and so obtain

2μR−2 + |W ′(u)|(4μλ−1/2R−1 − Q−1λ) + 8μQ−1λ1/2R−1 ≥ Q−2λ2

from (12). Inserting λ = Q(μ/R)2/3 yields

2μR−2 + |W ′(u)|(4Q−1/2 − 1)μ2/3R−2/3 + 8Q−1/2μ4/3R−4/3 ≥ μ4/3R−4/3.
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For Q ≥ 162 we obtain

4μR−2 ≥ μ4/3R−4/3

and hence

4R−2/3 ≥ μ1/3.

Recall however that μ ≥ 125/R2. We have therefore arrived at a contradiction.
Case 3. Finally, we consider the case that |u(x0)| ≥ 1. Recall we used Lemma 3.4 to conclude
that |u(x0)| ≤ 1 + 8C0R−4. At x0 we have

2μR−2 + 4μW ′(u)λ−1/2R−1 + 8μQ−1λ1/2R−1 ≥ 4Q−2λ2 − 2Q−1λuW ′(u).

Since |u| ∈ [1, 1 + 8C0R−4], provided R is large enough so that 8C0R−4 ≤ 1 we have

W ′(u) ≤ 48C0R
−4, −uW ′(u) ≥ −480C0R

−4,

and hence

2μR−2 + 184C0μλ−1/2R−5 + 8μQ−1λ1/2R−1 ≥ 4Q−2λ2 − 960C0Q
−1λR−4.

Inserting λ = Qμ2/3R−2/3 we obtain

2μR−2 + (184Q−1/2 + 960)C0μ
2/3R−4−2/3 ≥ (4 − 8Q−1/2)μ4/3R−4/3.

For Q ≥ 162, since μ ≥ 125R−2,

(4 − 8Q−1/2)μ4/3R−4/3 ≥ μ1/3R−4/3μ + μ2/3R−4/3μ2/3 ≥ 5μR−2 + 25μ2/3R−2−2/3,

and hence

2μR−2 + (184Q−1/2 + 960)C0μ
2/3R−4−2/3 ≥ 5μR−2 + 25μ2/3R−2−2/3.

This is a contradiction provided R is sufficiently large depending on C0.
Combining the three cases, we obtain supBr ξG ≤ λ. This in turn gives

sup
Br

ξ ≤ C max

{
R−2/3 sup

∂Br+R

ξ
2/3
+ , R−2

}
,

with C := 50Q.
Now suppose u is defined in B̄r+(k+2)R and satisfies |u| ≤ C0. The estimate just derived

(applied with r + (k − l)R in place of r ) tells us that

sup
Br+(k−l)R

ξ ≤ C max

{
R−2/3 sup

∂Br+(k−l+1)R

ξ
2/3
+ , R−2

}
.

Applying this estimate iteratively, we obtain

sup
Br+(k−l)R

ξ ≤ Cl R
−pl

for each l ≤ k, where pl satisfies the relation pl = 2
3 (1 + pl−1). It follows that as l → ∞

we have pl → 2. So if k is sufficiently large depending on δ, then pk ≥ 2 − δ, and hence

sup
Br

ξ ≤ CR−2+δ,

where C = C(n,C0, δ). This completes the proof. ��
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3.4 L1-convergence of the discrepancy

We assume (A1) and (A2). We write ξk for the discrepancy of uk , namely

ξk := εk
|∇uk |2

2
− W (uk)

εk

The main result we want to prove is the following (cf. [25, Proposition 4.3]).

Proposition 3.6 As k → ∞ the discrepancy ξk → 0 in L1
loc(B).

We need different arguments for the positive and negative parts of ξk . We first consider
the positive part, ξk,+ := max{ξk, 0}.
Lemma 3.7 As k → ∞ we have ξk,+ → 0 in C0

loc(X) and L1
loc(B).

Proof Fix a constant δ ∈ (0, 1). Suppose x ∈ X is such that ρ(x) > Rεk and dist(x, ∂B) >

Rεk , where

R := (1 + (k0 + 2)R0),

and k0 = k0(δ) and R0 = R0(n,C0) are the constants referred to in Proposition 3.5. We then
have

Bεk R(x) ⊂ X .

After rescaling and applying Proposition 3.5, we find that

sup
Bεk (x)

ξk,+ ≤ C2(n,C0, δ)ε
1−δ
k .

Since every compact subset of X is in the set {ρ > εk R}∩{dist(·, ∂B) > Rεk} for sufficiently
k, we conclude that ξk,+ → 0 in C0

loc(X).
In the set {ρ ≤ εk R} ∩ {dist(·, ∂B) > 2Rεk} we can apply the boundary derivative

estimates established in Proposition 3.1. These provide a constant C which is independent
of k such that

|∇uk |2 ≤ C(ε−1
k ρ−1 + ε−3

k ρ),

and hence

ξk,+ ≤ C(ρ−1 + ε−2
k ρ)

in {ρ ≤ εk R} ∩ {dist(·, ∂B) > 2Rεk}. By the coarea formula, for large k,
∫

{ρ≤εk R}∩{dist(·,∂B)>2Rεk }
(ρ−1 + ε−2

k ρ) ≤ C
∫ εk R

0
(1 + ε−2

k ρ2) dρ ≤ Cεk R
3,

where we have increased C as necessary. For any compact set K in B we have∫
K

ξk,+ =
∫
K∩{ρ≤εk R}∩{dist(·,∂B)>2Rεk }

ξk,+ +
∫
K∩{ρ>εk R}∩{dist(·,∂B)>2Rεk }

ξk,+

≤ Cεk R
3 + C2Hn(K )ε1−δ

k

for all large k. In particular, ξk,+ → 0 in L1
loc(B) as εk → 0. ��
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We now turn to the negative part of ξk . That this quantity converges to 0 in L1
loc(B) is

established below in Lemma 3.10. For the proof we need some notation and further lemmas.
For our fixed sequence of critical sections uk , let us define a sequence of energy measures

μk by

μk =
(

εk
|∇uk |2

2
+ W (uk)

εk

)
dx .

Then μk(A) = Eεk (uk, A) for each Borel set A ⊂ B. The energy bound Eεk (uk) ≤ C1

implies that μk is a sequence of uniformly bounded Radon measures, so after passing to a
subsequence, we can assume that μk weak*-converges to some limiting Radon measure μ.
That is,

lim
k→∞

∫
ϕ dμk =

∫
ϕ dμ

for every ϕ ∈ C0(B).
Consider a smooth loop γ in X which generates H1(X) ∼= Z. By the definition of L ,

every smooth section of L must vanish at at least one point on γ . This has the following
consequence for the limiting energy measure μ.

Lemma 3.8 Suppose μk → μ in the weak* sense. Let γ be a smooth loop in X which
generates H1(X). There is then a point p ∈ γ such that

1

rn−1 μ(Br (p)) ≥ c

for all r < dist(γ, � ∪ ∂B)/2, where c = c(n,C0). In particular, p ∈ suppμ.

Proof Suppose r < dist(γ, � ∩ ∂B)/2, so that B̄r (x) is contained in X for every x ∈ γ . We
know that uk vanishes at some point pk in γ for every k. After passing to a subsequence, we
may assume pk → p ∈ γ . We have

2n−1

rn−1 μ(Br (p)) ≥ lim sup
k→∞

2n−1

rn−1 μk(Br/2(pk)),

so the interior energy monotonicity formula in [25] and Proposition 3.7 imply

2n−1

rn−1 μ(Br (p)) ≥ lim inf
k→∞

1

εn−1
k

Eεk (uk, Bεk (pk)).

After rescaling and applying standard elliptic estimates, we find that there is a positive
constant c depending only on n and C0 such that

1

εn−1
k

E(uk, Bεk (pk)) ≥ c

for all sufficiently large k. Consequently,

1

rn−1μ(Br (p)) ≥ c

2n−1 .

��
We note that the conclusion of Lemma 3.8, together with the fact that suppμ is closed,

implies that�∩B ⊂ suppμ. Indeed, every point in�∩B can be approximated by a sequence
of loops in X to which the lemma applies.

Using Lemma 3.8, we can now prove density bounds for μ, as in [25, Proposition 4.1].
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Lemma 3.9 Given p ∈ suppμ, there are positive constants r1 = r1(n, �) and D =
D(n, �,C0,C1) such that

D−1 ≤ 1

rn−1 μ(Br (p)) ≤ D

(
1 + 1

dist(p, ∂B)n−1

)
(13)

for all r < min{r1, dist(p, ∂B)/2}.
Proof Let D be a large positive constant, which may depend only on n, �, C0 and C1, and
may increase as we proceed. We first prove the lower bound in (13). We consider two cases.
Case 1. Suppose first that p ∈ �. Let γ denote the set of points in the 2-plane normal to �

at p which lie at distance r/2 from p. There is a positive constant r1 = r1(n, �) such that,
for 0 < r < min{r1, dist(p, ∂B)},
• γ is smooth loop in X ,
• γ generates H1(X),
• and Br/4(x) ⊂ Br (p) for each x ∈ γ .

By Lemma 3.8, there exists a point q ∈ γ such that

4n−1

rn−1 μ(Br/4(q)) ≥ c(n,C0).

Therefore,

1

rn−1 μ(Br (p)) ≥ 1

rn−1 μ(Br/4(q)) ≥ c

4n−1 (14)

for 0 < r < min{r1, dist(p, ∂B)}.
Case 2. Next, suppose p ∈ suppμ \ �. Consider a constant 0 < r < min{r1, dist(p, ∂B)}.
If Br/2(p) intersects �, then there is a point q ∈ � such that Br/2(q) ⊂ Br (p), and hence
by (14) we have

1

rn−1 μ(Br (p)) ≥ 1

rn−1 μ(Br/2(q)) ≥ c

8n−1 .

If instead Br/2(p) is disjoint from � then we argue differently. Since p ∈ suppμ, there
is a sequence pk → p such that |uk(pk)| ≥ 3/4 for all sufficiently large k (see e.g. the
proof of [25, Proposition 4.1]). Moreover, by the interior almost-monotonicity formula and
Proposition 3.7, we have

2n−1

rn−1 μ(Br/2(p)) ≥ lim inf
k→∞

1

εn−1
k

Eεk (uk, Bεk (pk)).

After rescaling by εk and using standard elliptic estimates, we find that the right-hand side
of the last inequality is bounded from below by a positive constant c = c(n,C0). Therefore,

1

rn−1 μ(Br (p)) ≥ 1

rn−1 μ(Br/2(p)) ≥ c

2n−1 .

Combining the two cases, we obtain

1

rn−1μ(Br (p)) ≥ D−1

for all p ∈ suppμ and 0 < r < min{r1, dist(p, ∂B)}.
We now turn to the upper bound in (13). Once again, we consider two cases.
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Case 1. Suppose first that p ∈ �. By Proposition 3.3, provided r0 is sufficiently small
depending on n and �, we have

e�r

rn−1 Eεk (uk, Br (p)) − e�s

sn−1 Eεk (uk, Bs(p))

≥ −
∫ r

s

e�τ

(1 + n−1�τ)

1

τ n

∫
Bτ (p)

(
εk

|∇uk |2
2

− W (uk)

ε

)
+
dxdτ

for all s < r < min{r0, dist(p, ∂B)} =: d . The inner integrand on the right is ξk,+, which
tends to 0 in L1

loc(B) as k → ∞ by Lemma 3.7. Therefore, after passing to the limit, we find
that

e�r

rn−1 μ(Br (p)) ≤ e�d

dn−1μ(Bd(p)) ≤ e�d

dn−1C1

for 0 < r < d . In particular,

1

rn−1 μ(Br (p)) ≤ D

(
1 + 1

dist(p, ∂B)n−1

)
(15)

holds for every 0 < r < d .
Case 2. Suppose next that p ∈ suppμ \ �, and let d = min{r0, dist(p, ∂B)/2}. If there is a
point q ∈ Bd/2(p) ∩ � then for 0 < r < d/2, using (15) we obtain

1

rn−1 μ(Br (p)) ≤ 1

rn−1 μ(Bd(q)) ≤ D

(
1 + 1

dist(q, ∂B)n−1

)
.

It is easy to check that dist(p, ∂B) ≤ 4
3 dist(q, ∂B), and hence

1

rn−1 μ(Br (p)) ≤ D

(
1 + 1

dist(p, ∂B)n−1

)

for 0 < r < d/2. If instead Bd/2(p) is disjoint from�, using the interior almost-monotonicity
formula and Proposition 3.7 we obtain

1

rn−1 μ(Br (p)) ≤ 2n−1

dn−1 μ(Bd/2(p)) ≤ D

(
1 + 1

dist(p, ∂B)n−1

)

for 0 < r < d/2.
Combining the two cases yields the upper bound in (13). Note that we can decrease r1 if

necessary to ensure r1 ≤ r0/2. ��
We may now conclude that the negative part of the discrepancy decays to 0 in L1

loc.
Combining this result with Lemma 3.7 gives Proposition 3.6.

Lemma 3.10 The negative part of the discrepancy, ξk,− := max{−ξk, 0}, decays to 0 in
L1
loc(B) as k → ∞.

Proof The proof follows [25, Proposition 4.3]. Let us define a Radon measure on B by

ξk,−(A) :=
∫
A

ξk,−.

Suppose the claim is false, so that there is a Borel set A ⊂ B for which ξk,−(A) does not
converge to 0. After passing to a subsequence, wemay assume that lim infk→∞ ξk,−(A) > 0.
We may also assume that ξk,− and μk weak*-converge to Radon measures ξ− and μ.
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We first claim that, for each p ∈ A ∩ suppμ, the quantity

δ := lim inf
r→∞

ξ−(Br (p))

μ(Br (p))

is zero. Suppose to the contrary that there is a p ∈ A∩ suppμ for which δ > 0. Then, for all
sufficiently small values of r , we have

ξ−(Br (p)) >
δ

2
μ(Br (p)),

and hence

ξ−(Br (p)) >
δ

2D
rn−1,

where D is independent of k, by Lemma 3.9. We derive a contradiction using energy mono-
tonicity. If p ∈ � then we use the almost-monotonicity formula derived in Proposition 3.3,
whereas if p ∈ X we use the corresponding interior formula from [25]. The argument is
essentially the same in both cases, so we only describe the boundary case in detail. For all k
(and sufficiently small s < r ) we have

e�r

rn−1 Eεk (uk, Br (p)) ≥ −
∫ r/2

s

e�τ

(1 + n−1�τ)

1

τ n

∫
Bτ (p)

ξk dτ

Sending k to infinity, and using the fact that the positive part of the discrepancy goes to 0 in
L1
loc(B) (by Lemma 3.7), we obtain

e�r

rn−1C1 ≥
∫ r/2

s

e�τ

(1 + n−1�τ)

ξ−(Bτ (p))

τ n
dτ ≥ δ

2D

∫ r/2

s

e�τ

(1 + n−1�τ)

1

τ
dτ

for sufficiently small s < r . The right-hand side becomes unbounded as s → 0, so this is a
contradiction. That is, δ = 0 for every p ∈ A ∩ suppμ.

By a standard result in measure theory (see eg. Lemma 1.2 on p. 47 of Evans–Gariepy),
we conclude that

ξ−(A ∩ suppμ) = 0.

But the inequality ξk,−(A) ≤ μk(A) implies supp ξ− ⊂ suppμ, so in fact ξ−(A) = 0,
contrary to our initial assumption. ��

4 Stationary varifolds from critical sections

Given an open subset U ⊂ R
n , we write G(U ) for the Grassmannian bundle of unoriented

(n − 1)-planes over U . Each point in G(U ) is of the form (x, S), with x ∈ U and S ∈ TxU .
An (n − 1)-varifold on U is a nonnegative Radon measure on G(U ). A sequence of

varifolds Vk weak*-converges to a varifold V if for every ϕ ∈ C0(G(U )) we have∫
U

ϕ(x, S) dVk(x, S) →
∫
U

ϕ(x, S) dV (x, S).

Given a varifold V , we define its mass ‖V ‖ to be the Radon measure on U such that∫
U

ϕ(x) d‖V ‖(x) :=
∫
G(U )

ϕ(x) dV (x, S)
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for all ϕ ∈ C0(U ). Given a vector field g ∈ C1
0 (U ,Rn), the first variation of V with respect

to g is

δV (g) =
∫

Dg(x) · S dV (x, S),

where

Dg(x) · S :=
n−1∑
i=1

Dei g(x) · ei

and {ei }n−1
i=1 is any orthonormal basis for S.

Given a smooth hypersurface � inU , we may define a measure on G(Rn) by the require-
ment that

V�(A) := Hn−1({x ∈ � : (x, Tx�) ∈ A}) (16)

for every open A. If Hn−1(�, K ) < ∞ for every compact K ⊂ R
n , then V� is an (n − 1)-

varifold on R
n .

4.1 The associated varifolds

We assume either that M = R
n or M = B, and write X = M\�, where � is a compact

codimension-two submanifold of Rn . Let L → X be some real line bundle, and suppose u
is a smooth section of L with Eε(u) < ∞. We then define w : X → R by

w := � ◦ |u|, �(t) :=
∫ t

0

√
(1 − s2)2

8
ds.

Let σ := 2�(1), and observe that 2σ is precisely theAllen–Cahn energy of the 1-dimensional
heteroclinic solution z �→ tanh( z

ε
√
2
). Sard’s theorem implies that �t := w−1(t) is a smooth

hypersurface in X for almost every t ∈ R. Moreover, by the coarea formula,
∫
R

Hn−1(�t ) dt =
∫
X

|dw| dx =
∫
X

√
W (u)

2
|∇u| ≤ 1

2
Eε(u).

We conclude that �t is smooth and satisfies Hn−1(�t ) < ∞ for almost every t ∈ R. For
each such t we define a varifold V�t on M as in (16). We then define a measure on G(M) by
setting

V (A) := 1

σ

∫
R

V�t (A) dt

for the open sets A ⊂ G(M). Note that, by definition, ‖V ‖(� ∩ B) = 0. Therefore, by the
computation using the coarea formula above, we have

‖V ‖(M) = ‖V ‖(X) = 1

σ

∫
X

√
W (u)

2
|∇u| ≤ 1

2σ
Eε(u).

Consequently, ‖V ‖(M) < ∞, and so V is a varifold on M . We refer to V as the varifold
associated with u.

For a vector field g ∈ C1
0(M,Rn) we have

δV (g) =
∫
G(M)

Dg(x) · S dV (x, S) = 1

σ

∫
R

∫
G(M)

Dg(x) · S dV�t (x, S)dt .
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For each t such that �t is smooth with Hn−1(�t ) < ∞ we have∫
G(M)

Dg(x) · S dV�t (x, S) =
∫
G(X)

Dg(x) · S dV�t (x, S) =
∫

�t

div�t g(x) dHn−1(x),

and for x ∈ �t

div�t g = tr(P(w)Dg), P(w) := I − 1

|dw|2 (gradw ⊗ dw),

so we may write

δV (g) = 1

σ

∫
R

∫
�t

tr(P(w)Dg) dHn−1dt .

By the coarea formula,∫
R

∫
�t

tr(P(w)Dg) dHn−1dt =
∫
X
tr(P(w)Dg)|dw| dx,

and hence

δV (g) = 1

σ

∫
X
tr(P(w)Dg)|dw|.

At points where |dw| is nonzero we have

tr(P(w)Dg) = div(g) − 1

|∇u|2 〈∇Dgu,∇u〉,

so we may also write

δV (g) = 1

σ

∫
X

(
div(g) − 1

|∇u|2 〈∇Dgu,∇u〉
)

|dw|. (17)

4.2 Convergence to a stationary varifold

Suppose now that we are in the setting of (A1), and let uk be a sequence of critical sections
as in (A2). Then, possibly after passing to a subsequence, we may assume that the energy
measures μk weak*-converge to a Radon measure μ on B. Moreover, since ‖Vk‖ ≤ 1

2σ μk ,
we may assume that the associated varifolds Vk weak*-converge to a varifold V on Rn .

In the remainder of this section we study the limiting varifold V . In particular, after
establishing some lemmas, we prove Theorem 1.1.

Lemma 4.1 There are constants � = �(n, �) and r0 = r0(n, �) such that for every p ∈ �

we have

e�s

sn−1 ‖V ‖(Bs(p)) ≤ e�r

rn−1 ‖V ‖(Br (p)), (18)

for every 0 < s < r < min{r0, dist(p, ∂B)}. The same holds for p ∈ X, for every 0 < s <

r < min{dist(p, �), dist(p, B)}, with � = 0.

Proof Consider some fixed p ∈ �. Let r0 be the constant appearing in Proposition 3.3.
Combining that proposition with Proposition 3.6 yields (18).

If p ∈ X we apply the same argument, but using the almost-monotonicity formula for
interior points proven in [25]. ��
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Next we observe that Lemma 3.9 implies upper and lower bounds for the rescaled energy
at points in its support.

Lemma 4.2 There are constants r1 and D depending only on n, �, C0 and C1 such that

D−1 ≤ 1

rn−1 ‖V ‖(Br (p)) ≤ D

(
1 + 1

dist(p, ∂B)n−1

)
(19)

for every p ∈ suppμ and 0 < r < min{r1, dist(p, ∂B)/2}. In particular, ‖V ‖(� ∩ B) = 0.

Proof The upper and lower bounds for the rescaled mass follow immediately from
Lemma 3.9. That ‖V ‖(� ∩ B) = 0 follows from a simple covering argument, since
Hn−1(�) = 0. ��

We can now proceed with proving Theorem 1.1.

Proof of Theorem 1.1 Step 1: Equidistribution of energy.The functionwk is locally Lipschitz,
hence differentiable almost everywhere in X , and satisfies

|dwk | =
√
W (uk)

2
|∇uk |

almost everywhere in X . Consequently,

∣∣∣∣εk |∇uk |2
2

+ W (uk)

εk
− 2|dwk |

∣∣∣∣ =
(√

εk

2
|∇uk | −

√
W (uk)

εk

)2

≤ |ξk |.

The right-hand side converges to 0 in L1
loc(B) by Proposition 3.6. It follows that

∣∣∣∣εk |∇uk |2
2

− |dwk |
∣∣∣∣ → 0,

∣∣∣∣W (uk)

εk
− |dwk |

∣∣∣∣ → 0 (20)

in L1
loc(B). Furthermore, since for every open A ⊂ B we have

‖Vk‖(A) = 1

σ

∫
A\�

√
W (uk)

2
|∇uk | = 1

2σ
μk(A) − 1

2σ

∫
A

(√
εk

2
|∇uk | −

√
W (uk)

εk

)2

,

we find that ‖V ‖ and μ are related by

‖V ‖ = 1

2σ
μ.

Combining this identity with Lemma 3.8, we obtain

� ⊂ suppμ = supp ‖V ‖.
Step 2: Density bounds. Let us define

� := supp ‖V ‖.
By Step 1, � = suppμ. In light of Lemma 4.1, for each p ∈ � the density


n−1(‖V ‖, p) := lim
r→0

‖V ‖(Br (p))
ωn−1rn−1 , ωn−1 := |Bn−1

1 (0)|,

exists and is finite. Lemma 4.2 implies that

D−1 ≤ 
n−1(‖V ‖, p) ≤ D

(
1 + 1

dist(p, ∂B)n−1

)
(21)
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for p ∈ �, where the constant D > 0 depends only on n, �, C0 and C1.
Step 3: V is stationary. Let g ∈ C1

0 (B,Rn) be such that g|� is tangent to �. We claim that
δV (g) = 0. Since δVk(g) → δV (g), it suffices to show that δVk(g) → 0. We first recall the
identity (17),

δVk(g) = 1

σ

∫
X

(
div(g) − 1

|∇uk |2 〈∇Dguk,∇uk〉
)

|dwk |.

By Lemma 3.2, for all k we have∫
X

(
div(g) − 1

|∇uk |2 〈∇Dguk,∇uk〉
)

εk |∇uk |2 =
∫
X

ξk div g,

and hence

δVk(g) = 1

2σ

∫
X

ξk div g + 1

σ

∫
X

(
div(g) − 1

|∇uk |2 〈∇Dguk,∇uk〉
)

(
|dwk | − εk

2
|∇uk |2

)
.

The right-hand side tends to 0 as k → ∞ by (20) and Proposition 3.6, so δV (g) = 0.
Step 4: V is integer rectifiable.We know that V is stationary with respect to vector fields

that are compactly supported in X . Moreover,
n−1(‖V ‖, p) is uniformly positive for p ∈ �

by Step 2. Therefore, we may apply Allard’s rectifiability theorem [2, 5.5 (1)] to conclude
that V G(X) is a rectifiable (n−1)-varifold on X . Since ‖V ‖(B∩�) = 0, the density upper
bound in (21) ensures that V is a rectifiable varifold on B. Finally, V has integer multiplicity
Hn−1-almost everywhere in X , and henceHn−1-almost everywhere in B, by [25, Section 5].

Step 5: Hausdorff convergence of level-sets. Let us define � := supp ‖V ‖. Theorem 1 in
[25] implies that |uk | → 1 in C0

loc(B\�).
Fix some b ∈ (0, 1). We prove that the closure of

{x ∈ X : |uk(x)| ≤ 1 − b}
in B, which (by Proposition 3.1) is precisely

{x ∈ X : |uk(x)| ≤ 1 − b} ∪ �,

converges to � in the local Hausdorff sense. Let us write

Sk,b := {x ∈ X : |uk(x)| ≤ 1 − b} ∪ �

and, for each r > 0, define

�r := {x ∈ B : dist(x, �) < r}, Srk,b := {x ∈ B : dist(x, Sk,b) < r}.
The claim is then that, for every compact K and positive constant r , when k is sufficiently
large we have

� ∩ K ⊂ Srk,b ∩ K , and Sk,b ∩ K ⊂ �r ∩ K .

We first show that, for each r > 0, � ⊂ Srk,b for all large k. If not let p ∈ � be such that

lim sup
k→∞

dist(p, Sk,b) ≥ r .

We then have dist(p, �) ≥ r by Lemma 3.8. Using [25, Proposition 4.2] we conclude that

E(uk, Bs(p)) → 0
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for every s < r , but this contradicts p ∈ �.
Next we show that, for each r > 0,

Sk,b ∩ K ⊂ �r ∩ K

for all large k. If not, let pk ∈ Sk,b ∩ K be a sequence of points such that

lim sup
k→∞

dist(pk, �) ≥ r .

Since � ⊂ � it follows that dist(pk, �) ≥ r . But then we may apply [25, Proposition 4.2] to
conclude that every accumulation point of pk is in �. This is a contradiction. ��

Aswementioned in the introduction, Theorem 1.1 (and the interior theory of [25]) implies
a corresponding global statement, for critical sections of the spanning bundle over Rn \ �;
see Theorem 1.2. In that theorem, supp ‖V ‖ is claimed to be compact. This follows easily
from Lemmas 4.1 and 4.2, since ‖V ‖ is bounded.

4.3 Tangent cones at the boundary

In the following sections we will study the boundary regularity of the limiting varifold which
arises in Theorem 1.1. We will repeatedly make use of rescalings of this varifold at boundary
points. Let us conclude this section by laying down somenotation and basic results concerning
such rescalings.

Let V be a varifold on an open subset of Rn and consider a point p ∈ supp ‖V ‖. Let
Dsi ,p(x) := si (x−p), where si is a sequence of scales si → ∞.We refer to any subsequential
weak*-limit of the sequence (Dsi ,p)#(V ) as a varifold tangent to V at p.

Lemma 4.3 In the setting of (A1), let uk be a sequence of critical sections as in (A2). Suppose
the varifolds Vk associated with uk weak*-converge to V . For every point p ∈ supp ‖V ‖, the
limit V admits a varifold tangent CpV at p, and the projection of x onto S⊥ vanishes for
CpV -almost every (x, S) ∈ G(B).

Proof If p is in supp ‖V ‖ \ � the claim is an easy consequence of the mass bounds (18) and
the monotonicity formula for stationary varifolds [2, 5.1 (1)].

Suppose then that p ∈ supp ‖V ‖ ∩ �. In this case the argument is similar, but some tech-
nicalities need to be addressed. Fix a sequence of scales si → ∞. The varifolds (Dsi ,p)#(V )

have uniformly bounded mass on compact subsets of Rn by (18). Therefore, after passing to
a subsequence, we may assume that (Dsi ,p)#(V ) weak*-converges to a varifold tangent to
V at p, which we denote by CpV . Moreover,

1

rn−1 ‖CpV ‖(Br (0)) = lim
s→0

1

sn−1 ‖V ‖(Bs(p))

for all r > 0.
For each vector field g ∈ C1

0 (R
n\Tp�,Rn), and all sufficiently large i , we have that Tp�

lies outside of the support of g. It follows that (Dsi ,p)#(V ) is stationary with respect to g for
all large i , and hence CpV is stationary with respect to V .

Let θ denote the reflection map across Tp�. By Allard’s reflection principle [3, 3.2], the
varifold CpV + θ#(CpV ) is stationary with respect to each g ∈ C1

0(R
n,Rn). Since the

rescaled mass r1−n‖CpV ‖(Br (0)) is constant in r , the monotonicity formula for stationary
varifolds [2, 5.1 (2)] implies that the projection of x onto S⊥ vanishes for CpV -almost every
(x, S) ∈ G(B). ��
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Remark 4.4 In the proof of Lemma 4.3, one can also use Allard’s boundary version of the
monotonicity formula for stationary varifolds (see [3, 3.4 (2)] and [9]), rather than (18), to
get uniform mass bounds for the sequence (Dsi ,p)#(V ). Note however that Allard’s result
assumes ‖V ‖(� ∩ B) = 0, which we proved using (18).

5 Boundary behaviour in dimension 3

We continue working in the setting of (A1), with uk a sequence of critical sections as in
(A2). In addition, we assume the ambient dimension is n = 3, and that the sections uk have
uniformly bounded Morse index in X . That is, there is a nonnegative integer I0 such that

sup
k

ind(uk, X) ≤ I0.

By Theorem 1.1, possibly after passing to a subsequence, we may assume the associated
varifolds Vk associated with uk weak*-converge to an integer rectifiable varifold V on B.
Moreover, we may assume that the energy measures μk weak*-converge to μ = ‖V ‖/2σ .
Let � := supp ‖V ‖.

By Corollary 1.3 (which, we recall, was stated as an immediate consequence of [22,
32]), we know that � \ � is a smooth minimal surface in X . Let us remark that, since we
are assuming n = 3, this statement can also be obtained from the level-set estimates of
Chodosh–Mantoulidis [12].

We are interested in the behaviour of� near the boundary �. Fix an arbitrary point p ∈ �.
Due to Lemma 4.3, we know we can extract a varifold tangent to V at p. Let CpV denote
such a tangent. By definition, there is a sequence of scales si → 0 such that CpV is the
weak*-limit of (Dsi ,p)#(V ) as i → ∞, where Dsi ,p(x) := s−1

i (x − p). We introduce the
notation

Cp� := supp ‖CpV ‖.
Let us first demonstrate that Cp� is smooth away from Tp�. This follows since Cp� can

be obtained as the energy concentration set of a sequence of appropriate rescalings of uk . We
define

B̃i := Dsi ,p(B), �̃i := Dsi ,p(�), X̃i := B̃i \ �̃i ,

and define L̃i → X̃i to be the pullback of L via D−1
si ,p . Note that L̃i is simply the nontrivial

real line bundle over X̃i . We equip L̃i with the bundle metric and connection, still denoted
〈·, ·〉 and ∇, obtained by pulling back those on L . With this notation,

ũk,i (x) := uk(si x + p)

is a smooth section of L̃i which is critical for the energy Esi εk . Clearly |ũk,i | ≤ C0, and by
Lemma 4.1, for each ball B ′ ⊂ R

3 we have

Esi εk (uk,i , B
′) ≤ C

for all sufficiently large i , where C = C(n, �,C1).
For each k and i , let Ṽk,i denote the varifold associated with ũk,i . It is straightforward to

check that

Ṽk,i = (Dsi ,p)#(V ).
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Moreover, for an appropriate subsequence ki , we may assume Ṽki ,i weak*-converges toCpV
as i → ∞. (In particular, we require that ε̃i := s−1

i εki → 0 as i → ∞.) Since the rescalings
ũi := uki ,i satisfy

ind(ũi , X̃i ) = ind(uki , X) ≤ I0,

by Corollary 1.3, the set Cp�\Tp� is a smooth minimal surface. Moreover, by Lemma 4.3,
Cp� is a cone. Note we also know that CpV has integer multiplicity by Theorem 1.1 (this
can alternatively be deduced from the compactness theorem for integer rectifiable varifolds
[2, 6.4]).

Our goal now is to characterise Cp� as a union of halfplanes.

Lemma 5.1 The set Cp� consists of a collection of halfplanes P1, . . . , PN which meet along
Tp�. In particular, there are positive integers m1, . . . ,mN such that CpV = ∑N

j=1 m jVPj .

Proof Let p± be the points where Tp� intersects S2 = ∂B1(0). Since Cp� is a smooth
minimal cone, its intersection with S2 \ {p±} is a collection of geodesics α1, . . . , αN . Since
Cp� is closed and hence properly embedded inR3 \Tp�, we either have that the α1, . . . , αN

are all half-circles with endpoints at p±, or else N = 1 and α1 is a great circle.
Suppose N = 1 and α1 is a great circle. We then have that |ũi | → 1 locally uniformly

in S2\(α1 ∪ {p±}), by Theorem 1.1. But ũi must vanish on any loop γ in R
3\Tp� which

generates H1(R
3\Tp�) ∼= Z. We can find such a loop in S2\(α1∪{p±}), so we have reached

a contradiction.
Weconclude that the intersection ofCp�with S2\{p±} consists of half-circlesα1, . . . , αN

with endpoints at p±. Equivalently, Cp� is the set of halfplanes P1, . . . , PN generated by
α1, . . . , αN . Given that CpV has integer multiplicity, by the constancy theorem (see e.g. [31,
4.1]), there are positive integers m1, . . . ,mN such that CpV = ∑N

j=1 m jVPj . ��
We conclude this section with the proof of Theorem 1.4. It only remains to establish that∑N
j=1 m j is odd.

Proof of Theorem 1.4 We construct a loop γ in R3\Tp� which generates H1(R
3 \ Tp�) and

is such that ũi has m1 + · · · +mN isolated zeroes on γ for all large i . Since L̃i is nontrivial,
it then follows that m1 + · · · + mN is odd.

For each j = 1, . . . , N , let p j denote the point where Pj meets the equator S2 ∩ Np�.
Let ν j denote a unit normal to Pj . For each j we define a truncated cylinder

Z j := {x + sν j : (x − p j ) · ν j = 0, |x − p j | < δ, |s| < δ}.
By choosing δ to be sufficiently small we can arrange that Z j ∩ Cp� = Z j ∩ Pj . We now
let p j,l , l = 1, . . . , I0 + 1, be a collection of points in Z j ∩ Pj , and define for each p j,l a
thinner truncated cylinder inside Z j , as follows:

Z j,l := {x + sν j : (x − p j,l) · ν j = 0, |x − p j,l | < 10−2(I0 + 1)−1δ, |s| < δ}.
We assume the points p j,l are chosen so that the Z j,l are all mutually disjoint.

Since ind(ũi , X̃i ) ≤ I0, for every j , we know that ũi is stable in at least one of the cylinders
Z j,l . Possibly after passing to a subsequence in i , and relabeling indices, we may assume ũi
is stable in Z ′

j := Z j,1 for every j . Recall that the associated varifolds Ṽi weak*-converge
to m jVPj on Z j , and hence on Z ′

j . Let

Ẑ j := {x + sν j : (x − p j,1) · ν j = 0, |x − p j,1| < 10−3(I0 + 1)−1δ, |s| < δ}.
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We analyse the convergence of {ũi = 0} in each of the cylinders Z ′
j . The argument is

the same in each cylinder, so let us drop the index j , understanding that P = Pj , m =
m j , etc. Given that ũi is stable in Z ′, the curvature estimate of Chodosh–Mantoulidis [12,
Theorem 1.3] implies that, for all sufficiently large i , the set {ũi = 0} ∩ Ẑ is a union of m̃i

smooth graphs over P , each of which converges in C1,α to P ∩ Ẑ as i → ∞.
Standard arguments show that m̃i = m for all large i . We only sketch the details. We

define

Ti := {x ∈ Ẑ : dist(x, {ũi = 0})} ≤ �ε,

where� is a large constant to be chosen later.We recall that onR3 the only entire solutions of
the scalar Allen–Cahn equation which are bounded, stable, and have quadratic area growth,
are the 1-dimensional heteroclinic solutions and the constants ±1.1 Using this fact, together
with a blow-up argument, it can be shown that if � is sufficiently large then

lim sup
i→∞

|Eε̃i (ũi , Ti ) − 2σ m̃iH2(P ∩ Ẑ)| ≤ Ce−�/C ,

where C > 0 is a universal constant and, we recall, 2σ is the energy of the 1-dimensional
heteroclinic solution. Moreover,

dist(Ẑ \ Ti , Si ) ≥ �

2
ε̃i , where Si := {|ũi | ≤ 9/10}.

Standard interior estimates for linear elliptic equations show that for x ∈ Ẑ \ Ti we have

ε̃i
|∇ũi (x)|2

2
+ W (ũi (x))

ε̃i
≤ C ε̃−1

i e−ε̃−1
i dist(x,Si )/C .

Therefore, we may use the coarea formula to estimate

Eε̃i (ũi , Ẑ \ Ti ) ≤ Cr2ε̃−1
i

∫ ∞

�ε̃i /2
e−ε̃−1

i t/Cdt ≤ Cr2e−�/C .

Combining all of this, we see that by choosing � sufficiently large we can ensure that
Eε̃i (ũi , Ẑ) is as close as we like to 2σ m̃iH2(P ∩ Ẑ) for all large i . On the other hand,

Eε̃i (ũi , Ẑ) → 2σmω2r
2

as i → ∞. It follows that m̃i = m for all large i .
To recap, we have shown that {ũi = 0} ∩ Ẑ j has exactly m j graphical components

whenever i is sufficiently large (we now resume using the index j to distinguish the planes
Pj ). We may deform the loop γ := S2 ∩ Np� slightly so that

γ ∩ Z j ⊂ Ẑ j

for each j . Moreover, we may assume γ is monotone inside Ẑ j , so that it intersects {ũi = 0}
exactly m j times inside Ẑ j . Since |ũi | → 1 locally uniformly away from P1 ∪ · · · ∪ PN , we
may assume that

{ũi = 0} ∩ γ ⊂ Ẑ1 ∪ · · · ∪ ẐN .

It follows that ũi has m1 + · · · +mN isolated zeroes on γ , and hence m1 + · · · +mN is odd.
��

1 This is proven using the log cutoff trick. The argument is in [19]. See also [1] for related classification
results.
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6 Minimizing sections and Plateau’s problem

Let � denote a compact codimension-2 submanifold of Rn , where n ≥ 3. In this section we
write L for the spanning bundle over X = R

n \ �. A section u ∈ W 1,2
loc (X , L) is said to be

minimizing for Eε if

Eε(u) ≤ Eε(v)

for every section v ∈ W 1,2
loc (X , L).We are concernedwith the global behaviour ofminimizing

sections in the limit as ε → 0. Our ultimate goal is to prove Theorem 1.5, which asserts that
minimizers concentrate energy on a solution of Plateau’s problem (at least when n = 3, or
when 4 ≤ n ≤ 7 and � lies in a strictly convex hypersurface).

We first prove that at least one minimizer of Eε exists for each positive ε. The proof is a
standard application of compactness theorems for Sobolev functions.

Lemma 6.1 For every ε > 0 there exists a smooth section u of L which minimizes Eε .

Proof Fix ε > 0 and let Ē be the infimum of Eε(v), taken over all sections v ∈ W 1,2
loc (X , L).

We have Ē < ∞. Let uk be a sequence of W
1,2
loc -sections such that Eε(uk) → Ē as k → ∞.

After passing to a subsequence, we may assume Eε(uk) ≤ 1 + Ē . In any ball B ⊂ X we
have

( ∫
B

|u|2
)2

≤ Hn(B)

∫
B

|u|4 ≤ Hn(B)

(
Hn(B ∩ {|u|2 ≤ 2}) + 16

∫
B
W (u)

)
,

so ‖uk‖W 1,2(B) is bounded independently of k. Choosing a countable covering of X by open
balls and appealing to a diagonal argument, we find that there is a section

u ∈ W 1,2
loc (X , L)

such that uk → u weakly inW 1,2(B) for every open ball B ⊂ X . By the Sobolev embedding
theorem, we may also assume that uk → u in Lq(B) for every B, where q = 1

2 − 1
n . Then

uk → u pointwise almost everywhere (possibly after passing to another subsequence), and
hence by Fatou’s lemma we have

∫
X

W (u)

ε
≤ lim inf

k→∞

∫
X

W (uk)

ε
.

Since the Dirichlet integral is lower semicontinuous with respect to weak convergence in
W 1,2, we have

Eε(u) ≤ lim inf
k→∞ Eε(uk) = Ē,

which is to say that u minimizes Eε . Finally, since u is in particular critical for Eε , it is
smooth. ��

We would like to apply Theorem 1.2 to sequences of minimizers with ε → 0. To do so
we need to show that minimizers satisfy uniform length and energy bounds.

Lemma 6.2 Fix ε > 0 and suppose u is a minimizing section for Eε . We then have

sup
X

|u| ≤ 1.
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Proof Let e := u/|u| on the set {|u| > 0}. We then define a new section ũ such that

ũ = min{|u|, 1}e
on the set {|u| > 0}, and ũ = 0 elsewhere. It is not difficult to check that ũ is locally
Lipschitz continuous and, unless |u| ≤ 1 holds everywhere, Eε(ũ) < Eε(u). Given that u is
minimizing this is impossible, so |u| ≤ 1. ��

We now construct competitors which can be used to bound the energy of a minimizer
independently of ε. The construction becomes particularly simple when � is the boundary
of a smooth hypersurface, but this is not always the case for n ≥ 4. As a result, some care is
needed in a neighbourhood of �.

Lemma 6.3 Consider a constant ε0 > 0. For each ε ∈ (0, ε0) there is a locally Lipschitz
section v of L such that Eε(v) ≤ C, where C = C(n, �, ε0) is a constant.

Proof Fix a smooth sectionw ∈ C∞(X , L). Although the nodal set ofwmay not be a smooth
hypersurface, it can be perturbed to a section which does have this property, as follows.

First we show that L is finitely generated. That is, there is a finite collection of smooth
sections vi , 1 ≤ i ≤ I , such that, for every x ∈ X , the vectors vi (x) span the fiber over x . This
follows easily from the fact that X can be covered by finitely many open sets Ui , 1 ≤ i ≤ I ,
over which L trivialises. Since � is compact, we can takeU1 to be the exterior of a large ball
containing �. Since we are assuming n ≥ 3, U1 is simply connected, and hence L is trivial
overU1. We then consider a covering of � by finitely many open (n − 2)-dimensional balls.
A normal neighbourhood of each of these is diffeomorphic to B2×Bn−2, and can be covered
by two simply connected sets by removing thin wedges from the B2 factor. This gives sets
Ui , 2 ≤ i ≤ I ′, which cover a tubular neighbourhood of �. The remainder of X can then
be covered by finitely many balls, which are the sets Ui , I ′ ≤ i ≤ I . For each Ui , we let vi
be a unit-length section in Ui , but then multiply it by a cutoff function and extend so that it
vanishes outside of Ui . This can be done so that at least one of the sections vi is nonzero at
each x ∈ X .

Now let F : X × R
I → L be the smooth map defined by

F(x, s) := w(x) +
I∑

i=1

sivi (x).

Since at least one of the vectors vi is always nonzero, F is transverse to the submanifold of
L traced out by its zero section. Therefore, by the Thom transversality theorem, for almost
every s, the map x �→ F(x, s) is transverse to the zero section of L . In particular, there exists
a s̃ such that the zero-set of

w̃(x) := F(x, s̃)

is a smooth hypersurface in X . Moreover, we can assume s̃1 > 0, so that w̃ is nonzero outisde
of a large compact subset containing �, and hence w̃−1(0) is a precompact subset of Rn .

We know w̃−1(0) is smooth, but it may not have finiteHn−1-measure. We can rectify this
as follows. Let δ > 0 be a small constant such that {ρ < δ} is a tubular neighbourhood of
� whose boundary meets w̃−1(0) transversally (recall the notation ρ(x) = dist(x, �)). We
define � ⊂ X so that

� ∩ {ρ ≥ δ} = w̃−1(0) ∩ {ρ ≥ δ}
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and, writing π for the nearest point projection to �,

� ∩ {0 < ρ < δ} = {sx + (1 − s)π(x) : x ∈ w̃−1(0) ∩ {ρ = δ}, s ∈ (0, 1)}.
Then � is a locally Lipschitz hypersurface with Hn−1(�) < ∞. Moreover, there is a unit
section e of L which is defined everywhere in X \ �. Indeed, for x ∈ (X \ �) ∩ {ρ ≥ δ}
we can take e(x) = w̃(x)/|w̃(x)|. We then extend e to (X \ �) ∩ {0 < ρ < δ} by parallel
transport (along e.g. normal segments emanating from �). It follows that e is smooth and
parallel in X \ �.

We define

v(x) :=
{

ψ(dist(x, �)/ε)e(x) for x ∈ X \ �,

0 for x ∈ �,

where ψ : R → R coincides with a 1-dimensional heteroclinic solution on a large set, in the
following manner. We let

ψ(z) := (1 − ξ(z/100)) tanh(z/
√
2) + ξ(z/100),

where ξ : R → R satisfies 0 ≤ ξ ≤ 1, ξ ≡ 0 in [−1, 1], ξ ≡ 1 in R\[−2, 2] and |ξ ′| ≤ 2.
Note that dist(·, �) is a locally Lipschitz function on R

n , so v is locally Lipschitz.
TheHn−1-measure of {dist(·, �) = t} varies continuously in t , and approaches 2Hn−1(�)

as t → 0. Therefore, there is a constant κ > 0 depending only on � such that {dist(·, �) =
t} ≤ 1 + 2Hn−1(�) for t ≤ κ . A straightforward application of the coarea formula shows
that when ε ≤ κ/200 we have

Eε(v) ≤ C(1 + 2Hn−1(�)),

where C is a universal constant. This completes the proof of the lemma for ε ≤ κ/200.
If instead κ/200 < ε < ε0, we can simply choose v so that it vanishes inside a large ball

containing �, has unit length outside a somewhat larger ball, and satisfies |∇v| ≤ 2. We then
have

Eε(v) ≤ C(ε + ε−1) ≤ C(ε0 + 200κ−1),

where C depends only on n and �. With this the claim is proven. ��
Remark 6.4 Throughout this section of the paper we always assume n ≥ 3. We remark that
the proof of Lemma 6.3 breaks down when n = 2. For example, the nontrivial line bundle
over R2\{0} fails to be finitely generated and, generically, the zero set of a smooth section
of this bundle is a family of unbounded curves.

We may now apply Theorem 1.2 and Corollary 1.3 to establish the following statement.

Proposition 6.5 Fix a sequence εk → 0, and let uk denote a sequence of sections of the
spanning bundle over X which minimize Eεk . After passing to a subsequence, the varifolds
Vk associated with uk weak*-converge to some limit, denoted V . Let � := supp ‖V ‖. We
then have that �\� is a smooth minimal hypersurface outside a set of Hausdorff-dimension
at most n − 8, and V is the unit-multiplicity varifold induced by �.

Proof Given Lemmas 6.2 and 6.3, Theorem 1.2 implies that, after passing to a subsequence,
Vk weak*-converges to an integer rectifiable limit V . Since each uk is, in particular, stable,
�\� is a smoothminimal hypersurface outside a set of Hausdorff-dimension atmost n−8, by
Corollary 1.3. It remains to show that V is the unit-multiplicity varifold induced by �. Since
uk is minimizing, a straightforward cut-and-paste argument shows that points of multiplicity
at least two do not arise—see the proof of Theorem 2 on p. 78 of [25]. ��
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Next we address the regularity of � at the boundary �.

Proposition 6.6 Let uk , V and� be as in Proposition 6.5. Suppose in addition that n = 3, or
else n ≥ 4 and� lies in a strictly convex hypersurface. Then there is a tubular neighbourhood
of � in which � is a smooth hypersurface with boundary ∂� = �.

Proof In case � lies in a strictly convex hypersurface, by the convex hull property for sta-
tionary varifolds [31, Theorem 6.2], we can simply apply [3, 5.2] to conclude that V has
density 1/2 at each point in �. The claim then follows immediately from Allard’s boundary
regularity theorem [3].

Let us turn to the case n = 3. Let CpV be a varifold tangent to V at p ∈ �. As a
consequence of Theorem 1.4, we know that CpV is induced by halfplanes P1, . . . , PN with
multiplicities m1, . . . ,mN respectively, where m1 + · · · + mN is odd.

As in Sect. 5, we can find appropriate rescalings ũi := uki ,i of uk whose associated
varifolds converge to CpV . We recall our notation—ũi is a section of L̃i and is minimizing
for Eε̃i (where ε̃i → 0). By the same cut-and-paste argument referred to above, we can show
that each halfplane Pj occurs with multiplicity m j = 1. Consequently, N is odd.

Suppose now, with the aim of deriving a contradiction, that N ≥ 3. Then there is a pair
of halfplanes in supp ‖CpV ‖ which meet at an angle not exceeding 2π/3. Suppose without
loss of generality these are the planes P1 and P2. Choose a large ball B inR3 \Tp� such that
these two planes divide B into three pieces. If B is large enough, we can cut a hole in each
of P1 ∩ BR and P2 ∩ B and attach them with a neck, in such a way that the resulting surface
S ⊂ B is smooth and has strictly less area then (P1 ∪ P2) ∩ B.

Let us fix a unit section of L̃i over B, so that we may treat ũi as a function on B. By a
standard construction, we can add to ũi a function wi ∈ W 1,2

0 (B) so that Eε̃i (ũi + wi ) is
as close as we like to 2σH2(S). Let us sketch the construction. We first fix a smaller ball
Br ⊂ B so that S and P1 ∪ P2 agree in B\Br and ∂Br intersects S transversally. Let ηi be
a smooth function on B such that 0 ≤ ηi ≤ 1, ηi = 1 in Br , ηi = 0 in B \ Br+δε̃i , and|∇ηi | ≤ 2δ−1ε−1. We also define

vi (x) :=
⎧⎨
⎩
tanh

(
dist(x,S)

ε̃i
√
2

)
e(x) for x ∈ B \ S,

0 for x ∈ S,

.

By splitting up B as

B = (B \ Br+δε̃i ) ∪ (Br+δε̃i \ Br ) ∪ Br

and using the coarea formula, we find that for wi := ηi (vi − ũi ) we have

|Eε̃i (ũi + wi , B) − 2σH2(S)| ≤ Cδ

for all sufficiently large i , where C > 0 is a constant depending only on n and S.
Recall that

Eε̃i (ũi , B) → 2σH2((P1 ∪ P2) ∩ B)

as i → ∞. Therefore, since

H2(S) < H2((P1 ∪ P2) ∩ B),

by choosing δ small enough in the above construction we can ensure that the inequality

Eε̃i (ũi + wi , B) < Eε̃i (ũi , B)
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holds for all large i . But this means ũi is not a minimizer, so we have reached a contradiction.
We thus have N = 1, and hence CpV is a halfplane with multiplicity one. It follows that
V has density 1/2 at p, so we can apply [3] to conclude that � is a smooth surface with
boundary in a neighbourhood of p. ��
Remark 6.7 It would be interesting to know whether the nodal set of a minimizing/stable
section is in fact a hypersurface with boundary, at least if n = 3 and ε is sufficiently small.
This might be proven by developing a regularity theory for nodal sets at boundary points
analogous to the corresponding interior theory—see e.g. [11, 12, 33, 34].

Theorem 1.5 follows by combining Propositions 6.5, 6.6 and the following lemma.

Lemma 6.8 Let uk , V and� be as in Proposition 6.5. If�′ is a compact smooth hypersurface
with boundary such that ∂�′ = �, then

Hn−1(�) ≤ Hn−1(�′)

Proof Suppose, with the aim of deriving a contradiction, that �′ is a compact smooth hyper-
surface with boundary such that ∂�′ = � and

Hn−1(�′) < Hn−1(�).

Let us assume that any connected components of �′ which are disjoint from ∂�′ have been
discarded. The restriction of L to X \ �′ is trivial, and we may take e : X \ �′ → L be a
smooth unit section.

We define a new section u′
k : X → L , whose energy approximates 2σHn−1(�′), as

follows. We set

u′
k(x) =

{
ψ(dist(x, �′)/εk)e(x) for x ∈ X \ �′

0 for x ∈ �′,

where ψ : R → R is of the form

ψ(z) := (1 − ξ(z/�)) tanh(z/
√
2) + ξ(z/�)

and ξ : R → R satisfies 0 ≤ ξ ≤ 1, ξ ≡ 0 in [−1, 1], ξ ≡ 1 in R\[−2, 2] and |ξ ′| ≤ 2. The
result, easily obtained from the coarea formula, is that for every ball B ⊂ R

n we have

lim sup
k→∞

|Eεk (u
′
k, B) − 2σHn−1(�′ ∩ B)| ≤ C(1 + Hn−1(�′ ∩ B))e−�/C ,

where C > 0 is a constant which may depend on n, � and B. In particular, by choosing
B large enough so that it contains � and �′, and then choosing � to be sufficiently large
depending on B, we can ensure that

Eεk (u
′
k) < Eεk (uk)

for all large k. This shows that uk is not a minimizer when k is large, which is a contradiction.
��

7 Minimizing area in a homology class

Let (M, g) be a compact Riemannianmanifold of dimension n. A natural problem, sometimes
referred to as the homological Plateau problem, is to prove the existence of an area-minimizer
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in every nonzero class [�] ∈ Hn−1(M,Z2). The existence of such a minimizer follows from
Fleming’s theory of flat chains mod 2 [18] (see also [17]), and is one of the landmark
achievements of geometric measure theory.

In this section we discuss alternative approaches to the homological Plateau problem
which employ phase transition models such as the Allen–Cahn energy. For a nonzero class
[�] ∈ Hn−1(M,Z2), the element of H1(M,Z2)Poincaré-dual to [�]gives rise to a nontrivial
real line bundle L → M (see Sect. 2). The zero-set of a generic smooth section of L is a
smooth cycle in [�]. We may equip L with a metric and a flat metric connection, and for
each section u ∈ W 1,2(M, L), define

Eε(u) :=
∫
M

ε
|∇u|2
2

+ (1 − |u|2)2
4ε

d volg .

For each ε > 0 there is a smooth section uε of L which minimizes Eε (this can be proven
exactly as in Lemma 6.1). Baldo and Orlandi [8] used �-convergence techniques to show
that, for a sequence εk → 0, the sections uk := uεk concentrate energy on an area-minimzing
cycle in [�]. In particular, this gave a new proof of the existence of such an area-minimizer.
We think it worth remarking that, at least if 2 ≤ n ≤ 7, the existence of a smooth area-
minimizing representative of [�] can now be proven entirely using level-set estimates for
uk . We do not claim any originality here—the argument proceeds by combining results of
other authors in a straightforward manner.

First, the energy of uk is bounded from above by a constant depending only on (M, g) and
the class [�]. This is established by constructing an appropriate competitor for each εk . The
construction is very similar to that in Lemma 6.3, but now we arrange that the competitors
concentrate energy around some fixed smooth hypersurface in the class [�].

It follows from [33, 34] (see Section 5 of [12] for the argument) that the nodal sets u−1
k (0)

subconverge in the graphical C2,α-sense, and with multiplicity one, as k → ∞; this is the
step in which we require that n ≤ 7. Since the hypersurfaces u−1

k (0) lie in [�] for all large
k, their limit does as well. So let us denote the limit by �. It remains to show that � is
area-minimizing. This follows since, if there were some other smooth representative of [�]
with less area than �, then for k sufficiently large we could construct a section with less
energy than uk (as in Lemma 6.8).

Acknowledgements The authors would like to express gratitude to M. Struwe for suggesting the problem and
to T. Bourni for a number of helpful conversations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ambrosio, L., Cabré, X.: Entire solutions of semilinear elliptic equations in R
3 and a conjecture of de

Giorgi. J. Am. Math. Soc. 13(4), 725–739 (2000)
2. Allard, W.K.: On the first variation of a varifold. Ann. Math. 2(95), 417–491 (1972)
3. Allard, W.K.: On the first variation of a varifold: boundary behavior. Ann. Math. 2(101), 418–446 (1975)

123

http://creativecommons.org/licenses/by/4.0/


Plateau’s problem via the Allen–Cahn… Page 41 of 41   133 

4. Almgren, F.J., Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems
with constraints. Mem. Am. Math. Soc. 4(165), viii+199 (1976)

5. Bellettini, C.: Multiplicity-1 minmax minimal hypersurfaces in manifolds with positive Ricci curvature.
arXiv:2004.10112 (2020)

6. Bellettini, C.: Generic existence of multiplicity-1 minmax minimal hypersurfaces via Allen–Cahn. Calc.
Var. Partial Differ. Equ. 61(4), 25 (2022)

7. Bellettini, C., Marshall-Stevens, K.: On isolated singularities and generic regularity of min–max CMC
hypersurfaces. arXiv:2307.10388 (2023)

8. Baldo, S., Orlandi, G.: Cycles of least mass in a Riemannian manifold, described through the “phase
transition” energy of the sections of a line bundle. Math. Z. 225(4), 639–655 (1997)

9. Bourni, T.: Allard-type boundary regularity for C1,α boundaries. Adv. Calc. Var. 9(2), 143–161 (2016)
10. Bellettini, C., Wickramasekera, N.: The inhomogeneous Allen–Cahn equation and the existence of pre-

scribed mean curvature hypersurfaces. arXiv:2010.05847 (2020)
11. Caffarelli, L.A., Córdoba, A.: Phase transitions: uniform regularity of the intermediate layers. J. Reine

Angew. Math. 593, 209–235 (2006)
12. Chodosh, O., Mantoulidis, C.: Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index,

multiplicity, and curvature estimates. Ann. Math. (2) 191(1), 213–328 (2020)
13. Chodosh, O., Mantoulidis, C.: The p-widths of a surface. Publ. Math. Inst. Hautes Études Sci. 137,

245–342 (2023)
14. De Lellis, C.: The regularity theory for the area functional (in geometric measure theory).

arXiv:2110.11324 (2021)
15. De Lellis, C., Ghiraldin, F., Maggi, F.: A direct approach to Plateau’s problem. J. Eur. Math. Soc. (JEMS)

19(8), 2219–2240 (2017)
16. Douglas, J.: Solution of the problem of Plateau. Trans. Am. Math. Soc. 33(1), 263–321 (1931)
17. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 2(72), 458–520 (1960)
18. Fleming, W.H.: Flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121, 160–186 (1966)
19. Farina, A., Mari, L., Valdinoci, E.: Splitting theorems, symmetry results and overdetermined problems

for Riemannian manifolds. Commun. Partial Differ. Equ. 38(10), 1818–1862 (2013)
20. Fröhlich, J., Struwe, M.: Variational problems on vector bundles. Commun. Math. Phys. 131(3), 431–464

(1990)
21. Gaspar, P., Guaraco, M.A.M.: The Weyl law for the phase transition spectrum and density of limit inter-

faces. Geom. Funct. Anal. 29(2), 382–410 (2019)
22. Guaraco, M.A.M.: Min–max for phase transitions and the existence of embedded minimal hypersurfaces.

J. Differ. Geom. 108(1), 91–133 (2018)
23. Harrison, J., Pugh, H.: Solutions to the Reifenberg Plateau problem with cohomological spanning condi-

tions. Calc. Var. Partial Differ. Equ. 55(4), 37 (2016)
24. Hardt, R., Simon, L.: Boundary regularity and embedded solutions for the oriented Plateau problem. Ann.

Math.(2) 110(3), 439–486 (1979)
25. Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals–Cahn–Hilliard

theory. Calc. Var. Partial Differ. Equ. 10(1), 49–84 (2000)
26. King, D., Maggi, F., Stuvard, S.: Plateau’s problem as a singular limit of capillarity problems (revised).

Commun. Pure Appl. Math. 75(5), 895–969 (2022)
27. Modica, L., Mortola, S.: Un esempio di�−-convergenza. Boll. Un.Mat. Ital. B (5) 14(1), 285–299 (1977)
28. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration.

Mech. Anal. 98(2), 123–142 (1987)
29. Radó, T.: On Plateau’s problem. Ann. Math. (2) 31(3), 457–469 (1930)
30. Reifenberg, E.R.: Solution of the Plateau Problem for m-dimensional surfaces of varying topological

type. Acta Math. 104, 1–92 (1960)
31. Simon, L.: Lectures on Geometric Measure Theory, Volume 3. The Australian National University, Math-

ematical Sciences Institute, Centre for Mathematics and its Applications, vol. 1 (1983)
32. Tonegawa, Y., Wickramasekera, N.: Stable phase interfaces in the van der Waals–Cahn–Hilliard theory.

J. Reine Angew. Math. 668, 191–210 (2012)
33. Wang, K.: A new proof of Savin’s theorem on Allen–Cahn equations. J. Eur. Math. Soc. (JEMS) 19(10),

2997–3051 (2017)
34. Wang, K., Wei, J.: Finite Morse index implies finite ends. Commun. Pure Appl. Math. 72(5), 1044–1119

(2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/2004.10112
http://arxiv.org/abs/2307.10388
http://arxiv.org/abs/2010.05847
http://arxiv.org/abs/2110.11324

	Plateau's problem via the Allen–Cahn functional
	Abstract
	1 Introduction
	1.1 Minimizing sections and Plateau's problem
	1.2 Key steps in the proofs
	1.3 An example

	2 Real line bundles
	2.1 Real line bundles and Hom(H1(X),`3́9`42`"̇613A``45`47`"603AmathbbZ2)simeqH1(X,`3́9`42`"̇613A``45`47`"603AmathbbZ2)
	2.2 Real line bundles from classes of loops mod 2
	2.3 Real line bundles from classes of hypersurfaces mod 2

	3 A priori estimates for critical sections
	3.1 Derivative estimates at the boundary
	3.2 Energy monotonicity
	3.3 Interior estimates
	3.4 L1-convergence of the discrepancy

	4 Stationary varifolds from critical sections
	4.1 The associated varifolds
	4.2 Convergence to a stationary varifold
	4.3 Tangent cones at the boundary

	5 Boundary behaviour in dimension 3
	6 Minimizing sections and Plateau's problem
	7 Minimizing area in a homology class
	Acknowledgements
	References


