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Abstract
We provide a novel approach to approximate bounded Lipschitz domains via a sequence
of smooth, bounded domains. The flexibility of our method allows either inner or outer
approximations of Lipschitz domains which also possess weakly defined curvatures, namely,
domains whose boundary can be locally described as the graph of a function belonging
to the Sobolev space W 2,q for some q ≥ 1. The sequences of approximating sets is also
characterized by uniform isocapacitary estimates with respect to the initial domain �.

Mathematics Subject Classification 53A07 · 46E35 · 41A30 · 41A63

1 Introduction

In this paper we are concerned with inner and outer approximation of bounded Lipschitz
domains � of the Euclidean space Rn , n ≥ 2. Specifically, we construct two sequences of
C∞-smooth bounded domains {ωm}, {�m} such that ωm � � � �m for all m ∈ N, which
also satisfy natural covergence properties like, for instance, in the sense of the Lebesgue
measure and in the sense of Hausdorff to �.

Geometric quantities like a Lipschitz characteristic L� = (L�, R�) and the diameter d�

of the domain� are comparable to the corresponding ones of its approximating setsωm,�m .
Here, the constant R� stands for the radius of the ball domains on which the boundary can
be described as a function of (n−1)-variables– i.e. the local boundary chart– and L� is their
Lipschitz constant– see Sect. 2 for the precise definition of a Lipschitz characteristic of �.

Furthermore, the smooth charts locally describing the boundaries ∂ωm, ∂�m are defined
on the same reference systems as the local charts describing ∂�, together with strong con-
vergence in the Sobolev space W 1,p for all p ∈ [1,∞).

If in addition the local charts describing ∂� belong to the Sobolev space W 2,q for some
q ∈ [1,∞), then we also have strong convergence in the W 2,q -sense. In a certain way, this
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means that the second fundamental forms Bωm and B�m of the regularized sets converge in
Lq to the “weak” curvature B� of the initial domain �.

Smooth approximation of open sets, not necessarily having Lipschitzian boundary, has
been object of study by many authors. To the best of our knowledge, the first author who
provided an approximation of this kind is Nečas [20], followed by Massari & Pepe [15] and
Doktor [6]. The underlying idea behind their proof is nowadays standard, and it is typically
used to approximate sets of finite perimeter. This consists in regularizing the characteristic
function of� via mollification and convolution, and then define the approximating set�m as
a suitable superlevel set of themollified characteristic functions–see for instance [1, Theorem
3.42] or [14, Section 13.2]. We point out that Schmidt [21] and Gui, Hu & Li [8] constructed
smooth approximating domains strictly contained in � under additional assumptions on
the finite perimeter domain �, whereas an outer approximation via smooth sets is given by
Doktor [6] when the domain � is endowed with a Lipschitz continuous boundary.

A different kind of approach, which makes use of Stein’s regularized distance, has been
recently developed by Ball & Zarnescu [4]. Here, the authors deal with C0 domains, i.e.
domains whose boundary can be locally described by merely continuous charts, and hence
need not have finite perimeter. We mention that their regularized domains �ε are defined
as the ε-superlevel set of the regularized distance function, which in turn is obtained via
mollification of the usual signed distance function. Here, the parameter ε can be taken either
positive or negative, according to the preferred method of approximation, whether from the
inside or outside of �.

The aforementioned techniques have thus been used to treat domains with “rough" bound-
aries; however, they do not seem suitable to approximate domains which possess weakly
defined curvatures, even in the case of domains having bounded curvatures, e.g. ∂� ∈ C1,1.
Namely, we do not recover any quantitative information or convergence property regarding
the second fundamental forms B�m from the original one B�. This is because first-order
estimates regarding�m are proven by a careful pointwise analysis of the gradient of the local
charts describing their boundaries. In order to obtain estimates about their second fundamen-
tal form B�m , such pointwise analysis needs to be extended to second-order derivatives, and
this calls for the application of the implicit function theorem, for which � is required to be
at least of class C2.

This drawback is probably due to the fact that the above regularization procedures are
global in nature, i.e. they are obtained via mollification of functions “globally” describing
�, like its characteristic function or signed distance, whereas the second fundamental form
of hypersurfaces of Rn is defined via local parametrizations.

Comparatively, our proof relies on techniques which, in a sense, can be deemed as local
in nature, since the starting point of our method is the regularization of the functions of
(n − 1)-variables which locally describe ∂�. Thus, our approach seems more suitable when
dealingwithweak curvatures, though at the cost of requiring� to have a Lipschitz continuous
boundary.

Regarding its applications, approximation via a sequence of smooth bounded domains
has proven to be a powerful tool especially when dealing with boundary value problems in
Partial Differential Equations. Indeed, by tackling the same boundary value problem (or its
suitable regularization) on smoother domains, accordingly one obtains smoother solutions,
hence it is possible to perform all the desired computations and infer a priori estimates which
do not depend on the full regularity of the approximating sets�m , but only on their Lipschitz
characteristics or other suitable quantities possibly depending on the second fundamental
form B�m . For instance, various investigations such as [2, 3, 5, 17, 18] showed that global
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regularity of solutions to linear and quasilinear PDEsmay depend on aweighted isocapacitary
function for subsets ∂�, the weight being the norm of the second fundamental form on ∂�.

This function, which we denote by K�, is defined as

K�(r) = sup
E ⊂ Br (x)
x ∈ ∂�

∫
∂�∩E |B�|dHn−1

cap(E, Br (x))
for r > 0, (1.1)

and it was first introduced in [5]. Above, cap(E, Br (x)) denotes the standard capacity of a
compact set E relative to the ball Br (x), i.e.

cap(E, Br (x)) = inf

{∫

Br (x)
|∇v|2 dx : v ∈ C0,1

c (Br (x)), v ≥ 1 on E

}

,

where C0,1
c (A) is the set of Lipschitz continuous functions with compact support in A.

We remark that, in order for K�(r) to be well defined, it suffices that ∂� is Lipschitz
continuous and belongs to W 2,1, as it can be inferred from inequalities (2.10) below.

Plan of the paper

The rest of the paper is organized as follows: in Sect. 2, we explain some non-standard
notation used throughout the paper, and provide the definitions of L�-Lipschitz domain, of
W 2,q -domain and of weak curvature.

In Sect. 3 we state in detail our main results, and we provide a few comments and an
outline of their proofs.

In Sect. 4 we state and prove a useful convergence property of mollification and convo-
lution, which will be used in the proof of the convergence properties of the approximating
sets.

In Sect. 5 we introduce the notion of transversality of a unit vector n to a Lipschitz function
φ, and we show a very interesting fact, i.e. this transversality property is equivalent to the
graphicality of φ with respect to the coordinate system (y′, yn) having n = en . We then close
this section by showing that the transversality condition– hence the graphicality with respect
to the reference system (y′, yn)– is inherited by the convoluted function Mm(φ).

As a byproduct, we will find an interesting, yet expected result: if ∂� ∈ W 2,q , then any
Lipschitz function locally describing ∂� is of class W 2,q . This means that second-order
Sobolev regularity is an intrinsic property of the local charts describing ∂�– see Corollary
1.

Finally, Sect. 6 is devoted to the proof of the main Theorem 1.

2 Basic notation and definitions

In this section, we provide the relevant definitions and notation of use throughout the rest of
the paper.

• For d ∈ N, U ⊂ R
d open, and a function v : U → R, we shall denote by ∇v its

d-dimensional gradient, and ∇2v its hessian matrix. We will often use the short-hand
notation for its level and sublevel sets

{v < 0} := {z ∈ U : v(z) < 0}.
{v = 0} := {z ∈ U : v(z) = 0}.
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• Wedenote byWk,p(�) the usual Sobolev space of L p(�)weakly differentiable functions
having weak k-th order derivatives in L p(�). For any α ∈ (0, 1], the spaces Ck(�) and
Ck,α(�) will denote, respectively, the space of functions with continuous and α-Hölder
continuous derivatives up to order k ∈ N.

• Point of Rn will be written as x = (x ′, xn), with x ′ ∈ R
n−1 and xn ∈ R. We write Br (x)

to denote the n-dimensional ball of radius r > 0 and centered at x ∈ R
n . Also, B ′

r (x
′)will

denote the (n − 1)-dimensional ball of radius r > 0 and centered at x ′ ∈ R
n−1—when

the centers are omitted, the balls are assumed to be centered at the origin, i.e. Br := Br (0)
and B ′

r := B ′
r (0

′).
• For d ∈ N, and for a given matrix X ∈ Md×d , we shall denote by |X | its Frobenius Norm

|X | = √
tr(Xt X), where Xt is the transpose of X .

• Given a Lebesgue measurable set A, we shall write |A| for its Lebesgue measure. Also,
given two open bounded sets A, B, we will denote by distH(A, B) their Hausdorff dis-
tance.

• For a given function φ : U → R with U ⊂ R
n−1 open, we write Gφ and Sφ to denote

its graph and subgraph in R
n , i.e.

Gφ = {x = (x ′, φ(x ′)
) : x ′ ∈ U } and Sφ = {x = (x ′, xn

) : x ′ ∈ U , xn < φ(x ′)}.
• We will denote by ρ = ρ(x ′) the standard convolution Kernel in Rn−1, i.e.

ρ(x ′) =

⎧
⎪⎨

⎪⎩

exp

{

− 1

1 − |x ′|2
}

if |x ′| < 1

0 if |x ′| ≥ 1,

and we will write ρm(x ′) = mn−1ρ
(
m x ′) for m ∈ N. Given h ∈ L1

loc(R
n−1), the

convolution operator Mm(h) is defined as

Mm(h)(x ′) = h ∗ ρm(x ′) =
∫

Rn−1
h(y′) ρm(x ′ − y′) dy′.

In the following, we specify the definition of Lipschitz domain and of Lipschitz charac-
teristic.

Definition 1 (Lipschitz characteristic of a domain) An open, connected set � in Rn is called
a Lipschitz domain if there exist constants L� > 0 and R� ∈ (0, 1) such that, for every
x0 ∈ ∂� and R ∈ (0, R�] there exist an orthogonal coordinate system centered at 0 ∈ R

n

and an L�-Lipschitz continuous function φ : B ′
R → (−	, 	), where

	 = R(1 + L�), (2.1)

satisfying φ(0′) = 0, and

∂� ∩ (B ′
R × (−	, 	)

) = {(x ′, φ(x ′)) : x ′ ∈ B ′
R},

� ∩ (B ′
R × (−	, 	)

) = {(x ′, xn) : x ′ ∈ B ′
R, −	 < xn < φ(x ′)}. (2.2)

Moreover, we set

L� = (L�, R�), (2.3)

and call L� a Lipschitz characteristic of �.
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It is easily seen that the above definition coincides with the standard one for uniformly
Lipschitz domains–see e.g. [9, Section 2.4]. Our definition has the advantage of pointing out
L� = (L�, R�) which appears in the characterization of our approximation sets.

We also remark that, in general, a Lipschitz characteristicL� = (L�, R�) is not uniquely
determined. For instance, if ∂� ∈ C1, then L� may be taken arbitrarily small, provided that
R� is chosen sufficiently small.

The function φ in definition 1 is typically called local (boundary) chart. By Rademacher’s
theorem, this function is differentiable forHn−1-almost every x ′, with gradient ∇φ bounded
by L�. In particular, this implies that any Lipschitz domain � admits a tangent plane on
Hn−1-almost every point of its boundary.

The local chart φ naturally endows ∂� of a local parametrization

ιφ(x ′) = (x ′, φ(x ′)
)

(2.4)

under which, whenever φ is differentiable at x ′, a basis of the tangent space at the point
(x ′, φ(x ′)) is given by

Eφ =
{

ei + ∂φ(x ′)
∂x ′

i

}

i=1,...,n−1
(2.5)

where ei = (0, . . . , 1, . . . , 0) is the i-th canonical unit vector of Rn .
Moreover, via such parametrization ιφ(x ′), the first fundamental form g = {gi j }n−1

i, j=1 can
be computed as

gi j (x
′) = δi j + ∂φ(x ′)

∂x ′
i

∂φ(x ′)
∂x ′

j
, (2.6)

where δi j denotes the Kronecker’s delta, and x ′ is a point of differentiability of φ. Then, the
inverse matrix g−1 = {gi j }n−1

i, j=1 can be explictly computed:

gi j (x ′) = δi j − 1

1 + |∇φ(x ′)|2
∂φ(x ′)

∂x ′
i

∂φ(x ′)
∂x ′

j
. (2.7)

For such points x0 = (x ′, φ(x ′)
) ∈ ∂�, we shall denote by Tx0∂� = Tx ′∂� the tangent

space at x0. From the discussion above, ∂� admits a tangent planeHn−1-almost every point
x0 ∈ ∂�, hence we may want to define a notion of weak second fundamental form which
extends the classical one for C∞-smooth domains of Rn .

For this purpose, we need some additional regularity assumptions on φ, and in particular
on its second-order derivatives.

Definition 2 (W 2,q domains and weak curvature) Let q ∈ [1,∞). We say that a bounded
Lipschitz domain � is of class W 2,q if the local boundary chart φ satisfying (2.2) belongs to
the Sobolev space W 2,q(B ′

R). If φ ∈ W 2,∞(B ′
R), we say that ∂� ∈ C1,1 (or ∂� ∈ W 2,∞).

If ∂� ∈ W 2,1, the weak curvature B� of ∂� is a bilinear operator

B�(x0) : Tx0∂� × Tx0∂� → R

defined for Hn−1-almost every point x0 ∈ ∂�. With the choice of local parametrization ιφ

in (2.4), its components
{Bi j

}n−1
i, j=1 with respect to the basis Eφ in (2.5) of Tx ′∂� are locally

defined as

Bi j (x
′) = − 1

√
1 + |∇φ(x ′)|2

∂2φ(x ′)
∂x ′

i∂x
′
j
, (2.8)

123



   91 Page 6 of 34 C. A. Antonini

for Hn−1-almost every points x ′ ∈ B ′
R of differentiability of φ. Its norm is then given by

|B�(x ′)| =
√
trace

(
(g−1 ∇2φ)2

)

√
1 + |∇φ(x ′)|2 , (2.9)

where g−1 is the inverse matrix of g given by (2.7).

The reader may verify that identities (2.6)-(2.9) concur with the usual ones when ∂� is a
smooth hypersurface of Rn–see e.g. [12, pp. 246-249]. However, these definitions also make
sense when φ is merely Lipschitz continuous and belongs to the Sobolev spaceW 2,1. Indeed,
the following inequalities hold true:

|∇2φ(x ′)|
(1 + L2

�)3/2
≤ |B�(x ′)| ≤ |∇2φ(x ′)|. (2.10)

In order to prove (2.10), we first recall that for all symmetricmatrices X , Y , with X definite
positive, we have the elementary linear algebra inequalities

λ2min|Y |2 ≤ tr
(
(XY )2

) ≤ λ2max |Y |2,
where λmin, λmax denote the smallest and largest eigenvalues of X–see e.g. [2, Lemma 3.6]
and its proof. Then, owing to (2.7), we observe that the largest and smallest eigenvalues of the
matrix g−1 are respectively 1 and (1+|∇φ|2)−1, and since |∇φ| ≤ L� we immediately infer
(2.10). Inequalities (2.10) also show that (locally) second fundamental form B� is equivalent
to the second-order derivatives of the local charts.

We close this section by pointing out that the above definitions can be easily extended to
domains with boundary ∂� ∈ Wk,q . Similarly, standard definitions follow for domains of
class Ck and Ck,α .

3 Main results

Having dispensed of the necessary definitions and notation, we can now give a precise
statement of ourmain results. This is the content of this section, coupledwith a few comments
and an outline of the proofs. Our first main result reads as follows.

Theorem 1 Let� ⊂ R
n be a bounded, Lipschitz domain, with Lipschitz characteristicL� =

(L�, R�).
(i) There exist sequences of bounded domains {ωm}, {�m}, such that ∂ωm ∈ C∞, ∂�m ∈

C∞, and

ωm � � � �m for all m ∈ N.

Their diameters satisfy

d�m ≤ c(n) d�, dωm ≤ c(n) d�, (3.1)

the following convergence property hold true

lim
m→∞ |�m \ �| = 0, lim

m→∞ |� \ ωm | = 0, (3.2)

the Hausdorff distances safisfy

distH(ωm,�) + distH(�m,�) ≤
12 L�

√
1 + L2

�

m
for all m ∈ N, (3.3)

123



Smooth approximation of Lipschitz... Page 7 of 34    91 

and we may choose their Lipschitz characteristics L�m = (L�m , R�m ) and Lωm =
(Lωm , Rωm ) such that

L�m ≤ c(n)(1 + L2
�), R�m ≥ R�/

(
c(n)(1 + L2

�)
)

Lωm ≤ c(n)(1 + L2
�), Rωm ≥ R�/

(
c(n)(1 + L2

�)
)
, for all m ∈ N.

(3.4)

Moreover, the smooth boundaries ∂ωm, ∂�m are described with the help of the same
co-ordinate systems as ∂�, i.e. there exist finite number of local boundary charts
{φi }Ni=1, {ψ i

m}Ni=1 and {ϕi
m}Ni=1 which describe ∂�, ∂�m and ∂ωm respectively, such that

for each i = 1, . . . , N the functions ψ i
m, ϕi

m ∈ C∞ are defined on the same reference system
as φi , and

ψ i
m

m→∞−−−−→ φi and ϕi
m

m→∞−−−−→ φi in W 1,p(B ′
R�−ε0

), (3.5)

for all p ∈ [1,∞), for all i = 1, . . . , N, and any fixed constant ε0 ∈ (0, R�/2).
(ii) If in addition ∂� ∈ W 2,q for some q ∈ [1,∞), then

ψ i
m

m→∞−−−−→ φi and ϕi
m

m→∞−−−−→ φi in W 2,q(B ′
R�−ε0

), (3.6)

and there exists a constant ĉ = ĉ(n,L�, d�) such that

K�m (r) + Kωm (r) ≤

⎧
⎪⎪⎨

⎪⎪⎩

ĉ
{
K�

(
ĉ (r + 1

m )
)+ r

}
if n ≥ 3

ĉ
{
K�

(
ĉ (r + 1

m )
)+ r log(1 + 1

r )
}

if n = 2

(3.7)

for all m ∈ N and r ≤ r0(n,L�).

Let us briefly comment on our result. Part (i) of Theorem 1 is mostly analogous to [6,
Theorem 5.1]; as expected from domains � with Lipschitz continuous boundary, the local
charts of ∂�m, ∂ωm converge to the corresponding local charts of ∂� in W 1,p for all p ∈
[1,∞). In particular, by the classical Morrey-Sobolev’s embedding Theorems, this entails
an “almost Lipschitz convergence”, i.e. the local charts ψ i

m and ϕi
m converge to φi in every

Hölder space C0,α with α ∈ (0, 1).
The main novelty of our result is given in Part (ii), where information about the second

fundamental forms Bωm and B�m (or equivalently ∇2ϕi
m and ∇2ψ i

m) is retrieved when ∂�

is endowed with a weak curvature. For instance, by definition (2.8) and from the results of
Theorem 1, via a standard covering argument it is easy to show that

∫

∂�m

|B�m |qdHn−1

→
∫

∂�

|B�|qdHn−1 and
∫

∂ωm

|Bωm |qdHn−1 →
∫

∂�

|B�|qdHn−1, (3.8)

for all q ∈ [1,∞) such that ∂� ∈ W 2,q .
Other than this, we obtain the isocapacitary estimate (3.7), where K�(r) and K�m ,Kωm

are the functions defined in (1.1) relative to�,�m andωm , respectively. In the proof of (3.7),
we will also explicitly write the constant ĉ appearing therein.

Finally, the boundaries ∂�, ∂�m and ∂ωm all share the same coordinate cylinders
{Ki

ε0
}Ni=1 which are, up to an isometry, equal to B ′

R�−ε0
× (−	, 	), with 	 = (1 + L�) R�.

This means that their local boundary charts, φi , ψ i
m and ϕi

m respectively, are defined on
the same (n − 1)-dimensional ball B ′

R�−ε0
, independently on i = 1, . . . N and m ∈ N—see

Fig. f1 below.
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Fig. 1 The local boundary charts of ∂� and ∂�, φi and ψ i
m respectively, are defined on the same reference

system

Here, the fixed parameter ε0 ∈ (0, R�/2), also appearing in (3.5) and (3.6), is purely
technical and does not affect the validity of the convergence results. Indeed, from our con-
struction in Sect. 6, the boundaries ∂�, ∂�m and ∂ωm will be covered by smaller coordinate
cylinders of the kind B ′

R�/2 × (−	, 	).

Outline of the proof

Wefix a covering of ∂�, with corresponding partition of unity {ξi }i and local boundary charts
{φi }i , which are L�-Lipschitz continuous.

Then we regularize each function φi via convolution, and add (or subtract) a suitable
constant, so that we obtain C∞-smooth functions {φi

m}i such that φi
m > φi ( or φi

m < φi ).
However, in the original reference system, the graphs of these smooth functions Gφi

m
are

not “glued" together, and thus their union is not the boundary of a domain, unlike the graphs
Gφi whose union describes ∂�—see Fig. 2 below.

To overcome this problem, we define a suitableC∞-smooth function Fm , built upon {φi
m}i

and {ξi }i– see equation (6.14) below– and define the regularized set �m as the sublevel set
{Fm < 0}, so that

∂�m = {Fm = 0},
and by construction we will have ωm � � � �m .
The function Fm is called boundary defining functions of �m—see [11, Section 5.4].

In order to show that ∂�m is a smooth manifold, we prove that the gradient of Fm along
the directions of graphicality of φi is greater than a positive constant depending on L�—see
estimate (6.20). This property of Fm will be proven by exploiting the so-called transver-
sality condition of φi , which is inherited via convolution by φi

m as well. Therefore, Fm is
strictly monotone along these directions, which entails that its zero-level set ∂�m is a smooth
manifold with local boundary charts ψ i

m defined on the same reference system as φi .
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Thanks to the properties of convolution, we show that Fm converge to the boundary
defining function F of � built upon {φi }i and {ξi }i– see equations (6.9) and (6.10)– and thus
ψ i
m converge uniformly to φi .
Then, as in the proof of the implicit function theorem, we differentiate the identity

Fm
(
y′, ψ i

m(y′)
) = 0, so that we may express the gradient ∇ψ i

m (and its Hessian ∇2ψ i
m)

in terms of {φ j
m,∇φ

j
m} j (and {∇2φ

j
m} j ), and then (3.4), (3.5) (and (3.6)) will be obtained by

exploiting the convergence properties of convolution.
Finally, in order to get the isocapacitary estimate (3.7), we make use of the estimates on

|∇2ψ i
m | obtained in the previous steps, as to evaluate weighted Poincaré type quotients of

the kind
∫
∂�m

v2 |B�m | dHn−1

∫
Rn |∇v|2dx , v ∈ C∞

c

(
Br (x

0
m)
)
, x0m ∈ ∂�m

in terms of the corresponding quotient with weight |B�|, and then (3.7) will follow from the
celebrated isocapacitary equivalency Theorem of Maz’ya [16], [19, Theorem 2.4.1].

Our next and final result shows the flexibility of our approximation method, which takes
into account even higher regularity of the domain �.

Theorem 2 Under the same notations as Theorem 1, we have that

(1) if ∂� ∈ Ck for some k ∈ N, then

ψ i
m

m→∞−−−−→ φi and ϕi
m

m→∞−−−−→ φi in Ck(B ′
R�−ε0

);
(2) if ∂� ∈ Ck,α for some k ∈ N and α ∈ (0, 1), then

ψ i
m

m→∞−−−−→ φi and ϕi
m

m→∞−−−−→ φi in Ck,α′
(B ′

R�−ε0
),

for all 0 < α′ < α;
(3) if ∂� ∈ Wk,q for some k ∈ N and q ∈ [1,∞), then

ψ i
m

m→∞−−−−→ φi and ϕi
m

m→∞−−−−→ φi in Wk,q(B ′
R�−ε0

).

(4) if ∂� ∈ Ck,1 for some k ∈ N, then

ψ i
m

m→∞−−−−→ φi and ϕi
m

m→∞−−−−→ φi weakly- ∗ in Wk,∞(B ′
R�−ε0

).

The proof of Theorem 2 can be easily carried out by extending the proof and estimates
of Theorem 1 to higher order derivatives, and by using standard compactness theorems such
as Ascoli-Arzelá’s and weak-∗ compactness. For this very reason, we decided to omit the
proof.

4 Auxiliary results

In this section, we state and prove a useful convergence property regarding the convolution
of functions composed with a suitable family of bi-Lipschitz maps.

Proposition 1 Let U ⊂ R
n−1 be a bounded domain, K > 0 be a constant, and {�m}m∈N be

a family of bi-Lipschitz maps on U such that

sup
m∈N

‖∇�−1
m ‖L∞ ≤ K , (4.1)
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Fig. 2 In red: the graphs of the
regularized local charts (up to
isometry)

and there exists a bi-Lipschitz map � : U → �(U ) such that

‖�m − �‖L∞(U ) ≤ K

m
for all m ∈ N. (4.2)

Let O ⊂ R
n−1 open be such that �(U ) � O, and φ ∈ L p(O) for some p ∈ [1,∞). Then

Mm(φ) ◦ �m
m→∞−−−−→ φ ◦ � Hn−1-a.e. inU and in L p(U ). (4.3)

Proof Set

Uφ := {x ′ ∈ U : �(x ′) is a Lebesgue point of φ
}

By Lebesgue differentiation theorem and since � is a bi-Lipschitz map, we have that Uφ is
a subset of U with full measure. Also, thanks to (4.2) and the fact that �

(
U
)

� O, we have
that φ and Mm(φ) are well defined on a neighbourhood of �m(U ) form > m0 large enough.
Then, for all x ′ ∈ Uφ we have

∣
∣Mm(φ)

(
�m(x ′)

)− φ
(
�(x ′)

)∣∣ =
∣
∣
∣
∣

∫

B′
1
m

(�m (x ′))

[
φ(z′) − φ

(
�(x ′)

)]
ρm
(
�m(x ′) − z′

)
dz

∣
∣
∣
∣

≤ ( sup
Rn−1

ρ
)
mn−1

∫

B′
(K+1)

m
(�(x ′))

∣
∣φ(z′) − φ

(
�(x ′)

)∣∣ dz′ m→∞−−−−→ 0.

Above we used the fact that �(x ′) is a Lebesgue point of φ, and B ′
1
m
(�m(x ′)) ⊂

B ′
(K+1)

m

(�(x ′)) as a consequence of (4.2).

Now fix ε > 0, and take a function φ̃ ∈ C∞
c (Rn−1) satisfying

‖φ − φ̃‖p
L p(O) ≤ ε. (4.4)

Standard properties of convolutions ensure that

‖Mm(φ̃) − φ̃‖L∞(O)
m→∞−−−−→ 0. (4.5)

Then we have
∫

U

∣
∣Mm(φ)

(
�m(x ′)

)− φ
(
�(x ′)

)∣∣p dx ′ ≤ c(p)
∫

U

∣
∣Mm(φ − φ̃)

(
�m(x ′)

)∣∣p dx ′

+ c(p)
∫

U

∣
∣Mm(φ̃)

(
�m(x ′)

)− φ̃
(
�(x ′)

)∣∣p dx ′ + c(p)
∫

U

∣
∣φ̃
(
�(x ′) − φ

(
�(x ′)

)∣∣p dx ′
(4.6)
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By applying Jensen inequality, the change of variablesw′ = �m(x ′)−z′ and Fubini-Tonelli’s
Theorem we obtain

∫

U

∣
∣Mm(φ − φ̃)

(
�m(x ′)

)∣∣p dx ′

≤
∫

U

∫

B′
1/m

∣
∣φ
(
�m(x ′) − z′

)− φ̃
(
�m(x ′) − z′

)∣∣pρm(z′) dz′ dx ′

≤ c(n) Kn−1
∫

Rn−1
ρm(z′) dz′

∫

O

∣
∣φ(w′) − φ̃(w′)

∣
∣p dw′ ≤ c(n) Kn−1 ε,

where we also used estimates (4.1) and (4.4).
Then, by using (4.2) and (4.5), it is immediate to verify that

lim
m→∞

∫

U

∣
∣Mm(φ̃)

(
�m(x ′)

)− φ̃
(
�(x ′)

)∣∣p dx ′ = 0,

and finally, via a change of variables y′ = �(x ′), and (4.4) we get
∫

U

∣
∣φ̃
(
�(x ′) − φ

(
�(x ′)

)∣∣p dx ′ ≤ c(n) ‖∇�−1‖n−1
L∞ ε.

Henceforth, by plugging the last three estimates into (4.6), we find

lim sup
m→∞

∫

U

∣
∣Mm(φ)

(
�m(x ′)

)− φ
(
�(x ′)

)∣∣p dx ′ ≤ c(n, p, L, �) ε,

and thus (4.3) follows by the arbitrariness of ε. ��
We close this section recalling a variant of Lebesgue dominated convergence Theorem

which will be useful later on. Since we could not find a precise reference, we provide a proof.

Theorem 3 (Dominated convergence Theorem) Let { fk}k∈N be a sequence of measurable
functions on E ⊂ R

n−1 such that

(i) fk → f almost everywhere on E;
(ii) | fk | ≤ gk almost everywhere on E, with gk ∈ Lq(E) for some q ∈ [1,∞);
(iii) there exists g ∈ Lq(E) such that gk → g a.e. on E, and

∫
E gqk dx → ∫

E gq dx.

Then f ∈ Lq(E), and
∫

E
| fk − f |q dx → 0.

Proof Set

Fk = | fk − f |q , F = 0, Gk = 2q−1{gk + g
}
, and G = 2q g.

Observe that, by hypothesis, Fk → F and Gk → G almost everywhere on E as k → ∞,
0 ≤ Fk ≤ Gk almost everywhere, with Gk,G ∈ L1(E), and

∫

E
Gk dx →

∫

E
G dx .

The thesis then follows from a standard generalization of dominated convergence theorem–
see for instance [7, Exercise 20, pp. 59]. ��
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5 Transversality and graphicality

Throughout this section, we shall consider an isometry T of Rn , such that

T x = Rx + x0, x ∈ R
n, (5.1)

where R = {Ri j
}n
i, j=1 is an orthogonal matrix of Rn , and x0 ∈ R

n . Let

n = Rt en ∈ S
n−1,

where en denotes the n-th canonical vector ofRn , i.e. en = (0, . . . , 0, 1),Rt is the transpose
matrix of R, and S

n−1 is the unit sphere on Rn .
Here we introduce the geometric notion of transversality, which was already used in [10]

in a wider sense. The definition given here suffices to our purposes.

Definition 3 (Transversality) Let φ : U → R be a Lipschitz continuous function on U ⊂
R
n−1 open. We say that a unit vector n ∈ S

n−1 is transversal to φ if there exists κ > 0 such
that

n · ν(x ′) ≥ κ for Hn−1-a.e. x ′ ∈ U ,

where ν denotes the outward normal to Gφ with respect to the subgraph Sφ .

The next proposition shows a very interesting feature: the transversality of n ∈ S
n−1 to a

Lipschitz function φ is equivalent to the graphicality (and subgraphicality) of φ with respect
to any reference system having en = n, that is after performing a rotation of the axes through
R, the graph and subgraph of φ are mapped onto the graph and subgraph of another function
ψ– see identities (5.2) below.

Proposition 2 Let U ⊂ R
n−1 be open, φ : U → R be a Lipschitz function, let T be an

isometry of the form (5.1), and let n = Rt en.
(i) If there exists an L-Lipschitz function ψ : V → R such that

TGφ = Gψ and T Sφ = Sψ ∩ T (U × R), (5.2)

then we have the transversality condition

n · ν(x ′) ≥ 1√
1 + L2

for Hn−1-a.e. x ′ ∈ U . (5.3)

(ii) Viceversa, if φ ∈ Ck(U ) for some k ∈ N and (5.3) holds, then there exist V ⊂ R
n−1

open, and a function ψ ∈ Ck(V ) such that ‖∇ψ‖L∞(V ) ≤ L and (5.2) holds true.

Let us comment on this result. Part (i) states that if Gφ and Sφ are, respectively, the graph
and subgraph of an L-Lipschitz function ψ with respect to the reference system z = (z′, zn)
having n = en , then the quantitative transversality estimate (5.3) holds true.

Part (ii) states the opposite in the Ck case: the transversality condition (5.3) implies the
graphicality and subgraphicality of φ with respect to the coordinate system z = (z′, zn), and
it also provides a Lipschitz estimate to ψ .
Before starting the proof, we need to introduce the so-called transition map C from φ to ψ .
Under the same notation as Proposition 2, the transition map C : U → V is defined as

Cx ′ := � T
(
x ′, φ(x ′)

)
.
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Fig. 3 The new graph after the rigid motion T

Here � : Rn → R
n−1 is the projection map �(x ′, xn) = x ′. Observe that, when identities

(5.2) hold true, by the very definition of C we have the equation

T
(
x ′, φ(x ′)

) = (Cx ′, ψ
(Cx ′))

In particular, this implies that C is a bijection, with inverse function C−1 : V → U given by

C−1z′ = � T−1(z′, ψ(z′)
)
.

Also, since φ,ψ are Lipschitz continuous, then C is a bi-Lipschitz tranformation from U
to V .

Proof of Proposition 2 (i) By Rademacher’s theorem, the normal vector ν toGφ outward with
respect to Sφ is well definedHn−1-almost everywhere, and thanks to (5.2) and the definition
of C, we may write (Fig. 3)

ν(x ′) = (−∇φ(x ′), 1)
√
1 + |∇φ(x ′)|2 = Rt

(
(−∇ψ(Cx ′), 1)
√
1 + |∇ψ(Cx ′)|2

)

Hn−1 -a.e. x ′ ∈ U . (5.4)

Therefore, since Rn = en and |∇ψ | ≤ L , from (5.4) we infer

n · ν(x ′) = en · Rν(x ′) = 1
√
1 + |∇ψ(Cx ′)|2 ≥ 1√

1 + L2
for Hn−1 -a.e. x ′ ∈ U .(5.5)

(ii) Assume φ ∈ Ck(U ) and that (5.3) is in force.
Consider the Ck-function f : U × R → R, defined as f (x) := xn − φ(x ′), so that

{ f = 0} = Gφ and { f < 0} = Sφ. (5.6)

Now let f̃ : T (U × R) → R be the function defined as f̃ (z) = f (x) for z = T x .
Recalling Rn = en , via the chain rule we compute

∂ f̃ (z)

∂zn
= Rnn −

n−1∑

k=1

∂φ(x ′)
∂x ′

k
Rnk = (−∇φ(x ′), 1) · n. (5.7)

Thus, from expression (5.4) of ν(x ′) and estimate (5.3), we obtain

∂ f̃ (z)

∂zn
=
√
1 + |∇φ(x ′)|2 ν(x ′) · n ≥ 1√

1 + L2
for z = T x . (5.8)
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Therefore, owing to (5.8) and the implicit function theorem, we immediately infer the exis-
tence of a function ψ ∈ Ck(V ), with V ⊂ R

n−1 open, such that

{ f̃ = 0} = Gψ and { f̃ = 0} = Sψ ∩ T (U × R).

Thereby, (5.2) follows from the very definition of f̃ and (5.6).
Finally, by using (5.5) we infer that |∇ψ(Cx ′)| ≤ L for all x ′ ∈ U , whence ‖∇ψ‖L∞(V ) ≤

L since the transition map C is a bijection.

Remark 1 We point out that inequality (5.8), when evaluated at points z = T
(
x ′, φ(x ′)

)
,

holds true if φ and ψ are merely Lipschitz continuous and satisfy (5.2).
Indeed, since C is a bi-Lipschitz map, by Rademacher’s Theorem and the chain rule we

may perform the same computations as (5.7)-(5.8) and get

Rnn −
n−1∑

k=1

∂φ(x ′)
∂x ′

k
Rnk ≥ 1√

1 + L2
for Hn−1-a.e. x ′ ∈ U . (5.9)

By making use of this information, we now show that the transversality condition (5.3) is
inherited by the regularized function Mm(φ). This is the content of the following proposition

Proposition 3 Let U , V ⊂ R
n−1 be open bounded, let T be an isometry of the form (5.1),

and n = Rt en. Let φ : U → R and ψ : V → R be L-Lipschitz functions satisfying (5.2).
If we set

Um := {x ′ ∈ U : dist(x ′, ∂U ) > 1
m

}

and for some sequence {cm}m∈N ⊂ R we define

φm(x ′) := Mm(φ)(x ′) + cm for x ′ ∈ Um,

then φm is L-Lipschitz continuous on Um and

‖φm − φ‖L∞(Um ) ≤ L

m
+ |cm |. (5.10)

In addition, we have the transversality condition

Rnn −
n−1∑

k=1

∂φm

∂x ′
k

(x ′)Rnk = (− ∇φm(x ′), 1
) · n ≥ 1√

1 + L2
for all x ′ ∈ Um, (5.11)

and

n · νm(x ′) ≥ 1

1 + L2 for all x ′ ∈ Um, (5.12)

where νm is the outward unit normal to Gφm with respect to the subgraph Sφm .

Proof Let x ′
0 ∈ Um . By multiplying (5.9) with ρm(x ′

0 − x ′) and integrating in x ′ we imme-
diately obtain

Rnn −
n−1∑

k=1

∂Mm(φ)(x ′
0)

∂x ′
k

Rnk ≥ 1√
1 + L2

for all x ′
0 ∈ Um,

and (5.11) holds true.
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Next, from the L-Lipschitz continuity of φ, we have

∣
∣Mm(φ)(x ′) − Mm(φ)(y′)

∣
∣ ≤
∫

Rn−1

∣
∣φ(x ′ − z′) − φ(y′ − z′)

∣
∣ ρm(z′) dz′

≤ L |x ′ − y′|
∫

Rn−1
ρm(z′) dz′ = L |x ′ − y′|

for all x ′, y′ ∈ Um , hence φm is L-Lipschitz continuous as well. From this and (5.11), we
get

n · νm(x ′) = n ·
(− ∇Mm(φ)(x ′), 1

)

√
1 + |∇Mm(φ)(x ′)|2 ≥ 1

1 + L2 for all x ′ ∈ Um,

that is (5.12). Next, since ρm is radially symmetric and φ is L-Lipschitz continuous, for all
x ′ ∈ Um we get

∣
∣Mm(φ)(x ′) − φ(x ′)

∣
∣ ≤
∫

B′
1/m

∣
∣φ(x ′ + y′) − φ(x ′)

∣
∣ ρm(y′) dy′

≤
∫

B′
1/m

L |y′| ρm(y′) dy′ ≤ L

m
,

and thus (5.10) follows. ��
Since we have proven that the regularized function Mm(φ) satisfies the transversality

condition, Part (ii) of Proposition 2 entails its “graphicality” with respect to the coordinate
system having n = en .

Proposition 4 Under the same assumptions of Proposition 3, there exist Vm ⊂ R
n−1 open

bounded such that

distH(Vm, V ) ≤ 2
√
1 + L2

m
+ |cm |, (5.13)

and a function ψm ∈ C∞(Vm) satisfying

‖∇ψm‖L∞(Vm ) ≤ 2(1 + L2), (5.14)

TGφm = Gψm and T Sφm = Sψm ∩ T
(
Um × R

)
. (5.15)

If in addition Vm ∩ V �= ∅, then

‖ψm − ψ‖L∞(Vm∩V ) ≤ L(1 + L)

m
+ (1 + L) |cm |, (5.16)

and if Cm is the transition map of φm, we have that

‖Cm − C‖L∞(Um ) + ‖C−1
m − C−1‖L∞(Vm∩V ) ≤ c(n) (1 + L2)

( 1

m
+ |cm |

)
. (5.17)

Proof From the results of Part (ii) of Proposition 2 and (5.12), there exist Vm ⊂ R
n−1 open

bounded, and a function ψm ∈ C∞(Vm) such that (5.15) holds. Also, owing to (5.3), we
immediately obtain (5.14).

Now we recall that the transition map of φm is the function Cm : Um → Vm defined as
Cmx ′ = � T

(
x ′, φm(x ′)

)
, and for all x ′ ∈ Um we have

T
(
x ′, φ(x ′)

) = (Cx ′, ψ(Cx ′)
)

and T
(
x ′, φm(x ′)

) = (Cmx
′, ψm(Cmx ′)

)
,
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so that from (5.10) we infer

|cm | + L

m
≥ |φm(x ′) − φ(x ′)|

= ∣∣(x ′, φm(x ′)
)− (x ′, φ(x ′)

)∣∣ = ∣∣(Cmx ′, ψm(Cmx ′)
)− (Cx ′, ψ(Cx ′)

)∣∣,

for all x ′ ∈ Um . In particular

⎧
⎪⎨

⎪⎩

|Cmx ′ − Cx ′| ≤ L

m
+ |cm |

∣
∣ψm

(Cmx ′)− ψ
(Cx ′)| ≤ L

m
+ |cm |

for all x ′ ∈ Um (5.18)

The first inequality in (5.18) entails distH
(
Vm, C(Um)

) ≤ L
m + |cm |.

On the other hand, by definition of Um , for any x ′ ∈ U we may find x ′
m ∈ Um such that

|x ′ − x ′
m | ≤ 1

m . Since � and T are 1-Lipschitz continuous, and φ is L-Lipschitz continuous,
it follows that

|Cx ′ − Cx ′
m | ≤ ∣∣(x ′, φ(x ′)

)− (x ′
m, φ(x ′

m)
)∣∣ ≤

√
1 + L2

m
,

which implies distH
(C(Um), V

) ≤
√
1+L2

m since C(U ) = V . Hence, by using the triangle
inequality we get

distH
(
Vm, V

) ≤ distH
(
Vm, C(Um)

)+ distH
(C(Um), V

) ≤ 2
√
1 + L2

m
+ |cm |,

that is (5.13).
Next, on assuming that Vm ∩ V �= ∅, and Cm being a bijection between Um and Vm , we

may take a point y′ ∈ Vm ∩ V such that y′ = Cmx ′ for some x ′ ∈ Um From (5.18) we find

|Cmx ′ − Cx ′| = |y′ − CC−1
m y′| ≤ L

m
+ |cm |,

and

∣
∣ψ
(Cx ′)− ψm

(Cmx ′)∣∣ = ∣∣ψ(CC−1
m y′)− ψm(y′)

∣
∣ ≤ L

m
+ |cm |.

By using these two estimates and the L-Lipschitz continuity of ψ , we obtain

|ψ(y′) − ψm(y′)| ≤ |ψ(y′) − ψ(CC−1
m y′)| + |ψ(CC−1

m y′) − ψm(y′)|
≤ L |y′ − CC−1

m y′| + L

m
+ |cm | ≤ L(1 + L)

m
+ (1 + L) |cm | for all y′ ∈ Vm ∩ V ,

that is (5.16). Finally, by making use of (5.16) and a similar argument as in the proof of
(5.18), we obtain (5.17). ��

The next proposition shows that ifφ ∈ W 2,q , thenψ ∈ W 2,q aswell. Namely, graphicality
preserves Sobolev second-order regularity for Lipschitz functions.

Proposition 5 Under the same assumptions of Propositions 3-4, if in addition φ ∈ W 2,q
loc (U )

for some q ∈ [1,∞], then ψ ∈ W 2,q
loc (V ).
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Proof In the following proof, we will make use of Propositions 3-4 with cm ≡ 0.
Fix U0 � U open, and set V0 = C(U0). Since distH(Vm, V ) → 0 due to (5.13), from [9,

Proposition 2.2.17] we may find m0 > 0 large enough such that

V0 � V ∩ Vm for all m > m0.

Now let

fm(x) = xn − Mm(φ)(x ′) for x ∈ Um × R,

and set f̃m(y) ≡ fm(x) for y = T x . Then owing to (5.15), we have that f̃m
(
y′, ψm(y′)

) = 0
for all y′ ∈ Vm . By differentiating this expression, we obtain

∂ψm

∂ y′
k

(y′) = −
(

∂ f̃m
∂ yn

(
y′, ψm(y′)

)
)−1(

∂ f̃m
∂ y′

k

(
y′, ψm(y′)

)
)

, (5.19)

and from the chain rule, equation n = Rt en , the definition of C−1
m and (5.11), we have

∂ f̃m
∂ y′

k

(
y′, ψm(y′)

) = Rkn −
n−1∑

l=1

∂Mm(φ)

∂x ′
l

(C−1
m y′)Rkl

∂ f̃m
∂ yn

(
y′, ψm(y′)

) = Rnn −
n−1∑

l=1

∂Mm(φ)

∂x ′
l

(C−1
m y′)Rnl ≥ 1√

1 + L2
,

(5.20)

Moreover, thanks to (5.14) and the L-Lipschitz continuity of Mm(φ), the maps Cm are
uniformly bi-Lipschitz, i.e.

‖∇Cm‖L∞ + ‖∇C−1
m ‖L∞ ≤ C(n, L).

Thanks to this piece of information and (5.17), we may apply Proposition 1 and get

∇Mm(φ)(C−1
m y′) → ∇φ(C−1y′) forHn−1-a.e.y′ ∈ V0 (5.21)

By combining (5.19)-(5.21), and by using dominated convergence theorem,we find that∇ψm

converges in L p(V0) to some vector-valued function G for all p ∈ [1,∞). It then follows
from (5.16) and the uniqueness of the distributional limit that G = ∇ψ , hence

∇ψm → ∇ψ Hn−1 -a.e. in V0 and in L p(V0). (5.22)

Next, we differentiate twice identity f̃m
(
y′, ψm(y′)

) = 0, and for k, r = 1, . . . , n − 1 we
obtain

∂2ψm

∂ y′
k∂ y

′
r
(y′) = −

(
∂ f̃

∂ yn

(
y′, ψm(y′)

)
)−1

{
∂2 f̃

∂ y′
k∂ y

′
r

(
y′, ψm(y′)

)+ ∂2 f̃

∂ y′
k∂ yn

(
y′, ψm(y′)

) ∂ψm

∂ y′
r

(y′)

+ ∂2 f̃

∂ y′
r∂ yn

(
y′, ψm(y′)

) ∂ψm

∂ y′
k

(y′)

+ ∂2 f̃

∂ yn∂ yn

(
y′, ψm(y′)

) ∂ψm

∂ y′
k

(y′) ∂ψm

∂ y′
r

(y′)
}

,

(5.23)
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while from the chain rule and the properties of Cm , we obtain

∂2 f̃

∂ y′
k∂ y

′
r

(
y′, ψm(y′)

) = −
n−1∑

l,t=1

∂2Mm(φ)

∂x ′
l∂x

′
t

(C−1
m y′)RklRr t . (5.24)

Then, another application of Proposition 1 entails that

∇2Mm(φ)(C−1
m y′) → ∇2φ(C−1y′) for Hn−1 -a.e. y′ ∈ V0 and in Lq(V0),

in the Case q ∈ [1,∞). From this, (5.20), (5.22)-(5.24) and by using dominated convegence
Theorem 3, we find that ∇2ψm converges in Lq(V0) to some matrix valued function H .
Whence H = ∇2ψ due to the uniqueness of the distributional limit, and the proof in the
Case q ∈ [1,∞) is complete due to the arbitrariness of U0.

In the Case q = ∞, from (5.20), (5.23) and (5.24) we infer that {ψm}m is a sequence
uniformly bounded inW 2,∞(V0)with respect tom. Therefore, up to a subsequence, we have
that ψm weakly-∗ converge in W 2,∞(V0) to ψ , thus completing the proof. ��

At last, we close this section with the following intrinsic property of W 2,q domains.

Corollary 1 Let� be a boundedLipschitz domains such that ∂� ∈ W 2,q for someq ∈ [1,∞].
Then any Lipschitz local chart ψ of ∂� is of class W 2,q .

Proof From Definition 2, there exists a Lipschitz local chart φ ∈ W 2,q and an isometry T
such that (5.2) holds. The thesis then follows from Proposition 5. ��
As a final remark, let us mention that both Proposition 5 and Corollary 1 can be easily
extended to the Wk,q Case.

6 Proof of Theorem 1

This section is devoted to the proof of Theorem 1, which is divided into a few steps.
From here onward, m0 and k0 will denote positive integers, possibly changing from line to
line.

6.1 Covering of@Ä

By Definition 1, for any x0 ∈ ∂�, we may find an L�-Lipschitz function φx0 : B ′
R�

→ R,
and an isometry T x0 of Rn such that T x0 x0 = 0, and

T x0∂� ∩ (B ′
R�

× (−	, 	)
) = {(y′, φx0(y′)) : y′ ∈ B ′

R�

}
,

T x0� ∩ (B ′
R�

× (−	, 	)
) = {(y′, yn) : x ′ ∈ B ′

R�
, −	 < yn < φx0(y′)

}
,

where 	 = R�(1 + L�). Let us consider the open covering {BR�/8(x0)}x0∈∂� of ∂�.1 By
compactness, we may find a finite sequence of points {xi }Ni=1 ⊂ ∂� such that

∂� �
N⋃

i=1

B R�
8

(xi ), (6.1)

1 Any other open covering is allowed, as long as its sets are strictly contained in the coordinate cylinders
B′
R�

× (−	, 	). The open covering here chosen helps simplifying a few computations, especially in the
isocapacitary estimate (3.7).
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as well as L�-Lipschitz functions φi and isometries T i satisfying

T i∂� ∩ (B ′
R�

× (−	, 	)
) = {(y′, φi (y′)) : y′ ∈ B ′

R�

}
,

T i� ∩ (B ′
R�

× (−	, 	)
) = {(y′, yn) : y′ ∈ B ′

R�
, −	 < yn < φi (y′)

}
.

(6.2)

We denote by Ri the orthogonal matrix of T i , i.e. T i can be written as

T i x = Ri (x − xi ) x ∈ R
n .

Notice also that the cardinality N of this covering of ∂� may be chosen satisfying

N ≤ c(n)

(
d�

R�

)n
. (6.3)

We then set

�t := {x ∈ � : dist(x, ∂�) > t},
so that by (6.1) we have

� � W :=
N⋃

i=1

B R�
8

(xi ) ∪ � R�
32

. (6.4)

Starting from this point, we construct a suitable partition of unity: let

ηi := ρ̃ R�
32

∗ χB 3R�
16

(xi ) and η0 := ρ̃ R�
64

∗ χ� 3R�
64

,

where ρ̃t is the standard, radially symmetric convolution kernel on R
n , and χA denotes the

indicator function of a set A.
Standard properties of convolution ensure that ηi ∈ C∞

c (B R�
4

(xi )), η0 ∈ C∞
c (� R�

16
), 0 ≤

ηi ≤ 1,

ηi ≥ 1 on B R�
8

(xi ), η0 ≥ 1 on � R�
32

,

and

|∇kηi | ≤ c(n, k)

Rk
�

, for all k ∈ N.

Therefore, by defining ξi : W → [0, 1] as
ξi := ηi√∑N

j=0 η j

, i = 0, . . . , N ,

then we have that ξi ∈ C∞
c (B R�

4
(xi )) for i = 1, . . . , N , ξ0 ∈ C∞

c (� R�
16

),

N∑

i=0

ξi (x) = 1 for all x ∈ W , (6.5)

and

|∇kξi | ≤ c(n, k)

Rk
�

on W , for all k ∈ N. (6.6)
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6.2 Boundary defining function

Starting from the partition of unity {ξi }Ni=0, and the local charts {φi }Ni=1, we can construct the
boundary defining function of ∂� as in [11, Proposition 5.43].

For any ε ∈ [0, R�) and j = 1, . . . , N , we define the rotated cylinders

K j
ε := (T j )−1(B ′

R�−ε × (−	, 	)
)
, (6.7)

where 	 = R�(1 + L�). Let f j : K j
0 → R be the functions defined as

f j (x) := zn − φ j (z′), z = T j x,

and observe that from (6.2) we have

{ f j = 0} = ∂� ∩ K j
0

{ f j < 0} = � ∩ K j
0

(6.8)

A boundary defining function of � is the function F : W → R defined as

F(x) :=
N∑

j=1

f j (x) ξ j (x) − ξ0(x), (6.9)

where the product f j (x) ξ j (x) is set equal to zero if x /∈ supp ξ j . Since each f j is Lipschitz
continuous, so is the function F .

Thanks to the properties of {ξ j }Nj=0, (6.2) and (6.8), it is easily seen that

� = {x ∈ W : F(x) < 0} and ∂� = {x ∈ W : F(x) = 0}. (6.10)

6.3 Regularization and definition of the smooth approximating sets!m,Äm

For i = 1, . . . , N , we can define the smooth functions φi
m, φ̃i

m : B ′
R�− 1

m
→ R as

φi
m := Mm(φi ) + ‖Mm(φi ) − φi‖L∞(B′

R�−1/m ) + L�

m
and

φ̃i
m := Mm(φi ) − ‖Mm(φi ) − φi‖L∞(B′

R�−1/m ) − L�

m
. (6.11)

From the results of Proposition 3, we deduce that φi
m, φ̃i

m ∈ C∞ are L�-Lipschitz functions,
and

L�

m
≤ φi

m(y′) − φi (y′) ≤ 3 L�

m
L�

m
≤ φi (y′) − φ̃i

m(y′) ≤ 3 L�

m
,

(6.12)

for all y′ ∈ B ′
R�−1/m and i = 1, . . . , N . Taking inspiration from (6.8) and (6.10), we are led

to define the functions

f j
m(x) := zn − φ

j
m(z′)

f̃ j
m(x) := zn − φ̃

j
m(z′), z = T j x ∈ B ′

R�− 1
m

× (−	, 	),
(6.13)
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and functions Fm, F̃m : W → R defined as

Fm(x) :=
N∑

j=1

f j
m(x) ξ j (x) − ξ0(x)

F̃m(x) :=
N∑

j=1

f̃ j
m(x) ξ j (x) − ξ0(x),

(6.14)

where the products f j
m(x) ξ j (x) and f̃ j

m(x) ξ j (x) have to be interpreted equal to zero when
x /∈ supp ξ j .

Clearly, Fm and F̃m are C∞-smooth functions on W , and since

L�

m
≤ f j (x) − f j

m(x) <
3 L�

m
,

L�

m
≤ f̃ j

m(x) − f j (x) <
3 L�

m
(6.15)

for all x ∈ K j
1/m thanks to (6.12), we then have

L�

m
≤ F(x) − Fm(x) ≤ 3 L�

m
,

L�

m
≤ F̃m(x) − F(x) ≤ 3 L�

m
for all x ∈ W . (6.16)

The approximating open sets �m, ωm are thus defined as follows

�m := {x ∈ W : Fm(x) < 0} and ωm := {x ∈ W : F̃m(x) < 0}, (6.17)

with boundaries

∂�m = {x ∈ W : Fm(x) = 0} and ∂ωm = {x ∈ W : F̃m(x) = 0}. (6.18)

In particular, since Fm(x) < F(x) < F̃m(x) for all x ∈ W , owing to (6.10) we have

ωm � � � �m for all m ∈ N.

We now proceed to prove the remaining properties of Theorem 1 for the outer sets �m .
The proofs for the inner sets ωm are analogous.

6.4 @Äm,@!m are smoothmanifolds

Let us show that ∂�m is a smooth manifold, with local charts {ψ i
m}Ni=1 defined on the same

coordinate systems as {φi }Ni=1.
We fix a constant ε0 ∈ (0, R�/4), and for all i = 1, . . . , N we set

Fi (y) = F(x) and Fi
m(y) = Fm(x) for y = T i x, x ∈ W .

Namely Fi = F ◦ (T i )−1 and Fi
m = Fm ◦ (T i )−1.

Owing to (6.2) we have

∂� ∩ K i
0 ∩ K j

0 = (T i )−1Gφi ∩ K j
0 = (T j )−1Gφ j ∩ K i

0

and

� ∩ K j
0 ∩ K i

0 = (T i )−1Sφi ∩ K j
0 ∩ K i

0 = (T j )−1Sφ j ∩ K i
0 ∩ K j

0 ,

(6.19)

whenever ∂� ∩ K i
0 ∩ K j

0 �= ∅.
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This piece of information will allow us to use the transversality property. Specifically, thanks
to (6.19) we may apply Propositions 2-3 with functions φ = φ j , ψ = φi , isometry T =
T i (T j )−1, and defining set

U = U j,i = �
(
Gφ j ∩ T j K i

0

)
⊂ B ′

R�
.

Claim 1. There exists m0 > 0 such that, for all i = 1, . . . , N , for all m ≥ m0 and all
x ∈ {−3L�

m0
≤ F ≤ 3L�

m0

} ∩ K i
ε0
, we have

∂Fi
m

∂ yn
(y) ≥ 1

2
√
1 + L2

�

, for all y = T i x ∈ B ′
R�−ε0

× (−	, 	). (6.20)

Suppose by contradiction this is false; then for every k ∈ N, we may find mk ≥ k and a
sequence xk ∈ {− 3L�

k ≤ F ≤ 3L�

k

}
such that yk = T i xk ∈ B ′

R�−ε0
× (−	, 	) and

∂Fi
mk

∂ yn
(yk) <

1

2
√
1 + L2

�

, for all k ∈ N (6.21)

By compactness, we may extract a subsequence, still labeled as xk , such that xk → x0, and

in particular x0 ∈ K i
0 and F(x0) = 0, hence x0 ∈ ∂� ∩ K i

0 due to (6.10).
Then, by the chain rule we have

∂ f im
∂ yn

(x) = 1 and
∂ f j

m

∂ yn
(x) = (R j (Ri )t

)
nn −

n−1∑

s=1

∂φ
j
m

∂z′s

(
z′
) (R j (Ri )t

)
sn, (6.22)

if x ∈ supp ξ j , where z′ = � T j x . We now distinguish two cases:
(i) j ∈ {1, . . . , N } is such that x0 /∈ supp ξ j . Then dist

(
x0, supp ξ j

)
> 0, hence xk /∈ supp ξ j

for all k ≥ k0 large enough.
(ii) j ∈ {1, . . . , N } is such that x0 ∈ supp ξ j . In this case, it follows that x0 ∈ ∂� ∩
K i
0 ∩ B R�

4
(x j ), so that from (6.19) we have T j x0 ∈ Gφ j ∩ B R�

4
∩ T j K i

ε0
. By setting

(zk)′ = � T j xk , we thus have

B ′
1
mk

(
(zk)′

)
� �

(
Gφ j ∩ T j K i

0

)
,

for all k ≥ k0 large enough. Recalling the remarks after (6.19), by applying Proposition 3,
and in particular the transversality property (5.11) in (6.22), we infer

∂ f j
mk

∂ yn

(
xk
) = (R j (Ri )t

)
nn −

n−1∑

s=1

∂φ
j
mk

∂z′s

(
(zk)′

) (R j (Ri )t
)
sn ≥ 1

√
1 + L2

�

,

provided k ≥ k0 is large enough.
In both cases, we have found that

∂ f j
mk

∂ yn
(xk) ξ j

(
xk
) ≥ ξ j (xk)

√
1 + L2

�

for all j = 1, . . . , N and k ≥ k0. (6.23)
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Also, owing to (6.15) and (6.8) we have

| f j
mk (x

k)|
∣
∣
∣
∂ξ j (xk)

∂ yn

∣
∣
∣ ≤ | f j

mk (x
k) − f j (xk)| |∇ξ j (x

k)| + | f j (xk)| |∇ξ j (x
k)|

≤ 1

mk
+ | f j (xk)| |∇ξ j (x

k)| k→∞−−−→ | f j (x0)| |∇ξ j (x
0)| = 0,

and |∇ξ0(xk)| → |∇ξ0(x0)| = 0 since x0 ∈ ∂�. By coupling this piece of information with
(6.5), (6.21) and (6.23), we finally obtain

1

2
√
1 + L2

�

>
∂Fi

mk

∂ yn
(yk) =

N∑

j=1

∂ f j
mk

∂ yn
(xk) ξ j (x

k) +
N∑

j=1

f j
mk (x

k)
∂ξ j

∂ yn
(xk) − ∂ξ0

∂ yn
(xk)

≥
N∑

j=1

ξ j (xk)
√
1 + L2

�

+
N∑

j=1

f j
mk (x

k)
∂ξ j

∂ yn
(xk) − ∂ξ0

∂ yn
(xk)

k→∞−−−→
N∑

j=1

ξ j (x0)
√
1 + L2

�

= 1
√
1 + L2

�

,

which is a contradiction, and thus (6.20) holds true.
Claim 2. There exists m0 > 0 such that ∀y′ ∈ B ′

R�−ε0
, ∀m ≥ m0, ∃yn ∈ (−	, 	) with

y = (y′, yn) = T i x ∈ T iW satisfying Fi
m(y) ≥ 0.

Again, assume by contradiction this is false. Then for all k ∈ N, we may find sequences
mk ≥ k and (yk)′ ∈ B ′

R�−ε0
such that

Fi
mk

(
(yk)′, yn) < 0 for all yn ∈ (−	, 	) such that

(
(yk)′, yn

) ∈ T iW . (6.24)

By compactness, wemayfind a subsequence, still labeled as (yk)′, satisfying (yk)′ → (y0)′ ∈
B

′
R�−ε0

. Fixwn ∈ (−	, 	) such that
(
(y0)′, wn

) ∈ T iW , and let {wk
n}k∈N ⊂ R be a sequence

satisfying wk
n

k→∞−−−→ wn . Then
(
(yk)′, wk

n

) → (
(y0)′, wn

)
, so that

(
(yk)′, wk

n) ∈ T iW for
k ≥ k0 large enough being W open, and from (6.24) we have Fi

mk

(
(yk)′, wk

n

)
< 0. By using

(6.16) and the Lipschitz continuity of F , it is readily shown that

lim
k→∞ Fi

mk

(
(yk)′, wk

n) = Fi ((y0)′, wn),

whence Fi
(
(y0)′, wn) ≤ 0 for all wn as above, but this contradicts the fact that

Fi
(
(y0)′, wn

)
> 0 whenever wn > φi

(
(y0)′

)
due to (6.10), hence Claim 2 is proven.

Now let y′ ∈ B ′
R�−ε0

; by (6.16) and since Fi
(
y′, φi (y′)

) = 0, we have Fi
m

(
y′, φi (y′)

)
<

0. Thus, owing to Claim 2 we may find yn such that Fi
m(y′, yn) = 0.

The monotonicity property (6.20) of Claim 1, and the fact that ∂�m = {Fm = 0} ⊂
{ L�

m ≤ F ≤ 3L�

m } due to (6.16) ensure that such point yn is unique for all y′ ∈ B ′
R�−ε0

. This

entails the existence of a function ψ i
m : B ′

R�−ε0
→ R such that

Fi
m

(
y′, ψ i

m(y′)
) = 0 for all y′ ∈ B ′

R�−ε0
. (6.25)

Owing to (6.10) and (6.16), we also have that ψ i
m(y′) > φi (y′) for all y′ ∈ B ′

R�−ε0
.

Then, since Fi
m are C∞-smooth, thanks to (6.20) and (6.25), we may repeat the proof of

the implicit function theorem in order to obtain ψ i
m ∈ C∞(B ′

R�−ε0

)
.
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Moreover, via a compactness argument as in Claim 1-2 and (6.1), one can prove that

{

− 3L�

m
≤ F ≤ 3L�

m

}

⊂
N⋃

i=1

B R
8
(xi )

{

− 3L�

m
≤ F ≤ 3L�

m

}

∩ supp ξ0 = ∅, for all m > m0,

(6.26)

so that, in particular, the cylinders
{
K i
2ε0

}N
i=1 are an open cover of ∂�m , and ∂�m∩ supp ξ0 =

∅ provided m > m0 is large enough
We have thus proven that ∂�m is aC∞-smoothmanifold form > m0, with local boundary

charts {ψ i
m}Ni=1 defined on the same coordinate cylinders as {φi }Ni=1, that is (see Fig. 1 above).

T i∂�m ∩ (B ′
R�−ε0

× (−	, 	)
) = {(y′, ψ i

m(y′)) : y′ ∈ B ′
R�−ε0

}
,

T i�m ∩ (B ′
R�−ε0

× (−	, 	)
) = {(y′, yn) : y′ ∈ B ′

R�−ε0
, −	 < yn < ψ i

m(y′)
}
.
(6.27)

6.5 Approximation properties

First, we show that there exists m0 > 0 such that

‖ψ i
m − φi‖L∞(B′

R�−2 ε0
) ≤

6 L�

√
1 + L2

�

m
for all m > m0. (6.28)

Assume by contradiction this is false; then we may find sequences mk ↑ ∞ and (yk)′ ∈
B ′
R�−2ε0

such that

ψ i
mk

(
(yk)′

)− φi ((yk)′
)

>
6 L�

√
1 + L2

�

mk
(6.29)

Up to a subsequence, we have (yk)′ → (y0)′ ∈ B
′
R�−2ε0 , and ψ i

mk

(
(yk)′

) → 	0 ∈ R.

Furthermore, since
(
(yk)′, ψ i

m

(
(yk)′

)) ∈ {Fi
mk

= 0} ⊂ T i { L�

mk
≤ F ≤ 3L�

mk
}, we readily

infer that Fi
(
(y0)′, 	0

) = 0, whence 	0 = φi
(
(y′)0

)
due to (6.10) and (6.2). By continuity

we also have φi
(
(yk)′

)→ φi
(
(y0)′

)
, which implies that

ψ i
mk

(
(yk)′

)− φi ((yk)′
) k→∞−−−→ 0.

Then, for all t ∈ [0, 1], we have
∣
∣
∣Fi
(
(yk)′, t ψ i

mk

(
(yk)′

)+ (1 − t)φi ((yk)′
))− Fi

(
(yk)′, φi ((yk)′

))∣∣
∣

≤ LFi t |ψ i
mk

(
(yk)′

)− φi ((yk)′
)| k→∞−−−→ 0,

where LFi denotes the Lipschitz constant of Fi– recall that Fi = F ◦ (T i )−1, and F is
Lipschitz continuous. This implies that for all k ≥ k0 large enough, the line segment

{
(yk)′

}× [φi ((yk)′
)
, ψ i

mk

(
(yk)′

)] ⊂ T i
{

− 3 L�

m0
≤ F ≤ 3 L�

m0

}
.
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Therefore, by using (6.2), (6.10) (6.16), (6.20) and (6.29), we obtain

3 L�

mk
≥ Fi

(
(yk)′, φi ((yk)′

))− Fi
mk

(
(yk)′, φi ((yk)′

)) = −Fi
mk

(
(yk)′, φi ((yk)′

))

= Fi
mk

(
(yk)′, ψ i

mk

(
(yk)′

))− Fi
mk

(
(y′)k , φi ((y′)k

))

=
(∫ 1

0

∂Fi
mk

∂ yn

(
(yk)′, t ψ i

mk

(
(yk)′

)+ (1 − t) φi ((yk)′
))

dt

)[
ψ i
mk

(
(yk)′

)− φi ((yk)′
)]

>
1

2
√
1 + L2�

6 L�

√
1 + L2

mk
= 3 L�

mk
, for all k ≥ k0 large enough,

which is a contradiction, hence (6.28) holds true.
Now, recalling that {K j

2ε0
}Nj=1 is an open cover of ∂� and ∂�m , from (6.2), (6.27) and

(6.28), one can easily obtain that

distH
(
∂�m, ∂�) ≤

6 L�

√
1 + L2

�

m
.

This convergence property in the sense ofHausdorff immediately implies thatd�m ≤ c(n) d�,
and limm→∞ |�m \ �| = 0—see for instance [9, Proposition 2.2.23]—and thus (3.1), (3.2)
and (3.3) are proven.

Let us now introduce the transition maps related to the local charts of ∂� and ∂�m .
First of all, note that thanks to (6.27), we have

∂�m ∩ K i
ε0

∩ K j
ε0

= (T i )−1Gψ i
m

∩ K j
ε0

= (T j )−1G
ψ

j
m

∩ K i
ε0

and

�m ∩ K j
ε0

∩ K i
ε0

= (T i )−1Sψ i
m

∩ K j
ε0

∩ K i
ε0

= (T j )−1S
ψ

j
m

∩ K i
ε0

∩ K j
ε0

,

(6.30)

whenever ∂�m ∩ K i
ε0

∩ K j
ε0 �= ∅.

For all i ∈ {1, . . . , N }, we define the set of indexes

Ii := { j ∈ {1, . . . , N } : ∂� ∩ K i
2ε0 ∩ K j

2ε0
�= ∅}. (6.31)

If j ∈ Ii , then owing to (6.2) there exists y′ ∈ B ′
R�−2ε0

such that (T i )−1
(
y′, φi (y′)

) ∈
∂�∩K j

2ε0
. Since φ j is L�-Lipschitz continuous and φ j (0′) = 0, we have |φ j (z′)| ≤ L� |z′|,

so it follows from (6.19), (6.27) and (6.28) that (T i )−1
(
y′, ψ i

m(y′)
) ∈ ∂�m ∩ K i

ε0
∩ K j

ε0 for
all m ≥ m0 large enough.

Henceforth, for all j ∈ Ii , (6.19) and (6.30) allow us to define the transitionmaps Ci, j , Ci, jm

from φi to φ j and from ψ i
m to ψ

j
m respectively, i.e.

Ci, j y′ = � T j (T i )−1(y′, φi (y′)
)

Ci, jm y′ = � T j (T i )−1(y′, ψ i
m(y′)

)
,

(6.32)

which are defined on the open sets

Ui, j = �
(
Gφi ∩ T i K j

0

)
and Ui, j

m = �
(
Gψ i

m
∩ T i K j

ε0

)
.
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In particular, by their definitions and the arguments of Sect. 5, we may write

x = (T i )−1(y′, φi (y′)
) = (T j )−1(Ci, j y′, φ j (Ci, j y′)

)
for x ∈ ∂� ∩ K i

0 ∩ K j
0

xm = (T i )−1(y′, ψ i
m(y′)

) = (T j )−1(Ci, jm y′, ψ j
m(Ci, jm y′)

)
for xm ∈ ∂�m ∩ K i

ε0
∩ K j

ε0
.

(6.33)

and their inverse functions are (Ci, j )−1 = C j,i and (Ci, jm )−1 = C j,i
m . Observe also that

Ci,i = Ci,im = Id.
Furthermore, since supp ξ j � BR�/4(x j ) � K j

2ε0
, it follows from the definition of Ii and

(6.28) that

∇kξ j
(
(T i )−1(y′, φi (y′))

) = ∇kξ j
(
(T i )−1(y′, ψ i

m(y′))
) = 0 if j /∈ Ii , (6.34)

for all k ∈ N, for all y′ ∈ B ′
R�−ε0

, and all m ≥ m0.

We now claim that for all j ∈ Ii , there exists an open set V i, j ⊂ B ′
R�−2ε0

for which we
have

ξ j
(
(T i )−1(y′, φi (y′))

) = ξ j
(
(T i )−1(y′, ψ i

m(y′))
) = 0 if y′ /∈ V i, j , (6.35)

and such that V i, j ⊂ Ui, j ∩ Ui, j
m for all m > m0. This in particular implies that both Ci, j

and Ci, jm are defined on V i, j .
To this end, let

V i, j := �
(
Gφi ∩ T i K j

2ε0

)
∩ B ′

R�−2ε0 .

Then, owing to (6.28) it is immediate to verify that

B ′
R�−2ε0 ∩

(

�
(
Gφi ∩ T i BR�/4(x

j )
)

∪ �
(
Gψ i

m
∩ T i BR�/4(x

j )
))

� V i, j , (6.36)

whenever m > m0 is large enough, and thus (6.35) is satisfied by our choice of set V i, j .
Clearly V i, j ⊂ Ui, j , so we are left to verify that V i, j ⊂ Ui, j

m . To this end, let y′ ∈ V i, j ;
then by (6.30) and (6.33) we may write

T j (T i )−1(y′, φi (y′)) = (Ci, j y′, φ j (Ci, j y′)) ∈ B ′
R�−2ε0

×(− L�(R� − 2ε0), L�(R� − 2ε0)
)
,

where in the latter inclusion we made use of the inequality |φ j (z′)| ≤ L� |z′|. Therefore,
thanks to (6.28), for m > m0 we have (T i )−1(y′, ψ i

m(y′)) ∈ ∂�m ∩ K i
ε0

∩ K j
2ε0

, hence

y′ ∈ Ui, j
m by (6.30) and the definition of Ui, j

m , so the claim is proven.
We now prove that

⋃

j∈Ii

V i, j = B ′
R�−2ε0 . (6.37)

Since {K j
2ε0

}Nj=1 is a cover of ∂�, from (6.2) and by the definition of Ii (6.31), we have that
{T i K j

2ε0
} j∈Ii is an open cover of Gφi ∩ K i

2ε0
. We now exploit that the projection map � is

a homeomorphism from Gφi (with the induced topology) to B ′
R�

. More precisely, we have
that

� : Gφi ∩ K i
2ε0 → B ′

R�−2ε0
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is a homeomorphism by definition of K i
2ε0

and (6.2). From these two observations, it follows
that

⋃

j∈Ii

V i, j =
⋃

j∈Ii

�
(
Gφi ∩ T i K j

2ε0

)
∩ B ′

R�−2ε0 = �

( ⋃

j∈Ii

(
Gφi ∩ K i

2ε0 ∩ T i K j
2ε0

)
)

= �
(
Gφi ∩ K i

2ε0

)
= B ′

R�−2ε0
,

that is (6.37).
Then, owing to (6.28) and by proceeding as in the derivation of (5.18), we obtain

‖Ci, jm − Ci, j‖L∞(V i, j ) ≤
6 L�

√
1 + L2

�

m
for all m > m0. (6.38)

Our next goal is to obtain estimates on ∇ψ i
m . To this end, we differentiate equation

Fi
m(y′, ψ i

m(y′)) = 0 with respect to y′
k , for k = 1, . . . , n − 1, and recalling (6.34) we find

∂ψ i
m

∂ y′
k

(y′) = −
(

∂Fi
m(y′, ψ i

m(y′))
∂ yn

)−1 ∑

j∈Ii

{
∂ f j

m(xm)

∂ y′
k

ξ j (x
m) + f j

m(xm)
∂ξ j (xm)

∂ y′
k

}

,

(6.39)

where xm = (T i )−1
(
y′, ψ i

m(y′)
)
, y′ ∈ B ′

R�−2ε0
.

For all l = 1, . . . , n, by using the chain rule and recalling the definition of Ci, jm , we find

∂ f im
∂ y′

l
(xm) = −∂φi

m

∂ y′
l
(y′) and

∂ f im
∂ yn

(xm) = 1

∂ f j
m

∂ yl
(xm) = (R j (Ri )t

)
nl −

n−1∑

r=1

∂φ
j
m

∂z′r
(Ci, jm y′)

(R j (Ri )t
)
rl ,

(6.40)

for all j ∈ Ii such that xm ∈ supp ξ j . Since φ
j
m are L�-Lipschitz continuous, from (6.40) it

follows that

n∑

l=1

∣
∣
∣
∂ f j

m(xm)

∂ yl

∣
∣
∣ ≤ c(n)(1 + L�), for all j ∈ Ii . (6.41)

Moreover, from (6.15), (6.28) and (6.8), we find that f j
m(xm) |∇ξ j (xm)|

m→∞−−−−→ f j (x0) |∇ξ j (x0)| = 0, where x0 = (T i )−1
(
y′, φi (y′)

) ∈ ∂�.
By making use of this piece of information, (6.41) and (6.20), from (6.39) we finally

obtain the gradient estimate

|∇ψ i
m(y′)| ≤ c(n)

(
1 + L2

�

)
, for all y′ ∈ B ′

R�−2ε0 , (6.42)

for all i = 1, . . . , N and m > m0 large enough. In particular, owing to (6.28), (6.27) and
(6.42), it is readily seen that �m are L�m -Lipschitz domains, with

L�m ≤ c(n)
(
1 + L2

�

)
and R�m ≥ R�

c(n)
(
1 + L2

�

) ,

and (3.4) is proven.
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Next, the definition of Ci, j and Ci, jm , (6.42) and the L�-Lipschitz continuity of φi imply

sup
i=1,...,N

sup
j∈Ii

{
‖∇Ci, j‖L∞ + ‖∇Ci, jm ‖L∞

}
≤ c(n)(1 + L2

�) for all m > m0, (6.43)

and in particular Ci, j and Ci, jm are uniformly bi-Lipschitz transformations.
Hence, thanks to (6.38) and (6.43), we are in the position to apply Proposition 1 and get

∂φ
j
m

∂z′r
(Ci, jm y′) m→∞−−−−→ ∂φ j

∂z′r
(Ci, j y′) for Hn−1-a.e. y′ ∈ V i, j . (6.44)

From this, (6.20), (6.35), (6.37), (6.40) and identity (6.39) we find

∇ψ i
m(y′) m→∞−−−−→ G(y′) for Hn−1-a.e. y′ ∈ B ′

R�−2ε0 ,

whereG is a bounded vector valued function which can be explictly written. From (6.42) and

on applying dominated convergence theorem, we get that ∇ψ i
m

m→∞−−−−→ G in L p(B ′
R−2ε0

)

for all p ∈ [1,∞). On the other hand, (6.28) and the uniqueness of the distributional limit
imply that G = ∇φi , hence (3.5) is proven.

6.6 Curvature convergence

Assume now that ∂� ∈ W 2,q for some q ∈ [1,∞). Then the local charts φi ∈ W 2,q(B ′
R�

).

Let y′ ∈ B ′
R�−2ε0

, and differentiate twice the identity Fi
m(y′, ψ i

m(y′)) = 0 with respect to

y′
k y

′
l for k, l = 1, . . . n − 1, as to find

∂2ψ i
m

∂ y′
k∂ y

′
l
(y′) = −

(
∂Fi

m(y′, ψ i
m(y′))

∂ yn

)−1

{
∂2Fi

m(y′, ψ i
m(y′))

∂ y′
k∂ y

′
l

+ ∂2Fi
m(y′, ψ i

m(y′))
∂ y′

l∂ yn

∂ψ i
m

∂ y′
k

(y′)+

+ ∂2Fi
m(y′, ψ i

m(y′))
∂ y′

k∂ yn

∂ψ i
m

∂ y′
l

(y′)+

+ ∂2Fi
m(y′, ψ i

m(y′))
∂ yn∂ yn

∂ψ i
m

∂ y′
k

(y′) ∂ψ i
m

∂ y′
l

(y′)
}

.

(6.45)

By differentiating twice Fi
m = Fm ◦ (T i )−1, and recalling Definition (6.14), for all l, r =

1, . . . n we get

∂2Fi
m

∂ yr∂ yl
(y′, ψ i

m(y′)) =
∑

j∈Ii

{
∂2 f j

m

∂ yr∂ yl
(xm) ξ j (x

m) + ∂ f j
m

∂ yr
(xm)

∂ξ j

∂ yl
(xm)

+ ∂ f j
m

∂ yl
(xm)

∂ξ j

∂ yr
(xm) + f j

m(xm)
∂2ξ j

∂ yr∂ yl
(xm)

}

,

(6.46)

where xm = (T i )−1(y′, ψ i
m(y′)). The above summation is only over the set of indices Ii ,

since ∇kξ j (xm) = 0 owing to (6.35).
We also have

∂2 f j
m

∂ yr∂ yl
(xm) = −

n−1∑

s,t=1

∂2φ
j
m

∂z′s∂z′t
(Ci, jm y′)

(R j (Ri )t
)
sr

(R j (Ri )t
)
tl (6.47)
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for all j ∈ Ii such that xm ∈ supp ξ j .

Thanks to (6.15), (6.28) and (6.8), we readily find that f j
m(xm) |∇ξ j (xm)| → 0 and

f j
m(xm) |∇2ξ j (xm)| → 0. From this, and by using (6.6), (6.20), (6.41), (6.42) and (6.45)-

(6.47), we obtain

|∇2ψ i
m(y′)| ≤ c(n)(1 + L5

�)
∑

j∈Ii

{

|∇2φ
j
m |(Ci, jm y′) ξ j

(
(T i )−1(y′, ψ i

m(y′)
)+ (1 + L�)

R�

}

,

(6.48)

for all y′ ∈ B ′
R�−2ε0

, provided m > m0 is large enough.
Then again, thanks to (6.38) and(6.43), we may apply Proposition 1 and infer

∇2φ
j
m(Ci, jm y′) → ∇2φ j (Ci, j y′) for Hn−1-a.e. y′ ∈ V i, j and in Lq(V i, j ). (6.49)

Finally, recalling (6.35) and (6.37), we may exploit the properties (6.20), (6.28), (6.40),
(6.44), (6.45)-(6.49) in order to apply dominated convergence Theorem 3 with dominating
functions

gm = c(n, L�, R�)
∑

j∈Ii

{

|∇2φ
j
m |(Ci, jm y′) ξ j

(
(T i )−1(y′, ψ i

m(y′)
)+ 1

}

g = c(n, L�, R�)
∑

j∈Ii

{

|∇2φ j |(Ci, j y′) ξ j
(
(T i )−1(y′, φi (y′)

)+ 1

}

This entails

∇2ψ i
m → M, Hn−1-a.e. on B ′

R�−2ε0 and in Lq(B ′
R�−2ε0), (6.50)

for somematrix valued functionM , which can be explictlywritten in terms ofφ j ,∇φ j ,∇2φ j

and ξ j . On the other hand, (6.28) and the uniqueness of the distributional limit imply that
M = ∇2φi , hence (3.6) is proven.

6.7 Proof of the isocapacitary estimate (3.7)

In the following subsection, we will denote by M̃m(h) the convolution of a function h ∈
L1
loc(R

n) with respect to the first (n − 1)-variables, i.e.

M̃m(h)(z′, zn) =
∫

Rn−1
h(x ′, zn) ρm(z′ − x ′) dx ′.

We then have the following elementary lemma, which will be useful later.

Lemma 1 Let v ∈ C∞
c (Rn). Then, if we set

ṽm :=
√
M̃m(v2),

we have that ṽm is Lipschitz continuous on Rn, and

|∇ṽm | ≤ c(n)

√
M̃m
(|∇v|2) a.e. on R

n . (6.51)
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Proof By Hölder’s inequality, for k = 1, . . . , n we have

∣
∣
∣
∣
∂ M̃m(v2)

∂xk

∣
∣
∣
∣ =

∣
∣
∣
∣M̃m

(
∂v2

∂xk

)∣∣
∣
∣ = 2

∣
∣
∣
∣M̃m

(

v
∂v

∂xk

)∣∣
∣
∣ ≤ 2

√
M̃m(v2)

√

M̃m

(∣∣
∣
∣
∂v

∂xk

∣
∣
∣
∣

2)

.

Therefore, on setting ṽε,m :=
√

ε2 + M̃m(v2), for all ε ∈ (0, 1) we have that

|∇ṽε,m | =
∣
∣∇ M̃m(v2)

∣
∣

2
√

ε2 + M̃m(v2)
≤ c(n)

√
M̃m(v2)

√
M̃m(|∇v|2)

√
ε2 + M̃m(v2)

≤ c(n)

√
M̃m
(|∇v|2).

(6.52)

Thus, the sequence {̃vε,m}ε∈(0,1) is uniformly bounded inC0,1
c (Rn), and since ṽε,m

ε→0+−−−→ ṽm

on R
n , we deduce that ṽm ∈ C0,1

c (Rn) by weak-∗ compactness, and the thesis follows by
letting ε → 0 in (6.52) and by Rademacher’s Theorem. ��

Now let x0m ∈ ∂�m ; then owing to (6.26) and (6.16), there exists i ∈ {1, . . . , N } such
that x0m ∈ BR�/8(xi ). Therefore, we may write x0m = (T i )−1

(
(y0)′, ψ i

m

(
(y0)′

))
for some

(y0)′ ∈ B ′
R�/8, and we also set x0 := (T i )−1

(
(y0)′, φi

(
(y0)′

)) ∈ ∂�. Let

r0 := R�

C(n)
(
1 + L2

�

) ,

for some fixed constant C(n) > 1 large enough, and consider r ≤ r0, and v ∈ C∞
c

(
Br (x0m)

)
.

Then, since Br (x0m) � BR�/4(xi ) � K i
2ε0

, we have

∫

∂�m

v2 |B�m | dHn−1 =
∫

B′
R�/4

v2
(
(T i )−1(y′, ψ i

m(y′)
))|B�m (y′)|

√
1 + |∇ψ i

m(y′)|2 dy′.

Consider the new set of indices

J
x0m
r := { j ∈ Ii : Br (x

0
m) ∩ supp ξ j �= ∅}.

Owing to (2.10), (6.33), (6.35), (6.42) and the Hessian estimate (6.48), we obtain

∫

∂�m

v2 |B�m | dHn−1 ≤
√
1 + L2

�

∫

B′
R�/4

v2
(
(T i )−1(y′, ψ i

m(y′)
)) |∇2ψ i

m(y′)| dy′

≤ c(n) (1 + L6
�)

∑

j∈Jx0mr

∫

V i, j

{

v2
(
(T j )−1(Ci, jm y′, ψ j

m(Ci, jm y′)
))×

× ξ j

(
(T j )−1(Ci, jm y′, ψ j

m(Ci, jm y′)
))

Mm
(|∇2φ j |)(Ci, jm y′)

}

dy′

+ c(n)
(1 + L7

�)

R�

|Jx0mr |
∫

B′
R/4

v2
(
(T i )−1(y′, ψ i

m(y′)
))
dy′.

(6.53)
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By using |Jx0mr | ≤ N , (6.3), (3.4) and the results of [2, Corollary 6.6], we get

(1 + L7
�)

R�

|Jx0mr |
∫

B′
R�/4

v2
(
(T i )−1(y′, ψ j

m(y′)
))
dy′ ≤ c(n)

(1 + L7
�) dn�

Rn+1
�

∫

∂�m

v2 dHn−1

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c′(n)
(1 + L25

� ) dn�
Rn+1

�

(∫

Rn
|∇v|2 dx

)

r if n ≥ 3

c
(1 + L31

� ) dn�
Rn+1

�

(∫

R2
|∇v|2 dx

)

r log
(
1 + 1

r

)
if n = 2.

(6.54)

On the other hand, via the change of variables z′ = Ci, jm y′, by making use of (6.43), (6.36),

and observing that Br (x0m) � Ki
2ε0

∩ K j
2ε0

for all j ∈ J
x0m
r , x0m ∈ ∂�m and r ≤ r0, we find

∫

V i, j

{

v2
(
(T j )−1(Ci, jm y′, ψ j

m(Ci, jm y′)
))

ξ j

(
(T j )−1(Ci, jm y′, ψ j

m(Ci, jm y′)
))

Mm
(|∇2φ j |)(Ci, jm y′)

}

dy′

≤ c(n)(1 + L(n−1)
� )

∫

Wi, j
w2

j,m(z′, 0) Mm
(|∇2φ j |)(z′) dz′,

(6.55)

for some open set Wi, j � Ci, j (Ui, j ), where we also set

w j,m(z′, zn) := v
(
(T j )−1(z′, zn + ψ

j
m(z′)

))
.

Since v ∈ C∞
c (Br (x0m)) and x0m = (T j )−1

(
Ci, jm
(
(y0)′

)
, ψ

j
m
(
(y0)′

))
for all j ∈ J

x0m
r , by using

(6.42) it is readily seen that

w j,m ∈ C∞
c

(

Bc(n)(1+L2
�) r

(
Ci, jm
(
(y0)′

)
, 0
))

,

and from the chain rule we find

|∇w j,m(z′, zn)| ≤ c(n)(1 + L2
�)

∣
∣
∣∇v
(
(T j )−1(z′, zn + ψ

j
m(z′)

))∣∣
∣ (6.56)

Next, by using Fubini-Tonelli’s Theorem we obtain
∫

Wi, j
w2

j,m(z′, 0) Mm
(|∇2φ j |)(z′) dz′ =

∫

Wi, j
w2

j,m(z′, 0)
∫

B′
1/m (z′)

|∇2φ j (z̃′)| ρm(z′ − z̃′) dz̃′ dz′

≤
∫

Wi, j+B′
1/m

|∇2φ j (z̃′)|
( ∫

B′
1/m(z̃′)

w2
j,m(z′, 0) ρm(z̃′ − z′) dz′

)
dz̃′.

We have thus found that
∫

Wi, j
w2

j,m(z′, 0) Mm
(|∇2φ j |)(z′) dz′ ≤

∫

W̃ i, j
M̃m(w2

j,m)(z′, 0) |∇2φ j (z′)| dz′,
(6.57)

for some open set W̃ i, j � Ci, j (Ui, j ), provided m > m0 is large enough.
Thanks to Lemma 1 and inequality (6.38), we easily infer

√
M̃m(w2

j,m) ∈ C0,1
c

(

Bc(n)(1+L2
�)(r+ 1

m )

(
Ci, j ((y0)′), 0

))

,
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and
∣
∣
∣∇
√
M̃m(w2

j,m)

∣
∣
∣ ≤ c(n)

√
M̃m
(|∇w j,m |2) a.e. on Rn . (6.58)

Finally, set

h̃ j,m(x ′, xn) :=
√
M̃m(w2

j,m)
(
T j (x ′, xn − φ j (x ′)

))

so that h̃ j,m is Lipschitz continuous on R
n . Moreover, thanks to (6.28), for all j ∈ J

x0m
r , we

have that

Bc(n)(1+L3
�)(r+ 1

m )(x
0) � K i

2ε0 ∩ K j
2ε0

for all m > m0 sufficiently large and all r ≤ r0, and thus we may write x0 =
(T j )−1

(
Ci, j ((y0)′), φ j ((y0)′)

)
due to (6.33). Recalling that φ j is L�-Lipschitz continous,

it follows that

h̃ j,m ∈ C0,1
c

(
Bc(n)(1+L3

�)(r+ 1
m )(x

0)
)
,

and from the chain rule
∣
∣∇h̃ j,m(x ′, xn)

∣
∣ ≤ c(n)(1 + L�)

∣
∣
∣∇
√
M̃m(w2

j,m)(x ′, xn − φ j (x ′))
∣
∣
∣ for a.e. x .

(6.59)

Owing to (2.10) and the definition of h̃ j,m , we have
∫

W̃ i, j
M̃m(w2

j,m)(z′, 0) |∇2φ j (z′)| dz′ =
∫

W̃ i, j
h̃2j,m

(
(T j )−1(z′, φ j (z′))

) |∇2φ j (z′)| dz′

≤ c(n)(1 + L3
�)

∫

W̃ i, j
h̃2j,m

(
(T j )−1(z′, φ j (z′))

) ∣∣B�(z′)
∣
∣
√
1 + |∇φ j (z′)|2 dz′

= c(n)(1 + L3
�)

∫

∂�

h̃2j,m
∣
∣B�

∣
∣ dHn−1

≤ c(n)(1 + L3
�)

(

sup

∫
∂�

h2
∣
∣B�

∣
∣ dHn−1

∫
Rn |∇h|2 dx

) ∫

Rn
|∇h̃ j,m |2 dx,

(6.60)

where the supremum above is taken over all functions h ∈ C0,1
c

(
Bc(n)(1+L3

�)(r+ 1m)(x
0)
)
.

Henceforth, by coupling (6.3) and estimates (6.53)-(6.60), for all v ∈ C∞
c

(
Br (x0m)

)
we

obtain
∫

∂�m

v2
∣
∣B�m

∣
∣ dHn−1 ≤ c(n) (1 + Ln+4

� )

(

sup

∫
∂�

h2
∣
∣B�

∣
∣ dHn−1

∫
Rn |∇h|2 dx

) ∑

j∈Jx0mr

∫

Rn
M̃m
(|∇w j,m |2) dx

+ c̃
∫

Rn
|∇v|2dx

≤ c(n) (1 + Ln+4
� )

(

sup

∫
∂�

h2
∣
∣B�

∣
∣ dHn−1

∫
Rn |∇h|2 dx

) ∑

j∈Jx0mr

∫

Rn
|∇w j,m |2 dx + c̃

∫

Rn
|∇v|2dx

≤ c(n) (1 + Ln+8
� ) N

(

sup

∫
∂�

h2
∣
∣B�

∣
∣ dHn−1

∫
Rn |∇h|2 dx

) ∫

Rn
|∇v|2 dx + c̃

∫

Rn
|∇v|2dx

≤ c′(n) (1 + Ln+8
� )

dn�
Rn

�

(

sup

∫
∂�

h2
∣
∣B�

∣
∣ dHn−1

∫
Rn |∇h|2 dx

) ∫

Rn
|∇v|2dx + c̃

∫

Rn
|∇v|2dx,
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where in the second inequality we made use of Fubini-Tonelli’s Theorem, the supremum

above is taken over all h ∈ C0,1
c

(
Bc(n)(1+L3

�)(r+ 1m)(x
0)
)
, and we set

c̃ = c̃(n, L�, R�, d�, r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(n)
(1 + L25

� ) dn�
Rn+1

�

r if n ≥ 3

c(n)
(1 + L31

� ) dn�
Rn+1

�

r log
(
1 + 1

r

)
if n = 2.

(6.61)

Therefore, for all x0m ∈ ∂�m , r ≤ r0, we have found

sup
v∈C∞

c (Br (x0m ))

∫
∂�m

v2
∣
∣B�m

∣
∣ dHn−1

∫
Rn |∇v|2 dx

≤ c(n) (1 + Ln+8
� ) dn�

Rn
�

(

sup
x0 ∈ ∂�

v ∈ C0,1
c
(
Bc(n)(1+L3

�)(r+1/m)(x
0)
)

∫
∂�

v2
∣
∣B�

∣
∣ dHn−1

∫
Rn |∇v|2 dx

)

+ c̃.

From this, (6.61) and the isocapacitary equivalence [19, Theorem 2.4.1], we finally obtain
the desired estimate

K�m (r) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(n) (1 + Ln+8
� ) dn�

Rn
�

K�

(
c(n)(1 + L3

�)(r + 1
m )
)

+ c(n) (1 + L25
� ) dn�

Rn+1
�

r if n ≥ 3

c(n) (1 + Ln+8
� ) dn�

Rn
�

K�

(
c(n)(1 + L3

�)(r + 1
m )
)

+ c(n) (1 + L31
� ) dn�

Rn+1
�

r log
(
1 + 1

r

)
if n = 2,

(6.62)

for all r ≤ r0 and m > m0, and the proof is complete.
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