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Abstract
In this paper we prove a generalisation of Schlenk’s theorem about the existence of
contractible periodic Reeb orbits on stable, displaceable hypersurfaces in symplectically
aspherical, geometrically bounded, symplectic manifolds, to a forcing result for contractible
twisted periodic Reeb orbits. We make use of holomorphic curve techniques for a suitable
generalisation of the Rabinowitz action functional in the stable case in order to prove the
forcing result. As in Schlenk’s theorem, we derive a lower bound for the displacement energy
of the displaceable hypersurface in terms of the action value of such periodic orbits. Themain
application is a forcing result for noncontractible periodic Reeb orbits on quotients of cer-
tain symmetric star-shaped hypersurfaces. In this case, the lower bound for the displacement
energy is explicitly given by the difference of the two periods. This theorem can be applied
to many physical systems including the Hénon–Heiles Hamiltonian and Stark–Zeeman sys-
tems. Further applications include a new proof of the well-known fact that the displacement
energy is a relative symplectic capacity on R

2n and that the Hofer metric is indeed a metric.
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1 Introduction

In [1], a generalisation of Rabinowitz–Floer homology was constructed. Rabinowitz–Floer
homology is the Morse–Bott homology in the sense of Floer associated with the Rabinowitz
action functional introduced by Kai Cieliebak and Urs Frauenfelder in [2]. The main appli-
cation of this generalisation was to prove an existence result for noncontractible periodic
Reeb orbits on quotients of certain symmetric star-shaped hypersurfaces in C

n , n ≥ 2. More
precisely, let � ⊆ C

n be a compact and connected star-shaped hypersurface invariant under
the rotation

ϕ : C
n → C

n, ϕ(z1, . . . , zn) :=
(

e2π ik1/m z1, . . . , e2π ikn/m zn

)

for some evenm ≥ 2 and k1, . . . , kn ∈ Z coprime tom. Then�/Zm admits a noncontractible
periodic Reeb orbit generating the fundamental group π1(S

2n−1/Zm) ∼= Zm . For a proof see
[1, Theorem 1.2] and [3, Theorem 1.1] for the more general result, removing the restriction
of m being even. The existence of noncontractible periodic Reeb orbits on lens spaces is
extremely relevant and attracts much attention in celestial mechanics as mentioned in [4,
Introduction] or [5]. We quickly recall the setup for the proof of this result. Let (W , λ)

be a connected Liouville domain with connected boundary ∂W and consider a Liouville
automorphism ϕ ∈ Aut(W , λ), that is, ϕ ∈ Diff(W ) is of finite order and there exists a
unique function fϕ ∈ C∞(Int W ) such that ϕ∗λ − λ = d fϕ . The main step was to construct
a homology theory for the twisted Rabinowitz action functional

A H
ϕ : Lϕ M × R → R, A H

ϕ (γ, τ ) :=
∫ 1

0
γ ∗λ − τ

∫ 1

0
H(γ (t))dt − fϕ(γ (0))

on the completion (M, λ) of (W , λ), where

Lϕ M := {γ ∈ C∞(R, M) : γ (t + 1) = ϕ(γ (t)) ∀t ∈ R}
denotes the twisted loop space of M and ϕ. Twisted loops play a significant role in physical
systems with symmetries, see for example [6, Section 6.2] or [7, Definition 4.1]. Consider the
chain complex RFCϕ(∂W , M) generated by the critical points of a suitable Morse function
on the critical manifold Crit(A H

ϕ ), where

(γ, τ ) ∈ Crit(A H
ϕ ) ⇔

{
γ ∈ Lϕ∂W ,

γ̇ (t) = τ R(γ (t)) ∀t ∈ R,

with R ∈ X(∂W ) denoting the Reeb vector field. We then define twisted Rabinowitz-Floer
homology as the Morse-Bott homology with coefficients in Z2 by

RFHϕ(∂W , M) := HM(A H
ϕ ) = ker ∂ : RFCϕ(∂W , M) → RFCϕ(∂W , M)

im ∂ : RFCϕ(∂W , M) → RFCϕ(∂W , M)
,

where the boundary map ∂ counts twisted negative gradient flow lines modulo two with
respect to a suitable dλ-compatible ϕ-invariant almost complex structure on M . This
homology theory has the following crucial properties:

1. The semi-infinite dimensional Morse–Bott homology RFHϕ(∂W , M) is well-defined.
Moreover, twisted Rabinowitz–Floer homology is invariant under twisted homotopies of
Liouville domains.
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2. Twisted Rabinowitz–Floer homology is indeed a generalisation of the standard
Rabinowitz–Floer homology RFH(∂W , M) defined in [2], as

RFHidW (∂W , M) ∼= RFH(∂W , M).

3. If ∂W is simply connected and does not admit any nonconstant twisted periodic Reeb
orbits, then

RFHϕ∗ (∂W , M) ∼= H∗(Fix(ϕ|∂W ); Z2).

Note that Fix(ϕ) is a symplectic submanifold of M by [8, Lemma 5.5.7].
4. If ∂W is displaceable by a compactly supported Hamiltonian symplectomorphism in the

completion (M, λ), then

RFHϕ(∂W , M) ∼= 0.

For a proof see [1, Theorem 1.1]. Note that there are two possible ways for proving property
4: either one shows that the norm of the gradient of a perturbed version of the twisted
Rabinowitz action functional is uniformly bounded from below as in [2, Lemma 3.9], or one
generalises leaf-wise intersection points following [9]. A direct consequence of properties 3
and 4 is the following observation as in [2, Corollary 1.5]. Suppose that ∂W is Hamiltonianly
displaceable in the completion (M, λ) and simply connected. If Fix(ϕ|∂W ) �= ∅, then ∂W
does admit a twisted periodic Reeb orbit. Indeed, if there does not exist any twisted periodic
Reeb orbit on the boundary ∂W , we compute using property 3

RFHϕ(∂W , M) ∼= H(Fix(ϕ|∂W ); Z2) =
⊕
j≥0

H j (Fix(ϕ|∂W ); Z2) �= 0,

contradicting property 4. However, if Fix(ϕ|∂W ) = ∅, then one cannot directly conclude the
existence of a twisted periodic Reeb orbit on ∂W . This is for example the case for the rotation
ϕ : C

n → C
n from the beginning. So the best one can hope for is some kind of forcing result

to hold. More precisely, if we know that there exists a sufficiently well-behaved twisted
periodic Reeb orbit, then this forces the existence of another one. The above observation
is already a forcing result, as Fix(ϕ|∂W ) is precisely the set of all constant twisted periodic
Reeb orbits on ∂W .

2 Results

2.1 Preliminaries on twisted stable hypersurfaces

Definition 1 (Stable Hypersurface, [10, p. 1774]) Let (M, ω) be a connected symplectic
manifold. A stable hypersurface in (M, ω) is a compact and connected hypersurface� ⊆ M
such that the following conditions hold:

1. � is separating, that is, M \ � consists of two connected components M±, where M−
is bounded and M+ is unbounded.

2. There exists a vector field X in a neighbourhood of � such that X is outward-pointing
to � ∪ M− and ker ω|� ⊆ ker L Xω|� .

We write (�, ω|�, λ) for a stable hypersurface, where the stabilising form λ ∈ 
1(�) is
defined by λ := iXω|� .
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Definition 2 (Twisted Stable Hypersurface) Let (�, ω|�, λ) be a stable hypersurface in a
connected symplectic manifold (M, ω) and ϕ ∈ Symp(M, ω). We say that � is twisted by
ϕ, if ϕ(�) = �, ϕ is of finite order and ϕ∗ X = X .

Example 1 (Star-Shaped Hypersurfaces) Consider the Liouville automorphism

ϕ : C
n → C

n, ϕ(z1, . . . , zn) :=
(

e2π ik1/m z1, . . . , e2π ikn/m zn

)

for m ≥ 2 an integer and k1, . . . , kn ∈ Z coprime to m. Let f ∈ C∞(S2n−1) be a positive
function such that f ◦ ϕ = f . Then the star-shaped hypersurface

� f = { f (z)z : z ∈ S
2n−1} ⊆ C

n

is a contact manifold with ϕ-invariant contact form λ|� f , where

λ := 1

2

n∑
j=1

(y j dx j − x j dy j ) = i

4

n∑
j=1

(z̄ j dz j − z j d z̄ j )

with complex coordinates z j = x j + iy j . Indeed, by [11, Lemma 12.2.2], we have that

X H f |� f ∈ ker dλ|� f and λ(X H f )|� f = 1

for the defining Hamiltonian function

H f : C
n \ {0} → R, H f (z) := ‖z‖2

f (z/‖z‖2) − 1.

Hence (� f , λ|� f ) is a contact manifold as the Liouville vector field

X := 1

2

n∑
j=1

(
x j

∂

∂x j
+ y j

∂

∂ y j

)
∈ X(R2n)

satisfies iX dλ = λ and is outward-pointing as

d H f (X)|� f = dλ(X , X H f )|� f = λ(X H f )|� f = 1.

Finally, we conclude that

X H f |� f = R f ∈ X(� f )

is the Reeb vector field. The quotient � f /Zm is called a lens space.

Example 2 (Magnetic Torus, [10, Section 6.1]) Let T
n be the standard flat torus for n ≥ 2

and let J : R
n → R

n be an antisymmetric nonzero linear map. Define ρ ∈ 
2(Tn) by
setting ρ(·, ·) := 〈·, J ·〉 and denote by ωρ = dp ∧ dq + π∗ρ the magnetic symplectic form
on T ∗

T
n ∼= T

n × R
n . For an energy value k ∈ R set �k := H−1(k) for the mechanical

Hamiltonian function

H(q, p) := 1

2
‖p‖2 ∀(q, p) ∈ T

n × R
n .

Define A := (J |im J )−1 and α ∈ 
1(im J ) by

αx (v) := 1

2
〈x, Av〉.
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By [10, Proposition 6.3], the energy hypersurface �k is stable and displaceable for every
k > 0. The stabilising form λ on �k is given by

λ = f ∗(pdq) + (pr‖ ◦ pr)∗α, (1)

where

pr⊥ : R
n → ker J , pr‖ : R

n → im J , pr : T
n × R

n → R
n

denote the projections with respect to the orthogonal splitting

R
n = ker J ⊕ im J ,

and

f : T
n × R

n → T
n × R

n, f (q, p) := (
q, pr⊥(p)

)
.

Let ϕ ∈ Diff(Tn) be an isometry of finite order satisfying

Dϕ ◦ J = J ◦ Dϕ (2)

and consider the cotangent lift

Dϕ† : T
n × R

n → T
n × R

n, Dϕ†(q, p) =
(
ϕ(q),

(
Dϕ−1(q)

)T
p
)

.

Then clearly ϕ(�k) = �k as ϕ is an isometry and Dϕ† is of finite order as ϕ is. Moreover,
we have that Dϕ† ∈ Symp(T ∗

T
n, ωρ), because Dϕ† ∈ Symp(T ∗

T
n, dp ∧ dq) and Dϕ†

preserves ρ by assumption (2). Lastly, we see that ϕ∗λ = λ by considering formula (1)
together with assumption (2), and thus also ϕ∗ X = X by the equivalent characterisations of
stability [12, Proposition 4.2].

Definition 3 (Hofer Norm, [8, p. 466]) Let (M, ω) be a symplectic manifold. Define the
Hofer norm of F ∈ C∞

c (M × [0, 1]) by
‖F‖ := ‖F‖+ + ‖F‖−,

where

‖F‖+ :=
∫ 1

0
max
x∈M

Ft (x)dt and ‖F‖− := −
∫ 1

0
min
x∈M

Ft (x)dt .

Definition 4 (Displacement Energy, [8, p. 469]) Let (M, ω) be a symplectic manifold. For a
compact subset A ⊆ M define the displacement energy of A by

e(A) := inf
F∈C∞

c (M×[0,1])
ϕF (A)∩A=∅

‖F‖,

where ϕF := φ
X F
1 denotes the time-1-map of the smooth flow of the time-dependent

Hamiltonian vector field X Ft .

Example 3 ([13, p. 189]) Let M be a compact manifold without boundary. Then we have
that e(M) = +∞ in (T ∗M, dp ∧ dq) for the zero-section M in T ∗M . However, if ρ �= 0
for a magnetic cotangent bundle (T ∗M, ωρ) and χ(M) = 0 for the Euler-characteristic χ

of M , then e(M) < +∞ is finite. For more examples of nondisplaceable hypersurfaces in
cotangent bundles see [14, Theorem 1.13].
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Definition 5 (Symplectic Asphericity, [15, p. 302]) A connected symplecticmanifold (M, ω)

is said to be symplectically aspherical, if
∫

S2
f ∗ω = 0 ∀ f ∈ C∞(S2, M).

Equivalently, (M, ω) is symplectically aspherical if and only if for the de-Rham-homology
class [ω]|π2(M) = 0 holds.

Example 4 (Magnetic Torus) The magnetic torus (T ∗
T

n, ωρ) from Example 2 is symplecti-
cally aspherical as ωρ = dλθ is exact with

λθ := pdq + π∗θ, θq(·) = 1

2
〈q, J ·〉 ∈ T ∗

q T
n

for all q ∈ T
n by [10, Lemma 6.2], where π : T ∗

T
n → T

n denotes the projection.
Alternatively, the magnetic cotangent bundle (T ∗

T
n, ωρ) is symplectically aspherical as

π2(T ∗
T

n) ∼= π2(T
n) × π2(R

n) = 0.

Definition 6 (Contractible Twisted Loop Space) Let (M, ω) be a symplectic manifold and
ϕ ∈ Symp(M, ω) of finite order. A loop v ∈ C∞(T, M), T := R/Z, is said to be a
contractible twisted periodic loop, if there exists γ ∈ Lϕ M such that

v(t) = γ (ord(ϕ)t) ∀t ∈ T,

and a filling v̄ ∈ C∞(D, M) on the unit disc

D := {z ∈ C : |z| = 1},
such that v̄(e2π i t ) = v(t) for all t ∈ T. We denote the space of all contractible twisted
periodic loops of M and ϕ by �ϕ M .

Definition 7 (Twisted Rabinowitz Action Functional) Let (�, ω|�, λ) be a twisted stable
hypersurface in a symplectically aspherical symplectic manifold (M, ω). For a defining
Hamiltonian function H for � with H ◦ ϕ = H , we define the twisted Rabinowitz action
functional

A H
ϕ : �ϕ M × R → R, A H

ϕ (v, τ ) := 1

ord(ϕ)

∫

D

v̄∗ω − τ

∫ 1

0
H(v(t))dt .

Remark 1 (Crit(A H
ϕ )) Let X ∈ X(γ ) be a twisted variation, that is, X is a vector field along

γ and satisfies the condition

X(t + 1) = Dϕ(X(t)) ∀t ∈ R.

Then a routine computation shows that

(v, τ ) ∈ Crit(A H
ϕ ) ⇔

{
γ ∈ Lϕ�,

γ̇ (t) = τ R(γ (t)) ∀t ∈ [0, 1],
where R ∈ X(�) is the stable Reeb vector field. If J is a ϕ-invariant almost complex structure
compatiblewithω, then the gradient gradJ A H

ϕ ∈ X(�ϕ M×R)with respect to the L2-metric

m ((X , η), (Y , σ )) :=
∫ 1

0
ω(J X(t), Y (t))dt + ησ ∀(X , η), (Y , σ ) ∈ T(v,τ )�ϕ M × R,
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and (v, τ ) ∈ �ϕ M × R, is given by

gradJ A H
ϕ |(v,τ )(t) =

⎛
⎝

J (γ̇ (ord(ϕ)t) − τ X H (v(t)))

−
∫ 1

0
H ◦ v

⎞
⎠ ∀t ∈ T.

Hence (u, τ ) ∈ C∞(R,�ϕ M × R) is a twisted negative gradient flow line, if the elliptic
partial differential equations or twisted Rabinowitz–Floer equations

∂su(s, t) + J (∂tγ (s, ord(ϕ)t) − τ(s)X H (u(s, t))) = 0 and ∂sτ(s) =
∫ 1

0
H(u(s, t))dt

hold for all (s, t) ∈ R × T.

Example 5 (Magnetic Torus) Consider the displaceable twisted stable hypersurface �k ⊆
(T ∗

T
n, ωρ, H) as in Example 2. A point (q, p) ∈ �k gives rise to a twisted periodic Reeb

orbit if and only if
∫ τ

0
es J pds + q = ϕ(q), eτ J p = (

Dϕ−1(q)
)T

p, and ‖p‖2 = 2k.

A computation similar to [10, p. 1843] shows

A H
ϕ (v, τ ) = ord(ϕ)kτ.

Definition 8 (Morse–Bott Component, [9, p. 86]) Let A : E → R be a smooth functional.
A subset C ⊆ CritA is called a Morse–Bott component, if

1. C is an action-constant submanifold of E .
2. Tx C = ker HessA (x) for all x ∈ C for the Hessian HessA of A .

Example 6 (Fix(ϕ|�)) Let � be a twisted stable hypersurface in a symplectically aspherical
symplectic manifold. Then Fix(ϕ|�) ⊆ CritA H

ϕ is a Morse–Bott component. Indeed, by [1,
Proposition 2.23] we have that

ker HessA H
ϕ |(x,0) ∼= ker(Dϕx − idTx �) = Tx Fix(ϕ|�)

for all x ∈ Fix(ϕ|�).

Definition 9 ([10, p. 1768]) A symplectic manifold (M, ω) is called geometrically bounded,
if there exists anω-compatible almost complex structure J and a completeRiemannianmetric
such that the following conditions hold.

1. There are constants C0, C1 > 0 with

ω(Jv, v) ≥ C0‖v‖2 and |ω(u, v)| ≤ C1‖u‖‖v‖
for all u, v ∈ Tx M and x ∈ M .

2. The sectional curvature of the metric is bounded above, and its injectivity radius is
bounded away from zero.

Example 7 ([10, p. 1768]) Magnetic cotangent bundles are geometrically bounded.
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2.2 A forcing theorem for twisted periodic Reeb orbits

Let (W , λ) be a connected Liouville domain with connected boundary� := ∂W . Let (M, λ)

be the completion of (W , λ) and ϕ ∈ Aut(W , λ) a Liouville automorphism, that is, ϕ ∈
Diff(W ) is a diffeomorphism of finite order such that ϕ∗λ = λ. In this setup, the kernel of
the twisted Rabinowitz action functional A H

ϕ admits the canonical description

ker HessA H
ϕ |(v,τ )

∼= ker
(

Dξ (φR−τ ◦ ϕ)|v(0) − id |ξv(0)

)
⊕ 〈R(v(0))〉

by [1, Proposition 2.23], where ξ := ker λ|� denotes the contact distribution.

Definition 10 (Transversal Nondegeneracy, [11, Definition 7.3.1]) Let (M, λ) be the com-
pletion of a connected Liouville domain (W , λ). A contractible twisted periodic Reeb orbit
(v, τ ) ∈ Crit(A H

ϕ ) is said to be nondegenerate, if

ker
(

Dξ (φR−τ ◦ ϕ)|v(0) − id |ξv(0)

)
= {0}.

Theorem 1 Let � ⊆ C
n, n ≥ 2, be a compact and connected star-shaped hypersurface

invariant under the rotation

ϕ : C
n → C

n, ϕ(z1, . . . , zn) :=
(

e2π ik1/m z1, . . . , e2π ikn/m zn

)

for some m ≥ 2 and k1, . . . , kn ∈ Z coprime to m. Assume that there exists a nondegenerate
twisted Reeb orbit (γ0, τ0) on �. Then there exists a twisted Reeb orbit (γ, τ ) on � with

τ �= τ0 and τ − τ0 ≤ e(�). (3)

Example 8 (Ellipsoid, [16, Section 2.2]) For real numbers 0 < a1 ≤ . . . ≤ an we consider
the convex hypersurface

E(a1, . . . , an) :=
⎧⎨
⎩(z1, . . . , zn) ∈ C

n :
n∑

j=1

π

a j
|z j |2 = 1

⎫⎬
⎭ .

By [11, Lemma 12.2.2], the corresponding Reeb vector field is given by the Hamiltonian
vector field X H , where

H : C
n \ {0} → (0,+∞), H(z1, . . . , zn) :=

n∑
j=1

π

a j
|z j |2

with E(a1, . . . , an) = H−1(1). In coordinates z j = x j + iy j we then compute

X H = 2
n∑

j=1

π

a j

(
y j

∂

∂x j
− x j

∂

∂ y j

)
.

Hence the Reeb flow φt : E(a1, . . . , an) → E(a1, . . . , an) is given by

φt (z1, . . . , zn) = (e−2π i t/a1 z1, . . . , e−2π i t/an zn) ∀t ∈ R.

The periodic orbits t �→ φt (z1, . . . , zn) depend on the choice of a1, . . . , an . If a1, . . . , an are
linearly independent over Z, all periodic orbits are nondegenerate as z j = 0 except for one
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coordinate z1, . . . , zn . These periodic orbits are invariant under ϕ and the twisted periodic
Reeb orbits on E(a1, . . . , an) are given by

(
t �→ e−2π iτ j t/a j z, τ j

)
, |z|2 = a j

π
and τ j ∈ a j Z − a j k j

m
,

for j = 1, . . . , n. Consider the twisted Reeb orbit (γ0, τ0) defined by

γ0(t) := e−2π iτ0t/a1 z, τ0 := a1

(
k − k1

m

)
,

for π |z|2 = a1 and k ∈ Z. Then for γ (t) := e−2π i tγ0(t) we compute

τ − τ0 = a1 + τ0 − τ0 = a1 = e(E(a1, . . . , an))

by [8, Example 12.1.7].

Remark 2 As Example 8 shows, one cannot conclude the existence of two geometrically
distinct simple symmetric periodic Reeb orbits as in [3, Theorem 1.2] from Theorem 1.
Indeed, even under the additional assumption that � is dynamically convex, the estimate (3)
is not only satisfied for geometrically distinct closedorbits as the ellipsoid� = E(a1, . . . , an)

is dynamically convex by the Hofer–Wysocki–Zehnder Theorem [11, Theorem 12.2.1]. The
strength of estimate (3) is to provide an upper bound for twisted systoles. This is part of
upcoming work of the author.

Example 9 (The Hénon–Heiles Hamiltonian, [17, Section 2]) Consider the mechanical
Hamiltonian function

H : R
4 → R, H(q1, q2, p1, p2) := 1

2

(‖p‖2 + ‖q‖2) + q2
1q2 − 1

3
q3
2 .

ThisHamiltonian function is known as theHénon–Heiles Hamiltonian. OnR
4 ∼= C

2 consider
the coordinates

z := q1 + iq2 and w := p1 + i p2.

Define

ϕ : C
2 → C

2, ϕ(z, w) := e2π i/3(z, w).

We have that ϕ∗λ = λ for

λ = 1

2
(p1dq1 − q1dp1) + 1

2
(p2dq2 − q2dp2).

For every 0 < k < 1
6 , the regular energy surface H−1(k) contains a strictly convex sphere-

like component �k ∼= S
3. The resulting quotient �k/Z3 is diffeomorphic to the lens space

L(3, 1), but not contactomorphic to it with the standard contact distribution. Here we write
L(m, k2) for the lens space S

3/Zm from Example 1 with k1 = 1. Instead, the quotient�k/Z3

is contactomorphic to L(3, 2) with its standard contact distribution. This is mainly due to
the use of different coordinates. By a shooting argument [18], one can show that there exist
at least two Z3-symmetric periodic orbits on �k . In fact, by [17, Corollary 2.5], there exist
infinitely many periodic orbits on �k .
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Example 10 (Hill’s Lunar Problem, [11, Section 5.8]) The mechanical Hamiltonian function
H : T ∗(R2\{0}) → R defined by

H(q, p) := 1

2
‖p‖2 − 1

‖q‖ + q1 p2 − q2 p1 − q2
1 + 1

2
q2
2

is called Hill’s lunar Hamiltonian. After Levi–Civita regularisation the regularised Hill’s
lunar Hamiltonian K : T ∗

R
2 → R is given by

K (q, p) = 1

2

(‖p‖2 + ‖q‖2) + 2‖q‖2(q2 p1 − q1 p2) − 4(q6
1 − 3q4

1q2
2 − 3q2

1q4
2 + q6

2 ).

For k > 0 sufficiently small, the energy hypersurface K −1(k) admits at least two periodic
orbits by [19, Theorem 1] and contains a strictly convex sphere-like component �k ∼= S

3.
On T ∗

R
2 ∼= C

2 consider the coordinates

z := q1 + iq2 and w := p1 + i p2

and the rotation

ϕ : C
2 → C

2, ϕ(z, w) := eπ i/2(z, w).

Then K is invariant under the rotation ϕ and thus �/Z4 is diffeomorphic to the lens space
L(4, 1), but again due to the choice of nonstandard coordinates not contactomorphic to it.
It is a delicate question in Contact Topology to decide the correct value of k2 �= 1, such
that the obtained lens space L(4, 1) in Hill’s lunar problem is contactomorphic to L(4, k2).
The tight contact structures on the lens spaces L(m, k2) are classified up to isotopy by [20,
Theorem 2.1], so in principle it should be possible to obtain the correct value of k2.

Example 11 (Stark–Zeeman Systems) Planar Stark–Zeeman systems as in [21] and [22] gen-
eralise many important physical systems including the diamagnetic Kepler problem and
the restricted three body problem [23]. By [21, Corollary 1], for energy values below the
first critical value, the Moser regularised energy hypersurfaces are diffeomorphic to the unit
cotangent bundles S∗

S
n . In particular, for n = 2 we obtain S∗

S
2 ∼= RP

3, a real projective
space.

Theorem 1 immediately follows from a more general result.

Theorem 2 (Forcing) Let � be a twisted stable displaceable hypersurface in a symplectically
aspherical, geometrically bounded, symplectic manifold (M, ω) for a symplectomorphism
ϕ ∈ Symp(M, ω) of finite order ord(ϕ) and suppose that v0 is a contractible twisted periodic
Reeb orbit on � belonging to a Morse–Bott component C. Then there exists a contractible
twisted periodic Reeb orbit v /∈ C such that

∫

D

v̄∗ω −
∫

D

v̄∗
0ω ≤ ord(ϕ)e(�).

Remark 3 The case (�, M) = (S2n−1, C
n) or (�, M) = (E(a1, . . . , an), C

n) with the
ellipsoid from Example 8 and the rotation

ϕ : C
n → C

n, ϕ(z1, . . . , zn) =
(

e2π ik1/m z1, . . . , e2π ikn/m zn

)

shows that the estimate in Theorem 2 is sharp.

Applying Theorem 2 to the Morse–Bott component Fix(ϕ|�) from Example 6 yields the
following corollary.
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Corollary 1 Let � be a twisted stable displaceable hypersurface in a symplectically aspher-
ical, geometrically bounded, symplectic manifold (M, ω) for ϕ ∈ Symp(M, ω) with
Fix(ϕ|�) �= ∅. Then there does exist a nonconstant contractible twisted periodic Reeb
orbit v such that ∫

D

v̄∗ω ≤ ord(ϕ)e(�).

In particular, if we take ϕ = idM in Corollary 1, we recover Schlenk’s theorem as stated
in [10, Theorem 4.9] about the existence of contractible closed characteristics on stable,
displaceable hypersurfaces with energy less or equal to the displacement energy of the
hypersurface. Schlenk proved this result in [24, Theorem 1.1] using quite different methods.

Example 12 (Magnetic Torus) We can apply Theorem 2 and its Corollary 1 to the mag-
netic torus in Example 2. Indeed, (T ∗

T
n, ωρ) is geometrically bounded by Example 7 and

symplectically aspherical by Example 4. Moreover, �k is stable and displaceable for every
energy value k > 0. Thus for every contractible twisted periodic Reeb orbit v0 belonging to
a Morse–Bott component, there does exist a contractible twisted periodic Reeb orbit v with

∫ 1

0
v∗λθ −

∫ 1

0
v∗
0λθ ≤ ord(ϕ)e(�).

Further applications of Theorem 2 and its Corollary 1 are the content of the next section.
The proof of Theorem 2 is given in Sect. 4. It is also the aim of future research to numerically
investigate the Examples 9, 10 and 11, that is, finding upper bounds of the displacement
energy and minimal periods.

3 Applications

3.1 The Hofer distance and relative symplectic capacities

Computing the displacement energy is usually very difficult. Sometimes it is possible to
give upper bounds on the displacement energy as in [25, Theorem 1] or lower bounds as
for any nonempty open subset A ⊆ M of a symplectic manifold (M, ω) we have e(A) > 0
as in [26, Theorem 1.1]. Corollary 1 has two immediate consequences. First, the existence
of a nonconstant contractible twisted periodic Reeb orbit on any twisted stable displaceable
hypersurface. Second, the existence of a lower bound for the displacement energy via the
action value of this critical point. If the hypersurface is of contact type, this action value is
precisely the period of the parametrised periodic Reeb orbit. We illustrate the usefulness of
the second implication and give dynamical proofs of standard results. Recall, that a relative
symplectic capacity on R

2n is a map c which assigns to each subset A ⊆ R
2n a number

c(A) ∈ [0,+∞] such that the following three properties hold [8, p. 460].

1. (Relative Monotonicity) If there exists a symplectomorphismψ ofR
2n such thatψ(A) ⊆

B, then c(A) ≤ c(B).
2. (Conformality) c(λA) = λ2c(A) for all λ ∈ R.
3. (Normalisation) It holds that

c(B2n(r)) = c(Z2n(r)) = πr2 ∀r > 0,

for the closed ball of radius r

B2n(r) := {
(x, y) ∈ R

2n : ‖x‖2 + ‖y‖2 ≤ r2
}
,
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and the closed cylinder

Z2n(r) := {
(x, y) ∈ R

2n : x21 + y21 ≤ r2
}
.

Proposition 1 ([8, Theorem 12.3.4]) The displacement energy e is a relative symplectic
capacity on R

2n.

Proof Relative monotonicity and conformality are not hard to show. Moreover, by relative
monotonicity and [8, Exercise 12.3.7] we estimate

e(∂ B2n(r)) ≤ e(B2n(r)) ≤ e(Z2n(r)) ≤ πr2 ∀r > 0.

By Example 8, the periodic Reeb flow on ∂ B2n(r) is given by

φt (z) = e−2i t/r2 z ∀z ∈ ∂ B2n(r).

Hence the parametrised periodic Reeb orbits are (t �→ φt (z), τ ) with τ ∈ πr2Z. But Corol-
lary 1 implies the existence of a nonconstant closed periodic Reeb orbit (v, τ ) on the contact
hypersurface ∂ B2n(r) such that

0 < τ =
∫ 1

0
v∗λ ≤ e(∂ B2n(r)) ≤ πr2,

where

λ := 1

2

n∑
j=1

(y j dx j − x j dy j ).

This is only possible for τ = πr2 and the statement follows. ��
Proposition 2 ([26, Theorem 1.1]) For any subset A ⊆ R

2n with nonempty interior it holds
that e(A) > 0.

Proof If A ⊆ M is not displaceable, we have that e(A) = +∞ and thus there is nothing to
show. Moreover, if A is not compact, we define

e(A) := sup
K⊆A K compact

e(K ).

So we can assume that A is displaceable by a compactly supported Hamiltonian symplecto-
morphism ϕF ∈ Hamc(R

2n, dy ∧dx). As A is displaceable and has nonempty interior, there
exists a closed ball B(r) of radius r such that

ϕF (B(r)) ∩ B(r) = ∅.

Since the displacement energy is a relative symplectic capacity by Proposition 1, we conclude
that

e(A) ≥ e(B(r)) = πr2 > 0.

��
Corollary 2 (Hofer Distance, [8, Theorem 12.3.3]) On Hamc(R

2n, dy ∧dx) define the Hofer
distance

ρ(ϕ0, ϕ1) := inf
ϕF =ϕ1◦ϕ−1

0

‖F‖.
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Then

ρ(ϕ0, ϕ1) = 0 ⇒ ϕ0 = ϕ1 ∀ϕ0, ϕ1 ∈ Hamc(M, ω),

that is, the Hofer distance is a metric on Hamc(R
2n, dy ∧ dx).

Proof Let ϕ ∈ Hamc(R
2n, dy ∧ dx) be not equal to the identity. Thus there exists a set A

with nonempty interior such that ϕ(A) ∩ A = ∅. Lemma 2 implies

ρ(ϕ, id
R2n ) ≥ e(A) > 0

and this proves the statement. ��
Remark 4 In [27, Corollary 1.2], these results are generalised to arbitrary symplectic
manifolds.

3.2 Physical systems and theMañé critical value

Proposition 3 Let (T ∗M, dp∧dq, H) be a Hamiltonian system for a compact configuration
space M and define

e0(H) := inf
{
k ∈ R : πT ∗ M

(
H−1(k)

) = M
}
,

where πT ∗ M : T ∗M → M denotes the projection. Suppose that �k := H−1(k) with k <

e0(H) is a ϕ-twisted stable regular energy surface admitting a contractible twisted periodic
Reeb orbit (q0, p0) belonging to a Morse–Bott component C. Then there exists a contractible
twisted periodic Reeb orbit (q, p) /∈ C such that

∫ 1

0
p(t)q̇(t)dt −

∫ 1

0
p0(t)q̇0(t)dt ≤ ord(ϕ)e(�c).

Proof Weclaim that e(�k) < +∞ for all k < e0(H). In particular, every energy hypersurface
�k is displaceable in the geometrically bounded and symplectically aspherical symplectic
manifold (T ∗M, dp ∧ dq) since T ∗M is an exact symplectic manifold with canonical Liou-
ville form pdq . As k < e0(H), we can displace �k into the missing fibres. The explicit
compactly supported Hamiltonian symplectomorphism achieving that is constructed in [28,
Proposition 8.2]. Hence if �k is twisted stable and k < e0(H), we conclude the existence of
such a contractible periodic Reeb orbit from Theorem 2. ��
Example 13 (Magnetic Torus) Let M be a compact manifold and θ ∈ 
1(M). Then the map

ϕθ : (T ∗M, dp ∧ dq) → (T ∗M, ωdθ ), ϕθ (q, p) := (q, p − θq)

is an exact symplectomorphism. Indeed, for every (q, p) ∈ T ∗M and v ∈ T(q,p)T ∗M we
compute

(ϕ∗−θλ)(q,p)(v) = λ(q,p+θq ) (Dϕ−θ (v))

= p (DπT ∗ M (v)) + θq (DπT ∗ M (v))

= (λ + π∗
T ∗ Mθ)(q,p)(v),

where λ ∈ 
1(T ∗M) denotes the canonical Liouville form and ϕ−θ ◦ ϕθ = idT ∗ M . A
mechanical Hamiltonian function

H : (T ∗M, ωdθ ) → R, H(q, p) = 1

2
‖p‖2m∗ + V (q),
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for some potential function V ∈ C∞(M) is transformed under ϕθ to a magnetic Hamiltonian
function Hθ = ϕ∗

θ H given by

Hθ : (T ∗M, dp ∧ dq) → R, Hθ (q, p) = 1

2
‖p − θq‖2m∗ + V (q).

In the case of the magnetic torus as in Example 12, we have that

θq(v) = 1

2
〈q, Jv〉 ∀(q, v) ∈ T

n × R
n .

Thus if k > 0, the intersection of �k = H−1
θ (k) with T ∗

q T
n is a sphere centred at θq for

every q ∈ T
n . For more details see [29, Example 5.2]. Consequently, we have that e0 = 0

and Proposition 3 cannot be applied. Note that the Mañé critical value c is infinite in this case
because a nonzero ρ has no bounded primitives in R

n .

Remark 5 In the setting of Proposition 3, if H is a Tonelli Hamiltonian function, that is, H
is strictly fibrewise convex and superlinear, then any stable energy level of H does admit a
periodic Reeb orbit by [30]. See also [12, Theorem (iv)].

Remark 6 The proof of Proposition 3 does not work for higher energy values in general.
This is due to a theorem of Will Merry in [31, Theorem 1.1] and [31, Remark 1.7]. Let
H ∈ C∞(T ∗M) be a Tonelli Hamiltonian function. Define the Mañé critical value

c := inf
θ

sup
q∈M̃

H̃(q, θq),

where the infimum is taken over all 1-forms θ on the universal covering manifold M̃ with
dθ = ρ̃, and H̃ ∈ C∞(T ∗M̃) denotes the lift of H . We always have that

c ≥ e0(H).

If k > c, then the Rabninowitz–Floer homology RFH∗(�k, T ∗M) of [10] is well-defined
and does not vanish. In particular, �k is not displaceable. Thus we cannot apply Theorem 2
in that case either.

4 Proof of Theorem 2

The proof of Theorem 2 uses a method called a “homotopy of homotopies argument”. Fix
ε > 0 and choose a Hamiltonian function F ∈ C∞

c (M × [0, 1]) satisfying
Ft = 0 ∀t ∈ [0, 1

2 ], ‖F‖ < e(�) + ε and ϕF (�) ∩ � = ∅.

This is possible by definition of the displacement energy. Next we need to carefully choose
a twisted defining Hamiltonian function H for the stable hypersurface �. We postpone the
construction of this Hamiltonian function and explain the main idea of the proof. Choose a
smooth family (βr )r∈[0,+∞) of cutoff functions βr ∈ C∞(R, [0, 1]) such that

⎧
⎪⎨
⎪⎩

βr (s) = 0 |s| ≥ r ,

βr (s) = 1 |s| ≤ r − 1,

sβ ′
r (s) ≤ 0 ∀s ∈ R,

for all r ∈ [0,+∞). Define a family of twisted Rabinowitz action functionals

Ar : �ϕ M × R × R → R
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by

Ar (v, τ, s) := A H
ϕ (v, τ ) − βr (s)

∫ 1

0
Ft (v(t))dt

for all r ∈ [0,+∞). Note that A0 = A H
ϕ . For a suitable ϕ-invariant ω-compatible almost

complex structure we consider the moduli space

M := {(u, τ, r) ∈ C∞(R,Lϕ M × R) × [0,+∞) : (u, τ, r) solution of (4)},
where

⎧⎪⎪⎨
⎪⎪⎩

∂s(u, τ ) = gradAr |(u(s),τ (s),s) ∀s ∈ R,

lim
s→−∞(u(s), τ (s)) = (v0, τ0),

lim
s→+∞(u(s), τ (s)) ∈ C .

(4)

Note that always (v0, τ0, 0) ∈ M and that such a ϕ-invariant ω-compatible almost complex
structure always exists by [8, Lemma 5.5.6]. The gradient gradAr ofAr is taken with respect
to the metric

m ((X , η), (Y , σ )) :=
∫ 1

0
ω(J X(t), Y (t))dt + ησ.

Lemma 1 If

A0(v, τ ) > ‖F‖ + A0(v0, τ0) ∀(v, τ ) ∈ Crit(A0) \ C, (5)

then M is compact.

As a corollary of Lemma 1we get Theorem 2. Indeed, themoduli spaceM is the zero level
set of a Fredholm section of a bundle over a Banach manifold. As v0 belongs to a Morse–
Bott component, the Fredholm section is regular at the point v0, that is, the linearisation
of the gradient flow equation is surjective there. By compactness, we can therefore perturb
the Fredholm section to make it transverse. Hence M is a compact smooth manifold with
boundary consisting precisely of the point v0. See [15, Appendix A] for details. This is
absurd, and we conclude that there exists a critical point (v, τ ) ∈ Crit(A0) \ C such that

A0(v, τ ) − A0(v0, τ0) ≤ ‖F‖ < e(�) + ε.

As ε > 0 was arbitrary, the statement follows since

A0(v, τ ) = 1

ord(ϕ)

∫

D

v̄∗ω ∀(v, τ ) ∈ Crit(A0).

We prove Lemma 1 in four steps.
Step 1: If (u, τ, r) ∈ M , then E(u, τ ) ≤ ‖F‖ for the energy

E(u, τ ) :=
∫ +∞

−∞
‖∂s(u, τ )‖2J ds.

We estimate

E(u, τ ) =
∫ +∞

−∞
‖∂s(u, τ )‖2J ds

=
∫ +∞

−∞
dAr (∂s(u, τ ), s)ds
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=
∫ +∞

−∞
d

ds
Ar (u, τ, s)ds −

∫ +∞

−∞
(∂sAr )(u, τ, s)ds

= lim
s→+∞Ar (u, τ, s) − lim

s→−∞Ar (u, τ, s) −
∫ +∞

−∞
(∂sAr )(u, τ, s)ds

= A0(v, τ ) − A0(v0, τ0) −
∫ +∞

−∞
(∂sAr )(u, τ, s)ds

= −
∫ +∞

−∞
(∂sAr )(u, τ, s)ds

=
∫ +∞

−∞
β̇r (s)

∫ 1

0
Ft (u(s, t))dtds

≤ ‖F‖+
∫ 0

−∞
β̇r (s)ds − ‖F‖−

∫ +∞

0
β̇r (s)ds

= βr (0)(‖F‖− + ‖F‖+)

= βr (0)‖F‖
≤ ‖F‖,

asA0(v, τ ) = A0(v0, τ0) sinceC is action-constant by definiton of aMorse–Bott component.
Step 2: There exists r0 ∈ R such that r ≤ r0 for all (u, τ, r) ∈ M . Crucial is the existence
of a constant δ > 0 such that

‖ gradAr |(v,τ,s)‖J ≥ δ ∀(v, τ, s) ∈ �ϕ M × R × R.

This is proven along the lines of [2, Lemma 3.9]. With this inequality and Step 1 we estimate

‖F‖ ≥ E(u, τ ) ≥
∫ r

−r
‖ gradAr |(u(s),τ (s),s)‖2J ds ≥ 2rδ2,

and thus we can set

r0 := ‖F‖
2δ2

.

Step 3: There exists a constant C > 0 such that ‖τ‖∞ ≤ C for all (u, τ, r) ∈ M . This is a
delicate estimate based on the explicit construction of the defining Hamiltonian H for � as
well as an extension of the stabilising form λ. The bound on the Lagrangemultiplier is derived
by comparing the twisted Rabinowitz action functional to a different action functional. This
modified version of the twisted Rabinowitz action functional is obtained using a suitable
extension of the ϕ-invariant stabilising form λ ∈ 
1(�) to a compactly supported form
βλ ∈ 
1(M). The precise constructions can be found in [10, Section 4.2.2]. Given βλ, we
can define the auxiliary action functional

Â0 : �ϕ M × R → R, Â0(v, τ ) := 1

ord(ϕ)

∫ 1

0
v∗βλ − τ

∫ 1

0
H(v(t))dt .

Moreover, we consider the bilinear form on the tangent bundle T �ϕ M × R

m̂ ((X , η), (Y , σ )) :=
∫ 1

0
dβλ(J X(t), Y (t))dt + ησ.

The main point in the choice of the ϕ-invariant H ∈ C∞(M), βλ ∈ 
1(M) and the ω-
compatible ϕ-invariant almost complex structure J is to make sure, that the properties
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1. dÂ0(v, τ )(X , η) = m̂ (gradA0(v, τ ), (X , η)),
2. (m − m̂) ((X , η), (X , η)) ≤ 0,

are true for all (v, τ ) ∈ �ϕ M ×R and (X , η) ∈ T(v,τ )�ϕ M ×R. These two conditions ensure
that the difference A0 − Â0 is a Liapunov function for the negative gradient flow lines of
the twisted Rabinowitz action functionalA0. The uniform bound on the Lagrange multiplier
τ now follows from Steps 1 and 2. For details see [10, p. 1808]. The only subtle difference
in our case is, that everything needs to be ϕ-invariant. However, this is no problem as we
explain now. The construction of H , βλ and J is based on the existence of a stable tubular
neighbourhood of �, that is, a pair (ρ0, ψ) with ρ0 > 0 and ψ : (−ρ0, ρ0) × � ↪→ M an
embedding such that

ψ |{0}×� = ι� : � ↪→ M and ψ∗
ρω = ω|� + d(ρλ).

By [10, Proposition 2.6 (a)], the space of stable tubular neighbourhoods of (�, λ) is nonempty.
Using the equivariant Darboux–Weinstein Theorem [32, Theorem 22.1], we get the existence
of a stable tubular neighbourhood (ρ0, ψ), satisfying

ϕ(ψ(ρ, x)) = ψ(ρ, ϕ(x)) ∀(ρ, x) ∈ (−ρ0, ρ0) × �. (6)

Compare also [1, Equation (3.2)]. Hence the constructions [10, p. 1791–1793] yield ϕ-
invariant data H , βλ and J due to (6).
Step 4: Proof of Lemma 1. Let (uk, τk, rk) be a sequence in themoduli spaceM . By Step 2 and
Step 3, the sequences (rk) and (τk) are uniformly bounded. Thus (uk, τk, rk) admits a C∞

loc-
convergent subsequence by standard arguments [15, Theorem B.4.2]. Indeed, the uniform
L∞-bound on the sequence (uk) follows from the assumption that (M, ω) is geometrically
bounded and the uniform L∞-bound on the derivatives (Duk) follows from the absence of
bubbling as (M, ω) is symplectically aspherical. In particular, there cannot exist a nonconstant
J -holomorphic sphere when the sequence of derivatives is unbounded [15, Section 4.2].
Denote the limit of this subsequence by (u, τ, r). This limit clearly satisfies the first equation
in (4), thus one only needs to check the asymptotic conditions in (4). Again by compactness,
(u, τ ) converges to critical points (w±, τ±) of A0 at its asymptotic ends. We claim that

Ar (u(s), τ (s), s) ∈ [−‖F‖ + A0(v0, τ0), ‖F‖ + A0(v0, τ0)] ∀s ∈ R. (7)

In particular, A0(w±, τ±) ∈ [−‖F‖ + A0(v0, τ0), ‖F‖ + A0(v0, τ0)]. So if (7) holds, then
by assumption (5) we conclude (w±, τ±) ∈ C andM is indeed compact. It remains to prove
(7). It is enough to show

Ar (uk(s), τk(s), s) ∈ [−‖F‖ + A0(v0, τ0), ‖F‖ + A0(v0, τ0)] ∀s ∈ R

for every k ∈ N. As in the proof of [9, Lemma 2.8] we estimate

0 ≤
∫ +∞

s0
dAr (∂s(uk, τk), s)ds

=
∫ +∞

s0

d

ds
Ar (uk, τk, s)ds −

∫ +∞

s0
(∂sAr )(uk, τk, s)ds

= lim
s→+∞Ar (uk, τk, s) − Ar (uk(s0), τk(s0), s0) −

∫ +∞

s0
(∂sAr )(uk, τk, s)ds

= A0(v, τ ) − Ar (uk(s0), τk(s0), s0) +
∫ +∞

s0
β̇r (s)

∫ 1

0
Ft (uk(s, t))dtds
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≤ A0(v, τ ) − Ar (uk(s0), τk(s0), s0) +
∫ +∞

−∞
‖β̇r (s)F‖+ds

≤ A0(v, τ ) − Ar (uk(s0), τk(s0), s0) + ‖F‖
= A0(v0, τ0) − Ar (uk(s0), τk(s0), s0) + ‖F‖

for all s0 ∈ R. Similarly, we compute

0 ≤
∫ s0

−∞
dAr (∂s(uk, τk), s)ds

=
∫ s0

−∞
d

ds
Ar (uk, τk, s)ds −

∫ s0

−∞
(∂sAr )(uk, τk, s)ds

= Ar (uk(s0), τk(s0), s0) − lim
s→−∞Ar (uk, τk, s) −

∫ s0

−∞
(∂sAr )(uk, τk, s)ds

= Ar (uk(s0), τk(s0), s0) − A0(v0, τ0) +
∫ s0

−∞
β̇r (s)

∫ 1

0
Ft (uk(s, t))dtds,

and thus we estimate

Ar (uk(s0), τk(s0), s0) ≥ A0(v0, τ0) −
∫ s0

−∞
β̇r (s)

∫ 1

0
Ft (uk(s, t))dtds

≥ A0(v0, τ0) −
∫ +∞

−∞
‖β̇(s)F‖+ds

≥ A0(v0, τ0) − ‖F‖.
This shows the estimate (7) and so the proof of Lemma 1 and Theorem 2 is complete.
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