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Abstract
In this paper, we investigate variational problems inR2 with the Sobolev norm constraints and
with the Dirichlet norm constraints. We focus on property of maximizers of the variational
problems. Concerning variational problems with the Sobolev norm constraints, we prove that
maximizers are ground state solutions of corresponding elliptic equations, while we exhibit
an example of a ground state solution which is not a maximizer of corresponding variational
problems. On the other hand, we show that maximizers of maximization problems with the
Dirichlet norm constraints and ground state solutions of corresponding elliptic equations are
the same functions, up to scaling, under suitable setting.

Mathematics Subject Classification Primary: 35B38 Critical points of functionals in context
of PDEs (e.g., energy functionals); Secondary: 35A15 Variational methods applied to PDEs ·
35B08 Entire solutions to PDEs · 35J15 Second-order elliptic equations · 35J60 Nonlinear
elliptic equations

1 Introduction

We consider the following variational problems

CG,μ,α := sup

{∫
R2

G(u2)dx

∣∣∣∣ u ∈ H1(R2),

∫
R2

(|∇u|2 + μu2
)
dx = α

}

and

DG,α := sup

{∫
R2 G(u2)dx∫

R2 u2dx

∣∣∣∣ u ∈ H1(R2),

∫
R2

|∇u|2dx = α

}
,

where μ and α are positive constants and G : [0,∞) → R satisfies
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(G1) G(0) = 0, G ∈ C1 ((0,∞);R) and G is convex,
(G2) there exists a nonnegative constant m such that lims→+0 G(s)/s = m and G(s) �≡ ms,
(G3) G(s) ≤ CeCs holds for all s > 0 with some positive constant C .

In the case G(s) = s p with p > 1, problem CG,μ,α is the best constant for the
Sobolev embedding H1(R2) ↪→ L2p(R2) and DG,α is the best constant of the Gagliardo-
Nirenberg-Sobolev inequality. It is known that for any μ and α there exists a function which
attains CG,μ,α by the compactness of the embedding H1

rad(R
2) ↪→ L2p(R2), and DG,α

is also attained. On the other hand, if G(s) = s, then CG,μ,α is the best constant for
H1(R2) ↪→ L2(R2) and the constant is not attained due to the non-compactness of the
embedding H1

rad(R
2) ↪→ L2(R2). Obviously, if G(s) = s, then DG,α = 1 and DG,α is

attained.
In the case G(s) = es − 1 and α ≤ 4π , the constant CG,μ,α is the best constant of the

Trudinger-Moser inequality, which boundedness is obtained by B. Ruf [40]. The existence
of a maximizer for CG,μ,4π is also proved in [40]. In addition to the existence result, it is
shown by M. Ishiwata [16] that there exists a threshold α∗ < 4π such that if α > α∗, then
CG,μ,α > α/μ and CG,μ,α is attained, while if α < α∗, then CG,μ,α = α/μ and CG,μ,α

is not attained. Concerning DG,α , it is shown by T. Ogawa [34] that there exists a positive
constant C0 such that DG,1 ≤ C0 holds. Later, it is shown by Adachi and Tanaka [3] that
DG,α < ∞ holds if and only if α < 4π . In [20] and [7], the existence of a maximizer of
DG,α for any α < 4π is proved. Moreover, by Cassani, Sani and Tarsi [7], a sharp estimate of
DG,α with respect to α is obtained, and then it is proved that the boundedness of DG,α for any
α < 4π is equivalent to the boundedness of CG,μ,α for μ = 1 and α = 4π . For more about
the existence of extremal functions for Trudinger-Moser inequality and its generalization,
we refer reader to [1, 8, 9, 11, 13, 17, 21–23, 26, 27, 31–33, 35, 36] and references therein.

Maximizers of CG,μ,α and of DG,α are solutions of elliptic equations of the form

−�u + ωu = λug(u2) in R
2

with positive constants ω and λ, where g satisfies G(s) = ∫ s
0 g(t)dt , and by proper scaling

of solutions, the equation can be simplified to

− �u + u = �ug(u2) in R
2 (1)

with a positive constant �. Concerning more general equations, equation of the form

{
−�u = f (u) in R

N ,

u ∈ H1(RN )
(2)

has been extensively studied starting from the fundamental papers due toBerestycki andLions
[5] and to Berestycki, Gallouët and Kavian [6]. Equation (2) has the variational structure and
solutions of (2) can be characterized as critical points of the functional I : H1(RN ) → R

defined by

I (u) := 1

2

∫
RN

|∇u|2dx −
∫
RN

F(u)dx,

where F(s) = ∫ s
0 f (t)dt . In [5] and [6], the authors establish the existence of ground state

solution, namely, solutions of (2) which have least energy among all nontrivial critical points
of I , through the minimization problems:
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inf

{∫
RN

|∇u|2dx
∣∣∣∣

∫
RN

F(u)dx = 1

}
for N ≥ 3,

inf

{∫
R2

|∇u|2dx
∣∣∣∣

∫
R2

F(u)dx = 0

}
for N = 2.

The uniqueness of ground state solution is studied in [2, 4, 10, 24, 25, 29, 30, 37–39, 42, 43].
In particular, if f (s) = s p − asq − s with a ≥ 0 and 1 < q < p < (N + 2)/(N − 2), then
the ground state solution of (2) is unique.

In this paper, we investigate property of maximizers of CG,μ,α and of DG,α . More pre-
cisely, we study the relationship between these maximizers and ground state solutions of (1).
As mentioned above, in the case G(s) = s, CG,μ,α is not attained and DG,α is attained by
any functions satisfying the constraint. Thus, it is natural to assume that G(s) �≡ ms in (G2).

Concerningmaximizers ofCG,μ,α andground state solutions of (1),weprove the following
result.

Theorem 1 Assume that u0 ∈ H1(R2) is a maximizer of CG,μ,α . Then, there exists a positive
constant �0 such that u0 is a ground state solution of (1) with � = �0, up to scaling.

The proof of Theorem 1 relies on suitable scaling properties which investigated in [7],
and we use the best constant DG,α to specify the Lagrange multiplier. Moreover, we do not
use any variational techniques to prove Theorem 1.

In general, ground state solution of (1) and maximizer of CG,μ,α are distinct. The next
result is an example of a ground state solution which is not a maximizer of CG,μ,α .

Theorem 2 Assume that G(s) = es − 1 and w� is a ground state solution of (1) for � > 0.
Let αμ = ∫

R2

(|∇w�|2 + μw2
�

)
dx for μ > 0. Then, there exists �∗ ∈ (0, 1) such that for

any � ∈ (0,�∗) and μ > 0, either αμ > 4π or
∫
R2 G(w2

�)dx < CG,μ,αμ provided that
αμ ≤ 4π .

The existence of a ground state solution of (1) with G(s) = es − 1 and � ∈ (0, 1) is
guaranteed by the result of Ruf and Sani [41]. Theorem 2 asserts that a ground state solution
w� of (1) with small � is either a critical point of

∫
R2(eu

2 − 1)dx under the constraint∫
R2

(|∇u|2 + μu2
)
dx ≤ 4π except a maximizer, or a critical point of

∫
R2(eu

2 − 1)dx under
the constraint

∫
R2

(|∇u|2 + μu2
)
dx > 4π , though CG,μ,α = ∞ for α > 4π . Theorems 1

and 2 assert that equivalence of maximizers of CG,μ,α and ground state solutions of (1) does
not hold in general.

To state our results regarding relationship between maximizers of variational problems
DG,α and ground state solutions of (1), we consider the next condition on G.

(G4) DG,α is attained whenever DG,α < ∞.

We prove the following results.

Theorem 3 Assume that G satisfies (G1)-(G3) and v0 ∈ H1(R2) is a maximizer of DG,α .
Then, v0 is a ground state solution of (1) for � = D−1

G,α , up to scaling.

Theorem 4 Assume that G satisfies (G1)-(G4) and w0 ∈ H1(R2) is a ground state solution
of (1) for � > 0. Let α0 = ∫

R2 |∇w0|2dx. Then,
� = D−1

G,α0

and w0 is a maximizer of DG,α0 .
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As for the condition (G4), using results [3, 18, 19] and arguments to prove Theorem 1.1
in [7], we describe some sufficient conditions of (G4). Under the conditions (G1)-(G3), by
the result of [18], if G satisfies

lim
s→∞

sG(s)

eKs
= 0 (3)

for some positive constant K provided that lims→∞ G(s)/eK−s = ∞ and
lims→∞ G(s)/eK+s = 0 for any K− < K < K+, then DG,α < ∞ if and only if α ≤ 4π/K .
Moreover, by the conditions (G1)-(G3) and the arguments of [7], we derive the existence of
a maximizer of DG,α for any α ∈ (0, 4π/K ]. If G satisfies

lim
s→∞

sG(s)

eKs
= ∞ and lim

s→∞
G(s)

eKs
< ∞, (4)

then DG,α < ∞ for α < 4π/K and DG,α = ∞ for α ≥ 4π/K by the results of [3] and [18].
In the former case, there exists a maximizer of DG,α for any α < 4π/K by the same reason
as in the case (3). In the remaining case

0 < lim
s→∞

sG(s)

eKs
< ∞, (5)

the attainability of DG,4π/K depends on lower order perturbations included in G. Conditions
of existence and non-existence of a maximizer of DG,4π/K are given by Theorem 1.1 in [19].
Thus, in addition to the subcritical case,G satisfies (G4) if the growth ofG satisfies (3), (4) or
(5) with an existence condition of Theorem 1.1 in [19]. In particular, functionsG(s) = es −1
and G(s) = s p with p > 1 satisfy (G4). It is shown in Corollary 1.3 in [19] that there exists
a function G satisfying (5) for which there is no mountain pass solution of (1) with small �.
Such function G does not satisfy (G4).

In the special case G(s) = s p with p > 1, a stronger result follows from the uniqueness
result on positive solution of (1) by Kwong [25]. In the situation G(s) = s p for p > 1,
maximizers of CG,μ,α and DG,α are positive solutions of (1) with � = 1, up to dilation and
multiplicative constant of the maximizers. Moreover, the existence of positive ground state
solution of (1) with � = 1 is obtained in [6], and the uniqueness result on positive solution
of (1) with � = 1 is proved in [25]. Thus, these results yield that any maximizers of CG,μ,α

and DG,α for any positive constants μ and α are the same as the unique positive ground state
solution of (1) with � = 1, up to dilation and multiplicative constant.

Different fromTheorem 2, any ground state solution of (1) attains amaximization problem
DG,α for someα under the additional condition (G4). ByTheorems 3, 4 and a scaling property
of (1), existence of a maximizer of DG,α is equivalent to existence of a ground state solution
of (1) with � = D−1

G,α under the condition (G4), and the ground state level is α/2 if a ground
state solution exists.

This paper is organized as follows. In Sect. 2, we prove Theorems 1 and 3. We first
prove Theorem 3, and then, using Theorem 3, we prove Theorem 1. The key argument to
prove Theorems 3 is the characterization of ground state solutions of (2) given in [6] in the
subcritical case. In order to prove Theorem 1, we show that a maximizer of CG,μ,α is also a
maximizer of DG,α1 for some α1 < α. In Sect. 3, we prove Theorem 2. To prove Theorem
2, we estimate the Dirichlet norm of the ground state solution w� for small �. We show that
w� concentrates at origin as� → 0, unless αμ > 4π . Then, under the assumption αμ ≤ 4π ,
we apply blow-up analysis in [27] to w�. In Sect. 4, we prove Theorem 4. In Sect. 5, we
extend Theorems 1, 2, 3 and 4 to higher dimensional case N ≥ 3 and W 1,N (RN ).
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2 Proof of Theorems 1 and 3

In this section, we prove Theorems 1 and 3. In order to prove these theorems, we fix some
notations. For a positive constant K , we define

D∗
G,α,K := sup

{∫
R2

G(u2)dx

∣∣∣∣ u ∈ H1(R2),

∫
R2

|∇u|2dx = α,

∫
R2

u2dx = K

}
.

For G satisfying (G1)-(G3) we define a function g such that G(s) = ∫ s
0 g(t)dt . We define

the energy functional I� : H1(R2) → R corresponding to the equation (1) by

I�(u) := 1

2

∫
R2

(|∇u|2 + u2
)
dx − �

2

∫
R2

G(u2)dx .

Then, the ground state level is defined as

M� := inf

{
I�(u)

∣∣∣∣ u ∈ H1(R2) \ {0} is a solution of (1)

}
.

We summarize some properties of G. By the conditions (G1) and (G2), a lower estimate
G(s) ≥ ms holds for any s ≥ 0 and there exists s0 > 0 such that G(s0) > ms0. Set

S0 := inf

{
s0 ≥ 0

∣∣∣∣ G(s0) > ms0

}
.

Using the convexity of G again, we observe that

G(κs) < κG(s) for any s > S0 and κ ∈ (0, 1). (6)

Moreover, for the same constant S0, we have

G(s) < sg(s) for any s > S0. (7)

Going back to the properties that G(s) ≥ ms holds for any s ≥ 0 and G(s0) > ms0 holds
for some s0, we have

DG,α > m (8)

for any α > 0.
We first prove Theorem 3. Assume that a function G satisfies (G1)-(G3), α > 0 and

v0 ∈ H1(R2) is a maximizer of DG,α . By the Lagrange multiplier theorem, v0 satisfies

− �0�v0 = 1∫
R2 v20dx

(−DG,αv0 + v0g(v
2
0)

)
in R

2, (9)

where �0 ∈ R is the Lagrange multiplier. By (8), we see that ‖v0‖L∞(R2) >
√
S0, and thus

by (7), we have

∫
R2

v20g(v
2
0)dx >

∫
R2

G(v20)dx .
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Multiplying (9) by v0 and integrating over R2, we have

�0

∫
R2

|∇v0|2dx = −DG,α +
∫
R2 v20g(v

2
0)∫

R2 v20dx

> −DG,α +
∫
R2 G(v20)dx∫

R2 v20dx

= 0.

Hence, it holds that �0 > 0.
Set

w0(x) = v0 (θx) with θ :=
√

�0
∫
R2 v20dx

DG,α

. (10)

Then, w0 is a solution of

− �w + w = D−1
G,αwg(w2) in R

2 (11)

and it holds that ∫
R2

|∇w0|2dx = α. (12)

In [6], the Pohozaev identitywas shown under the condition that g has a subcritical growth.
We prove the same equality for G such that (G1)-(G3).

Proposition 5 Assume that a functionG satisfies the conditions (G1)-(G3). Then, any solution
u ∈ H1(R2) of (1) with � > 0 satisfies∫

R2

(
�G(u2) − u2

)
dx = 0.

Proof By the convexity of G, we have

g(s1) ≤ G(s2) − G(s1)

s2 − s1

for any positive constants s1 and s2 with s2 > s1. In particular, it holds that

g(s1) ≤ G(2s1)

s1

for any s1, and then by (G2) and (G3), there exists L > 0 such that

g(s) ≤ LeLs

for any s ≥ 0. By the regularity theory, we derive that u ∈ W 2,q
loc (R2) for any q > 1. Hence,

applying the argument to prove Claim 5.3 in [14], we obtain the equality of the proposition.

�

By Proposition 5, we can write

M� = inf

{
1

2

∫
R2

|∇u|2dx
∣∣∣∣ u ∈ H1(R2) \ {0} is a solution of (1)

}
. (13)

Next, we prove the monotonicity of DG,α with respect to α.
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Proposition 6 Assume that β > 0. Then, for any v ∈ H1(R2) satisfying
∫
R2 |∇v|2dx < β,

it holds that ∫
R2 G(v2)dx∫

R2 v2dx
< DG,β .

Proof Let v ∈ H1(R2) be such that
∫
R2 |∇v|2dx < β and put γ := ∫

R2 |∇v|2dx . We
distinguish two cases:
Case 1.

‖v‖L∞(R2) ≤ √
S0.

In this case, G(v(x)2) coincides with mv(x)2 for a.e. x ∈ R
2. Thus, we have∫

R2 G(v2)dx∫
R2 v2dx

= m < DG,β .

Hence, we obtain desired estimate.
Case 2.

‖v‖L∞(R2) >
√
S0.

We consider

vβ(x) =
√

β

γ
v(x).

It is easy to check that
∫
R2 |∇vβ |2dx = β. Moreover, by the hypothesis and (6), we derive

that ∫
{v>

√
S0}

G
(
v2

)
dx <

γ

β

∫
{v>

√
S0}

G(v2β)dx .

Hence, ∫
R2 G(v2)dx∫

R2 v2dx
<

∫
R2 G(v2β)dx∫

R2 v2βdx
≤ DG,β .

Consequently, we conclude that Proposition 6 holds. 
�
Proof of Theorem 3 Propositions 5 and 6 give that a necessary condition of solutions of (11)
is ∫

R2
|∇w|2dx ≥ α.

The estimate and (13) yield the following lower bound of the ground state level:

MD−1
G,α

≥ α

2
.

Moreover, it holds that, by (12) and (13),

MD−1
G,α

≤ 1

2

∫
R2

|∇w0|2dx = α

2
.

Hence, we derive that MD−1
G,α

= ∫
R2 |∇w0|2/2. Consequently, w0 is a ground state solution

of (11), and by (10), we conclude Theorem 3. 
�

123



  131 Page 8 of 14 M. Hashizume

We next prove Theorem 1. Assume that G satisfies (G1)-(G3), μ > 0, α > 0 and
u0 ∈ H1(R2) is a maximizer of CG,μ,α . The maximizer is a solution of

−�u + μu = �1ug(u
2) in R

2,

where �1 is the Lagrange multiplier characterized by

�1 = α∫
R2 u20g(u

2
0)dx

.

Since α > 0, we see that �1 > 0. We define a constant by

α1 :=
∫
R2

|∇u0|2dx .

Then, we prove the following proposition.

Proposition 7 The function u0 ∈ H1(R2) is a maximizer of DG,α1 and we have

�1 = μ

DG,α1

. (14)

Proof By the constraint of CG,μ,α , we see that∫
R2

u20dx = α − α1

μ
.

Then, it follows from the definitions of CG,μ,α and D∗
G,β,K that

CG,μ,α ≥ D∗
G,α1,(α−α1)/μ

.

Since u0 is a maximizer of CG,μ,α and satisfies the constraint of D∗
G,α1,(α−α1)/μ

, u0 also
attains the best constant D∗

G,α1,(α−α1)/μ
.

Here, for any function v ∈ H1(R2) and positive constant K , we consider the following
scaling

vK (x) = v (θK x) with θK =
√∫

R2 v2dx

K
.

Then, we observe that

D∗
G,β,K

K
= DG,β (15)

for any G and β > 0, and hence, u0 also attains DG,α1 .
Next, we prove the equality (14). The same argument to prove Proposition 5 yields that∫

R2

(
�1G(u20) − μu20

)
dx = 0,

and then we derive that

�1D
∗
G,α1,(α−α1)/μ

− (α − α1) = 0,

or

�1 = α − α1

D∗
G,α1,(α−α1)/μ

.

The equality with (15) gives the equality (14), and hence, Proposition 7 is proved. 
�
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Proof of Theorem 1 Set

w1(x) = u0
(
x/

√
μ

)
.

By Proposition 7 and Theorem 3, w1 is a ground state solution of

−�w + w = D−1
G,α1

wg(w2) in R
2.

Consequently, the proof of Theorem 1 is complete. 
�

3 Proof of theorem 2

Proof of Theorem 2 Suppose thatG(s) = es −1 for s ≥ 1. Let {�n} be a sequence of positive
numbers such that �n → 0 as n → ∞ and let wn ∈ H1(R2) be a ground state solution of

− �w + w = �nwew2
in R

2. (16)

We note thatwn is positive and radially symmetric by the result of [15]. Forμ > 0, a constant
αμ,n denotes

∫
R2

(|∇wn |2 + μw2
n

)
dx and in the following, we assume that αμ,n ≤ 4π . We

first prove that wn does not attain CG,μ,αμ,n for any μ �= 1. Assume on the contrary that∫
R2

(
ew2

n − 1
)
dx = CG,μ,αμ,n holds with μ �= 1. We observe that wn is a solution of

− �w + μw = �μwew2
in R

2 (17)

with a Lagrange multiplier �μ depending on n. Applying the argument in the proof of
Proposition 5 to the above equation, we have∫

R2

[
μw2

n − �μ

(
ew2

n − 1
)]

dx = 0.

On the other hand, by the characterization of ground state solutions of (16) given in [41], we
have ∫

R2

[
w2
n − �n

(
ew2

n − 1
)]

dx = 0. (18)

The two equalities yield that �μ = μ�n . Then, since wn is a solution of both (16) and (17)
again, we have (

1 − 1

μ

)
�wn = 0,

which implies that wn ≡ 0. This is a contradiction, and hence, wn is not a maximizer of
CG,μ,αμ,n for μ �= 1.

In the following, we assume that μ = 1. For simplicity, we set Cα := CG,1,α and
αn := α1,n . We will prove that a ground state solution wn does not attain Cαn for sufficiently
large n. Going back to (18), we derive that

lim
n→∞

∫
R2

(
ew2

n − 1
)
dx∫

R2 w2
ndx

= ∞,

which implies that

lim
n→∞

∫
R2

|∇wn |2dx ≥ 4π

123
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by the results in [3]. The lower bound and the assumption of αn yield that limn→∞ αn = 4π ,
limn→∞

∫
R2 |∇wn |2dx = 4π and

∫
R2 w2

ndx = 0. Hence, {wn} concentrates at the origin,
that is it holds that limn→∞ wn(0) = ∞ and that limn→∞ wn(x) = 0 for all x ∈ R

2\{0}.
Using the same arguments in [27] to prove the existence of maximizers of C4π , we have,
after passing to a subsequence,

lim
n→∞

∫
R2

(
ew2

n − 1
)
dx ≤ πe4π A < C4π

with an explicit constant A. Hence, by the continuity of the best constant Cα with respect to

α, we derive that
∫
R2

(
ew2

n − 1
)
dx < Cαn for large n.

Consequently, for sufficiently large n, it holds that
∫
R2

(
ew2

n − 1
)
dx < Cαn unless αn >

4π . The proof of Theorem 2 is complete. 
�

4 Proof of theorem 4

Proof of Theorem 4 Assume that G satisfies (G1)-(G4) and w0 ∈ H1(R2) is a ground state
solution of (1) for � > 0. We first estimate �. Since G is convex and G satisfies (G2), by
Proposition 5, we derive that

0 =
∫
R2

(
�G(w2

0) − w2
0

)
dx >

∫
R2

(
�mw2

0 − w2
0

)
dx,

and thus, we have �−1 > m.
Let α0 = ∫

R2 |∇w0|2dx . Then, we observe that
1

�
=

∫
R2 G(w2

0)dx∫
R2 w2

0dx
≤ DG,α0 .

To prove �−1 = DG,α0 , assuming that, on the contrary

1

�
< DG,α0 ,

we derive a contradiction. Since DG,α is continuous with respect to α, limα→0 DG,α = m
and m < �−1, there exists β ∈ (0, α0) such that

1

�
= DG,β .

By (G4), there exists vβ ∈ H1(R2) such that
∫
R2 |∇vβ |2dx = β and∫

R2 G(v2β)dx∫
R2 v2βdx

= DG,β .

Thus, by Theorem 3, vβ is another ground state solution of (1), up to scaling. Recalling the
characterization of the ground state level given by (13), we have

M� = 1

2

∫
R2

|∇vβ |2dx = β

2
.

However, since w0 is also a ground state solution of (1), we have

M� = 1

2

∫
R2

|∇w0|2dx = α0

2
,
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which contradicts that β < α0. Consequently, it holds that �−1 = DG,α0 and w0 is a
maximizer of DG,α0 . 
�

5 Higher dimensional case

In this section, we deal with N ≥ 3 and W 1,N (RN ). We consider G : [0,∞) → R satisfies

(G1) G(0) = 0, G ∈ C1 ((0,∞);R) and G is convex,
(G2) there exists a nonnegative constant m such that lims→+0 G(s)/s = m and G(s) �≡ ms,

(G3) G(s) ≤ CeCs
1

N−1 holds for all s > 0 with some positive constant C .

Set

CG,μ,α := sup

{∫
RN

G(|u|N )dx

∣∣∣∣ u ∈ W 1,N (RN ),

∫
RN

(
|∇u|N + μ|u|N

)
dx = α

}

and

DG,α := sup

{∫
RN G(|u|N )dx∫

RN |u|Ndx
∣∣∣∣ u ∈ W 1,N (RN ),

∫
RN

|∇u|Ndx = α

}
,

where μ and α are positive constants. Then, consider the condition

(G4) DG,α is attained whenever DG,α < ∞.

It is worth noting that the results in [18] are extended to the case N ≥ 3 by Masmoudi and
Sani [28]. By the boundedness result in higher dimensional case, if G satisfies (G1)-(G3)
and

lim
s→∞

s
1

N−1G(s)

eKs
1

N−1

= 0 (19)

for some positive constant K provided that lims→∞ G(s)/eK−s
1

N−1 = ∞ and

lims→∞ G(s)/eK+s
1

N−1 = 0 for any K− < K < K+, then DG,α < ∞ if and only if

α ≤ (α∗
N K )N−1, where α∗

N = Nω
1/(N−1)
N−1 and ωN−1 is the surface area of the unit sphere in

R
N . Moreover, DG,α is attained for any α ≤ (α∗

N K )N−1 by the compactness result in [28]
and the arguments of [7] (see Remark 2.8 in [7]). If G satisfies (G1)-(G3),

lim
s→∞

s
1

N−1G(s)

eKs
1

N−1

= ∞ and lim
s→∞

G(s)

eKs
1

N−1

< ∞, (20)

then DG,α < ∞ if and only if α < (α∗
N K )N−1 by [3] and [28]. In the situation DG,α < ∞,

there exists a maximizer of DG,α by the same reason as in the case (19). In the case

0 < lim
s→∞

s
1

N−1G(s)

eKs
1

N−1

< ∞,

different from the case N = 2, condition of existence of a maximizer forDG,(α∗
N K )N−1 is still

open. Thus, if the growth of G satisfies at least (19), (20) or the subcritical growth, then G
satisfies (G4) in the higher dimensional case.
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Quasilinear elliptic equations related to variational problems CG,μ,α and DG,α are of the
form

− �Nu + uN−1 = �uN−1g(uN ), u > 0 in R
N (21)

with positive constant �, where �N is the usual N -Laplace operator defined by �Nu :=
div

(|∇u|N−2∇u
)
. If u ∈ W 1,N (RN ) is a solution of (21), then u ∈ C1,ρ

loc (RN ) by the
conditions (G1)-(G3) and the regularity result obtained by E. DiBenedetto [12]. Thus, by the
same argument to prove Claim 5.3 in [14], we obtain that any solution u ∈ W 1,N (RN ) of
(21) satisfies ∫

RN

(
�G(uN ) − uN

)
dx = 0.

Consequently, we extend Theorems 1-4 to the following results.

Theorem 8 Assume that u0 ∈ W 1,N (RN ) is a maximizer of CG,μ,α . Then, there exists a
positive constant �0 such that u0 is a ground state solution of (21) with � = �0, up to
scaling.

Theorem 9 Assume that

G(s) = es
1

N−1 −
N−2∑
j=0

s
j

N−1

j !

and w� is a ground state solution of (21) for � > 0. Let αμ = ∫
RN

(|∇w�|N + μwN
�

)
dx

for μ > 0. Then, there exists �∗ ∈ (0, (N − 1)!) such that for any � ∈ (0,�∗) and μ > 0,
either αμ > (α∗

N )N−1 or
∫
R2 G(wN

�) < CG,μ,αμ provided that αμ ≤ (α∗
N )N−1.

Theorem 10 Assume that G satisfies (G1)-(G3) and v0 ∈ W 1,N (RN ) is a maximizer ofDG,α .
Then, v0 is a ground state solution of (21) for � = D−1

G,α , up to scaling.

Theorem 11 Assume that G satisfies (G1)-(G4) and w0 ∈ W 1,N (RN ) is a ground state
solution of (21) for � > 0. Let α0 = ∫

R2 |∇w0|Ndx. Then,
� = D−1

G,α0

and w0 is a maximizer of DG,α0 .
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