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Abstract
The aggregation equation arises naturally in kinetic theory in the study of granular media,
and its interpretation as a 2-Wasserstein gradient flow for the nonlocal interaction energy
is well-known. Starting from the spatially homogeneous inelastic Boltzmann equation, a
formal Taylor expansion reveals a link between this equation and the aggregation equation
with an appropriately chosen interaction potential. Inspired by this formal link and the fact
that the associated aggregation equation also dissipates the kinetic energy, we present a novel
way of interpreting the aggregation equation as a gradient flow, in the sense of curves of
maximal slope, of the kinetic energy, rather than the usual interaction energy, with respect to
an appropriately constructed transportation metric on the space of probability measures.
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1 Introduction

In this work we propose a novel, rigorous interpretation of the one-dimensional aggregation
equation

∂t ft = ∂v( ft ∂vW ∗ ft ), W (v) := c |v|3 , (1.1)

where the probability measure ft describes the distribution of velocities of the system at time
t > 0. Here, c > 0 is some constant to be specified later. Equation (1.1) has been considered
in [6, 7, 15, 21] as a kinetic model for the evolution of a granular medium undergoing inelastic
collisions. As we shall see in Sect. 1.3, such an equation can, indeed, be formally derived
from the inelastic and spatially homogeneous Boltzmann equation.

More recently, Equation (1.1) has been studied as a nonlocal interaction equation with an
attractive interaction kernel in, e.g., [8, 14] and references therein, which can be obtained as
the mean-field limit of a set of interacting particles, [11], or as a zero inertia limit [20]. In this
context, the interaction between individuals is described in terms of their relative positions
rather than their relative velocities (i.e., relabelling ‘v’ by ‘x’ in (1.1)). Moreover, it is well-
known that the nonlocal interaction equation can be viewed as a 2-Wasserstein gradient flow
of the nonlocal interaction energy, [2].

This paper focuses on the kinetic description provided in [7]. We show that (1.1) is
a gradient flow of the kinetic energy with respect to a metric that can be understood as
a generalisation of the 2-Wasserstein distance, inspired by the approach in [16, 18] and
motivated by the formal link with the inelastic Boltzmann equation.

In recent years, gradient flow structures have been proposed for several kinetic equations:
for the homogeneous (elastic) Boltzmann equation [18], the linear Boltzmann equation [4],
and the homogeneous Landau equation [3, 12]. See also [1] for a different gradient flow
description of the inhomogeneous granular medium equation. Recently, the authors of [13]
made a connection between the gradient flow structures of the (homogeneous) Boltzmann
and Landau equations. These results indicate that an appropriate gradient flow structure can
link the inelastic Boltzmann equation and the aggregation equation.

In the remainder of the introduction, we give a formal sketch of the main ideas and the
intuition behind our approach, with the inelastic spatially homogeneous Boltzmann equation
acting as the starting point of our discussions. We commence by introducing some necessary
notation and other preliminary notions in Sect. 1.1. Then, in Sect. 1.2, we discuss the inelastic
homogeneous Boltzmann equation. Moreover, we propose a formal gradient flow structure
for this equation with the kinetic energy as the natural energy functional. This is important
in order to draw the connection with the aggregation equation (1.1), via a formal Taylor
expansion which we describe in Sect. 1.3. As a consequence, we can obtain the gradient
flow structure of equation (1.1) in Sect. 1.4. We conclude the introduction in Sect. 1.5 with a
discussion of the main results and an outline of the rest of the manuscript.

1.1 Notation and preliminaries

We use the notation R
2
�

to denote the set {(v, v∗) ∈ R
2 : v �= v∗}. This set often acts as our

state space since it is impossible for particles to collide if they move at the same velocity and
in the same direction. Furthermore, we denote by L p(�,μ), p ≥ 1, the Lebesgue spaces
on some measure space (�,μ) and by L p(�), p ≥ 1, the standard Lebesgue spaces when
� is a smooth Euclidean subdomain1 and μ is the Lebesgue measure. In the same setting,

1 In all of our applications � ∈ {R,R2
�, [0, T ] × R

2
�}, and so all Borel measures are Radon measures.
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we denote by Ck(�) the space of k-times continuously differentiable real-valued functions
on � and Ck

c (�) (resp. Ck
0 (�), Ck

b (�)) the subspace of Ck(�) functions that are compactly
supported (resp. vanishing at infinity, with bounded derivatives up to order k).

We denote by P(�) the set of Borel probability measures on �, and we write M(�)

(resp.M+(�)) to denote finite (resp. non-negative) Radon measures on �, where � is some
Euclidean subdomain. Besides, for p ≥ 1, we denote by

Pp(�) =
{
f ∈ P(�) : mp( f ) :=

∫
�

|v|p d f (v) < ∞
}
,

Pcm
p (�) =

{
f ∈ Pp(�) :

∫
�

v d f (v) = 0

}
.

Additionally, will denote by dp , p ≥ 1, the p-Wasserstein distance, [25]. For two sequences,
{ fn}n ⊂ P(�) and {Un}n ⊂ M(�) as well as two elements f ∈ P(�) and U ∈ M(�), we
write fn → f ∈ P(�) if, by duality with continuous and bounded functions, g ∈ Cb(�),
there holds

∫
�

g d fn →
∫

�

g d f ,

as n → ∞. In this case, we say { fn}n converges narrowly or weakly to f . Moreover, we
write Un → U in M(�) if, by duality with continuous functions that vanish at infinity,
g ∈ C0(�), there holds

∫
�

g dUn →
∫

�

g dU ,

as n → ∞. When satisfied, we say {Un}n converges weakly-∗ to U .
Likewise, we write Un →c U in M(�) if, by duality with continuous functions with

compact support, g ∈ Cc(�), there holds

∫
�

g dUn →
∫

�

g dU ,

as n → ∞. In this case, the induced topology is the vague topology.

1.2 The inelastic Boltzmann equation & decay of the kinetic energy

We consider the time evolution of the velocity distribution, ft , of a system of particles that
undergo inelastic collisions with coefficient of restitution e ∈ [0, 1). Throughout this paper,
we shall denote by v, v∗, the pre-collisional velocities and by v′, v′∗, the post-collisional
velocities, respectively, which can be computed using the following two laws: the reduction
of the relative velocity of the particles due to the inelastic collisions

v′ − v′∗ = −e(v − v∗),

and the conservation of momentum, i.e.,

v′ + v′∗ = v + v∗.

123



  126 Page 4 of 33 A. Esposito et al.

The limit e → 1 corresponds to elastic collisions, while e = 0 models sticky collisions.
Solving for the post-collisional velocities, v′, v′∗, we obtain⎧⎪⎨

⎪⎩
v′= 1 − e

2
v + 1 + e

2
v∗,

v′∗=
1 + e

2
v + 1 − e

2
v∗.

We now define the weak form of the Boltzmann equation. We refer to the appendix for a
formal derivation of the equation from a simple gain-loss argument.

Definition 1.1 (Nonlocal gradient and weak form for the inelastic Boltzmann equation) We
define the nonlocal gradient of a function ϕ ∈ C0(R) as follows

∇ϕ(v, v∗) := ϕ(v′) + ϕ(v′∗) − ϕ(v) − ϕ(v∗)
|v − v∗|2

(v − v∗), (1.2)

for (v, v∗) ∈ R
2
�
, i.e., ∇ϕ : R

2
�

→ R. A curve f : [0, T ] → P(R) is a weak solution
of the inelastic Boltzmann equation with collision kernel σ = σ(|v|) provided that for all
ϕ ∈ C∞

c (R) and almost all t ∈ [0, T ], it holds

〈ϕ, ∂t ft 〉 = 1

2

∫∫
R2

�

σ(|v − v∗|)(v − v∗)∇ϕ(v, v∗) d ft (v) d ft (v∗). (1.3)

The choice of (1.2) is made such that it has the units of inverse velocity and such that it
generalises to higher dimensions in a straightforward manner. By considering its negative
adjoint in the weighted space L2(R2

�
, σ ), we obtain a divergence acting on nonlocal fluxes

U ∈ M(R2
�

) such that
∫

ϕ(v) d(∇ ·U )(v) = −1

2

∫∫
σ(|v − v∗|)∇ϕ(v, v∗) dU (v, v∗). (1.4)

In this sense, we obtain that the weak form (1.3) can be cast into the form of a nonlocal
continuity equation

∂t ft + ∇ ·Ut = 0,

where the associated flux, Ut , is given by

dUt (v, v∗) = (v − v∗) d ft (v) d ft (v∗). (1.5)

Decay of the kinetic energy

For a given velocity distribution, f , we define the kinetic energy as follows

E( f ) := 1

2

∫
R

v2 d f (v) . (1.6)

Due to the fact that collisions between particles are inelastic, one would expect that the post-
collisional kinetic energy is less than the pre-collisional energy. In fact, one can see that the
post-collisional kinetic energy is related to the pre-collisional kinetic energy via

∣∣v′∣∣2 + ∣∣v′∗
∣∣2 = 1 + e2

2

( |v|2 + |v∗|2
) + (

1 − e2
)
vv∗, (1.7)
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for e ∈ [0, 1). We now use the weak formulation, (1.3), to show that the kinetic energy decays
along a solution of the inelastic Boltzmann equation. By noting that, δE

δ f = 1
2v

2, we use (1.7)
to obtain

(v − v∗)∇
(|v|2) = ∣∣v′∣∣2 + ∣∣v′∗

∣∣2 − |v|2 − |v∗|2 = −1 − e2

2
|v − v∗|2 ,

which, upon substituting ϕ = δE
δ f into (1.3), yields

d

dt
E( ft ) = −1 − e2

8

∫∫
R2

�

σ(|v − v∗|) |v − v∗|2 d( ft ⊗ ft )(v, v∗) ≤ 0 .

For the specific case of Maxwell molecules, that is σ(|a|) = |a|, we have
d

dt
E( ft ) = −1 − e2

8

∫∫
R2

�

|v − v∗|3 d( ft ⊗ ft )(v, v∗). (1.8)

Remark 1.2 From (1.8), we can heuristically obtain Haff’s law by considering the evolution
of a family of local equilibria mη such that E(mη) = η. One then obtains an equation for η

of the form

d

dt
η(t) = d

dt
E(mη(t)) � −η(t)

3
2 ,

which leads to

η(t) � 1

1 + t2
.

Hence, the solutions converge on an algebraic time scale to a Dirac measure. A rigorous
proof of this convergence can be found in [22, 23]. From the decay of the kinetic energy
in (1.8), it becomes, indeed, clear that the system loses kinetic energy in the long run, i.e., it
cools down. This leads to the formation of a Dirac measure as time goes to infinity, which is
at the same time a minimiser of (1.6) in the space of probability measures with a fixed centre
of mass. Hence, the only stationary states of the system are Dirac measures.

Identification of a novel gradient structure

From our analysis we know that the system is driven by the kinetic energy (1.6), whose first

variation δE
δ f = v2

2 can be identified in the flux (1.5) by re-expressing it as

dUt (v, v∗) = − 4

1 − e2
∇ δE

δ f
(v, v∗) d( ft ⊗ ft )(v, v∗) .

In this way, we can reformulate the homogeneous inelastic Boltzmann equation in its weak
form (1.3) as

〈ϕ, ∂t ft 〉 = − 2

1 − e2

∫∫
R2

�

σ(|v − v∗|)∇ δE
δ f

(v, v∗)∇ϕ(v, v∗) d( ft ⊗ ft )(v, v∗),

which by the definition of the divergence from (1.4) becomes

∂t ft = 4

1 − e2
∇ ·

(
f ⊗ f ∇ δE

δ f

)
,

123



  126 Page 6 of 33 A. Esposito et al.

whence we can identify the kinetic relation, also called Onsager operator, between forces2

and fluxes as

K f ψ = − 4

1 − e2
∇ · ( f ⊗ f ∇ψ),

which in the weak form becomes

〈ϕ, K f ψ〉 = 2

1 − e2

∫∫
R2

�

σ(|v − v∗|)∇ϕ∇ψ d( f ⊗ f )(v, v∗). (1.9)

Remark 1.3 (The Onsager operator for elastic Boltzmann and physical kernels) In particular,
we observe that K f is only defined for e ∈ [0, 1) and becomes meaningless in the elastic
limit e → 1. Nevertheless, it has structural similarities to the Onsager operator introduced
in [18] for the homogeneous elastic Boltzmann equation.

1.3 Formal derivation of the aggregation equation

This section is dedicated to a formal derivation of the aggregation equation from the inelastic
Boltzmann equation. To this end,we consider theweak formulation of the inelasticBoltzmann
equation, (1.3). For v′ close to v∗ and v′∗ close to v, i.e., for almost elastic collisions, i.e.,
e ≈ 1, by (1.2), we have

∇ϕ ∼ 1 − e

2
(ϕ′(v∗) − ϕ′(v)) + O

(∣∣∣∣1 − e

2

∣∣∣∣
2

|v − v∗|
)

. (1.10)

Substituting this into (1.3) and disregarding all higher order terms, we obtain

〈ϕ, ∂t ft 〉 =
(
1 − e

4

) ∫∫
R2

�

σ(|v − v∗|)(v − v∗)(ϕ′(v∗) − ϕ′(v)) d( ft ⊗ ft )(v, v∗).

(1.11)

Letting the function 	 : R → R be such that ∂v	(v) = σ(|v|) v, the above equation
simplifies to

〈ϕ, ∂t ft 〉 =
(
1 − e

4

) ∫∫
R2

�

∂v	(v − v∗)(ϕ′(v∗) − ϕ′(v)) d( ft ⊗ ft )(v, v∗). (1.12)

Unsymmetrising in v and v∗ yields

〈ϕ, ∂t ft 〉 = −
(
1 − e

2

) ∫∫
R2

�

∂v	(v − v∗)ϕ′(v) d( ft ⊗ ft )(v, v∗)

= −
∫

R

ϕ′(v)

∫
R

(
1 − e

2

)
∂v	(v − v∗) d( ft ⊗ ft )(v, v∗).

(1.13)

Choosing

W (v) = 1 − e

2
	(v),

it is immediate to see that (1.13) is the weak formulation of the aggregation equation

∂t ft = ∂v( ft ∂vW ∗ ft ). (1.14)

2 In this setting the force is understood in the generalised sense as a derivative in phase space.
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Note that for the physical kernel, σ(|v|) = |v|, the interaction potential for the aggregation
equation becomes

W : R → R+, v �→ 1 − e

6
|v|3 . (1.15)

Furthermore, we stress that this expansion relies on the fact e < 1 as otherwise the evolution
is trivial, i.e., 〈ϕ, ∂t ft 〉 = 0 in (1.11).

1.4 Formal gradient flow structure of the aggregation equation

As previously mentioned, the aggregation equation can be cast into a 2-Wasserstein gradient
flow framework (cf. e.g. [2, 14]) for the nonlocal interaction energy

W( f ) = 1

2

∫∫
R2

�

W (v − v∗) d( f ⊗ f )(v, v∗) ,

which is dissipated along the flow, (1.14), in such a way that

d

dt
W( ft ) = −

∫
R

|∂vW ∗ ft |2 d ft (v).

As demonstrated in Sect. 1.3, the aggregation equation can be formally derived from the
inelastic Boltzmann equation. It is therefore not unreasonable to expect that the aggregation
equation is also a gradient flow for the kinetic energy defined in (1.6). To this end, we study
its dissipation along the flow of equation (1.12). For convenience, we introduce the notation

σe(|v − v∗|) := 1 − e

4
|v − v∗|, (1.16)

which we shall use throughout this work. Setting ϕ(v) = v2/2 we have

d

dt
E( ft ) = −

∫∫
R2

�

|v − v∗|2 σe(v − v∗) d( ft ⊗ ft )(v, v∗) =: −D( ft ) ≤ 0 , (1.17)

whereD : P(R) → [0,+∞] is the so-called dissipation functional. Thus, the kinetic energy
is a Lyapunov function for the dynamics of the aggregation equation.

The preceding computation reveals an energy-dissipation structure of the aggregation
equation with respect to the kinetic energy, cf. (1.17), which suggests there may exist an
appropriate metric for which (1.14) is a gradient flow of E( f ). Next, we identify the Onsager
operator for thismetric and, using the new formalism, derive theweak form of the aggregation
equation. More precisely, (1.11) becomes

−〈ϕ, ∂t ft 〉 = −
∫∫

R2
�

σe(|v − v∗|)(v − v∗)(ϕ′(v∗) − ϕ′(v)) d( ft ⊗ ft )(v, v∗)

=
∫∫

R2
�

σe(|v − v∗|)
(

∂v

δE
δ f

(v∗) − ∂v

δE
δ f

(v)

)
ϕ′(v∗) − ϕ′(v) d( ft ⊗ ft )(v, v∗)

= 〈ϕ, K agg
ft

DE〉, (1.18)
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where σe is as in (1.16). Then, we can read off the appropriate Onsager operator in its weak
form

〈ϕ, K agg
f ψ〉=

∫∫
R2

�

σe(|v − v∗|)(ϕ′(v∗) − ϕ′(v)) (ψ ′(v∗) − ψ ′(v)) d( ft ⊗ ft )(v, v∗) ,

(1.19)

where f ∈ P(R), ϕ ∈ C1
c (R) is a test function, and ψ ∈ C1

c (R) a driving vector field.

By virtue of (1.19), we note that the Onsager operator induces a positive-definite
(〈ϕ, K agg

f ϕ〉 ≥ 0), bilinear form which is structurally similar to the operator in (1.9). To
make this connection more evident, we rewrite the expression in (1.19) in terms of the gra-
dient defined in the following definition, ∇̃. The similarity with the Onsager operator of
Sect. 1.2 is in particular seen since, up to a multiplicative constant, one can be obtained from
the other by replacing ∇̃ by ∇ or vice-versa, cf. (1.10), i.e., ∇ϕ ≈ 1−e

2 ∇̃ϕ.

Definition 1.4 (Nonlocal-local gradient) For any function ϕ ∈ C1(R)we define its nonlocal-
local gradient ∇̃ϕ : R2

�
→ R by

∇̃ϕ(v, v∗) = ϕ′(v∗) − ϕ′(v), for all (v, v∗) ∈ R
2
�

. (1.20)

Using this definition, we revisit (1.19), which now reads

〈ϕ, K agg
f ψ〉 =

∫∫
R2

�

σe(|v − v∗|)∇̃ϕ(v, v∗) ∇̃ψ(v, v∗) d( f ⊗ f )(v, v∗). (1.21)

Based on this definition, (1.17) can be written as

d

dt
E( ft ) = −

∫∫
R2

�

∣∣∣∣∇̃ δE
δ f

∣∣∣∣
2

σe(v − v∗) d( ft ⊗ ft )(v, v∗) =: −D( ft ) ≤ 0. (1.22)

Remark 1.5 (Connection to graphs) From Definition 1.4, we can read a continuous graph
structure (R,R2

�
), where R is the set of vertices and R

2
�

that of edges, equipped with an
operator ∇̃ : C1(R) → C(R2

�
) connecting test functions on vertices to test functions on

edges. This gives rise to the negative dual operator, which we interpret as a divergence
∇̃· : M(R2

�
) → M(R) connecting a flux on the edge set R2

�
to an infinitesimal change of

state, i.e., a tangential direction (seeDefinition 2.1).Moreover, note that the driving force field
∇̃δ f E(v, v∗) is in our case not just a difference of potential values at δ f E(v) and δ f E(v∗), as
it is the case for simple graph gradients (see e.g. [19]), but rather a difference of rates (δ f E)′.
It is in this sense that ∇̃ is nonlocal-local.

1.5 Outline and results

In this paper, we show that the kinetic energy (1.6) is not merely a Lyapunov functional for
the aggregation equation as was shown in (1.22). Indeed, the aggregation equation can be
cast into a rigorous metric gradient flow setting where a dynamical transport cost induces the
metric in the spirit of [5, 16], and the kinetic energy acts as the driving energy functional.

The variational description we propose provides a promising setting to make rigorous the
link with the inelastic spatially homogeneous Boltzmann equation, i.e., to rigorously derive
the aggregation of particles from the inelastic spatially homogeneous Boltzmann equation, as
was formally shown in [7]. This investigation is kept for future work, along with an extension
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of our results to more general and singular collision kernels, as well as to higher dimensions,
following, e.g., [24].

We start by introducing a generalised notion of the continuity equation based on the
aforementioned nonlocal-local operators, ∇̃, and its formal negative adjoint, ∇̃· (cf. Defini-
tion 2.1). This consists of a pair {( ft ,Ut )}t∈[0,T ] ⊂ P(R) ×M(R2

�
) satisfying, in a suitable

measure-valued sense (see Definition 2.2), the equation

∂t ft + ∇̃ ·Ut = 0, on [0, T ] × R. (CE)

Using the definition of the Onsager operator in (1.21), we then introduce an action-density
functional, A : P(R) × M(R2

�
) → [0,∞], which gives rise to a dynamical transport

cost, dA(μ0, μ1), by minimising the total action of a curve {( ft ,Ut )}t∈[0,1] connecting two
measures μ0, μ1 ∈ P(R) and satisfying (CE), cf. Theorem 2.19.

Moreover, in thismetric setting, we are able to provide a characterisation ofweak solutions
to the aggregation equation in the form (1.18) as curves of maximal slope. To this end, we
define along any curve {( ft ,Ut )}t∈[0,T ] of finite action staisfying (CE) the so-calledDeGiorgi
functional

GT ( f ) = E( fT ) − E( f0) + 1

2

∫ T

0
A( ft ,Ut ) dt + 1

2

∫ T

0
D( ft ) dt ≥ 0

where the non-negativity is the consequence of a suitable chain rule (see Lemma 3.3). The
weak solutions to (1.18) are found to be elements of the zero locus of theDeGiorgi functional,
i.e., GT ( f ) = 0. Conversely, any element of the zero locus of the De Giorgi functional is
necessarily a weak solution to the aggregation equation (see Theorem 3.6). Finally, we prove
that curves of maximal slope are stable with respect to convergence of the initial measures
μn
0 → μ0 such that E(μn

0) → E(μ0) (cf. Theorem 3.8). This allows us to prove the existence
of gradient flow solutions based on a finite-dimensional particle approximation (see Theorem
3.9).

2 The nonlocal-local continuity equation and the collisionmetric

2.1 A nonlocal-local continuity equation

For the subsequent analysis, we study arbitrary curves, { ft }t∈[0,T ] ⊂ P(R), in the set of
probability measures induced by a driving field, ψt , connecting two probability measures
f0, fT ∈ P(R). By (1.19) and (1.21), we have

〈ϕ, ∂t ft 〉 = −〈ϕ, K agg
ft

ψt 〉
= −

∫∫
R2

�

ft (v) ft (v∗)σe(|v − v∗|)∇̃ϕ(v, v∗)∇̃ψt (v, v∗) dv dv∗,

which we take as the basis for the definition of a nonlocal-local continuity equation (CE). To
this end, we first define an appropriate divergence as the formal adjoint of the nonlocal-local
gradient from Definition 1.4.

Definition 2.1 (Nonlocal-local divergence) For any U ∈ M(R2
�

), its nonlocal-local diver-
gence ∇̃ ·U ∈ M(R) is defined as negative dual with weight σe of ∇̃, i.e., for all ϕ ∈ C1

c (R)
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it holds ∫
R

ϕ(v) d(∇̃ ·U )(v) = −
∫∫

R2
�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU (v, v∗)

=
∫∫

R2
�

ϕ′(v)σe(|v − v∗|)( dU (v, v∗) − dU (v∗, v)).

Now, we can define the nonlocal-local continuity equation.

Definition 2.2 (Weak solution to (CE)) A pair {( ft ,Ut )}t∈[0,T ] is called (weak) solution of
the nonlocal-local continuity equation (CE) on [0, T ] if there exist two families of measures
{ ft }t∈[0,T ] ⊂ P(R) and {Ut }t∈[0,T ] ⊂ M(R2

�
) such that the map t �→ ft (resp. t �→ Ut ) is

measurable with respect to the weak-∗ topology on finite Radon measures and they satisfy
the following integrability condition

∫ T

0

∫∫
R2

�

σe(|v − v∗|) d|Ut |(v, v∗) dt < +∞, (2.1)

along with the weak form of the nonlocal-local continuity equation (CE) for every
C1
c ((0, T ) × R)

∫ T

0

∫
R

∂tϕt (v) d ft (v) dt +
∫ T

0

∫∫
R2

�

σe(|v − v∗|)∇̃ϕt (v, v∗) dUt (v, v∗) dt = 0. (2.2)

We denote byCET (μ0) the class of solutions {( ft ,Ut )}t∈[0,T ] of the nonlocal-local continuity
equation on [0, T ] starting at μ0, and we write CET (μ0, μT ) for solutions connecting μ0

with μT . We will drop the subscript T whenever T = 1.

Note that the second term in the weak formulation (2.2) of the (CE) is well-defined under
the integrability condition (2.1), since |∇̃ϕt (v, v∗)| ≤ 2‖∂vϕt (·)‖C0(R), for all t ∈ [0, T ].
Remark 2.3 (Strong form of (CE)) Note that, for Ut � ft ⊗ ft and ft � dv for any
t ∈ [0, T ], after an integration by parts in v of (2.2), we arrive at

〈ϕ, ∂t ft 〉 = −
∫

R

ϕ(v)2 ∂v

(∫
R

ft (v) ft (v∗)σe(|v − v∗|)∇̃ψt (v, v∗) dv∗
)
dv. (2.3)

From (2.3), we have that a couple, ( ft , ψt ), consisting of the curve, ft , and the driving field,
ψt , satisfies the strong form of the nonlocal-local continuity equation provided that

∂t ft + 2∂v

∫
R

ft (v) ft (v∗)σe( |v − v∗| )∇̃ψt dv∗ = 0,

where ∇̃ψ = ψ ′(v∗) − ψ ′(v), as in Definition 1.4. In the following, we will always use the
weak formulation in the sense of Definition 2.2.

As a matter of fact, the integrability condition, (2.1), allows us to infer additional time
regularity in that we can prove the existence of a continuous representative for weak solutions
to the nonlocal-local continuity equation as stated in the following proposition.

Proposition 2.4 (Continuous representative) Let {( ft ,Ut )}t∈[0,T ] be a solution to the (CE)
in the sense of Definition 2.2. Then, there exists a narrowly continuous curve [0, T ] � t �→
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f̃t ∈ P(R) such that ft = f̃t for L1-a.e. t ∈ (0, T ) and, for any test function ϕ ∈ C1
c (R),

there holds

d

dt

∫
ϕ(v)d f̃t (v) =

∫∫
R2

�

∇̃ϕ(v, v∗)σe(|v − v∗|)dUt (v, v∗). (2.4)

Proof Let {( ft ,Ut )}t∈[0,T ] be a solution in the sense ofDefinition 2.2 andϕ ∈ C1
c ((0, T )×R)

be a test function. Following the argument of [2, Lemma 8.1.2] or [17, Lemma 3.1] by setting
V (t) := ∫∫

R2
�

σe(|v − v∗|) d|Ut |(v, v∗), we arrive at

∫
R

ϕt2(v) d f̃t2(v) −
∫

R

ϕt1(v) d f̃t1(v)

=
∫ t2

t1

∫
R

∂tϕt (v) d ft (v) dt +
∫ t2

t1

∫∫
R2

�

∇̃ϕt (v, v∗)σe(|v − v∗|) dUt (v, v∗) dt,
(2.5)

for any 0 ≤ t1 < t2 ≤ T . In order to obtain the expression claimed in the statement of the
proposition, let us choose a sequence of test functions that are in product formandwhose time-
component is an approximation of the indicator on an interval (t1, t2) with 0 < t1 < t2 < T ,
i.e.,

ϕε(t, v) = ψε(t)φ(v),

where suppψε = [t1−ε, t2+ε] such thatψε(t) = 1 for t ∈ [t1, t2] andψε ∈ C1
c ([0, T ]), φ ∈

C1
c (R). We may, for instance, choose the following approximating sequence

ψε(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t ∈ (−∞, t1 − ε),

ε−1(t − t1 + ε), t ∈ (t1 − ε, t1),
1, t ∈ (t1, t2),
ε−1(t2 + ε − t), t ∈ (t2, t2 + ε),

0, t ∈ (t2 + ε,∞).

Upon substituting ϕε(t, x) into (2.5), we obtain

∫ t2+ε

t1−ε

∫
R

∂tϕ
ε(t, v) d ft (v) dt +

∫ t2+ε

t1−ε

∫∫
R2

�

∇̃ϕε(t, v, v∗)σe(|v − v∗|) dUt (v, v∗) dt = 0,

whence

∣∣∣∣∣
1

ε

(∫ t1

t1−ε

∫∫
R2

�

φ(v) d f nt (v) dt −
∫ t2+ε

t2

∫∫
R2

�

φ(v) d f nt (v) dt

)∣∣∣∣∣
≤

∫ t2+ε

t1−ε

∫∫
R2

�

∣∣∇̃φ(v, v∗)
∣∣ σe(|v − v∗|) d

∣∣Un
t

∣∣(v, v∗) dt

≤ 2
∥∥φ′∥∥

C0(R)

∫ t2+ε

t1−ε

∫∫
R2

�

σe(|v − v∗|) d|Un
t |(v, v∗) dt,
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where (2.1) ensures that the right-hand side is L1-integrable which then acts as the modulus
of absolute continuity. Letting ε → 0, we have∣∣∣∣∣

∫∫
R2

�

φ(v) d f nt1 (v) dt −
∫∫

R2
�

φ(v) d f nt2 (v) dt

∣∣∣∣∣
≤ 2

∥∥φ′∥∥
C0(R)

∫ t2

t1

∫∫
R2

�

σe(|v − v∗|) d|Un
t |(v, v∗) dt,

implying the narrow continuity of f̃t . ��
Remark 2.5 (Extension of test function class) In view of (2.4) and the integrability condition
on the flux we can choose ϕ ∈ Lip(R) as test-function class.

We now show two peculiar properties of the solutions to the nonlocal-local continuity
equation.

Proposition 2.6 (Preservation of centre of mass and bounded first moments) Let f0 ∈ P(R)

be such that
∫

v d f0(v) < ∞. Then, any {( ft ,Ut )}t∈[0,T ] ∈ CET ( f0) preserves the centre of
mass, that is for all t ∈ [0, T ] it holds∫

R

v d ft (v) =
∫

R

v d f0(v).

Likewise, if f0 ∈ P(R) is such that
∫ |v| d f0(v) < ∞, then any {( ft ,Ut )}t∈[0,T ] ∈ CET ( f0)

satisfies for all t ∈ [0, T ] the bound∣∣∣∣ ddt
∫

R

|v|d ft (v)

∣∣∣∣ ≤ 2
∫∫

R2
�

σe(|v − v∗|)d|Ut |(v, v∗). (2.6)

Proof Let R > 0 and let us consider the function ϕR : R → R defined as

ϕR(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, v ∈ (−∞,−2R),

−2R − v, v ∈ (−2R,−R),

v, v ∈ (−R, R),

2R − v, v ∈ (R, 2R)

0, v ∈ (2R,∞).

(2.7)

Note that ∣∣∇̃ϕR(v, v∗)
∣∣ ≤ 2, for almost all (v, v∗) ∈ R

2
�

;
while, at the same time∣∣∇̃ϕR(v, v∗)

∣∣ = 0, for (v, v∗) ∈ [−R, R]2.
By Remark 2.5, this is an admissible test function in (2.4) and we can estimate∣∣∣∣

∫
ϕR(v) d ft (v) −

∫
ϕR(v) d f0(v)

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫∫
R2

�

(ϕ′
R(v∗) − ϕ′

R(v))σe(|v − v∗|) dUs(v, v∗) ds
∣∣∣∣

≤ 2
∫ t

0

∫∫
R2

�
\[−R,R]2

σe(|v − v∗|) d |Us | (v, v∗) ds → 0, as R → ∞.
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Since
∫

ϕR(v) d f0(v) → ∫
v d f0(v) ∈ R, this concludes the proof of the preservation of

the centre of mass. The bound for the first moment, follows from a similar construction,
by choosing |ϕR |, with ϕR as in (2.7), to be the test function in (2.4). Indeed, we note∣∣∇̃ |ϕR | (v, v∗)

∣∣ ≤ 2, for almost all (v, v∗) ∈ R
2
�
. Hence, for any 0 ≤ s < t ≤ T we have

∣∣∣∣
∫

|ϕR(v)| d ft (v) −
∫

|ϕR(v)| d fs(v)

∣∣∣∣ ≤ 2
∫ t

s

∫∫
R2

�

σe(|v − v∗|) d |Us | (v, v∗) ds.

Then, we obtain the bound (2.6) after dividing by t − s, letting t → s, and noting that
|ϕR(v)| → |v| as R → ∞. ��

In the following proposition, we provide a sufficient condition for the existence of a weak
solution to the nonlocal-local continuity equation. In particular, any curve that is absolutely
continuous with respect to 2-Wasserstein distance, denoted by d2, connecting two probability
measures μ0 and μT , and preserving the centre of mass, is also a weak solution to (CE).

Proposition 2.7 (Existence of weak solutions) Let μ0, μT ∈ P(R) be with equal cen-
tre of mass, i.e.,

∫
v dμ0(v) = ∫

v dμT (v), and d2(μ0, μT ) < ∞. Then, there exists
{( ft ,Ut )}t∈[0,T ] ∈ CET (μ0, μT ).

Proof Since d2(μ0, μT ) < ∞, there exists an absolutely continuous curve ft : [0, T ] →
P(R) connecting μ0 and μT preserving the centre of mass and a vector field V ∈
L2(0, T ; L2(R, d ft )) such that the flux dCt = Vt d ft satisfies for a.e. t ∈ [0, T ]

d

dt

∫
R

ϕ(v) d ft (v) =
∫

R

∂vϕ(v) dCt (v),

for all ϕ ∈ C1
c (R). Note that we may simply take the 2-Wasserstein geodesic as such a curve.

By a similar argument as in the proof of Proposition 2.6 using the test-function (2.7), from the
preservation of the centre of mass we obtain that Ct has mean zero, that is for a.e. t ∈ [0, T ]
it holds

∫
R
dCt = 0. The well-posedness of the weak form follows by noting that

∫ T

0

∫
R

d|Ct |(v) dt =
∫ T

0

∫
R

|Vt | d ft (v) dt ≤ T
1
2 ‖V ‖L2(0,T ;L2(R, d ft )) < ∞. (2.8)

We define for all t ∈ [0, T ] the flux Ut ∈ M(R2
�

) by

dUt (v, v∗) := 1

2σe(|v − v∗|) ( d ft (v) dCt (v∗) − dCt (v) d ft (v∗)).

We can check that the resulting pair satisfies ( ft ,Ut )t∈[0,T ] ∈ CET (μ0, μT ). First, we check
the weak form (2.4) for which we take any ϕ ∈ C1

c (R) and obtain

d

dt

∫
R

ϕ(v) d ft (v) dt =
∫∫

R2
�

∇̃ϕ(v, v∗)σe(|v − v∗|) dUt (v, v∗)

=
∫∫

R2
�

(ϕ′(v∗) − ϕ′(v))
1

2
( dCt (v∗) d ft (v) − dCt (v) d ft (v∗))

=
∫

R

∂vϕ(v) dCt (v),
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where we have used the fact that
∫

R
dCt (v) = 0. Second, we check the integrability condi-

tion (2.1) and bound
∫ T

0

∫∫
R2

�

σe(|v − v∗|)d|Ut |(v, v∗) dt = 1

2

∫ T

0

∫∫
R2

�

( d ft (v) d|Ct |(v∗) + d|Ct |(v) d ft (v∗)) dt

≤
∫ T

0

∫
R

d|Ct |(v) < ∞,

by the bound (2.8). ��

2.2 The action-density functional and its properties

This section is dedicated to introducing the action-density functionalwhichplays a crucial role
in the subsequent analysis. We start by considering the auxiliary function α : R+ ×R → R+
given by

α(s, u) :=

⎧⎪⎨
⎪⎩

u2
s , if s > 0,

0, if u = 0,

+∞, if u �= 0, s = 0.

(2.9)

We observe that α is jointly convex, lower semicontinuous, and 1-homogeneous.
Following the strategy of [16–19], we define the action-density functional.

Definition 2.8 (Action-density functional) For any f ∈ P(R) and U ∈ M(R2
�

), set |λ| =
f ⊗ f + |U | ∈ M+(R2

�
). We define the action-density functional by

A( f ,U ) :=
∫∫

R2
�

α

(
d f ⊗ f

d|λ| ,
dU

d|λ|
)

σe(|v − v∗|) d|λ|(v, v∗) ,

where the function α is defined as in (2.9).

Note that the above definition is independent of the choice of |λ| as long as f ⊗ f +|U | � |λ|.
In the next lemma, we see that the flux of any couple, ( f ,U ), with finite action-density, takes
a specific form.

Lemma 2.9 Let f ∈ P(R) and U ∈ M(R2
�

) be such that A( f ,U ) < +∞. Then, there

exists a Borel function Û : R2
�

→ R such that

dU (v, v∗) = Û (v, v∗)d( f ⊗ f )(v, v∗) ,

and the action-density is given by

A( f ,U ) =
∫∫

R2
�

|Û |2(v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗) .

In particular, if f � L then U � L ⊗ L, as well.

Proof Let f ∈ P(R), U ∈ M(R2
�

), and |λ| ∈ M+(R2
�

) be as in Definition 2.8 such that
A( f ,U ) < ∞. Then, setting μ := f ⊗ f , the action functional can be written as

A( f ,U ) =
∫∫

R2
�

α

(
dμ

d|λ| ,
dU

d|λ|
)

σe(|v − v∗|) d|λ| =
∫∫

R2
�

α(μ̃, Ũ )σe(|v − v∗|) d|λ| ,
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where μ̃, Ũ are the Radon–Nikodym derivatives of μ,U , respectively, with respect to |λ|. In
order to be able to use the 1-homogeneity of the kernel, α, we show thatU � μ. To this end,
let N ⊂ R

2
�

be a (σeμ)-null set, i.e., μ̃(v, v∗) = 0, for v, v∗ ∈ N , σe |λ|-a.e. in R
2
�
. Since

the action of ( f ,U ) is finite, we conclude, by definition of α, cf. (2.9), that Ũ (v, v∗) = 0,
σe |λ|-a.e., which, in turn, implies U � μ. Upon an application of the chain rule we obtain

dU

d|λ| = dU

dμ

dμ

d|λ| =: Û μ̃.

Substituting this expression into the action density above in conjunctionwith the homogeneity
of order one, we obtain

A( f ,U ) =
∫∫

R2
�

|Û |2μ̃ σe(|v − v∗|) d|λ| =
∫∫

R2
�

|Û |2 σe(|v − v∗|) dμ

=
∫∫

R2
�

|Û |2σe(|v − v∗|) d( f ⊗ f )(v, v∗),

which concludes the proof. ��

Proposition 2.10 (Antisymmetric fluxes have lower action) Let f ∈ P(R) and U ∈ M(R2
�

)

be such that A( f ,U ) < ∞. Then, there exists an antisymmetric3 measure U as ∈ M(R2
�

),
U as � μ, such that

A( f ,U as) ≤ A( f ,U ), and ∇̃ ·U as = ∇̃ ·U .

Proof We define Û as : R2
�

→ R to be

Û as(v, v∗) := 1

2
(Û (v, v∗) − Û (v, v∗)),

where Û is as defined in the statement of Lemma 2.9. This defines a measure,U as ∈ M(R2
�

),
via the relation

dU as(v, v∗) := Û as(v, v∗) d( f ⊗ f )(v, v∗).

The proof then follows by substitution. We have that

A( f ,U as) =
∫∫

R2
�

|Û as|2(v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗)

= 1

2

∫∫
R2

�

|Û |2(v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗)

− 1

2

∫∫
R2

�

Û (v, v∗)Û (v∗, v)σe(|v − v∗|) d( f ⊗ f )(v, v∗).

3 That is to say U (A) = −U (�(A)), for all Borel A ⊂ R
2
�, where �(v, v∗) = (v∗, v).

123



  126 Page 16 of 33 A. Esposito et al.

Applying Young’s inequality, we obtain

A( f ,U as) ≤ 1

2

∫∫
R2

�

|Û |2(v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗)

+ 1

4

∫∫
R2

�

|Û |2(v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗)

+ 1

4

∫∫
R2

�

|Û |2(v∗, v)σe(|v − v∗|) d( f ⊗ f )(v, v∗)

=
∫∫

R2
�

|Û |2(v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗)

= A( f ,U ).

Finally, we can check that, for any test function ϕ ∈ C∞
c (R), it holds that∫∫

R2
�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU as(v, v∗)

= 1

2

∫∫
R2

�

∇̃ϕ(v, v∗)σe(|v − v∗|) d(U (v, v∗) −U (v∗, v))

= 1

2

∫∫
R2

�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU (v, v∗) − 1

2

∫∫
R2

�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU (v∗, v)

= 1

2

∫∫
R2

�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU (v, v∗) + 1

2

∫∫
R2

�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU (v, v∗)

=
∫∫

R2
�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU (v, v∗),

where in the penultimate step we have used the fact that ∇̃ϕ(v, v∗) = −∇̃ϕ(v∗, v) from
Definition 1.4. Using Definition 2.1, the result follows. ��
Proposition 2.11 (Lower semicontinuity of the action density) The action-density functional
is lower semicontinuous with respect to the weak-∗ convergence in P(R) × M(R2

�
) ⊂

M(R × R
2
�

).

Proof Let us consider { fn}n∈N ⊂ P(R) and {Un}n∈N ⊂ M(R2
�

) such that

fn → f , in P(R),

as well as

Un → U , in M(R2
�

).

Obviously, convergence in P(R) of { fn}n∈N implies that { fn ⊗ fn}n∈N converges weakly-∗
in P(R2

�
). Let us define the function g : R2

�
× (R+ × R) → R as

g((v, v∗), (s, u)) = α(s, u)σe(|v − v∗|),
which is lower semicontinuous in all its variables, jointly convex, and 1-positive homoge-
neous in (s, u). Then, [10, Theorem 3.4.3] implies the action is weakly-∗ sequentially lower
semicontinuous in M(R × R

2
�

). ��
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Proposition 2.12 (Convexity of the action density) Let f i ∈ P(R) and Ui ∈ M(R2
�

) for
i = 0, 1. For any τ ∈ [0, 1], such that fτ := (1− τ) f 0 + τ f 1 and Uτ := (1− τ)U 0 + τU 1

it holds

A( fτ ,Uτ ) ≤ (1 − τ)A( f 0,U 0) + τA( f 1,U 1).

Proof Let us set μi := f i ⊗ f i and consider |λ| ∈ M+(R2
�

) such that dμi = μ̃i d|λ| and
dUi = Ũ i d|λ|, cf. Definition 2.8, for instance. As consequence we have dμτ = μ̃τ d|λ|
and dUτ = Ũτ d|λ|, where

μ̃τ := (1 − τ)μ̃0 + τ μ̃1,

Ũτ := (1 − τ)Ũ 0 + τŨ 1.

The result follows by using the convexity of the function α:

A( fτ ,Uτ ) =
∫∫

R2
�

α
(
μ̃τ , Ũτ

)
σe(|v − v∗|) d|λ|(v, v∗)

≤ (1 − τ)

∫∫
R2

�

α
(
μ̃0, Ũ 0) σe(|v − v∗|) d|λ|(v, v∗)

+ τ

∫∫
R2

�

α
(
μ̃1, Ũ 1) σe(|v − v∗|) d|λ|(v, v∗)

= (1 − τ)A( f 0,U 0) + τA( f 1,U 1).

��

2.3 Curves of finite action

This section is dedicated to revisiting (CE) introduced in Definition 2.2 and presenting some
of its properties.

Lemma 2.13 (Curves of finite action) Let {( ft ,Ut )}t∈[0,T ] be a solution to the nonlocal-
local continuity equation in the sense of Definition 2.2 with initial datum μ0 ∈ P(R) not
necessarily satisfying the integrability condition (2.1), but satisfying

∫ T
0 A( ft ,Ut )dt < ∞

and
∫

R
|v| dμ0(v) < ∞, then {( ft ,Ut )}t∈[0,T ] ∈ CET (μ0).

In particular, if μ0 ∈ P1(R), then ft ∈ P1(R) and the following estimate holds for all
t ∈ [0, T ]

∣∣∣∣ ddt m1( ft )
1
2

∣∣∣∣ ≤
(
1 − e

2

) 1
2

A( ft ,Ut )
1
2 . (2.10)

Proof The proof follows by applying the bound (2.6) in Proposition 2.6 for which we further
need to bound, for almost every t ∈ [0, T ], the total variation norm of the flux by a suitable
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Cauchy-Schwarz inequality:

1

2

∣∣∣∣ ddt m1( ft )

∣∣∣∣ ≤
∫∫

R2
�

σe(|v − v∗|) d|Ut |(v, v∗)

=
∫∫

R2
�

σe(|v − v∗|)|Ût (v, v∗)| d( ft ⊗ ft )(v, v∗)

≤ A( ft ,Ut )
1
2

(∫∫
R2

�

σe(|v − v∗|) d( ft ⊗ ft )(v, v∗)
) 1

2

≤
(
1 − e

4

) 1
2

A( ft ,Ut )
1
2

(∫∫
R2

�

(|v| + |v∗|) d( ft ⊗ ft )(v, v∗)
) 1

2

≤
(
1 − e

2

) 1
2

m1( ft )
1
2A( ft ,Ut )

1
2 .

��
In the next result, we associate to a given curve (Ut )t∈[0,T ] a measureU ∈ M([0, T ] ×R

2
�

)

by setting dU (t, v, v∗) = dUt (v, v∗) dt , for (t, v, v∗) ∈ [0, T ] × R
2
�
.

Proposition 2.14 (Compact subsets of CET ) Let {( f nt ,Un
t )t∈[0,T ]}n∈N ⊂ CET ( f n0 , f nT ) and

assume there exists a constant 0 < C < ∞ such that

sup
n∈N

∫ T

0
A( f nt ,Un

t ) dt < C, and sup
n∈N

∫
|v| d( f n0 + f nT )(v) < C . (2.11)

Then, there exists {( ft ,Ut )}t∈[0,T ] ∈ CET ( f0, fT ), and, for all t ∈ [0, T ], along a subse-
quence (not relabelled)

f nt → ft , in P(R), as well as Un →c U , in Mloc([0, T ] × R
2
�

).

Moreover, the action is lower semicontinuous along the above subsequences { f n}n and {Un}n,
i.e.,

lim inf
n→∞

∫ T

0
A( f nt ,Un

t )dt ≥
∫ T

0
A( ft ,Ut )dt .

Proof We first show that the total variation measure |Un | is bounded on compact sets. We
let I × K ⊂ [0, T ] × R

2
�

be compacts. It is then relatively straightforward to see that

∣∣Un
∣∣ (I × K ) ≤

∫
I

∣∣Un
t

∣∣ (K ) dt ≤
∫
I

∫
K

|Û n
t (v, v∗)| d( f nt ⊗ f nt )(v, v∗) dt ,

where for the last inequality we have used finiteness of the action and the result of Lemma
2.9, which states thatUn

t has a density with respect to f nt ⊗ f nt . Upon applying the Cauchy–
Schwartz inequality, we obtain the following bound

∣∣Un
∣∣ (I × K ) ≤

(∫
I

∫
K

|Û n
t (v, v∗)|2σe(|v − v∗|) d( f nt ⊗ f nt )(v, v∗) dt

) 1
2

×
(∫

I

∫
K

d( f nt ⊗ f nt )(v, v∗)
σe(|v − v∗|) dt

) 1
2

≤
(
1 − e

2
CK |I |

) 1
2

,

(2.12)
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where CK = C sup(v,v∗)∈K σe(|v − v∗|)−1 < ∞ with C as in (2.11), since σe is continuous
and positive onR2

�
. Since I ×K was arbitrary, it is clear from the above estimate that we can

obtain uniform local control on the total variation of the measures Un ∈ M([0, T ] × R
2
�

).
Thus by Prokhorov’s theorem there exists a measureU ∈ M([0, T ]×R

2
�

) such thatUn →c

U , i.e., tested against Cc([0, T ] × R
2
�

).
We now note that U ∈ Mloc([0, T ] × R

2
�

) can be disintegrated with respect to the
Lebesgue measure on [0, T ]. Indeed, consider for any compact set, K ⊂ R

2
�
, the measure

λK := πK
# U ∈ M([0, T ]), where πK : [0, T ] × K → [0, T ] is the projection map defined

asπK (t, x) := t , for x ∈ K . By the definition of the pushforwardwe have for anymeasurable
I ⊂ [0, T ] from (2.12) the estimate

λK (I ) = U (I × K ) ≤
(
1 − e

2
CK |I |

) 1
2

.

Thus, λK is absolutely continuous with respect for the Lebesgue measure on I , for any
K ⊂ R

2
�

compact. Additionally, for any ϕ ∈ Cc([0, T ] × R
2
�

) choose K ⊂ R
2
�

such that
suppϕ ⊂ [0, T ] × K . By the disintegration theorem, cf. [2, Theorem 5.3.1], we have the
existence of a family {μK

t }t∈[0,T ] such that dU = dμK
t dλK . In particular

∫ T

0

∫∫
R2

�

ϕ(t, v, v∗)σe(|v − v∗|) dU (t, v, v∗)

=
∫ T

0

(∫
{t}×R2

�

ϕ(t, v, v∗)σe(|v − v∗|) dμK
t (v, v∗)

)
dλK (t)

=
∫ T

0

∫
R2

�

ϕ(t, v, v∗)σe(|v − v∗|) dUK
t (v, v∗) dt,

whereUK
t := dλK

dt μK
t andμK

t ∈ M(K ) is the parametrised family of measures arising from
the disintegration theorem.

We readily observe that integrating (2.4) over [t1, t2] gives for any ψ ∈ C1
c (R

2
�

)

∣∣∣∣
∫

R

ψ(v) d f nt1 (v) −
∫

R

ψ(v) d f nt2 (v)

∣∣∣∣ ≤
∫ t2

t1

∫∫
R2

�

∣∣∇̃ψ(v, v∗)
∣∣ σe(|v − v∗|) d|Un

t | dt

≤
∫ t2

t1

∫∫
R2

�

∣∣∇̃ψ(v, v∗)
∣∣ σe(|v − v∗|)

∣∣∣Û n
t (v, v∗)

∣∣∣ d( f nt ⊗ f nt )(v, v∗) dt

≤
∫ t2

t1
A( f nt ,Un

t )
1
2

(∫∫
R2

�

∣∣∇̃ψ(v, v∗)
∣∣2 σe(|v − v∗|) d( f nt ⊗ f nt )(v, v∗)

) 1
2

dt

≤
(
1 − e

4

) 1
2
∫ t2

t1
A( f nt ,Un

t )
1
2

(∫∫
R2

�

(ψ ′(v) − ψ ′(v∗))2(|v| + |v∗|) d f nt (v) d f nt (v∗)
) 1

2

dt

≤ C
∥∥ψ ′∥∥∞ |t2 − t1| 12 ,

(2.13)

according to Eq. (2.12), having used the definition of σe, cf. (1.16) and applied the stability
of the first moment (2.10) from Lemma 2.13, which also ensures that ( f nt ,Un

t )t∈[0,T ] ∈
CE( f n0 , f nT ). Passing to the supremum in ψ among all Lipschitz functions with Lipschitz
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constant 1, we recover the 1/2-Hölder continuity in the 1-Wasserstein distance, i.e.,

d1( f
n
t2 , f nt1 ) ≤ C |t2 − t1| 12 ,

uniformly in n ∈ N. An application of the generalised Arzela-Ascoli theorem concludes
the proof of convergence of the densities, see [2, Sect. 3]. In particular, we have that the
limiting curve is absolutely continuous in time with values in probability measures and hence
( ft ,Ut )t∈[0,T ] ∈ CE( f0, fT ). Finally, the lower semicontinuity property is a consequence of
Proposition 2.11. ��

2.4 The collisionmetric

In this section, we define and prove properties for an extended metric coming from the
nonlocal-local continuity equation. We start with the definition of the collision transportation
cost.

Definition 2.15 Let μ0, μ1 ∈ P(R). The collision transportation cost is defined by

dA(μ0, μ1)
2 := inf

{∫ 1

0
A( ft ,Ut ) dt : ( ft ,Ut )t∈[0,1] ∈ CE(μ0, μ1)

}
. (2.14)

Note that theminimisation problem above iswell defined as consequence of the directmethod
of calculus of variations by means of Proposition 2.14, whenever the action is bounded, i.e.,∫ 1
0 A( ft ,Ut ) dt < ∞. Moreover, by observing that α defined in (2.9) is 2-homogeneous in
the second variable, we can apply the same reparametrisation argument used in [16, Theorem
5.4] to obtain the following result.

Lemma 2.16 (Reparametrisation) For any T > 0, μ0, μ1 ∈ P(R) it holds

dA(μ0, μ1) = inf

{∫ T

0
A( ft ,Ut )

1
2 dt : ( ft ,Ut )t∈[0,T ] ∈ CET (μ0, μ1)

}
.

In the following proposition we see under which conditions the infimum in Eq. (2.14) is a
minimum.

Proposition 2.17 Letμ0, μ1 ∈ P(R) such that dA := dA(μ0, μ1) < +∞. Then the infimum
in Eq. (2.14) is attained by a curve ( ft ,Ut )t∈[0,1] ∈ CE(μ0, μ1) such that

A( ft ,Ut ) = d2A(μ0, μ1),

for a.e. t ∈ [0, 1]. Such a curve is a constant speed geodesic for dA, i.e.,

dA( fs, ft ) = |t − s|dA(μ0, μ1),

for all s, t ∈ [0, 1].
Proof If dA is finite, which holds when

∫ 1
0 A( ft ,Ut ) dt < ∞ for some ( ft ,Ut )t∈[0,1] ∈

CE(μ0, μ1), the infimum in Eq. (2.14) is attained as a consequence of Proposition 2.14
by means of the direct method of calculus of variations. Thus, there exists a minimising
curve ( f ∗

t ,U∗
t )t∈[0,1] ∈ CE(μ0, μ1). By the reparametrisation result in Lemma 2.16 and the

Jensen’s inequality, we obtain

∫ 1

0
A( f ∗

t ,U∗
t )

1
2 dt ≥ dA(μ0, μ1) =

(∫ 1

0
A( f ∗

t ,U∗
t ) dt

) 1
2

≥
∫ 1

0
A( f ∗

t ,U∗
t )

1
2 dt,

whence d2A(μ0, μ1) = A( f ∗
t ,U∗

t ), for almost every t ∈ [0, 1]. Moreover, we obtain
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dA( fs, ft ) =
∫ t

s
A( f ∗

r ,U∗
r )

1
2 dr = |t − s|dA(μ0, μ1),

for all s, t ∈ [0, 1], which concludes the proof. ��
Given the preservation of the centre of mass and the stability of the first moment along
curves of finite action implied by Proposition 2.6, it makes sense to restrict the collision
transport cost to certain subspaces. Let us note the metric dA can be compared with d1, the
1-Wasserstein distance.

Proposition 2.18 (Comparison with d1) Let μ0, μ1 ∈ P1(R). There exists a constant C =
C(e) such that

d1(μ0, μ1) ≤ C(m1(μ0) + dA(μ0, μ1))dA(μ0, μ1).

Proof The proof is obtained along the lines of the estimate (2.13), and using (2.10). ��
Theorem 2.19 The collision transport cost defined in (2.14) is an extended metric on P(R).
The map (μ0, μ1) �→ dA(μ0, μ1) is lower semicontinuous with respect to the convergence
in P(R). Moreover, the topology induced by dA is stronger then the d1-topology.

Proof Let us assume that dA(μ0, μ1) = 0. By Proposition 2.17 there exists a curve
( ft ,Ut )t∈[0,T ] ∈ CE(μ0, μ1) such that A( ft ,Ut ) = 0 for a.e. t ∈ [0, 1], which implies
Ut = 0 for a.e. t ∈ [0, 1]. Thus, from Eq. (2.4) we obtainμ0 = μ1. The opposite implication
is trivial. The symmetry of dA follows from the fact that α(·, u) = α(·,−u). In order to
prove the triangle inequality we notice that solutions to CE can be concatenated. Indeed, if
( f i ,Ui ) ∈ CETi (μ

i
0, μ

i
Ti

) for i = 1, 2 such that μ1
T1

= μ2
0, then

ft :=
{
f 1t if 0 ≤ t ≤ T1
f 2t−T1

if T1 ≤ t ≤ T1 + T2
; Ut :=

{
U 1
t if 0 ≤ t ≤ T1

U 2
t−T1

if T1 ≤ t ≤ T1 + T2

belongs to CET1+T2(μ
1
0, μ

2
T2

) by using Eq. (2.5). This observation and Lemma 2.16 imply
the triangle inequality. The lower semicontinuity property is a consequence of Proposition
2.14, while Proposition 2.18 gives that the topology induced by dA is stronger than that of
d1. ��
Let us recall the definition of absolutely continuous curves in ametric space. A curve [0, T ] �
t �→ ft ∈ P(R) is said to be 2-absolutely continuous with respect to dA if there exists
m ∈ L2(0, T ) such that

dA( ft0 , ft1) ≤
∫ t1

t0
m(t) dt, for all 0 < t0 ≤ t1 < T . (2.15)

In this case, we write f ∈ AC(0, T ; (P(R), dA)). For any f ∈ AC(0, T ; (P(R), dA)) the
quantity

| f ′|(t) = lim
h→0

dA( ft+h, ft )

h

is well-defined for a.e. t ∈ [0, T ] and is calledmetric derivative of f at t . Moreover, the func-
tion t → | f ′|(t) belongs to L2(0, T ) and it satisfies | f ′|(t) ≤ m(t) for a.e. t ∈ [0, T ], i.e., f ′
is the minimal integrand satisfying (2.15). The length of a curve f ∈ AC(0, T ; (P(R), dA))

is defined by L( f ) := ∫ T
0 | f ′|(t) dt .

Given the above results we can easily obtain the following characterisation, as in [16,
Theorem 5.17]. The proof is then omitted.
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Proposition 2.20 (Metric velocity) A curve { ft }t∈[0,T ] ⊂ P(R) belongs to the space
AC(0, T ; (P(R), dA)) if and only if there exists a family of flux {Ut }t∈[0,T ] such that
{( ft ,Ut )}t∈[0,T ] ∈ CET with

∫ T

0
A( ft ,Ut )

1
2 dt < ∞.

In particular, dUt (v, v∗) = Ût (v, v∗)d( ft ⊗ ft )(v, v∗) for a measurable family Û : [0, T ]×
R
2
�

→ R. In this case, the metric derivative is bounded as in | f ′|2(t) ≤ A( ft ,Ut ) for a.e.
t ∈ [0, T ]. In addition, there exists a unique {Ũt }t∈[0,T ] such that ( ft , Ũt )t∈[0,T ] ∈ CET and

| f ′|2(t) = A( ft , Ũt ), for a.e. t ∈ [0, T ]. (2.16)

Corollary 2.21 (Tangent space) Let {( ft ,Ut )}t∈[0,T ] ∈ CET such that the curve f ∈
AC(0, T ; (P(R), dA)). The flux U satisfies (2.16) if and only if Ut ∈ T f P(R) for a.e.
t ∈ [0, T ], where

T f P(R) = {
U ∈ M(R2

�
) : A( f ,U ) < ∞, A( f ,U ) ≤ A( f ,U + w),

for any w ∈ M(R2
�

), s.t. ∇̃ · w = 0
}
.

(2.17)

Proof According to Proposition 2.20 the metric derivative satisfies | f ′|2(t) ≤ A( ft ,Ut )

for a.e. t ∈ [0, T ]. Therefore, the only flux satisfying (2.16) is that of minimal action. Let
t ∈ [0, T ] such thatA( ft ,Ut ) < +∞. As proved in Proposition 2.10, the flux, Ũt , ofminimal
action has to be antisymmetric, Ũt ∈ Mas(R2

�
), and by assumption satisfy the nonlocal-local

continuity equation. In particular,

Ũt = argmin
U∈Mas(R2

�
)

{A( ft ,U ) : ∇̃ ·Ut = ∇̃ ·U }. (2.18)

Note that the set {U ∈ Mas(R2
�

) : ∇̃ · Ut = ∇̃ · U } is closed with respect to the weak-
∗ convergence, and sublevel sets of the functional Mas(R2

�
) � U �→ A( f ,U ), for any

f ∈ P(R), are locally weakly-∗ relatively compact by arguing as in Proposition 2.14, since
for any compact set K ⊂ R

2
�

it holds

|U |(K ) ≤ A( ft ,U )
1
2 sup

K
σe(|v − v∗|)−1.

Moreover, note that the functionalMas(R2
�

) � U �→ A( f ,U ), for any f ∈ P(R), is strictly
convex according to Lemma 2.9. Therefore, the flux in (2.18) is uniquely determined. ��
In the previous corollary we have a Lagrangian formulation of the tangent space T f P(R),
which can be further characterised in terms of tangent velocity fields.

Proposition 2.22 Let f ∈ P(R). Then, it holds that U ∈ T f P(R) if and only if U ∈ M(R2
�

)

such that A( f ,U ) < ∞ and, for a measurable Û : R2
�

→ R, it holds

Û ∈ {∇̃ϕ : ϕ ∈ C∞
c (R)}L

2(R2
�

,σed( f ⊗ f ))
.

Proof If the action A( f ,U ) < ∞, Lemma 2.9 provides the existence of a measurable
Û : R

2
�

→ R such that dU (v, v∗) = Û (v, v∗) d( f ⊗ f )(v, v∗), for any (v, v∗) ∈ R
2
�
,

whence

A( f ,U ) =
∫∫

R2
�

|Û (v, v∗)|2σe(|v − v∗|) d( f ⊗ f )(v, v∗) = ‖Û‖2L2(σe d( f ⊗ f )).
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As consequence of the above relation between U and Û , the nonlocal divergence ∇̃ ·U can
be re-written in terms of Û , for any ϕ ∈ C∞

c (R), as
∫∫

R2
�

∇̃ϕ(v, v∗)σe(|v − v∗|) dU (v, v∗)

=
∫∫

R2
�

∇̃ϕ(v, v∗)Û (v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗).

Thus, the characterisation (2.17) can be equivalently stated as∫∫
R2

�

|Û |2σe(| · − · |) d( f ⊗ f ) ≤
∫∫

R2
�

|Û + W |2σe(| · − · |) d( f ⊗ f ),

for all W ∈ L2(R2
�

, σe d( f ⊗ f )) such that
∫∫

R2
�

∇̃ϕ(v, v∗)W (v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗) = 0 for all ϕ ∈ C∞
c (R).

Therefore, Û belongs to the closure of {∇̃ϕ : ϕ ∈ C∞
c (R)} in L2(R2

�
, σe d( f ⊗ f )). ��

3 The aggregation equation in a new light

This section focuses on the aggregation equation (1.14), with a cubic interaction poten-
tial (1.15). As discussed in Sect. 1.3, (1.14) can be formally derived from the inelastic spatially
homogeneous Boltzmann equation by Taylor-expanding the test function in its weak formu-
lation. In this process, we notice that the collision kernel obtained from the cubic interaction,
W , is precisely the modulus function. This suggests that we interpret (1.14) as nonlocal-
local continuity equation, as explained in Sect. 2.1, driven by the potential obtained from the
kinetic energy (1.6).

More precisely, in this Section, we consider the (CE) driven by the kinetic energy (1.6).
In addition to the definition of weak solutions to (CE) (see Definition 2.2), we require the
curve to have finite kinetic energy, which is a natural requirement.

Definition 3.1 (Weak solution) A curve { ft }t∈[0,T ] ⊂ Pcm
2 (R) is a weak solution to (1.14) if,

for the flux {UE
t }t∈[0,T ] ⊂ M(R2

�
) given by

dUE
t (v, v∗) = −∇̃ δE

δ f
(v, v∗) d( ft ⊗ ft )(v, v∗), (3.1)

the pair {( ft ,UE
t )}t∈[0,T ] satisfies the nonlocal-local continuity equation (CE) in the sense

of Definition 2.2.

In order to achieve a new gradient flow formulation of the equation above as steepest descent
of the kinetic energy with respect to the collision metric defined in Sect. 2.4, we follow
[2] and use the concept of curve of maximal slope with respect to a specific strong upper
gradient, which is the square root of the dissipation functional, cf. (3.3) below. To motivate
this, we consider the decay of the kinetic energy along a curve f ∈ AC([0, T ]; (P(R), dA))

which is a solution of the nonlocal-local continuity equation (2.2), i.e., there exists a flux
dUt = Ût d( f ⊗ f ) such that the pair {( ft ,Ut )}t∈[0,T ] is a weak solution in the sense
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of Definition 2.2. Formally applying the chain rule, we have

E( fT ) − E( f0) =
∫ T

0

∫∫
R2

�

∇̃ δE
δ f

(v, v∗)Ût (v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗) dt . (3.2)

After an application of Young’s inequality to both the inner integrals with weight σe d( f ⊗ f ),
we observe∫ T

0

∫∫
R2

�

∇̃ δE
δ f

(v, v∗)Ût (v, v∗)σe(|v − v∗|) d( f ⊗ f )(v, v∗) dt,

≥ −1

2

∫ T

0

∣∣∣Ût (v, v∗)
∣∣∣2 σe(|v − v∗|) d( ft ⊗ ft )(v, v∗) dt

− 1

2

∫ T

0

∫∫
R2

�

∣∣∣∣∇̃ δE
δ f

(v, v∗)
∣∣∣∣
2

σe(|v − v∗|) d( ft ⊗ ft )(v, v∗) dt

= −1

2

∫ T

0
A( ft ,Ut ) dt − 1

2

∫ T

0
D( ft ) dt,

where the dissipation is defined by

D( f ) :=
∫∫

R2
�

|v − v∗|2 σe(|v − v∗|) d( f ⊗ f )(v, v∗), (3.3)

cf. also (1.17), in the context of the formal derivation. Thismotivates our definition of gradient
flow solutions as curves f ∈ AC([0, T ]; (Pcm

2 (R), dA)) in the zero locus of the De Giorgi
functional

GT ( f ) := E( fT ) − E( f0) + 1

2

∫ T

0
A( ft ,Ut ) dt + 1

2

∫ T

0
D( ft ) dt . (3.4)

Based on the preceding computations we introduce our notion of gradient flow solutions as
curves of maximal slope.

Definition 3.2 (Curves of maximal slope) A curve f ∈ AC([0, T ], (Pcm
2 (R), dA)) is a curve

of maximal slope if GT ( f ) = 0.

In order to show that weak solutions to (3.1) are curves of maximal slope and to mathemati-
cally justify the definition of the De Giorgi functional (3.4), we need to rigorously derive the
chain rule in (3.2). In particular, the chain rule implies that the square root of the dissipation
functional D, defined in (3.3), is a strong upper-gradient for E with respect to the extended
metric dA (cf. [2, Definition 1.2.1]).

3.1 The chain rule and characterisation of weak solutions

Lemma 3.3 (Stability and chain rule) Let T > 0 and {( ft ,Ut )}t∈[0,T ] ∈ CET (μ0) for some
μ0 ∈ Pcm

2 (R). Assume that
∫ T

0
A( ft ,Ut )

1
2 dt < ∞, and

∫ T

0
A( ft ,Ut )

1
2D( ft )

1
2 dt < ∞ , (3.5)

where A : P(R) × M(R2
�

) → (−∞,+∞] is the action, as defined in Definition 2.8, and
D : P(R) → (−∞,+∞] is the dissipation defined in (3.3).

Then, the following properties hold:
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(a) supt∈[0,T ] E( ft ) < ∞.
(b) For any 0 ≤ s ≤ t ≤ T

E( ft ) − E( fs) =
∫ t

s

∫∫
R2

�

∇̃ δE
δ f

(v, v∗)σe(|v − v∗|)dUτ (v, v∗) dτ.

Proof We define a globally Lipschitz approximation of |v|2/2 which we can use as a test
function in the weak formulation of (CE) by Remark 2.5. Let

ϕR(v) :=
{

v2/2, v ∈ [0, R],
R2/2 + R(v − R), v ∈ [R,∞),

(3.6)

and extend it to R by setting ϕR(v) = ϕR(−v) for v ∈ (−∞, 0). Note, that this choice of
test function also satisfies the following condition∣∣∣∣ϕ

′
R(v) − ϕ′

R(v∗)
v − v∗

∣∣∣∣ ≤ 1,

which we will exploit in the subsequent analysis. For any weak solution of (CE),
{( ft ,Ut )}t∈[0,T ], there holds (2.4), i.e.,∫

R

ϕ(v) d f̃T (v) −
∫

R

ϕ(v) d f̃0(v) =
∫ T

0

∫∫
R2

�

∇̃ϕ(v, v∗)σe(|v − v∗|) dUt (v, v∗) dt,

for any regular test function, ϕ ∈ C1
c (R). In particular, choosing ϕ = ϕR , with ϕR as in (3.6),

we have∫
R

ϕR(v) d f̃T (v)−
∫

R

ϕR(v) d f̃0(v) =
∫ T

0

∫∫
R2

�

∇̃ϕR(v, v∗)σe(|v − v∗|) dUt (v, v∗) dt,

(3.7)

where we can estimate the right-hand side as follows:
∫ T

0

∫∫
R2

�

∇̃ϕR(v, v∗)σe(|v − v∗|) dUt (v, v∗) dt

=
∫ T

0

∫∫
R2

�

∇̃ϕR(v, v∗)σe(|v − v∗|)Ût (v, v∗) d( ft ⊗ ft )(v, v∗) dt

≤
∫ T

0

(∫∫
R2

�

σe(|v − v∗|)|Ût (v, v∗)|2 d( ft ⊗ ft )(v, v∗)
) 1

2

×
(∫∫

R2
�

∣∣∇̃ϕR
∣∣2 σe(|v − v∗|) d( ft ⊗ ft )(v, v∗)

) 1
2

dt

=
∫ T

0
A( ft ,Ut )

1
2

(∫∫
R2

�

∣∣∇̃ϕR
∣∣2 σe(|v − v∗|) d( ft ⊗ ft )(v, v∗)

) 1
2

dt

=
∫ T

0
A( ft ,Ut )

1
2

(∫∫
R2

�

∣∣∣∣ϕ
′
R(v) − ϕ′

R(v∗)
v − v∗

∣∣∣∣
2

|v − v∗|2σe(|v − v∗|) d( ft ⊗ ft )(v, v∗)
) 1

2

dt

≤
∫ T

0
A( ft ,Ut )

1
2D( ft )

1
2 dt .
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Hence, the right-hand side is uniformly integrable and due to the pointwise convergence of
ϕR we may pass to the limit R → ∞ in the weak form, (3.7), due to Lebesgue’s dominated
convergence theorem. Hence we get

E( fT ) − E( f0) =
∫ T

0

∫∫
R2

�

∇̃ δE
δ f

(v, v∗)σe(|v − v∗|) dÛt (v, v∗) d f (v) d f (v∗) dt,

as claimed in the statement.
As the test function ϕR in (3.6) has linear growth at infinity, we can use it in the weak

formulation in (2.4) by Remark 2.5, i.e.,

d

dt

∫
R

ϕR(v) d ft (v) = −1 − e

4

∫∫
R2

�

|v − v∗|∇̃ϕR(v, v∗)(v∗ − v) d ft (v) d ft (v∗) .

(3.8)

By expanding the definition of ∇̃ϕR from (1.20) and using the short-hand notation

dg(v, v∗) := |v − v∗|(ϕ′
R(v∗) − ϕ′

R(v))(v∗ − v) d( f ⊗ f )(v, v∗),

we have

d

dt

∫
R

ϕR(v) d ft (v) = −1 − e

4
(I1 + . . . + I9) ,

with

I1 = 1

2

∫ −R

−∞

∫ −R

−∞
dg(v, v∗), I2 = 1

2

∫ −R

−∞

∫ R

−R
dg(v, v∗),

I3 = 1

2

∫ −R

−∞

∫ ∞

R
dg(v, v∗),

and

I4 = 1

2

∫ R

−R

∫ −R

−∞
dg(v, v∗), I5 = 1

2

∫ R

−R

∫ R

−R
dg(v, v∗), I6 = 1

2

∫ R

−R

∫ ∞

R
dg(v, v∗),

as well as

I7 = 1

2

∫ ∞

R

∫ −R

−∞
dg(v, v∗), I8 = 1

2

∫ ∞

R

∫ R

−R
dg(v, v∗), I9 = 1

2

∫ ∞

R

∫ ∞

R
dg(v, v∗).

It is immediately clear that I1 = I9 = 0, as ∇̃ϕR vanishes in the respective ranges for v, v∗,
whence g(v, v∗) = 0. It is easy to verify that I j ≥ 0, for j �= 5. We expand on the argument
for I2 and note that arguments along similar lines will allow us to treat the remaining terms.
Indeed,

I2 =
∫ −R

−∞

∫ R

−R
|v − v∗|(v∗ + R)(v∗ − v) d( ft ⊗ ft )(v, v∗) ≥ 0,

since v∗ ≥ −R ≥ v in the domain of integration. Substituting I j ≥ 0, for j �= 5, into (3.8),
we get
∫

R

ϕR(v) d ft (v) −
∫

R

ϕR(v) d fs(v) + 1 − e

4

∫ t

s

∫ R

−R

∫ R

−R
|v − v∗|3 d( ft ⊗ ft )(v, v∗) ≤ 0,
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having integrated in time. By the dominated convergence theorem and the finite initial kinetic
energy, we obtain

1

2

∫
R

|v|2 d ft (v) + 1 − e

4

∫ t

0

∫∫
R2

�

|v − v∗|3 d( ft ⊗ ft )(v, v∗) ≤ 1

2

∫
R

|v|2 d f0(v).

��

Remark 3.4 (1) Let us highlight that the proof of the dissipation of the kinetic energy via the
truncation argument using the test functions,ϕR , is absolutely independent of assumption
(3.5). Indeed, it is not too surprising that we require the kinetic energy to be dissipated
along the aggregation equation regardless of the metric setting. In particular, any weak
solution from Definition 3.1 satisfies

E( fT ) +
∫ T

0
D( ft ) dt ≤ E( f0). (3.9)

(2) Note that the statement of the theorem is true for any absolutely continuous curve, namely
{ ft }t∈[0,T ] ∈ AC([0, T ]; (P(R), dA)) with f0 ∈ Pcm

2 (R) and
∫ T
0 D( ft ) dt < ∞. In this

case the action is always bounded and implies the existence of an associated flux, using
the characterisation of absolutely continuous curves stated in Proposition 2.20.

As direct consequence of the chain rule we have D 1
2 is a strong upper gradient with respect

to the distance dA in the sense of [2, Definition 1.2.1]

Corollary 3.5 For any curve f ∈ AC([0, T ]; (P(R), dA)) with f0 ∈ Pcm
2 (R) it holds

|E( ft ) − E( fs))| ≤
∫ t

s
D( fr )

1
2 | f ′

r |dr , ∀ 0 ≤ s ≤ t ≤ T ,

that is D 1
2 is a strong upper gradient for E .

Proof Without loss of generality, we can assume
∫ t
s D( fr )

1
2 | f ′

r | dr < ∞, otherwise the
claim is immediately true. The result follows from Lemma 3.3 by applying Cauchy-Schwartz
inequality and using the characterisation of absolutely continuous curves stated in Proposition
2.20. ��

We are now able to characterise weak solutions as curves of maximal slope in the sense of
Definition 3.2.

Theorem 3.6 (Weak solutions are curves of maximal slope) A curve f ∈ AC ([0, T ],
(Pcm

2 (R), dA)) is a weak solution to (1.14) in the sense of Definition 3.1 if and only if
GT ( f ) = 0.

Proof Let f be a weak solution in the sense of Definition 3.1 with corresponding flux
UE
t (v, v∗) given by (3.1). It can be checked that A( ft ,UE

t ) = D( ft ) and by the energy

dissipation (3.9) also follows that E( fT ) + ∫ T
0 D( ft ) dt ≤ E( f0) < ∞. In particular,

E( fT ) − E( f0) + 1
2

∫ T
0 (A( ft ,UE

t ) + D( ft )) dt ≤ 0, whence GT ( f ) ≤ 0 and f ∈
AC([0, T ]; (P(R), dA)). Thus, by the chain rule Lemma 3.2, we have that GT ( f ) ≥ 0.
Hence, GT ( f ) = 0.
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Let us now assume that f ∈ AC([0, T ]; (P(R), dA)) satisfies GT ( f ) = 0. According
to Proposition 2.20 there exists a unique family { dUt = Ût d( ft ⊗ ft )}t∈[0,T ] such that

{( ft ,Ut )}t∈[0,T ] ∈ CET and
∫ T
0 A( ft ,Ut ) dt < ∞. By the chain rule Lemma 3.3, we obtain

0 = GT ( ft ) = E( fT ) − E( f0) + 1

2

∫ T

0
A( ft ,Ut ) dt + 1

2

∫ T

0
D( ft ) dt

=
∫ T

0

∫∫
R2

�

∇̃ δE
δ f

σe(|v∗ − v|)Ût (v, v∗)σe(|v∗ − v|) d( ft ⊗ ft )(v, v∗) dt

+ 1

2

∫ T

0

∫∫
R2

�

(∣∣∣∣∇̃ δE
δ f

∣∣∣∣
2

+
∣∣∣Ût

∣∣∣2
)

σe(|v∗ − v|) d( ft ⊗ ft )(v, v∗) dt

= 1

2

∫ T

0

∫∫
R2

�

∣∣∣∣∇̃ δE
δ f

+ Ût

∣∣∣∣
2

σe(|v∗ − v|) d( ft ⊗ ft )(v, v∗) dt .

Hence

Ût (v, v∗) = −∇̃ δE
δ f

(v, v∗) = v − v∗,

which implies that Ut = UE
t , from (3.1). ��

To establish the existence of minimisers of the De Giorgi functional in (3.4), we have to
prove lower semicontinuity of the dissipation.

Proposition 3.7 (Lower semicontinuity of the dissipation) Let { f n}n∈N ⊂ P(R) such that
f n → f ∈ P(R), then it holds

lim inf
n→∞ D( f n) ≥ D( f ).

Proof We consider a cut-off away from the diagonal. Let ϕR(r) ∈ C1
c (R) be such that

ϕR(r) = 1 for r ∈ [−R, R] and ϕR(r) = 0 for |r | ≥ 2R, then we have by positivity of the
integrand in D( f n) the estimate

D( f n) ≥
∫∫

R2
�

ϕR(|v − v∗|)|v − v∗|2σe(|v − v∗|) d( f n ⊗ f n)(v, v∗).

Hence, the proof is concluded by letting n → ∞ first, and via monotone convergence for
R → ∞. ��

3.2 Stability and existence by particle approximation

To discuss the existence of curves ofmaximal slope, we proceed by a strategy similar to show-
ing existence of solutions to the aggregation equation by finite-dimensional approximations,
cf. [14].

Let us first summarise the given compactness and lower semicontinuity statements for the
objects in the definition of the De Giorgi functional, cf. (3.4), which provide the stability of
curves of maximal slope in our setting. By combining the lower semicontinuity of the action
in Proposition 2.11 and the lower semicontinuity of the dissipation in Proposition 3.7, as
well as noting that the kinetic energy (1.6) is lower semicontinuous with respect to narrow
convergence due to the convexity of the integrand,we obtain the stability of curves ofmaximal
slope.
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Theorem 3.8 (Stability of curves of maximal slope) Let the sequence { f n}n∈N ⊂ AC([0, T ],
(Pcm

2 (R), dA)) be such that supn∈N G( f n) < ∞ and E( f n0 ) → E( f0) with f n0 → f0, then
there exists some f ∈ AC([0, T ], (Pcm

2 (R), dA)) such that f nt → ft , for a.e. t ∈ [0, T ] and
lim inf
n→∞ G( f n) ≥ G( f ).

Based on this stability statement for curves of maximal slope wemay now construct solutions
devising an approximation by particles. Let us stress that existence of minimisers for GT can
be shown by the direct method of calculus of variations. However, this does not provide that
minima are zeros of GT .

Theorem 3.9 (Existence by particle approximation) For any f0 ∈ Pcm
2 (R), that is E( f0) <

∞, there exists a curve of maximal slope.

Proof The strategy is based on constructing a particle approximation of the initial mea-
sure, f0 ∈ Pcm

2 (R), by arguing that there exists a sequence of empirical measures(
f n0 = 1

n

∑n
i=1 δvni (0)

)
n∈N

such that

d2( f0, f n0 ) → 0, as n → ∞.

Taking the existence of f n0 for granted, we can then follow the atoms of the initial empirical
measure f n0 along the solution of the associated system of ordinary differential equations

dvni
dt

= −2

n

n∑
j=1

σe

(∣∣∣vni (t) − vnj (t)
∣∣∣(vni (t) − vnj (t))

)
,

whose existence is guaranteed by the classical Cauchy–Lipschitz theory. This gives rise to a
family of curves ( f nt )t∈[0,T ] for each n ∈ N, which are readily verified to be weak solutions
to (1.14) and, by Theorem 3.6, also curves of maximal slope in the sense of Definition 3.2.
In particular, this sequence of solution satisfies the a priori estimate (3.9), and they have
uniformly bounded action, thus they are curves in AC ([0, T ], (Pcm

2 (R), dA)). Moreover,
since convergence in d2 implies f n0 → f0 and convergence of second order moments, we
also obtain E( f n0 ) → E( f0). Hence, we can conclude the proof by applying the stability
statement from Theorem 3.8 in the limit n → ∞ and conclude

0 = lim inf
n→∞ GT ( f n) ≥ GT ( f ) ≥ 0.

Hence the limit f is also a curve of maximal slope.

Let us now turn to the construction of the approximation f n0 of the initial measure f0,
which consists of three steps: mollification, truncation, and approximation by particles. Let
ε > 0 be arbitrary.

Step 1. In the mollification step, we find some f ε
ac ∈ L1(R) ∩ P(R) such that d2( f0, f ε

ac) <

ε/3, which can be easily done by mollifying f0 with a smooth bump function at a suitable
scale δ = δ(ε) > 0. Furthermore, we note that∫

R

|v|2 d f ε
ac(v) =

∫
R

∫
R

|v|2 ϕδ(v − w) dv d f0(w)

≤
∫

R

(
2 |w|2 + 2δ2

)
d f0(w) = 4E( f0) + 2δ2.
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Step 2. We will now use the fact that the second moment control on f ε
ac, gives us uniform

tightness which allows to cut off, in a quantitative fashion, its tails. The standard tightness
estimate tells us that∫

[−R,R]c
d f ε

ac ≤ 1

R2

∫
[−R,R]c

|v|2 d f ε
ac ≤ 4E( f0) + 2δ2

R2 .

Consider now the cut off and renormalised measure f ε
ac,R = f ε

ac|[−R,R]/
∥∥ f ε

ac

∥∥
L1([−R,R]).

Using [25, Theorem 6.15], we have that

d2( f
ε
ac, f ε

ac,R) ≤
(
2

∫
R

|v|2 ∣∣ f ε
ac − f ε

ac,R

∣∣ dv
) 1

2

≤
⎛
⎝2

(
1 − ∥∥ f ε

ac

∥∥
L1([−R,R])

)
∥∥ f ε

ac

∥∥
L1([−R,R])

⎞
⎠

1
2 (

4E( f0) + 2δ2
) 1
2 + √

2
∫

[−R,R]c
|v|2 d f ε

ac .

It is now clear that for a fixed ε > 0, we can choose R = R(ε) > 0 such that it holds that

d2( f
ε
ac, f ε

ac,R) <
ε

3
.

Step 3. Finally, we use a classical result from measure theory (for example cf. [9, Example
8.16 (i)]) that empirical measures are dense in probability measures in the narrow topology.
However, since f ε

ac,R has compact support, the sequence of empiricals we construct will

necessarily converge in d2. Thus, we can find a measure of the form f n0 := 1
n

∑n
i=1 δvi for

some n = n(ε) such that

d2( f
n
0 , f ε

ac,R) <
ε

3
.

This completes the proof of the existence of an approximating sequence of empiricalmeasures
and hence the proof. ��

Appendix

Formal derivation of the Boltzmann equation

We present a formal derivation of the Boltzmann equation from a gain-loss argument. For
the subsequent argument, it is more useful to think of the collisions in terms of the matrix
T : R2 → R

2 given by

T =
( 1−e

2
1+e
2

1+e
2

1−e
2

)
,

which maps the pre-collisional velocities to the post-collisional velocities, i.e.,(
v′
v′∗

)
= T

(
v

v∗

)
.

Respectively, its inverse, given by

T−1 =
(

1−e−1

2
1+e−1

2
1+e−1

2
1−e−1

2

)
,
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maps post-collisional velocities to pre-collisional velocities. Note that det T = −e and
det(T−1) = −e−1.

A formal derivation for the inelastic Boltzmann equation can be obtained by describing
the evolution of the velocity distribution, ft , using a simple gain-loss balance argument. The
density at a point v in velocity space is produced by all collisions of particles with ‘v’ as one
of their post-collisional velocities and is destroyed by all collisions with ‘v’ as one of their
pre-collisional velocities.

We thus split the derivation into two parts: gain and loss. We consider an ε > 0 interval
�ε = [ν −ε, ν +ε] around some velocity ν and try to obtain the rate of production of density
in this interval. Formally, we can integrate over the rate of production for those pre-collisional
velocities α = T−1

1 (v, v∗) and β = T−1
2 (v, v∗) that produce v after collision and arrive at

(∫
�ε

∂t ft (v) dv

)
gain

=
∫∫

R2
ft (α) ft (β)σ (|α − β|)1�ε (v) dα dβ.

The function σ = σ(|v|) models the frequency of the collisions, depending on the strength
of the relative velocities and referred to as the collision kernel. We now make the change of
variables (α, β) �→ (v, v∗) to obtain

(∫
�ε

∂t ft (v) dv

)
gain

= e
∫∫

R2
ft (T

−1
1 (v, v∗)) ft (T−1

2 (v, v∗))σ (e−1 |v − v∗|)1�ε (v) dv dv∗.

The loss term is simpler as we obtain

(∫
�ε

∂t ft (v) dv

)
loss

=
∫∫

R2
ft (v) ft (v∗)σ (|v − v∗|)1�ε (v) dv dv∗,

where we have integrated over the rate of destruction over all pre-collisional velocities with
one of the particles having velocity v. Subtracting the two, dividing by ε, and passing to the
limit we have the strong form as

∂t ft (v) =e
∫

R

ft (T
−1
1 (v, v∗)) ft (T−1

2 (v, v∗))σ (e−1 |v − v∗|) dv∗

−
∫

R

ft (v) ft (v∗)σ (|v − v∗|) dv∗.

The weak form can be obtained by testing against ϕ ∈ C∞(R) as follows

〈ϕ, ∂t ft 〉 =e
∫∫

R2
�

ft (T
−1
1 (v, v∗)) ft (T−1

2 (v, v∗))σ (e−1 |v − v∗|)ϕ(v) dv dv∗

−
∫∫

R2
�

ft (v) ft (v∗)σ (|v − v∗|)ϕ(v) dv dv∗ .
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We would now like to bring the collision operator into a more standard form. To this end, we
relabel the gain term and change variables back to (v, v∗) = T−1(v′, v′∗), to obtain

〈ϕ, ∂t ft 〉 = e
∫∫

R2
�

ft (T
−1
1 (v′, v′∗)) ft (T−1

2 (v′, v′∗))σ (e−1
∣∣v′ − v′∗

∣∣)ϕ(v′) dv′ dv′∗

−
∫∫

R2
�

ft (v) ft (v∗)σ (|v − v∗|)ϕ(v) dv dv∗

=
∫∫

R2
�

ft (v) ft (v∗)σ (|v − v∗|)ϕ(v′) dv dv∗

−
∫∫

R2
�

ft (v) ft (v∗)σ (|v − v∗|)ϕ(v) dv dv∗

=
∫∫

R2
�

ft (v) ft (v∗)σ (|v − v∗|)(ϕ(v′) − ϕ(v)) dv dv∗ = 〈ϕ, Q( ft , ft ∗)〉 .

One can symmetrise once more by using the transformation v �→ v∗ which also induces the
transformation v′ �→ v′∗. Thus, one obtains

〈ϕ, Q( ft , ft ∗)〉 = 1

2

∫∫
R2

�

ft (v) ft (v∗)σ (|v − v∗|)(ϕ(v′) + ϕ(v′∗) − ϕ(v) − ϕ(v∗)) dv dv∗ .
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