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Abstract
We consider local solutions u of nonlinear elliptic systems of the type

div A(x, Du) = div F in � ⊂ R
n,

where u : � → R
N is in a weighted W 1,p

loc space, with p ≥ 2, F is in a weighted W 1,2
loc

space and x → A(x, ξ) has growth coefficients in the space of functions with bounded mean
oscillation.We prove higher differentiability of u in the sense that the nonlinear expression of

its gradient Vμ(Du) := (μ2 + |Du|2) p−2
4 Du, with 0 < μ ≤ 1, is weakly differentiable with

D(Vμ(Du)) in a weighted L2
loc space. Moreover we derive some local Calderón–Zygmund

estimateswhen the source term is not necessarily differentiable.Global estimates for a suitable
Dirichlet problem are also available.
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1 Introduction

We consider nonlinear elliptic systems of the type

div A(x, Du(x)) = div F(x) (1.1)

in a bounded domain � ⊂ R
n , n > 2, and with u : � → R

N , N > 1. We suppose that the
vector field A : � × R

N×n → R
N×n is a Carathéodory function, i.e.

• x → A(x, ξ) is measurable for all ξ ∈ R
N×n ,

• ξ → A(x, ξ) is continuous for a.e. x ∈ �.

Furthermore, we assume that there exist a function b(x) ≥ λ0 > 0, belonging to the space
B M O , and a function K (x), belonging to the Marcinkiewicz space Ln,∞(�), such that
F ∈ W 1,2

loc (b,�; R
N×n) and, for a.e. x, y ∈ �,

|A(x, ξ) − A(x, η)| ≤ kb(x)|ξ − η| (μ2 + |ξ |2 + |η|2) p−2
2 , (1.2)

1

k
b(x)|ξ − η|2 (μ2 + |ξ |2 + |η|2) p−2

2 ≤ 〈A(x, ξ) − A(x, η), ξ − η〉, (1.3)

|A(x, η) − A(y, η)| ≤ |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 (1.4)

A(x, 0) = 0 (1.5)

|b(x) − b(y)| ≤ |x − y| [K (x) + K (y)], (1.6)

where k is a positive constant, μ ∈ (0, 1], p ≥ 2, ξ and η are arbitrary elements of R
N×n .

For the definition of weighted Sobolev spaces, see Sect. 2 below. Note that, by virtue of a
characterization of the Sobolev functions due to Hajlasz [43], the conditions (1.4) and (1.6)
describe a weak form of continuity with respect to the x-variable since the function K may
blow up at some points.

In the account of the typical functions of B M O and Ln,∞ respectively, the functions

b(x) = e−|x |

�
− � log |x |

K (x) = e−|x |

�
+ �

1

|x | ,
(1.7)

defined for a positive�with x ∈ B(0, 1) = {y ∈ R
n : 0 < |y| < 1}, satisfy assumption (1.6).

A vector field u in the Sobolev space W 1,r
loc (b,�; R

N ), r > 2n
n+2 , is a local solution of (1.1)

if it verifies ∫
suppφ

〈A(x, Du(x)), Dφ(x)〉 dx
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=
∫
suppφ

〈F(x), Dφ(x)〉 dx ∀φ ∈ C∞
0 (�, R

N ). (1.8)

In this paper our first goal is to study regularity properties of local solutions to (1.1) for
r close to p. The existence of second derivatives is not clear due to the degeneracy of the
problem; anyway, although the first derivatives of the solutions may not be differentiable,
the higher differentiability of solutions holds in the sense that the nonlinear expressions

Vμ(Du) := (μ2+|Du|2) p−2
4 Du of their gradients,withμ ∈ (0, 1], areweakly differentiable.

Therefore, the main result will be the following.

Theorem 1.1 Let � be a regular domain, A(x, ξ) a mapping verifying assumptions (1.2)–
(1.5), and F ∈ W 1,2

loc (b,�; R
N×n), with b(x) as in (1.6). There exist 0 < ε1 < 1

2 , depending
on k, n, λ0, p and the B M O - norm of b(x), and α1 > 0, depending on p, n, λ0, μ and k,
such that, if u ∈ W 1,p−ε

loc (b,�; R
N ), with 0 ≤ ε < ε1, is a local solution of (1.1) and

DK := distLn,∞(K (x), L∞) < α1, (1.9)

then D(Vμ(Du)) ∈ L2
loc(b,�) and the following estimate holds:

∫
BR

|D(Vμ(Du))|2b dx ≤ c
∫

B2R

((
1 + 1

R2

)
(μ2 + |Du|2) p

2 + (μ2 + |DF |2)
)

b dx,

for every ball B2R ⊂⊂ � and for a constant c depending on p, k, λ0, n, μ and DK .

For the definition of regular domain, see the Sect. 2 below. Anyway, balls and cubes of
R

n are regular domains. The novelty of Theorem 1.1 is to consider nonlinear systems with
growth coefficients in B M O and not uniformly continuous in the spatial variable, whose
feature is that they are allowed to be very irregular. Moreover we deal with local solutions u
to (1.1) lying in W 1,r with r ≤ p. In this case the energy functional∫

�

〈A(x, Du(x)), Du(x)〉 dx (1.10)

could not be bounded.We refer to such a solution as a very weak solution as stated by Iwaniec
and Sbordone [49]. We explicitly remark that, thanks to the embedding Theorem 2.1 below
our results apply if the growth coefficients lie in W 1,n . The condition (1.9) is clearly satisfied
if the derivatives of A(x, ξ) with respect to x belong to any subspace of Ln,∞ in which L∞
is dense, and then, in particular, if they belong to Ln,q with 1 < q < ∞. On the contrary,
L∞ is not dense in L p,∞ for any p > 1. We point out that condition (1.9) does not in general
imply the smallness of the norm of K (x) in Ln,∞. In fact, if K (x) is the function in (1.7), an

elementary calculation shows that it reduces to consider the constant � < α1ω
− 1

n
n , where ωn

denotes the measure of unit ball in R
n . For a more complete treatment about condition (1.9),

we refer to [31, 32]. In these papers a bound similar to (1.9) turned out to be useful in proving
the existence of solutions to noncoercive PDEs having singularities in the coefficients of
lower order terms. We also mention the similar conditions in [11, 40, 41].

In the linear case, the study of the second order regularity of solutions to equations with
discontinuous coefficients goes back to Miranda who considered in [63, 64] equations with
coefficients in the Sobolev class W 1,n . Subsequently, a complete regularity theory for equa-
tions in nondivergence form was developed by assuming coefficients in the vanishing mean
oscillation space V M O (see e.g. [23, 24]). Regularity results of Schauder type in the class of
Hölderian funtions are proved by Campanato [18, 20]). More recently, in connection with the
regularity of minimizers of functionals of the Calculus of Variations [1], the study of higher
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differentiability for solutions to problems of the type (1.1) had a remarkable development. In
particular, in the vectorial case N > 1, estimates as in Theorem 1.1 are important elements to
prove partial regularity properties of solutions to nonlinear elliptic systems with Uhlenbeck
structure. We refer to [53, 54, 59] and reference therein for an almost complete treatment.
In [68] Stroffolini studied the Dirichlet problem for very weak solutions to a linear system
with coefficients in B M O . Recently in [65], assuming a condition similar to (1.9), a higher
differentiability result has been proved for this class of systems. The case of a nonlinear
system with b(x) ∈ L∞(�) has been considered in [35]. Optimal second order regularity
properties of solutions to nonlinear p-Laplacean systems are given in [25], when the datum
in the right hand side of (1.1) is not in divergence form.

We point out that for local solutions of homogeneous systems

div A(x, Du) = 0,

Theorem 1.1 also applies in the degenerate case, i.e. μ = 0, with constants independent of
μ (see Proposition 5.1). As a consequence, in Sect. 6 we establish certain local Calderón
and Zygmund type estimates without assuming any differentiability condition on the datum.
More precisely, for G ∈ L p

loc(b,�; R
N×n) we consider the problem

div A(x, Du(x)) = div |G|p−2G in �. (1.11)

Then we prove the following result:

Theorem 1.2 Let � be a regular domain and A(x, ξ) a mapping verifying assumptions (1.2)–
(1.5), with b(x) as in (1.6). There exists α2 > 0, depending on p, n, λ0 and k, such that, if
u ∈ W 1,p

loc (b,�; R
N ) is a local solution of (1.11) and

DK := distLn,∞(K (x), L∞) < α2, (1.12)

then

G ∈ Lq
loc(b,�; R

N×n) �⇒ Du ∈ Lq
loc(b,�; R

N×n)

for any q ∈ (p, s), where s := np
n−1 + δ for a suitable δ > 0, depending on p, k, λ0, n, DK

and the B M O-norm of b. Moreover, for every cube Q2R ⊂⊂ � and μ ∈ [0, 1], we have

⎛
⎜⎝⨍

Q R

(
μ2 + |Du|2) q

2 b dx

⎞
⎟⎠

1
q

≤ c

⎛
⎜⎝⨍

Q2R

(
μ2 + |Du|2) p

2 b dx

⎞
⎟⎠

1
p

+ c

⎛
⎜⎝⨍

Q2R

(μ2 + |G|2) q
2 b dx

⎞
⎟⎠

1
q

,

where c depends on p, s − q, k, λ0, n, DK and the B M O-norm of b and is independent of μ.

This type of result was previously established, in the case of the p-Laplacean equationwith
p > 2, in the fundamental paper by Iwaniec [45]. Let us remark that such kind of estimate is
relevant to provide upper bounds for the Hausdorff dimension of the singular set of minima of
general variational integrals (see [54, 55, 62]). Additionally, the a priori knowledge of higher
integrability of the gradient allows to implement better schemes in the numerical treatment
of problems modeled by energies like (1.10), as e.g. electrorheological fluids. Subsequently

123



Higher differentiability and integrability for some… Page 5 of 47    80 

Iwaniec’s results were generalized to systems by DiBenedetto and Manfredi [27]. Regarding
equations of the type

div
(
(A(x)∇u · ∇u)

p−2
2 A(x)∇u

)
= div|G|p−2G, (1.13)

with A(x) : � → R
n×n symmetric, local and global estimates for the gradient of a solution

were considered by Iwaniec and Sbordone [47, 48] and by Kinnunen and Zhou [52] when the
coefficients of A(x) are bounded and in V M O . The condition about A(x) in V M O is relaxed
to a small B M O condition in [14, 15]. Recently local and global estimates for degenerate
equations of the type (1.13) are given in weighted spaces in [6, 8] assuming a smallness
condition for the B M O norm of log A(x) depending on the exponent q . This result is not
strictly comparable with Theorem 1.2, where the exponent depends on the B M O norm and
on the bound on the distance DK in (1.12). Moreover, as mentioned earlier, we require no
condition of smallness of the norm.
New main estimates for the development of nonlinear Calderón–Zygmund theory for equa-
tions and systems are due to Mingione, starting from pioneering papers [58, 61]. Regarding
systems, weaker results are available unless in the case of the p-Laplacean system (see [27,
71]). Indeed, some bounds on exponent q is necessary even in the case of Uhlenbeck-type
systems according to the example exhibited in [69]. If the vector field A(ξ) is sufficiently

regular, then CZ-estimates survive for q ∈
(

p,
np

n−2

)
(see [29, 60] and references therein). A

significant extension of CZ-theory to non-uniformly elliptic operators shaped on the p(x)-
Laplacean [2, 21] and to the double-phase problems [26] has also been established, following
the fundamental paper [57].
Now, let us spend some words on the strategy of the proof. In Theorem 1.1 we deal with
very weak solutions and so, a priori, we cannot use in (1.8) test functions proportional to
a solution u. Then, in Sect. 3, we first achieve a higher integrability result. Following [46,
49], via a weighted version of Hodge decomposition [22] and connectedness arguments, we
construct suitable test functions and in Lemma 3.1 we prove a reverse Hölder inequality for
Du. The statement of this lemma does not require assumptions (1.4) and (1.6) and extends
a result proved in [34]. For another approach to treat very weak solutions see [56]. Once
acquired the higher integrability of Du, in Sect. 4 we prove an a priori estimate by using the
classic difference quotient method (for details see for example [1, 37, 39]). Finally, in Sect. 5,
the proof of Theorem 1.1 follows by constructing appropriate approximating boundary value
problems, whose solvability is known and for which the a priori estimate applies. In order to
prove Theorem 1.2, the main difficulty is the interplay of the nonlinearity and the presence
of a weight which does not allow us to follow the scheme of previous papers, based on
comparing a solution w to the initial problem with the solution to homogeneous systems
with frozen coefficients, i.e. div A(x0, Dw) = 0. In order to deal with such a peculiarity, we
first compare a local solution to (1.11) with the solution to a related homogeneous Dirichlet
problem for which higher integrability follows from Theorem 1.1. So, as in [55], we shall
rely on a technique introduced by Caffarelli and Peral [16, 17], and based on Calderón and
Zygmund type covering arguments and iteration of level sets, combined with a clever use
of Harmonic Analysis tools such as weighted versions of Maximal function inequalities.
Finally, in Sect. 7 we present global versions of Theorem 1.1 and Theorem 1.2. We study the
Dirichlet problem with zero boundary condition on a regular C2 domain. Since mollifiers
and quasiconformal homeomorphisms preserve the B M O norm [5] and the distanceDK [10]
respectively, the proof of these results follows in a standard way (see Theorems 7.1, 7.2).
When � is not regular the problem is more delicate [25, 29, 54].
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We point out that through all the paper we consider p ≥ 2. As known, in the subquadratic
case the assumptions and the results change, according to the properties of the p-Laplacean
operator and the degeneracy of the problem. In the case of systems with right-hand side
affected by weak integrability properties, the existence of solutions to boundary value prob-
lems obtained as the limit of smooth solutions to approximating problems is only known
under the assumption that p > 2 − 1

n [28]. Theorem 1.1 extends for homogeneous regu-
lar systems [1, 9, 25, 29]. For regular systems also CZ type estimates are available when
p > 2− 1

n [60]. For nonhomogeneous p-Laplacean systems Theorem 1.1 holds when p > 3
2

for a datum not in divergence form and lying in L2 [25]. An improvement of the range of p
is given in [7]. Some techniques presented here are suitable to be extended, but since they
are already delicate, at this stage we prefer to confine ourselves to the superquadratic case in
order to highlight the main ideas and novelties.

2 Preliminaries

This section is devoted to notation and preliminary results useful for our aims. Regarding
definitions, notations and main properties of Lorentz spaces and difference quotients, we
refer to sections 2.3 and 2.4 in [65].

2.1 BMO spaces

Definition 2.1 ([12, 50]) Let� be a cube or the entire spaceR
n . The B M O(�) space consists

of all functions b which are integrable on every cube Q ⊂ � with sides parallel to those of
� and satisfy:

‖b‖∗ = sup
Q

{
1

|Q|
∫

Q
|b − bQ | dx

}
< ∞,

where bQ = 1
|Q|

∫
Q b(y) dy and |Q| denotes the Lebesgue measure of Q.

It is clear that the functional ‖ · ‖∗ does not define a norm since it vanishes on constant
functions. However B M O becomes a Banach space provided we identify functions which
differ a. e. by a constant.

Bounded functions are in B M O . On the other hand, B M O contains unbounded functions
and is contained in L p

loc spaces. The standard example of B M O function is

f (x) = log|x |, x ∈ B1(0) \ 0,
where, for R > 0 and x0 ∈ R

n , we define

BR(x0) = {x ∈ R
n : |x − x0| < R},

but in the case no ambiguity arises, we shall use the short notation BR . We also recall the
following property

Theorem 2.1 ([12]) For any cube Q ⊂ R
n the following inclusion holds with continuous

embedding:

W 1,n(Q) ↪→ B M O(Q).
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2.2 Muckenhoupt weights

Definition 2.2 ([33]) Given a weight w, i.e. a nonnegative function locally integrable in R
n ,

we say that w belongs to the Ap class of Muckenhoupt, with 1 < p < ∞, if

Ap(w) := sup
Q

⎛
⎜⎝⨍

Q

w

⎞
⎟⎠
⎛
⎜⎝⨍

Q

w
− 1

p−1

⎞
⎟⎠

p−1

< ∞

where the supremum is taken all over cubes Q of R
n . We say w belongs to the A1 class of

Muckenhoupt if

A1(w) := sup
Q

⎛
⎜⎝⨍

Q

w

⎞
⎟⎠
(
ess sup

Q

(
w−1)

)
< ∞,

where the supremum is taken all over cubes Q of R
n . The number Ap(w) is called the Ap

constant of w.

Note that, if 1 ≤ p < q , then Ap ⊂ Aq . In fact, if p > 1, by Hölder’s inequality, we have

⎛
⎜⎝⨍

Q

w

⎞
⎟⎠
⎛
⎜⎝⨍

Q

w
− 1

q−1

⎞
⎟⎠

q−1

≤
⎛
⎜⎝⨍

Q

w

⎞
⎟⎠
(∫

Q 1
)q−p (∫

Q w
− 1

p−1

)p−1

|Q|q−1

=
⎛
⎜⎝⨍

Q

w

⎞
⎟⎠
⎛
⎜⎝⨍

Q

w
− 1

p−1

⎞
⎟⎠

p−1

≤ Ap(w).

If p = 1 then

(
1

|Q|
∫

Q
w

− 1
q−1

)q−1

≤ ess sup
x∈Q

(
w−1(x)

) = ess sup
x∈Q

(
w−1(x)

)
⎛
⎜⎝⨍

Q

w

⎞
⎟⎠
⎛
⎜⎝⨍

Q

w

⎞
⎟⎠

−1

≤ A1(w)

( |Q|
w(Q)

)
,

where we have set, for every measurable set E ⊂ R
n ,

w(E) :=
∫

E
w dx . (2.1)

Note that the measure defined in (2.1) is doubling (see [70, Chapter IX, Theorem 2.1]).

Definition 2.3 ([68]) Let k(x) : R
n → R

n . We will call k a Calderon–Zygmund kernel (CZ
kernel) if k satisfies the following properties

• k(x) ∈ C∞(Rn \ {0}),
• k(x) is homogeneous of degree −n,
• ∫


k(x) dσx = 0 where  is the unit sphere of R

n .
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Given such a kernel, one can define a bounded operator in L p , 1 < p < ∞, called
Calderon–Zygmund singular operator, as follows

K f (x) = P.V .(k� f )(x) := P.V .

∫
Rn

k(x − y) f (y) dy.

Given a measurable subset E of R
n , we will denote by L p(w, E; R

N ), 1 < p < ∞, the
Banach space of all measurable functions f defined on E for which

‖ f ‖L p
w(E) =

(∫
E
| f (x)|pw(x) dx

) 1
p

< ∞.

It is well known that the singular integral operators are bounded on weighted L p spaces for
weights belonging to the Ap class. A theorem due to Buckley explicitly gives the dependence
of the L p(w, R

n) - norm of a singular integral operator on the Ap constant of w. Namely

Theorem 2.2 ([13]) Let w be an Ap weight and K a singular integral operator. Then, for
every f ∈ L p(w, E; R

N ), there exists a constant c = c(n, p) such that

‖K f ‖p
L p

w(E)
≤ cAp(w)p+p′ ‖ f ‖p

L p
w(E)

where p′ = p
p−1 .

Since both Ap condition and the definition of B M O deal with the averaging of functions
it is natural to consider the connections between these two classes. Among a lot of results in
this direction, we point out the following

Lemma 2.1 ([51]) Let b(x) be a function such that b, 1
b both belong to B M O(Rn). Then

b ∈
⋂
p>1

Ap

and

Ap(b) ≤ c + c‖b‖∗
where c is a constant depending only on p.

We can state the following weighted versions of Imbedding Theorem and Sobolev–Poincaré
inequality:

Theorem 2.3 ([30]) Given 1 < p < ∞ and w ∈ Ap, there exist constants c, depending on
n, p and the Ap constant of w, and ζ > 0, depending on n and p, such that for all balls BR,
all u ∈ C∞

0 (BR) and all numbers k satisfying 1 ≤ k ≤ n
n−1 + ζ ,

(
1

w(BR)

∫
BR

|u|kpw dx

) 1
kp ≤ cR

(
1

w(BR)

∫
BR

|∇u|pw dx

) 1
p

.

Theorem 2.4 ([30]) Let 1 < p < ∞ and w ∈ Ap. Then there are constants c, depending on
n, p and the Ap constant of w, and ζ > 0, depending on n and p, such that for all Lipschitz
continuous functions u defined on BR and for all 1 ≤ k ≤ n

n−1 + ζ ,

(
1

w(BR)

∫
BR

∣∣u(x) − ABR

∣∣kp
w dx

) 1
kp ≤ cR

(
1

w(BR)

∫
BR

|∇u|p w dx

) 1
p

,

where either ABR = 1
w(BR)

∫
BR

u(x)w(x) dx or ABR = 1
|BR |

∫
BR

u(x) dx.
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2.3 Hodge decomposition

We shall now discuss briefly the Hodge decomposition of vector fields; for a more complete
treatment see [46, 49]. For a given vector field L = (l1, . . . , ln) ∈ L p(Rn; R

n), 1 < p < ∞,
the Poisson equation �u = div L can be solved by using the Riesz transforms in R

n , R =
(R1, . . . , Rn),

∇u = −(R ⊗ R)(L) =: K (L).

Here the tensor product operatorK = −R⊗R = −[Ri j ] is the n × n matrix of the second
order Riesz transforms Ri j = Ri ◦ R j , i, j = 1, . . . , n. Notice that the range of the operator

H := Id − K : L p(Rn; R
n) → L p(Rn; R

n)

consists of the divergence free vector fields. We then arrive at the familiar Hodge decompo-
sition of L

L = ∇u + H , div H = 0.

Hence, L p-estimates for Riesz transform yield an uniform estimate

‖∇u‖L p(Rn) + ‖H‖L p(Rn) ≤ c(p)‖L‖L p(Rn).

Let � ⊂ R
n be a domain and G = G(x, y) the Green’s function. For h ∈ C∞

0 (�) the
integral

u(x) =
∫

�

G(x, y)h(y) dy

defines a solution of the Poisson equation �u = h with u vanishing on the boundary of
�. If h has a divergence form, say h = div L with L = (l1, . . . , ln) ∈ C∞

0 (�; R
n), then

integration by parts yields

u(x) = −
∫

�

∇y G(x, y)L(y) dy.

Hence the gradient of u is expressed by a singular integral

∇u(x) = −
∫

�

∇x∇y G(x, y)L(y) dy =: (K�L)(x).

By Theorem 2.2 and Lemma 2.1, if b ∈ B M O and 1
b ∈ B M O , we have

‖K�L‖p
L p

b
≤ c(1 + ‖b‖∗)p+p′ ‖L‖p

L p
b

If 1 < p < ∞, let D p(b,�; R
n) denote the closure of the range of the gradient operator

∇ : C∞
0 (�) → L p(b,�; R

n), i.e.

D p(b,�; R
n) := {∇v : v ∈ C∞

0 (�)
}L p

b
.

If � is smooth, then K� extends continuously to all L p(b,�; R
n) spaces. Consequently

the formula ∇u = K�L extends to all L ∈ L p(b,�; R
n) giving a solution with ∇u ∈

D p(b,�; R
n), 1 < p < ∞.

Definition 2.4 ([49]) A domain � ⊂ R
n will be called regular if the operator K� acts

boundedly in all L p(b,�; R
n)-spaces, for 1 < p < ∞.
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For � a regular domain we introduce, as before, the operator

H� := Id − K� : L p(b,�; R
n) → L p(b,�; R

n).

Obviously, the range of H� consists of the divergence free vector fields on �. We have the
Hodge decomposition of L ∈ L p(b,�; R

n),

L = ∇u + H , div H = 0, ∇u ∈ D p(b,�; R
n).

We deduce the following stability property in our decomposition

Lemma 2.2 ([22]) Let � be a regular domain of R
n and consider b ∈ B M O such that

1
b ∈ B M O. If u ∈ W 1,r−ε

0 (b,�; R
N ), 1 < r < ∞, −1 < 2ε < r − 1, there exist

φ ∈ W
1, r−ε

1−ε

0 (b,�; R
N ) and a divergence free vector field H ∈ L

r−ε
1−ε (b,�; R

N×n) such that

|Du|−ε Du = Dφ + H .

Moreover

‖Dφ‖
L

r−ε
1−ε
b (�)

≤ c(n, r)(1 + ‖b‖∗)γ (r)‖Du‖1−ε

Lr−ε
b (�)

‖H‖
L

r−ε
1−ε
b (�)

≤ c(n, r)(1 + ‖b‖∗)γ (r)|ε| ‖Du‖1−ε

Lr−ε
b (�)

where γ (r) is an exponent depending only on r.

2.4 Maximal operators

Let Q0 ⊂ R
n be a cube.We shall consider, in the following, the RestrictedMaximal Function

Operator relative to Q0. This is defined as

M∗
Q0

( f )(x) := sup
Q⊆Q0
x∈Q

⨍
Q

| f (y)| dy, x ∈ Q0,

whenever f ∈ L1(Q0), where Q denotes any cube contained in Q0 with sides parallel to
those of Q0, as long as x ∈ Q. We recall the following weak type (p, p) estimate for M∗

Q0
,

valid for any p ∈ [1,∞):

∣∣{x ∈ Q0 : M∗
Q0

( f )(x) ≥ t
}∣∣ ≤ c(n, p)

t p

∫
Q0

| f (y)|p dy t > 0 (2.2)

which is valid for any f ∈ L p(Q0). For this and related issues we refer to [67].
Ifw is a weight and Q0 ⊂ R

n is a cube, we define the weighted RestrictedMaximal Function
Operator relative to Q0 as

M∗
w,Q0

( f )(x) := sup
Q⊆Q0
x∈Q

∫
Q | f (y)|w(y) dy

w(Q)
, x ∈ Q0,

whenever f ∈ L1(w, Q0), where Q denotes any cube contained in Q0 with sides parallel to
those of Q0, as long as x ∈ Q. We have the following weighted generalization of (2.2):

Theorem 2.5 ([70]) Suppose w ∈ Ap, 1 < p < ∞. Then M∗
w,Q0

maps L p(w, Q0) into
weak-L p(w, Q0), with norm independent in Ap.
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Finally we recall the following useful lemmas:

Lemma 2.3 ([36]) For R0 < R1, consider a bounded function f : [R0, R1] → [0,∞) with

f (s) ≤ θ f (t) + A

(s − t)δ
+ B for all R0 < s < t < R1,

where A, B and δ denote non - negative constants and θ ∈ (0, 1). Then we have

f (R0) ≤ c(δ, θ)

(
A

(R1 − R0)δ
+ B

)
,

where c(δ, θ) is increasing with respect to δ.

Lemma 2.4 ([37]) For any p ≥ 2, we have

c−1(μ2 + |η|2 + |ξ |2) p−2
2 |η − ξ |2 ≤ |Vμ(η) − Vμ(ξ)|2 ≤ c(μ2 + |η|2 + |ξ |2) p−2

2 |η − ξ |2
for any η, ξ ∈ R

k , μ ∈ [0, 1] and a constant c = c(p) > 0.

Lemma 2.5 ([55]) Let p ∈ [2,∞) and μ ∈ [0, 1], then

(μ2 + |z|2) p−2
2 |z| |ζ | ≤ ε(μ2 + |z|2) p−2

2 |z|2 + ε1−p(μ2 + |ζ |2) p−2
2 |ζ |2

for every z, ζ ∈ R
N×n and ε ∈ (0, 1].

Lemma 2.6 ([17]) Let Q0 ⊂ R
n be a cube and D(Q0) be the class of all dyadic cubes

obtained from Q0. Let a ∈ (0, 1). Assume that X ⊂ Y ⊂ Q0 are measurable sets satisfying
the following conditions:

• |X | < a|Q0|
• if Q ∈ D(Q0) then |X ∩ Q| > a|Q| �⇒ Q̃ ⊂ Y ,

where Q̃ denotes the predecessor of Q. Then

|X | < a|Y |.
By means of an analogous proof of [38, Proposition 5.1] we get

Lemma 2.7 Let f ∈ Lr (w,�) and g ∈ Ls(w,�) be non-negative functions, where 1 < r <

s, � is an open set, w is a weight. If the following∫
BR

f rw dx

w(BR)
≤ c

((∫
B2R

f w dx

w(B2R)

)r

+
∫

B2R
grw dx

w(B2R)

)
, c > 1,

holds for every pair of concentric balls BR ⊂ B2R ⊂⊂ �, then there exists ε > 0 such that
f ∈ Lr+ε

loc (w,�).

3 Higher integrability

In this section we prove a higher integrability result useful to our aims. We consider the
nonlinear elliptic system

div A(x, Du(x)) = div |G|p−2G in �. (3.1)

We begin with a reverse Hölder inequality.

123



   80 Page 12 of 47 G. Moscariello, G. Pascale

Lemma 3.1 Let � be a regular domain, A(x, ξ) a mapping verifying assumptions (1.2), (1.3)
and (1.5), μ ∈ [0, 1], and let G ∈ L p+δ

loc (b,�; R
N×n), for δ ≥ 0. Then there exist positive

constants ε1 and c, depending on n, λ0, ‖b‖∗, k, p, with 0 < ε1 < 1
2 , such that if u ∈ W 1,p−ε

loc
verifies (3.1) and −min{ε1, δ} < ε ≤ ε1, then

1

b(BR)

∫
BR

(
μ2 + |Du|2 + |u|2) p−ε

2 b dx ≤ c

(
1

b(B2R)

∫
B2R

(μ2 + |Du|2 + |u|2) σ
2 b dx

) p−ε
σ

+ c

b(B2R)

∫
B2R

(
μ2 + |G|2) p−ε

2 b dx (3.2)

for every σ with max
{
1, (n−1)(p−ε)

n

}
≤ σ < p − ε and for every pair of concentric balls

BR ⊂ B2R ⊂⊂ � with R < 1.

Proof Fix a ball BR(x0) with R < 1 such that B2R(x0) ⊂⊂ �. For R ≤ s < t ≤ 2R, we
consider the balls centered at x0 with radii R, s, t , 2R. Let ξ : R

n → R be the usual cut-off
function, that is ξ ∈ C∞

0 (Bt ) with 0 ≤ ξ ≤ 1, ξ = 1 on Bs and |∇ξ | ≤ 1
t−s . Let us assume

that u ∈ W 1,p−ε
loc (b,�; R

N ) is a local solution of (3.1), with−1 < 2ε < p−1. ByLemma 2.2

applied to ξ(u−λ), λ ∈ R
N , there exist φ ∈ W

1, p−ε
1−ε

0 (b,�; R
N ) and H ∈ L

p−ε
1−ε (b,�; R

N×n)

such that

|D[ξ(u − λ)]|−ε D[ξ(u − λ)] = Dφ + H

‖Dφ‖
L

p−ε
1−ε

b (�)

≤ c(n, p)(1 + ‖b‖∗)γ ‖D[ξ(u − λ)]‖1−ε

L p−ε
b (�)

‖H‖
L

p−ε
1−ε

b (�)

≤ c(n, p)(1 + ‖b‖∗)γ |ε| ‖D[ξ(u − λ)]‖1−ε

L p−ε
b (�)

,

where γ is an exponent depending only on p. We use φ as a test function in (1.8); this yields
∫

Bt

〈|G|p−2G, Dφ〉 dx =
∫

Bt

〈A(x, Du), Dφ〉 dx

=
∫

Bt

〈A(x, D[ξ(u − λ)]), Dφ〉 dx +
∫

Bt

〈[A(x, Du) − A(x, D[ξ(u − λ)])], Dφ〉 dx

=
∫

Bt

〈A(x, D[ξ(u − λ)]), |D[ξ(u − λ)]|−ε D[ξ(u − λ)]〉 dx

−
∫

Bt

〈A(x, D[ξ(u − λ)]), H〉 dx +
∫

Bt

〈[A(x, Du) − A(x, D[ξ(u − λ)])], Dφ〉 dx .

Hence∫
Bt

〈A(x, D[ξ(u − λ)]), |D[ξ(u − λ)]|−ε D[ξ(u − λ)]〉 =
∫

Bt

〈A(x, D[ξ(u − λ)]), H〉

−
∫

Bt

〈[A(x, Du) − A(x, D[ξ(u − λ)])], Dφ〉 +
∫

Bt

〈|G|p−2G, Dφ〉.

Now we use (1.3) and (1.5) to obtain

1

k

∫
Bt

|D[ξ(u − λ)]|p−εb dx ≤
∫

Bt

〈A(x, D[ξ(u − λ)]), |D[ξ(u − λ)]|−ε D[ξ(u − λ)]〉 dx .

(3.3)
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We then apply (1.2), (1.5), together with Hölder’s and Young’s inequalities with exponents
p−ε
p−1 and p−ε

1−ε
, to get

∫
Bt

|〈A(x, D[ξ(u − λ)]), H〉| dx ≤ k
∫

Bt

(μ2 + |D[ξ(u − λ)]|2) p−1
2 |H |b dx

≤ c(k, p)

∫
Bt

(μp−1 + |D[ξ(u − λ)])|p−1)|H |b dx

≤ c(n, ‖b‖∗, k, p) |ε|
((∫

Bt

μp−εb dx

) p−1
p−ε

(∫
Bt

|D[ξ(u − λ)]|p−εb dx

) 1−ε
p−ε

+
∫

Bt

|D[ξ(u − λ)]|p−εb dx

)

≤ c(n, ‖b‖∗, k, p)|ε|
(∫

Bt

μp−εb dx +
∫

Bt

|D[ξ(u − λ)]|p−εb dx

)
.

(3.4)

On the other hand,

|Du| ≤ |Du − D[ξ(u − λ)]| + |D[ξ(u − λ)]|,
thus

(μ2 + |Du|2 + |D[ξ(u − λ)]|2) p−2
2 ≤ c(p)(μp−2 + |Du − D[ξ(u − λ)]|p−2

+|D[ξ(u − λ)]|p−2)

and, by (1.2), we have
∫

Bt

|〈A(x, Du) − A(x, D[ξ(u − λ)]), Dφ〉| dx

≤ c
∫

Bt

|Du − D[ξ(u − λ)]| |Dφ|(μp−2 + |Du − D[ξ(u − λ)]|p−2

+ |D[ξ(u − λ)]|p−2)b dx

= c

(∫
Bt

μp−2|Du − D[ξ(u − λ)]| |Dφ|b dx +
∫

Bt

|Du − D[ξ(u − λ)]|p−1|Dφ|b dx

+
∫

Bt

|Du − D[ξ(u − λ)]| |D[ξ(u − λ)]|p−2 |Dφ|b dx

)
,

with c = c(k, p). Next, we apply the straightforward equality Du − D[ξ(u − λ)] = (1 −
ξ)Du − (u − λ)∇ξ :

∫
Bt

|〈A(x, Du) − A(x, D[ξ(u − λ)]), Dφ〉| dx ≤ c(k, p)

(∫
Bt

μp−2(1 − ξ) |Du| |Dφ|b dx

+
∫

Bt

μp−2|∇ξ | |u − λ||Dφ|b dx +
∫

Bt

|(1 − ξ)Du|p−1|Dφ|b dx

+
∫

Bt

|(u − λ)∇ξ |p−1|Dφ|b dx +
∫

Bt

(1 − ξ)|Du| |D[ξ(u − λ)]|p−2|Dφ|b dx

+
∫

Bt

|∇ξ | |u − λ| |D[ξ(u − λ)[|p−2|Dφ|b dx

)
=: I + I I + I I I + I V + V + V I .
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In order to estimate I , if p > 2, using Hölder’s and Young’s inequalities with exponents
p − ε, p−ε

p−2 and p−ε
1−ε

, and for ε̇ > 0, we get:

I ≤
(∫

Bt

|(1 − ξ)Du|p−εb dx

) 1
p−ε

(∫
Bt

μp−εb dx

) p−2
p−ε

(∫
Bt

|Dφ| p−ε
1−ε b dx

) 1−ε
p−ε

≤ c(n, ‖b‖∗, p)

(∫
Bt

|(1 − ξ)Du|p−εb dx

) 1
p−ε

(∫
Bt

μp−εb dx

) p−2
p−ε

×
(∫

Bt

|D[ξ(u − λ)]|p−εb dx

) 1−ε
p−ε

≤ c(n, ‖b‖∗, p)p−ε

(
1

ε̇

)p−ε ∫
Bt

|(1 − ξ)Du|p−εb dx +
∫

Bt

μp−εb dx

+ ε̇
p−ε
1−ε

∫
Bt

|D[ξ(u − λ)]|p−εb dx .

(3.5)

Now, since c may be assumed greater than 1, cp−ε is less than cp . Therefore, we can assume
that the constant c is independent of ε. If p = 2, sinceμ ≤ 1, we argue as before by applying
Hölder’s and Young’s inequalities with exponents p − ε and p−ε

p−ε−1 :

I ≤
(∫

Bt

|(1 − ξ)Du|p−εb dx

) 1
p−ε

(∫
Bt

|Dφ| p−ε
p−ε−1 b dx

) p−ε−1
p−ε

≤ c(n, ‖b‖∗, p)

(∫
Bt

|(1 − ξ)Du|p−εb dx

) 1
p−ε

(∫
Bt

|D[ξ(u − λ)]|p−εb dx

) 1−ε
p−ε

≤ c(n, ‖b‖∗, p)

(
1

ε̇

)p−ε ∫
Bt

|(1 − ξ)Du|p−εb dx + ε̇
p−ε
1−ε

∫
Bt

|D[ξ(u − λ)]|p−εb dx .

(3.6)

Replacing |(1 − ξ)Du| by |(u − λ)∇ξ |, we get the desired estimate for I I , if p > 2:

I I ≤ c

(
1

ε̇

)p−ε ∫
Bt

|(u − λ)∇ξ |p−εb dx +
∫

Bt

μp−εb dx + ε̇
p−ε
1−ε

∫
Bt

|D[ξ(u − λ)]|p−εb dx

(3.7)

and p = 2:

I I ≤ c

(
1

ε̇

)p−ε ∫
Bt

|(u − λ)∇ξ |p−εb dx + ε̇
p−ε
1−ε

∫
Bt

|D[ξ(u − λ)]|p−εb dx, (3.8)

with c = c(n, ‖b‖∗, p). Using Hölder’s and Young’s inequalities with exponents p−ε
p−1 and

p−ε
1−ε

, and if ε̈ > 0, we obtain:

I I I ≤ c(n, ‖b‖∗, p)

(∫
Bt

|(1 − ξ)Du|p−εb dx

) p−1
p−ε

(∫
Bt

|D[ξ(u − λ)]|p−εb dx

) 1−ε
p−ε

≤ c(n, ‖b‖∗, p)

(
1

ε̈

) p−ε
p−1

∫
Bt

|(1 − ξ)Du|p−εb dx + ε̈
p−ε
1−ε

∫
Bt

|D[ξ(u − λ)]|p−εb dx .

(3.9)
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In the same way, we estimate I V , namely

I V =
∫

Bt

|(u − λ)∇ξ |p−1|Dφ|b dx

≤ c(n, ‖b‖∗, p)

(
1

ε̈

) p−ε
p−1

∫
Bt

|(u − λ)∇ξ |p−εb dx + ε̈
p−ε
1−ε

∫
Bt

|D[ξ(u − λ)]|p−εb dx .

(3.10)

Arguing as for I and I I , with
...
ε > 0, we estimate V

V =
∫

Bt

|(1 − ξ)Du| |D[ξ(u − λ)]|p−2|Dφ|b dx

≤ c(n, ‖b‖∗, p)

(
1
...
ε

)p−ε ∫
Bt

|(1 − ξ)Du|p−εb dx + ...
ε

p−ε
p−ε−1

∫
Bt

|D[ξ(u − λ)]|p−εb dx

(3.11)

and V I

V I =
∫

Bt

|(u − λ)∇ξ | |D[ξ(u − λ)]|p−2|Dφ|b dx

≤ c(n, ‖b‖∗, p)

(
1
...
ε

)p−ε ∫
Bt

|(u − λ)∇ξ |p−εb dx + ...
ε

p−ε
p−ε−1

∫
Bt

|D[ξ(u − λ)]|p−εb dx .

(3.12)

Finally, by Hölder’s and Young’s inequalities with exponents p−ε
p−1 and p−ε

1−ε
, supposing |ε| ≤

δ, and if
....
ε > 0, we have

∫
Bt

∣∣〈|G|p−2G, Dφ〉∣∣ dx ≤ 1

λ0

∫
Bt

|G|p−1|Dφ|b dx ≤ 1

λ0
‖G‖p−1

L p−ε
b (Bt )

‖Dφ‖
L

p−ε
1−ε

b (Bt )

≤ c(n, ‖b‖∗, p, λ0)

(
1
....
ε

) p−ε
p−1

∫
Bt

|G|p−εb dx + ....
ε

p−ε
1−ε

∫
Bt

|D[ξ(u − λ)]|p−εb dx .

(3.13)

Combining estimates (3.3)–(3.13) yields

1

k

∫
Bt

|D[ξ(u − λ)]|p−εb dx

≤ c(n, ‖b‖∗, k, p, λ0)

((
|ε| + (ε̇ + ε̈ + ....

ε )
p−ε
1−ε + ...

ε
p−ε

p−ε−1

)∫
Bt

|D[ξ(u − λ)]|p−εb dx

+
⎛
⎝
(
1

ε̇
+ 1

...
ε

)p−ε

+
(
1

ε̈

) p−ε
p−1

⎞
⎠
(∫

Bt

|(1 − ξ)Du|p−εb dx +
∫

Bt

|(u − λ)∇ξ |p−εb dx

)

+(|ε| + 1)
∫

Bt

μp−εb dx +
(

1
....
ε

) p−ε
1−ε

∫
Bt

|G|p−εb dx

)
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for arbitrary positive numbers ε̇, ε̈,
...
ε ,

....
ε . We now choose ε, ε̇, ε̈,

...
ε and

....
ε to be such that

c(n, ‖b‖∗, k, p, λ0) ·
(
|ε| + (ε̇ + ε̈ + ....

ε )
p−ε
1−ε + ...

ε
p−ε

p−ε−1

)
< 1

2k . To this effect, we fix ε1 > 0

sufficiently small. Accordingly,
∫

Bt

|D[ξ(u − λ)]|p−εb dx ≤ c(n, ‖b‖∗, k, p, λ0)
(∫

Bt

|(1 − ξ)Du|p−εb dx

+
∫

Bt

|(u − λ)∇ξ |p−εb dx +
∫

Bt

μp−εb dx +
∫

Bt

|G|p−εb dx
)
,

for −min{ε1, δ} < ε ≤ ε1 and c independent of ε. The properties of the cut-off function ξ

and the previous inequality yield∫
Bs

|Du|p−εb dx ≤ c
(∫

Bt \Bs

|Du|p−εb dx + 1

(t − s)p−ε

∫
Bt

|u − λ|p−εb dx

+
∫

Bt

(μp−ε + |G|p−ε)b dx
)
.

Adding c
∫

Bs
|Du|p−εb dx to both sides yields

∫
Bs

|Du|p−εb dx ≤ c

c + 1

∫
Bt

|Du|p−εb dx + c

(c + 1)(t − s)p−ε

∫
B2R

|u − λ|p−εb dx

+ c

c + 1

∫
B2R

(μp−ε + |G|p−ε)b dx .

With the notation (2.1), we set

λ = u R :=
∫

B2R
u(x)b dx

b(B2R)

and we apply Lemma 2.3 to get∫
BR

|Du|p−εb dx ≤ c

(
R−(p−ε)

∫
B2R

|u − u R |p−εb dx +
∫

B2R

(μp−ε + |G|p−ε)b dx

)
.

We add
∫

BR

(|u|p−ε + μp−ε
)

b dx to both sides. Since |u|p−ε ≤ c(|u − u R |p−ε + |u R |p−ε)

and R < 1, we obtain∫
BR

(μp−ε + |Du|p−ε + |u|p−ε)b dx ≤ c

(
R−(p−ε)

∫
B2R

|u − u R |p−εb dx

+
∫

B2R

|u R |p−εb dx +
∫

B2R

(
μ2 + |G|2) p−ε

2 b dx

)
,

(3.14)

with c = c(n, ‖b‖∗, k, p, λ0). Note that by Jensen’s inequality

∫
B2R

|u R |p−εb dx = b(B2R)

(∫
B2R

|u(x)| b dx

b(B2R)

)p−ε

≤
∫

B2R

|u(x)|p−εb dx ≤ R−(p−ε)

∫
B2R

|u(x)|p−εb dx .

(3.15)

Theorem 2.3 and Lemma 2.1 yield

R−(p−ε)

b(B2R)

∫
B2R

|u|p−εb dx ≤ c

(
1

b(B2R)

∫
B2R

|∇u|σ b dx

) p−ε
σ

(3.16)
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for all σ such that max
{
1, (n−1)p−ε

n

}
≤ σ < p − ε and with c = c(n, ‖b‖∗, k, p, λ0).

Theorem 2.4 and Lemma 2.1 yield

R−(p−ε)

b(B2R)

∫
B2R

|u − u R |p−εb dx ≤ c

(
1

b(B2R)

∫
B2R

|∇u|σ b dx

) p−ε
σ

(3.17)

for all σ such that max
{
1, (n−1)p−ε

n

}
≤ σ < p − ε and with c = c(n, ‖b‖∗, k, p, λ0).

Putting together (3.14)–(3.17), since the measure b dx is doubling and by means of
Lemma 2.1, we have

c(n, p, ‖b‖∗)
b(BR)

∫
BR

(μ2 + |Du|2 + |u|2) p−ε
2 b dx

≤ c(n, p, ‖b‖∗)
b(BR)

∫
BR

(μp−ε + |Du|p−ε + |u|p−ε)b dx

≤ 1

b(B2R)

∫
BR

(μp−ε + |Du|p−ε + |u|p−ε)b dx

≤ c(n, ‖b‖∗, k, p, λ0)

b(B2R)

(
R−(p−ε)

∫
B2R

|u − u R |p−εb dx

+ R−(p−ε)

∫
B2R

|u(x)|p−εb dx +
∫

B2R

(
μ2 + |G|2) p−ε

2 b dx

)

≤ c(n, ‖b‖∗, k, p, λ0)

[(
1

b(B2R)

∫
B2R

(μσ + |Du|σ + |u|σ )b dx

) p−ε
σ

+ 1

b(B2R)

∫
B2R

(
μ2 + |G|2) p−ε

2 b dx

]
,

(3.18)

for all σ such that max
{
1, (n−1)p−ε

n

}
≤ σ < p − ε and we can conclude the proof of the

reverse Hölder’s inequality (3.2). ��

Now we are ready to prove the main result of this section.

Theorem 3.1 Let � be a regular domain, A(x, ξ) a mapping verifying assumptions (1.2),
(1.3) and (1.5), μ ∈ [0, 1], and let G ∈ L p+δ

loc (b,�; R
N×n), for δ ≥ 0. Then there exists

0 < ε1 < 1
2 , depending on k, n, λ0, p and the B M O - norm of b(x), such that, if u ∈

W 1,p−ε
loc (b,�; R

N ), with 0 ≤ ε < ε1, is a local solution of (3.1), then u ∈ W 1,p−ε̃
loc (b,�, R

N ),
for any 0 ≤ |ε̃| ≤ min{δ, ε1}.

Proof Let u ∈ W 1,p−ε̄
loc (b,�; R

N ) verify the Eq. (1.8), with 0 ≤ ε̄ ≤ ε1. For �′ ⊂⊂ �,

set A = {ε ∈ [−min{δ, ε1}, ε1] : u ∈ W 1,p−ε
loc (b,�′; R

N )}. We claim that A =
[−min{δ, ε1}, ε1]. In order to see this, we first note that A is not empty, since ε1 ∈ A. Our
goal is to show that A is open and closed in [−min{δ, ε1}, ε1]. First we prove that A is open.
Indeed, if ε2 ∈ A, by the reverse Hölder inequality in Lemma 3.1 and by the higher integra-
bility result stated in Lemma 2.7, there exists ε > 0 such that max{ε2−ε,−min{δ, ε1}} ∈ A.
Therefore A is open. Now we prove that A is closed too. Let {ρk} ⊂ A be such that ρk → ρ.
We want to prove that ρ ∈ A. Obviously, u ∈ W 1,p−ρk

loc (b,�′; R
N ) and
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1

b(BR)

∫
BR

(
μ2 + |Du|2 + |u|2

) p−ρk
2

b dx ≤

≤ c

(
1

b(B2R)

∫
B2R

(μ2 + |Du|2 + |u|2) σk
2 b dx

) p−ρk
σk

+ c

b(B2R)

∫
B2R

((
μ2 + |G|2) p−ρk

2 b dx
)

(3.19)

with σk = max{1, (n − 1)(p − ρk)/n}. Let us observe that (μ2 + |Du|2 + |u|2) p−ρk
2 →

(μ2+|Du|2+|u|2) p−ρ
2 , almost everywhere in B2R . Therefore, we can apply Fatou’s Lemma

in order to estimate the left-hand side of (3.19). We obtain

1

b(BR)

∫
BR

(μ2 + |Du|2 + |u|2) p−ρ
2 b dx ≤ lim inf

k

1

b(BR)∫
BR

(μ2 + |Du|2 + |u|2) p−ρk
2 b dx . (3.20)

In order to pass to the limit on the right-hand side of (3.19), we assume that ρk > ρ for
every k, since otherwise u ∈ W 1,p−ρ

loc (b,�′; R
N ) and the conclusion is obvious. With this

assumption we have

σk ≤ max{1, (n − 1)(p − ρ)/n} < p − ρ,

since 1 < 2 − ε1 ≤ p − ρk < p − ρ. Set σ = max{1, (n − 1)(p − ρ)/n}; the following
inequality holds:

(μ2 + |Du|2 + |u|2) σk
2 ≤ 1 + (μ2 + |Du|2 + |u|2) σ

2 . (3.21)

For k large enough, we have σ < p − ρk < p − ρ and, since u ∈ W 1,σk
loc (b,�′; R

N ), the
right-hand side of (3.21) is in L1. Therefore, we can apply Lebesgue’s Convergence Theorem
in order to pass to the limit on the right-hand side of (3.19). Taking also into account that we
may assume |ρk | ≤ δ for every k and G ∈ L p+δ , we get, recalling (3.20),

1

b(BR)

∫
BR

(
μ2 + |Du|2 + |u|2) p−ρ

2 b dx

≤ c

(
1

b(B2R)

∫
B2R

(μ2 + |Du|2 + |u|2) σ
2 b dx

) p−ρ
σ

+ c

b(B2R)

∫
B2R

((
μ2 + |G|2) p−ρ

2 b dx
)

Hence ρ ∈ A, therefore A is closed. ��

Remark 3.1 By virtue of Theorem 3.1, in Sects. 4 and 5 we can assume u ∈ W 1,p+ε1
loc

(b,�; R
N ), for ε1 > 0 sufficiently small. In fact, in Theorem 1.1 and in a priori esti-

mate 4.1 we assume F ∈ W 1,2
loc (b,�; R

N×n). Therefore, with the notation F = |G|p−2G,

we have |G|p−1 ∈ L2∗
b , with 2∗ := 2n

n−2 , i.e. equivalently |G| ∈ L
2np−2n

n−2
b . Finally, we note

that 2np−2n
n−2 > p for p > 2∗ := 2n

n+2 .
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4 A priori estimate

In this section we assume the weak differentiability of Vμ(Du) in order prove an a priori
estimate.

Theorem 4.1 Let � be a regular domain and A(x, ξ) a mapping verifying assumptions (1.2)–
(1.5). If D(Vμ(Du)) ∈ L2

loc(b,�), μ ∈ (0, 1] and F ∈ W 1,2
loc (b, �; R

N×n), there exists
α > 0, depending on p, n, λ0, μ and k, such that, if

DK := distLn,∞(K (x), L∞) < α, (4.1)

the following estimate holds:
∫

BR

|D(Vμ(Du))|2b dx ≤ c
∫

B2R

((
1 + 1

R2

)
(μ2 + |Du|2) p

2 + (μ2 + |DF |2)
)

b dx

(4.2)

for every ball B2R ⊂⊂ � and for a constant c depending on p, k, λ0, n, μ and DK .

Proof For a fixed ball B2R ⊂⊂ � and radii R < s < t < 2R with R small enough, consider
a function ξ ∈ C∞

0 (Bt ), 0 ≤ ξ ≤ 1, ξ = 1 on Bs , |∇ξ | ≤ 1
t−s and set ψ = ξ2τhu for

sufficiently small h > 0. Since u is a local solution of (1.1), we can choose φ = τ−hψ as a
test function. By virtue of the properties of the difference quotients, we have∫

Bt

〈τh A(x, Du), Dψ〉 dx =
∫

Bt

〈τh F(x), Dψ〉 dx

that is ∫
Bt

〈τh A(x, Du), D(ξ2τhu)〉 dx =
∫

Bt

〈τh F(x), D(ξ2τhu)〉 dx .

It follows that∫
Bt

ξ2〈τh A(x, Du), τh Du〉 dx + 2
∫

Bt

ξ 〈τh A(x, Du),∇ξ ⊗ τhu〉 dx

=
∫

Bt

〈τh F(x), D(ξ2τhu)〉 dx,

(4.3)

and observing that

τh A(x, Du) = [A(x + hei , Du(x + hei )) − A(x + hei , Du(x))]
+ [A(x + hei , Du(x)) − A(x, Du(x))] =: Ah + A′

h

the equality (4.3) can be rewritten as∫
Bt

ξ2〈Ah, τh Du〉 dx = −
∫

Bt

ξ2〈A′
h, τh Du〉 dx − 2

∫
Bt

ξ 〈Ah,∇ξ ⊗ τhu〉 dx

− 2
∫

Bt

ξ 〈A′
h,∇ξ ⊗ τhu〉 dx +

∫
Bt

〈τh F, D(ξ2τhu)〉 dx =: I1 + I2 + I3 + I4.

By Assumption (1.3), we immediately obtain for the left hand side that∫
Bt

ξ2〈Ah, τh Du〉 dx ≥ 1

k

∫
Bt

ξ2(μ2 + |Du(x)|2 + |Du(x + hei )|2)
p−2
2 |τh Du|2b dx
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and hence

1

k

∫
Bt

ξ2(μ2 + |Du(x)|2 + |Du(x + hei )|2)
p−2
2

|τh Du|2
|h|2 b dx ≤ 1

|h|2
4∑

i=1

|Ii |.

Now let K0 ∈ L∞(�). In order to estimate |I j |, j = 1, . . . , 4, we introduce the notation

K(h) := K (x + hei ) + K (x),

D(h) := (μ2 + |Du(x)|2 + |Du(x + hei )|2) 1
2 .

By Assumption (1.4), we immediately have

|I1| ≤
∫

Bt

ξ2|A′
h | |τh Du| dx

≤
∫

Bt

ξ2|h|K(h)(μ2 + |Du|2) p−1
2 |τh Du| dx .

Then, defining

K0(h) := K0(x + hei ) + K0(x),

the use of Young’s inequality with a constant ν ∈ (0, 1) that will be chosen later yields

|I1| ≤
∫

Bt

ξ2|h|K(h) (μ2 + |Du|2) p−1
2 |Dτhu| dx

≤
∫

Bt

ξ2|h| |K(h) − K0(h)| (μ2 + |Du|2) p−1
2 |Dτhu| dx

+
∫

Bt

ξ2|h| ‖K0(h)‖L∞ (μ2 + |Du|2) p−1
2 |Dτhu| dx

≤ ν

2

∫
Bt

ξ2(μ2 + |Du|2) p−2
2 |Dτhu|2 dx + |h|2

2ν

∫
Bt

|K(h) − K0(h)|2(ξ(μ2 + |Du|2) p
4 )2 dx

+ ν

2

∫
Bt

ξ2(μ2 + |Du|2) p−2
2 |Dτhu|2 dx + |h|2

2ν

∫
Bt

ξ2‖K0(h)‖2L∞ (μ2 + |Du|2) p
2 dx

≤ ν

∫
Bt

ξ2(μ2 + |Du|2) p−2
2 |Dτhu|2 dx + |h|2

ν

∫
Bt

|K (x) − K0(x)|2(ξ(μ2 + |Du|2) p
4 )2 dx

+ |h|2
ν

∫
Bt

|K (x + hei ) − K0(x + hei )|2(ξ(μ2 + |Du|2) p
4 )2 dx

+ |h|2
2ν

∫
Bt

ξ2‖K0(h)‖2L∞ (μ2 + |Du|2) p
2 dx

Now note that, thanks to Lemma 2.4, the assumption Vμ(Du) ∈ W 1,2
loc (b,�; R

N×n) guar-

antees that (μ2 + |Du|2) p
2 ∈ W 1,2

loc (b,�), and therefore it is in W 1,2(�), and in particular,

by Sobolev embedding Theorem in Lorentz spaces (see [4]), that ξ(μ2 + |Du|2) p
2 ∈ L

n
n−2 ,1

Consequently, by Hölder’s inequality in Lorentz spaces (see [66]), set 2∗ := 2n
n−2 , we can

estimate the second integral in the right hand side of previous inequality as follows
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|I1| ≤ ν

∫
Bt

ξ2(μ2 + |Du|2) p−2
2 |Dτhu|2 dx + 2|h|2

ν
‖K (x) − K0‖2Ln,∞(Bt )

‖ξ(μ2 + |Du|2) p
4 ‖2

L2∗,2(Bt )
+ |h|2

2ν

∫
Bt

ξ2‖K0(h)‖2L∞(�)(μ
2 + |Du|2) p

2 dx

Finally by Sobolev embedding Theorem in Lorentz spaces, and taking into account that

b(x) ≥ λ0 and (μ2 + |Du(x)|2) p−2
2 ≤ D(h)p−2, we have that

|I1| ≤ ν

λ0

∫
Bt

ξ2(μ2 + |Du|2) p−2
2 |Dτhu|2b dx

+ 2
|h|2
ν

S2
2,n‖K (x) − K0‖2Ln,∞(�)‖D(ξ(μ2 + |Du|2) p

4 )‖2L2(Bt )

+ |h|2
2νλ0

∫
Bt

ξ2‖K0(h)‖2L∞(�)(μ
2 + |Du|2) p

2 b dx ≤

(4.4)

≤ ν

λ0

∫
Bt

ξ2 D(h)p−2|Dτhu|2b dx

+ 2
|h|2
ν

S2
2,n‖K (x) − K0‖2Ln,∞(�)‖D(ξ(μ2 + |Du|2) p

4 )‖2L2(Bt )

+ |h|2
2νλ0

∫
Bt

ξ2‖K0(h)‖2L∞(�)(μ
2 + |Du|2) p

2 b dx .

Next we estimate I2. Observe that assumption (1.2) yields

|Ah | ≤ k b(x + hei ) |τh Du| (μ2 + |Du(x)|2 + |Du(x + hei ) |2) p−2
2

= k b(x + hei ) |τh Du|D(h)p−2

and hence, by the aid of Young’s inequality, we obtain

|I2| ≤ 2
∫

Bt \Bs

ξ |Ah | |∇ξ | |τhu| dx

≤ 2k
∫

Bt \Bs

ξ b(x + hei ) |τh Du|D(h)p−2 |∇ξ | |τhu| dx

≤ ν

∫
Bt \Bs

ξ2D(h)p−2|τh Du|2b(x + hei ) dx

+ k2

ν

∫
Bt \Bs

|∇ξ |2 D(h)p−2|τhu|2b(x + hei ) dx

≤ ν

∫
Bt \Bs

ξ2D(h)p−2|τh Du|2b(x + hei ) dx

+ k2

ν (t − s)2

∫
Bt \Bs

D(h)p−2|τhu|2b(x + hei ) dx .

(4.5)

For I3 we proceed as follows. The Assumption (1.4) yields

|I3| ≤ 2
∫

Bt \Bs

ξ |A′
h | |∇ξ | |τhu| dx ≤ 2|h|

∫
Bt \Bs

ξ K(h) |∇ξ | (μ2 + |Du|2) p−1
2 |τhu| dx .

123



   80 Page 22 of 47 G. Moscariello, G. Pascale

Arguing similarly as we have done for I1, we have

|I3| ≤ 2|h|
∫

Bt \Bs

ξ |K(h) − K0(h)| |∇ξ |(μ2 + |Du|2) p−1
2 |τhu| dx

+2|h| ‖K0(h)‖L∞(�)

∫
Bt \Bs

ξ |∇ξ |(μ2 + |Du|2) p−1
2 |τhu| dx

≤ |h|2
ν

∫
Bt

ξ2|K(h) − K0(h)|2(μ2 + |Du|2) p
2 dx

+ 2ν

(t − s)2

∫
Bt

(μ2 + |Du|2) p−2
2 |τhu|2 dx

+|h|2
ν

‖K0(h)‖2L∞(�)

∫
Bt

ξ2(μ2 + |Du|2) p
2 dx

≤ 2|h|2
ν

∫
Bt

ξ2|K (x) − K0(x)|2(μ2 + |Du|2) p
2 dx

+2|h|2
ν

∫
Bt

ξ2|K (x + hei ) − K0(x + hei )|2(μ2 + |Du|2) p
2 dx

+ 2ν

(t−s)2

∫
Bt

(μ2+|Du|2) p−2
2 |τhu|2dx+ |h|2

ν
‖K0(h)‖2L∞(�)

∫
Bt

ξ2(μ2+|Du|2) p
2 dx

≤ 4
|h|2
ν

S2
2,n‖K (x) − K0‖2Ln,∞(�)‖D(ξ(μ2 + |Du|2) p

4 )‖2L2(Bt )

+ 2ν

λ0(t − s)2

∫
Bt

(μ2 + |Du|2) p−2
2 |τhu|2b dx

+|h|2
νλ0

‖K0‖2L∞(�)

∫
Bt

ξ2(μ2 + |Du|2) p
2 b dx . (4.6)

Finally we estimate I4. By using Young’s inequality, together with b(x) ≥ λ0, we get

|I4| =
∣∣∣∣
∫

Bt

〈τh F, D(ξ2τhu)〉 dx

∣∣∣∣
≤
∫

Bt

ξ2|τh F | |Dτhu| dx + 2
∫

Bt

ξ |∇ξ | |τh F | |τhu| dx

≤ ν

2

∫
Bt

ξ2|Dτhu|2 dx + 1

2ν

∫
Bt

ξ2|τh F |2 dx +
∫

Bt

ξ2|τh F |2 dx +
∫

Bt

|∇ξ |2|τhu|2 dx

≤ ν

2λ0

∫
Bt

ξ2|Dτhu|2b dx +
(

1

2ν
+ 1

)∫
Bt

ξ2|τh F |2 dx + 1

(t − s)2

∫
Bt \Bs

|τhu|2 dx

≤ ν

2μ2λ0

∫
Bt

ξ2 (μ2 + |Du|2) p−2
2 |Dτhu|2b dx + 1

λ0

(
1

2ν
+ 1

)∫
Bt

ξ2|τh F |2b dx

+ 1

μ2λ0(t − s)2

∫
Bt \Bs

(μ2 + |Du|2) p−2
2 |τhu|2b dx . (4.7)

Combining estimates (4.4)–(4.7), we get

1

k

∫
Bt

ξ2D(h)p−2
∣∣∣∣ τh Du

h

∣∣∣∣
2

b dx ≤ ν

λ0

∫
Bt

ξ2D(h)p−2
∣∣∣∣Dτhu

h

∣∣∣∣
2

b dx
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+ 6

ν
S2
2,n‖K (x) − K0‖2Ln,∞(�)‖D(ξ(μ2 + |Du|2) p

4 )‖2L2(Bt )

+ ν

2μ2λ0

∫
Bt

ξ2(μ2 + |Du|2) p−2
2

∣∣∣∣Dτhu

h

∣∣∣∣
2

b dx + ν

∫
Bt \Bs

ξ2D(h)p−2
∣∣∣∣ τh Du

h

∣∣∣∣
2

b(x + hei ) dx

+3‖K0(h)‖2L∞(�)

2νλ0

∫
Bt

ξ2(μ2 + |Du|2) p
2 b dx + 2μ2ν + 1

μ2λ0(t − s)2

∫
Bt

(1 + |Du|2) p−2
2

∣∣∣ τhu

h

∣∣∣2 b dx

+ k2

ν(t − s)2

∫
Bt \Bs

D(h)p−2
∣∣∣ τhu

h

∣∣∣2 b(x + hei ) dx

+ 1

λ0

(
1

2ν
+ 1

)∫
Bt

ξ2
∣∣∣∣ τh F

h

∣∣∣∣
2

b dx .

Assuming ν < λ0
k and reabsorbing the first integral in the right hand side by the left hand

side, we get

(
1

k
− ν

λ0

)∫
Bt

ξ2D(h)p−2
∣∣∣∣τh Du

h

∣∣∣∣
2

b dx

≤ 6

ν
S2
2,n‖K (x) − K0‖2Ln,∞(�)‖D(ξ(μ2 + |Du|2) p

4 )‖2L2(Bt )

+ ν

2μ2λ0

∫
Bt

ξ2(μ2 + |Du|2) p−2
2

∣∣∣∣Dτhu

h

∣∣∣∣
2

b dx

+ν

∫
Bt \Bs

ξ2D(h)p−2
∣∣∣∣τh Du

h

∣∣∣∣
2

b(x + hei ) dx

+3‖K0(h)‖2L∞(�)

2νλ0

∫
Bt

ξ2(μ2 + |Du|2) p
2 b dx

+ 2μ2ν + 1

μ2λ0(t − s)2

∫
Bt

(μ2 + |Du|2) p−2
2

∣∣∣τhu

h

∣∣∣2 b dx

+ k2

ν(t − s)2

∫
Bt \Bs

D(h)p−2
∣∣∣τhu

h

∣∣∣2 b(x + hei ) dx

+ 1

λ0

(
1

2ν
+ 1

)∫
Bt

ξ2
∣∣∣∣τh F

h

∣∣∣∣
2

b dx .

Let us note that, by the properties of ξ and using the fact that b(x) ≥ λ0,

‖D(ξ(μ2 + |Du|2) p
4 )‖2L2(Bt )

≤ 1

λ0

∫
Bt

|D(ξ(μ2 + |Du|2) p
4 )|2b dx

≤ 2

λ0

∫
Bt

|∇ξ |2(μ2 + |Du|2) p
2 b dx

+ 2

λ0

∫
Bt

ξ2|D[(μ2 + |Du|2) p
4 ]|2b dx

≤ 2

λ0(t − s)2

∫
Bt

(μ2 + |Du|2) p
2 b dx

+ 2

λ0

∫
Bt

ξ2|D[(μ2 + |Du|2) p
4 ]|2b dx,

123



   80 Page 24 of 47 G. Moscariello, G. Pascale

and, by (1.6) and since by Lemma 8.1 in [39] we are legitimate to pass to the limit for h → 0,∫
Bt \Bs

lim
h→0

(
D(h)p−2

∣∣∣τhu

h

∣∣∣2 b(x + hei )

)
dx =

∫
Bt \Bs

(μ2 + 2|Du|2) p−2
2 |Du|2b dx

≤
∫

Bt \Bs

(2μ2 + 2|Du|2) p−2
2 (μ2 + |Du|2)b dx = 2

p−2
2

∫
Bt \Bs

(μ2 + |Du|2) p
2 b dx .

Applying now Lemma 2.4 and again Lemma 8.1 in [39], we have

1

c(p)

(
1

k
− ν

λ0

)∫
Bt

ξ2|D[(μ2 + |Du|2) p−2
4 Du]|2b dx

≤ 12

νλ0
S2
2,n‖K (x) − K0‖2Ln,∞(�)

∫
Bt

ξ2(D[(μ2 + |Du|2) p
4 ])2b dx

+ ν

2μ2λ0

∫
Bt

ξ2(μ2 + |Du|2) p−2
2 |D2u|2b dx

+ c(p) ν

∫
Bt \Bs

ξ2|D[(μ2 + |Du|2) p−2
4 Du]|2b dx

+ 3‖K0‖2L∞(�)

νλ0

∫
Bt

ξ2(μ2 + |Du|2) p
2 b dx + c(p, k, λ0, ν, μ)

(t − s)2

∫
Bt

(μ2 + |Du|2) p
2 b dx

+ 12

νλ0(t − s)2
S2
2,n‖K (x) − K0‖2Ln,∞(�)

∫
Bt

(μ2 + |Du|2) p
2 b dx

+ 1

λ0

(
1

2ν
+ 1

)∫
Bt

ξ2
∣∣∣∣τh F

h

∣∣∣∣
2

b dx .

Therefore

1

c(p)

(1
k

− ν

λ0

)∫
Bt

ξ2|D[(μ2 + |Du|2) p−2
4 Du]|2b dx

≤
(

12

ν λ0
S22,n‖K (x) − K0‖2Ln,∞(�) + ν

2μ2λ0

)∫
Bt

ξ2|D[(μ2 + |Du|2) p−2
4 Du]|2b dx

+ c(p)ν

∫
Bt \Bs

ξ2|D[(μ2 + |Du|2) p−2
4 Du]|2b dx

+
3‖K0‖2L∞(�)

νλ0

∫
Bt

ξ2(μ2 + |Du|2) p
2 b dx + c(p, k, λ0, ν, μ)

(t − s)2

∫
Bt

(μ2 + |Du|2) p
2 b dx

+ 12

νλ0(t − s)2
S22,n‖K (x) − K0‖2Ln,∞(�)

∫
Bt

(μ2 + |Du|2) p
2 b dx

+ 1

λ0

(
1

2ν
+ 1

)∫
Bt

ξ2(μ2 + |DF |2)b dx .

(4.8)

Let us fix ν := ν0 such that

1

c(p)

(
1

k
− ν0

λ0

)
− ν0

2μ2λ0
> 0,

for example ν0 := μ2λ0
k(2μ2+c(p))

. Set η :=
√

ν0λ0

2
√
3S2,n

√
1

c(p)

(
1
k − ν0

λ0

)
− ν

2μ2λ0
, let α be a number

such that 0 < α < η. If

DK < α,
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then we can choose K0 ∈ L∞(�) such that
(

1

c(p)

(
1

k
− ν0

λ0

)
− 12

ν0λ0
S2
2,n‖K (x) − K0‖2Ln,∞(�) − ν0

2μ2λ0

)
> 0.

Then, by reabsorbing the first term of the right hand side of (4.8) in the left hand side, since
ξ = 1 on Bs and 0 ≤ ξ ≤ 1, we get

C
∫

Bs

|D[(μ2 + |Du|2) p−2
4 Du]|2b dx ≤ c(p, k, λ0, μ)

∫
Bt \Bs

|D[(μ2 + |Du|2) p−2
4 Du]|2b dx

+ c(p, k, λ0, n,DK , μ)

(∫
B2R

(μ2 + |Du|2) p
2 b dx + 1

(t − s)2

∫
B2R

(μ2 + |Du|2) p
2 b dx

+
∫

B2R

(μ2 + |DF |2)b dx

)
,

where C = 1
c(p)

(
1
k − ν0

λ0

)
− 3

ν0λ0
S2
2,nα2 − ν0

2μ2λ0
.

Now we fill the hole, having
∫

Bs

|D[(μ2 + |Du|2) p−2
4 Du]|2b dx ≤ c(p, k, λ0, μ)

C + c(p, k, λ0, μ)

∫
Bt

|D[(μ2 + |Du|2) p−2
4 Du]|2b dx

+ c(p, k, λ0, n,DK , μ)

C + c(p, k, λ0, μ)

(∫
B2R

(μ2 + |Du|2) p
2 b dx + 1

(t − s)2

∫
B2R

(μ2 + |Du|2) p
2 b dx

+
∫

B2R

(μ2 + |DF |2)b dx

)
.

Then by Lemma 2.3
∫

BR

|D(Vμ(Du))|2b dx ≤ c
∫

B2R

(
1 + 1

R2

)
(μ2 + |Du|2) p

2 b dx

+c
∫

B2R

(μ2 + |DF |2)b dx, (4.9)

where c = c(p, k, λ0, n,DK , μ), and therefore we have the result. ��

Remark 4.1 Note that, even if we do not provide the exact value of the constant α in (4.1), a
bound on it is given at the end of the proof of Theorem 4.1.

Remark 4.2 We point out that the dependence of the constant c in (4.9) on DK occurs only
through the norm of K0 in L∞.

Remark 4.3 By a careful analysis of the proof, it is evident that the degenerate case, that
is for μ = 0, causes further difficulties only when dealing with the integral involving the
datum F . More specifically, in the estimate of |I4|, an integral which can blow up appears.
Consequently, if F ≡ 0, the proof proceeds in the same way even if μ = 0.

5 Regularity

In this section we prove Theorem 1.1.
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Proof of Theorem 1.1 Fix a ball B2R ⊂⊂ �, let u be a local solution of the system (1.1) and
let us consider, for x ∈ �, ξ ∈ R

N×n and j ∈ N sufficiently large,

A j (x, ξ) :=
{

A(x, ξ) if b(x) < j

j A(x,ξ)
b(x)

if b(x) ≥ j .

Let b j be the truncated of b at level j , i.e. for x ∈ � and j ∈ N sufficiently large

b j (x) :=
{

b(x) if b(x) < j

j if b(x) ≥ j .

Since

A j (x, ξ) = b j (x)

b(x)
A(x, ξ),

it is easy to check that for a.e. x ∈ � and for all ξ , η ∈ R
N×n we have

|A j (x, ξ) − A j (x, η)| ≤ kb j (x)|ξ − η| (μ2 + |ξ |2 + |η|2) p−2
2 , (5.1)

1

k
b j (x)|ξ − η|2 (μ2 + |ξ |2 + |η|2) p−2

2 ≤ 〈A j (x, ξ) − A j (x, η), ξ − η〉, (5.2)

A j (x, 0) = 0.

For a.e. x, y ∈ � one easily gets

|b j (x) − b j (y)| ≤ |b(x) − b(y)| ≤ |x − y| [K (x) + K (y)].
In particular

|b j (x) − b j (y)| ≤ (k + 1) |x − y| [K (x) + K (y)].
In order to simplify the proof, we will prove

|A j (x, η) − A j (y, η)| ≤ (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 , (5.3)

at the end of the paper, see the Appendix.
Let us consider the following Dirichlet problem

{
div A j (x, Dv) = div F in B2R

v = u on ∂ B2R .

If we denote by u j ∈ W 1,p(B2R) the solution of this problem, then D(Vμ(Du j )) ∈ L2
loc (b j ,

�) (see [35]) and, if

DK < α1 := 1

k + 1
α,

we can use estimate (4.2) to obtain

∫
BR

|D(Vμ(Du j ))|2b j dx ≤ c
∫

B2R

((
1 + 1

R2

)
(μ2 + |Du j |2) p

2 + (μ2 + |DF |2)
)

b j dx .

(5.4)
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Let us remark that by Lemma 3.1 there exists δ > 0 such that |Du| ∈ L p+δ(b, B2R). Now
we prove the strong convergence of {|Du j |} j to |Du| in L p(b, B2R). Using (u − u j ) as test
function, we easily get, thanks to (5.2),∫

B2R

|Du − Du j |pb j (x) dx ≤ c(k)

∫
B2R

〈A j (x, Du j ) − A j (x, Du), Du j − Du〉 dx

= c(k)

∫
B2R

〈F, Du j − Du〉 dx −
∫

B2R

〈A j (x, Du), Du j − Du〉 dx

= c(k)

∫
B2R

〈A(x, Du) − A j (x, Du), Du j − Du〉 dx

= c(k)

∫
B2R

(
1 − b j

b

)
〈A(x, Du), Du j − Du〉 dx .

Then from (1.2) and (1.5) we derive∫
B2R

|Du − Du j |pb j (x) dx ≤ c(k)

∫
B2R

(b − b j )|Du − Du j |(μ2 + |Du|2) p−1
2 dx .

Finally by Hölder’s inequality, since b j (x) ≤ b(x), we obtain

∫
B2R

|Du − Du j |pb j (x) dx ≤ c(k, λ0)

(∫
B2R

(μ2 + |Du|2) p+δ
2 b(x) dx

) p
p+δ

·
(∫

B2R

b(x)|b − b j |p′
(

p+δ
δ

)
dx

) δ
p+δ

(5.5)

and the last term goes to zero. Previous relation easily implies the conclusion.
At this point, estimate (5.4) and (5.5) yield ‖D(Vμ(Du j ))‖L2

b(BR) ≤ C , so that we deduce

that, up to a subsequence, D(Vμ(Du j )) is weakly converging to D(Vμ(Du)) in L2(b, BR)

and Vμ(Du j ) is strongly converging in L2(b, BR). Therefore, we can pass to the limit in the
estimate (5.4) having the validity of the desired inequality for the function u. ��

In account of Remark 4.3, we can state the following

Proposition 5.1 Let � be a regular domain and A(x, ξ) a mapping verifying assump-
tions (1.2)–(1.5). There exist 0 < ε1 < 1

2 , depending on k, n, λ0, p and the B M O -

norm of b(x), and α2 > 0, depending on p, n, λ0 and k, such that, if u ∈ W 1,p−ε
loc (b,�; R

N ),
with 0 ≤ ε < ε1, is a local solution of

div A(x, Du(x)) = 0

and

DK := distLn,∞(K (x), L∞) < α2,

then D(Vμ(Du)) ∈ L2
loc(b,�) and the following estimate holds:

∫
BR

|D(Vμ(Du))|2b dx ≤ c

(
1 + 1

R2

)∫
B2R

(μ2 + |Du|2) p
2 b dx,

for every ball B2R ⊂⊂ � and for a constant c depending on p, k, λ0, n and DK .

For 2 < p < n, the following corollaries of fractional higher integrability easily derive
from Theorem 1.1.
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Corollary 5.1 Let � be a regular domain, A(x, ξ) a mapping verifying assumptions (1.2)–
(1.5), and F ∈ W 1,2

loc (b,�; R
N×n). There exist 0 < ε1 < 1

2 , depending on k, n, λ0, p
and the B M O - norm of b(x), and α1 > 0, depending on p, n, λ0, μ and k, such that, if
u ∈ W 1,p−ε

loc (b,�; R
N ), with 0 ≤ ε < ε1, is a local solution of (1.1) and

DK := distLn,∞(K (x), L∞) < α1,

then Du ∈ W β,p
loc (b,�; R

N ) for every β ∈
(
0, 2

p

)
.

Proof Since we can estimate for every i ∈ {1, . . . , n}
|τh,i Du|p ≤ c(n, p)|τh,i Vμ(Du)|2, (5.6)

summing up on i ∈ {1, . . . , n} and taking into account the estimate given by Theorem 1.1,
we get for ρ ∈ (0, R) and h sufficiently small

∫
Bρ

n∑
i=1

|τh,i Du|pb dx

≤ c ·
(
|h| 2p

)p
∫

B2R

((
1 + 1

R2

)
(μ2 + |Du|2) p

2 + (μ2 + |DF |2)
)

b dx .

It follows that Du belongs to the Nikolskii spaceH 2
p ,p and hence the conclusion by embed-

ding (see [3], 7.73 and also [62]). ��
In the next corollary we show that a higher integrability of the function F improves the

integrability of the fractional derivatives.

Corollary 5.2 Let � be a regular domain, A(x, ξ) a mapping verifying assumptions (1.2)–
(1.5), and F ∈ W 1,r

loc (b,�; R
N×n), for some r > 2. There exist 0 < ε1 < 1

2 , depending on
k, n, λ0, p and the B M O - norm of b(x), and α1 > 0, depending on p, n, λ0, μ and k, such
that, if u ∈ W 1,p−ε

loc (b,�; R
N ), with 0 ≤ ε < ε1, is a local solution of (1.1) and

DK := distLn,∞(K (x), L∞) < α1,

then Du ∈ W β,q
loc (b,�; R

N ) for some q > p and for every β ∈
(
0, 2

p

)
.

Proof Without loss of generality, we assume 0 < R < 1. The estimate given by Theorem 1.1
and the use of Lemma 2.4 yield

1

b(BR)

∫
BR

|DVμ(Du)|2b dx

≤ c

((
1 + 1

R2

)
1

b(B2R)

∫
B2R

|Vμ(Du) − (V (Du))B2R |2 + (μ2 + |DF |2)b dx

)
.

Hence, applying Sobolev–Poincaré inequality, we have the following reverse Hölder’s
inequality

1

BR

∫
BR

|DVμ(Du)|2b dx

≤ c

[(
1

b(B2R)

∫
B2R

(|DVμ(Du)|2) n−1
n b dx

) n
n−1 + 1

b(B2R)

∫
B2R

(μ2 + |DF |2)b dx

]
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getting the existence of an exponent s > 2 such that |DVμ(Du)| ∈ Ls
loc and

1

b
(

B R
2

)
∫

B R
2

|DVμ(Du)|sb dx

≤ c

⎡
⎢⎣
⎛
⎝ 1

b
(

B R
2

)
∫

B R
2

|DVμ(Du)|2b dx

⎞
⎠

s
2

+ 1

b(B2R)

∫
B2R

(μ2 + |DF |2) s
2 b dx

⎤
⎥⎦ .

Then, using the pointwise inequality in (5.6), we easily obtain that

‖τh Du‖
L

ps
2

b

|h|2 ≤ c‖DVμ(Du)‖
2
p

L2
b

which allows to conclude that Du belongs to the Nikolskii space H 2
p ,

ps
2 and hence, setting

q := ps
2 , by embedding Du ∈ W β,q

loc (b,�; R
N ) for every β ∈

(
0, 2

p

)
. ��

6 Calderón–Zygmund estimates

In this section we prove Theorem 1.2. Here the cubes considered will always have sides
parallel to the coordinate axes.
We recall a few basic facts concerning the interior regularity of solutions of elliptic systems
in divergence form of the type

div A(x, Dw) = 0 in 3Q ⊂ �,

where Q is a generic cube. The same proof of Theorem 1.1 works for balls of the type B2R ,
B3R and, by a covering argument by means of countable disjoint balls, we have the estimate
also over cubes instead of balls. Thanks to Theorem 1.1, Remark 4.3 and Sobolev embedding
Theorem 2.4, arguing as in (3.18) and if DK < α2, with α2 as in Proposition 5.1, we get the
following reverse Hölder inequality:

(
1

b(2Q)

∫
2Q

(
μ2 + |Dw|2) r

2 b dx

) 1
r ≤ c

(
1

b(3Q)

∫
3Q

(
μ2 + |Dw|2) p

2 b dx

) 1
p

,

with c = c(p, k, λ0, n, ‖b‖∗,DK ) and r = np
n−1 . Then, by Gehring’s Lemma, there exists an

exponent

s := r + δ, (6.1)

with δ = δ(p, k, λ0, n, ‖b‖∗,DK ), such that

(
1

b(2Q)

∫
2Q

(μ2 + |Dw|2) s
2 b dx

) 1
s ≤ c

(
1

b(3Q)

∫
3Q

(μ2 + |Dw|2) p
2 b dx

) 1
p
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with c = c(p, k, λ0, n, ‖b‖∗,DK ). Then

c

(∫
3Q

(μ2 + |Dw|2) p
2 b dx

) 1
p ≥ [b(3Q)] 1

p

[b(2Q)] 1s

(∫
2Q

(μ2 + |Dw|2) s
2 b dx

) 1
s

≥ [b(2Q)] 1
p − 1

s

(∫
2Q

(μ2 + |Dw|2) s
2 b dx

) 1
s

≥ λ0|2Q| 1p − 1
s

(∫
2Q

(μ2 + |Dw|2) s
2 b dx

) 1
s ≥ λ0c′(n)

|3Q| 1p
|2Q| 1s

(∫
2Q

(μ2 + |Dw|2) s
2 b dx

) 1
s

.

Equivalently we have

⎛
⎜⎝⨍
2Q

(
μ2 + |Dw|2) s

2 b dx

⎞
⎟⎠

1
s

≤ c

⎛
⎜⎝⨍
3Q

(
μ2 + |Dw|2) p

2 b dx

⎞
⎟⎠

1
p

, (6.2)

with c = c(p, k, λ0, n, ‖b‖∗,DK ). We wish to emphasize the fact that the above constants
and exponents are independent of the number μ ∈ [0, 1].
The following Lemma is fundamental in order to prove Theorem 1.2.

Lemma 6.1 Let u ∈ W 1,p(b, Q2R; R
N ) be a solution to (1.11). Let B > 1; there exists a

number ε = ε(p, k, λ0, n,DK , ‖b‖∗, B) such that the following is true:
If λ > 0 and Q ⊂ Q R is a dyadic subcube of Q R such that

∣∣∣∣Q ∩
{

x ∈ Q R : M∗
b

[(
μ2 + |Du|2) p

2

]
(x) >

ABλ

λ0
,

M∗
[(

μ2 + |G|2) p
2

]
(x) < ελ

}∣∣∣∣> B− s
p |Q|,

(6.3)

then its predecessor Q̃ satisfies

Q̃ ⊆
{

x ∈ Q R : M∗
[(

μ2 + |Du|2) p
2 b

]
(x) > λ

}
. (6.4)

Here M∗
(b) ≡ M∗

(b,)Q2R
denotes the (weighted) restricted Maximal Function relative to Q2R,

i.e. if f1 ∈ L1(Q2R), f2 ∈ L1(b, Q2R) and x ∈ Q2R

M∗( f1)(x) := sup
Q⊆Q2R

x∈Q
⨍
Q

| f1(y)| dy, M∗
b ( f2)(x) := sup

Q⊆Q2R
x∈Q

∫
Q | f2(y)|b(y) dy

b(Q)
.

Moreover here s is the number defined in (6.1), and A = A(p, k, λ0, n,DK , ‖b‖∗) > 1 is an
absolute constant. All the constants and quantities are uniform with respect to μ ∈ [0, 1].
Proof We prove this lemma by contradiction. The constants A and ε will be chosen toward
the end while all the arguments will be worked out for a general μ ∈ [0, 1]. Suppose (6.4) is
not satisfied although (6.3) holds. Then there exists x̃ ∈ Q̃ such that

λ0M∗
b

[(
μ2 + |Du|2) p

2

]
(x̃) ≤ M∗

[(
μ2 + |Du|2) p

2 b

]
(x̃) ≤ λ. (6.5)
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Since Q̃ ⊂ 3Q because Q̃ is the predecessor of Q, we have

⨍
3Q

(
μ2 + |Du|2) p

2 b dx ≤ λ.

Note that 3Q ⊂ Q2R . Moreover by (6.3) we can find x̄ ∈ Q such that

M∗
[(

μ2 + |G|2) p
2

]
(x̄) ≤ ελ

and therefore

⨍
3Q

(μ2 + |G|2) p
2 dx ≤ ελ. (6.6)

Now we define w ∈ W 1,p(b, 3Q; R
N ) as the unique solution of the following Dirichlet

problem
{

div A(x, Dw) = 0 in 3Q

w − u ∈ W 1,p
0 (3Q, R

N ).
(6.7)

The existence and the uniqueness of such a solution follows fromMinty–Browder Theorem.
Let us first derive the following estimate

∫
3Q

(
μ2 + |Dw|2) p

2 b dx ≤ c
∫
3Q

(
μ2 + |Du|2) p

2 b dx (6.8)

where c = c(k, p). By using w − u as test function in (6.7) we get
∫
3Q

〈A(x, Dw), Dw〉 dx =
∫
3Q

〈A(x, Dw), Du〉 dx .

By (1.2), (1.3) and (1.5) we get
∫
3Q

(
μ2 + |Dw|2) p−2

2 |Dw|2b dx ≤ k2
∫
3Q

(
μ2 + |Dw|2) p−2

2 |Dw| |Du|b dx

Using the Young’s type inequality in Lemma 2.5, which holds uniformly in μ ∈ [0, 1], with
ε < min

{
1
2 ,

1
2k2

}
, we obtain

∫
3Q

(
μ2 + |Dw|2) p−2

2 |Dw|2b dx ≤ c(k, p)

∫
3Q

(
μ2 + |Du|2) p−2

2 |Du|2b dx .

Now using again Young’s inequality, from previous relation we have
∫
3Q

(
μ2 + |Dw|2) p

2 b dx =
∫
3Q

(
μ2 + |Dw|2) p−2

2 (μ2 + |Dw|2)b dx

≤ c
∫
3Q

(
μ2 + |Du|2) p−2

2 |Du|2b dx + 1

2

∫
3Q

(
μ2 + |Dw|2) p

2 b dx + c
∫
3Q

μpb dx

≤ 1

2

∫
3Q

(
μ2 + |Dw|2) p

2 b dx + c
∫
3Q

(
μ2 + |Du|2) p

2 b dx,

with c = c(k, p) independent of μ. Then estimate (6.8) follows.
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Now by (6.2) we find that

⎛
⎜⎝⨍
2Q

(
μ2 + |Dw|2) s

2 b dx

⎞
⎟⎠

1
s

≤ c

⎛
⎜⎝⨍
3Q

(
μ2 + |Dw|2) p

2 b dx

⎞
⎟⎠

1
p

≤ c

⎛
⎜⎝⨍
3Q

(
μ2 + |Du|2) p

2 b dx

⎞
⎟⎠

1
p

≤ cλ
1
p ,

(6.9)

where c = c(p, k, λ0, n, ‖b‖∗,DK ). Notice that since p ≥ 2, by (1.3)

⨍
3Q

|Du − Dw|pb dx ≤ c(p, k)⨍
3Q

〈A(x, Du) − A(x, Dw), Du − Dw〉 dx

= c(p, k)⨍
3Q

〈A(x, Du), Du − Dw〉 dx = c(p, k)⨍
3Q

〈|G|p−2G, Du − Dw〉 dx

≤ c(p, k, λ0)

⎛
⎜⎝⨍
3Q

(μ2 + |G|2) p
2 dx

⎞
⎟⎠+ λ0

2 ⨍
3Q

|Du − Dw|p dx

≤ c(p, k, λ0)

⎛
⎜⎝⨍
3Q

(μ2 + |G|2) p
2 dx

⎞
⎟⎠+ 1

2 ⨍
3Q

|Du − Dw|pb dx .

Then from (6.6)

⨍
3Q

|Du − Dw|pb dx ≤ cελ (6.10)

where c = c(p, k, λ0). In the following we shall denote by M∗∗
(b) the (weighted) Restricted

Maximal operator relative to the cube 2Q, while M∗
(b) keeps on denoting the (weighted)

Restricted Maximal Operator relative to the cube Q2R . Now, with the notation (2.1),
∣∣∣∣
{

x ∈ Q : M∗∗
b

[(
μ2 + |Du|2) p

2

]
(x) >

ABλ

λ0

}∣∣∣∣
≤
∣∣∣∣
{

x ∈ Q : M∗∗
b

[(
μ2 + |Dw|2) p

2

]
(x) >

ABλ

λ08p

}∣∣∣∣
+
∣∣∣∣
{

x ∈ Q : M∗∗
b

[|Du − Dw|p] (x) >
ABλ

λ08p

}∣∣∣∣
≤ 1

λ0
b

({
x ∈ Q : M∗∗

b

[(
μ2 + |Dw|2) p

2

]
(x) >

ABλ

λ08p

})

+
∣∣∣∣∣
{

x ∈ Q : M∗∗ [|Du − Dw|p b
]
(x) >

ABλ

λ208
p

}∣∣∣∣∣
≤ c(s, p, λ0, ‖b‖∗)

(ABλ)
s
p

∫
2Q

(
μ2 + |Dw|2) s

2 b dx + c(n, p, λ0)

ABλ

∫
2Q

|Du − Dw|pb dx,

(6.11)
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where in the last inequality we used (2.2), Theorem 2.5 and Lemma 2.1. From (6.1) and (6.9)
we get

c(s, p, λ0, ‖b‖∗)
(ABλ)

s
p

∫
2Q

(
μ2 + |Dw|2) s

2 b dx ≤ c̃(p, k, λ0, n, ‖b‖∗,DK )
|Q|

(AB)
s
p

≤ 1

100n+2B
s
p
|Q|,

(6.12)

where the last inequality is true provided we choose, for instance, A := (
100n+2(c̃ + 1)

) p
s ;

this fixes the constant A and yields the absolute dependence mentioned in the statement.
From (6.11) thanks to (6.10) and (6.12) we obtain

∣∣∣∣
{

x ∈ Q : M∗∗
b

[(
μ2 + |Du|2) p

2

]
(x) >

ABλ

λ0

}∣∣∣∣ ≤ |Q|
100n+2B

s
p

+ c
ε

AB
|Q|, (6.13)

with c = c(n, p, k, λ0). Now we can choose ε such that

c(n, p, k, λ0)
ε

A
≤ 1

8B
s
p −1

and so from (6.13)
∣∣∣∣
{

x ∈ Q : M∗∗
b

[(
μ2 + |Du|2) p

2

]
(x) >

ABλ

λ0

}∣∣∣∣ ≤ |Q|
8n B

s
p
. (6.14)

To conclude we remark that (6.5) implies

M∗
b

[(
μ2 + |Du|2) p

2

]
(x) ≤ max

{
M∗∗

b

[(
μ2 + |Du|2) p

2

]
(x), 100n λ

λ0

}
(6.15)

for every x ∈ Q. Indeed, let x0 ∈ Q and let C ⊂ Q2R be a cube such that x0 ∈ C . In the
case when C ⊂ 2Q, by the definition of M∗∗, we trivially have

∫
C (μ2 + |Du|2) p

2 b dx

b(C)
≤ M∗∗

b

[
(μ2 + |Du|2) p

2

]
(x0).

In the case when C �⊂ 2Q, we must have 2n |C | ≥ |Q|, then Q̃ ⊂ 10C and in particular
x̃ ∈ 10C ; at this point we further distinguish two cases. If 20C ⊂ Q2R then, using (6.5), we
obtain

∫
C (μ2 + |Du|2) p

2 b dx

b(C)
≤ 1

λ0 ⨍
C

(μ2 + |Du|2) p
2 b dx ≤ 20n

λ0 ⨍
20C

(μ2 + |Du|2) p
2 b dx

≤ 20n

λ0
M∗ [(μ2 + |Du|2) p

2 b
]
(x̃) ≤ 100n

λ0
λ.

If finally 20C �⊂ Q2R then Q2R ⊂ 70C and therefore

∫
C (μ2 + |Du|2) p

2 b dx

b(C)
≤ 1

λ0 ⨍
C

(μ2 + |Du|2) p
2 b dx ≤ 70n

λ0 ⨍
20C

(μ2 + |Du|2) p
2 b dx

≤ 70n

λ0
M∗ [(μ2 + |Du|2) p

2 b
]
(x̃) ≤ 100n

λ0
λ,
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so that (6.15) is completely proved. Since AB > A > 100n , by using (6.14) we get∣∣∣∣
{

x ∈ Q : M∗
b

[(
μ2 + |Du|2) p

2

]
(x) >

ABλ

λ0

}∣∣∣∣ ≤ |Q|
2B

s
p
,

which is a contradiction to (6.3). The proof is complete. ��
When applying Lemma 6.1 we shall need to fix the constant B, depending on the choice

of an integrability exponent q ∈ (p, s). With q being fixed, we do this in the following
canonical way:

1

B
s−q

p

= 1

2A
q
p
, (6.16)

where the constant A ≡ A(p, k, λ0, n, ‖b‖∗,DK ) is the absolute constant appearing in
Lemma 6.1. This fixes in turn B ≡ B(p, k, λ0, n, s −q, ‖b‖∗,DK ). Note that B ↗ ∞when
q ↗ s; consequently, in Lemma 6.1 ε ↘ 0 when q ↗ s. Once the choice of B has been
made, this canonically fixes the choice of ε, with the following absolute dependence

ε0 ≡ ε ≡ ε(p, k, λ0, n, s − q, ‖b‖∗,DK ) > 0. (6.17)

Proof of Theorem 1.2 Following the notation of Lemma 6.1, let us set

μ1(t) : =
∣∣∣∣
{

x ∈ Q R : M∗
b

[(
μ2 + |Du|2) p

2

]
(x) > t

}∣∣∣∣ ,

μ2(t) : =
∣∣∣∣
{

x ∈ Q R : M∗
[(

μ2 + |G|2) p
2

]
(x) > t

}∣∣∣∣ .
Then, with B > 1 as in (6.16), we take

λ̃ := 10n

λ0
cB

s
p ⨍

Q2R

(μ2 + |Du|2) p
2 b dx,

where c ≡ c(n) is the constant appearing in the weak type inequality (2.2) when p ≡ 1; note
that λ̃ is positive. Therefore,

μ1(λ̃) ≤
∣∣∣∣
{

x ∈ Q R : M∗
[(

μ2 + |Du|2) p
2 b

]
(x) > λ̃λ0

}∣∣∣∣
≤ c

λ̃λ0

∫
Q2R

(μ2 + |Du|2) p
2 b dx <

|Q R |
2B

s
p

,

(6.18)

and consequently, since AB > 1,

μ1((AB)h λ̃) <
|Q R |
2B

s
p

∀h ∈ N, (6.19)

where A is the constant appearing in Lemma 6.1. Next, we recall that the constant B has
been chosen according to (6.16). With such a choice of B, and in view of (6.18)–(6.19), we
can combine Lemmas 6.1 and 2.6 at the levels λ ≡ (AB)h λ̃, h ∈ N. To this end, note that

{
x ∈ Q R : M∗

b

[(
μ2 + |Du|2) p

2

]
(x) > (AB)h λ̃

}

⊂
{

x ∈ Q R : M∗
[(

μ2 + |Du|2) p
2 b

]
(x) > λ̃λ0

}
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Therefore, an elementary induction argument leads to

μ1((AB)h+1λ̃) ≤ B− s
p (h+1)

μ1(λ̃) +
h∑

i=0

B− s
p (h−i)

μ2((AB)iε0λ̃)

for every h ∈ N; the number ε0 is defined in (6.17). Summing up over h, we have, for every
M ∈ N

M∑
h=0

(AB)
q
p (h+1)

μ1((AB)h+1λ̃) ≤
(

M∑
h=0

[
B− s

p (AB)
q
p

]h+1
)

μ1(λ̃)

+
M∑

h=0

h∑
i=0

(AB)
q
p (h+1) B− s

p (h−i)
μ2((AB)iε0λ̃).

(6.20)

As for the first sum in the right-hand side, we notice that (6.16) leads to

∞∑
h=0

[
B− s

p (AB)
q
p

]h+1 ≤ 1.

Concerning the second sum appearing in the right-hand side of (6.20), we have

M∑
h=0

h∑
i=0

(AB)
q
p (h+1) B− s

p (h−i)
μ2((AB)iε0λ̃)

= (AB)
q
p

M∑
i=0

(AB)
q
p i

μ2((AB)iε0λ̃)

M−i∑
h=0

[
B− s

p (AB)
q
p

]h

≤ 2(AB)
q
p

M∑
k=0

(AB)
q
p k

μ2((AB)kε0λ̃).

Combining the previous estimates with (6.20) we finally obtain

∞∑
k=1

(AB)
q
p k

μ1((AB)k λ̃) ≤ μ1(λ̃) + 2(AB)
q
p

∞∑
k=0

(AB)
q
p k

μ2((AB)kε0λ̃).

Now we will do a straight, readable estimate, although it is justified only if read backwards:
when the series in (6.22) will be shown to converge, we will have proved that the power q of
the maximal function is integrable, which implies that also the first integral we are about to
write is finite. We observe that

∫
Q R

(μ2 + |Du|2) q
2 b dx ≤

∫
Q R

∣∣∣∣M∗
b

[(
μ2 + |Du|2) p

2

]
(x)

∣∣∣∣
q
p

dx

=
∫ ∞

0

q

p
λ

q
p −1

μ1(λ) dλ

=
∫ λ̃

0

q

p
λ

q
p −1

μ1(λ) dλ +
∫ ∞

λ̃

q

p
λ

q
p −1

μ1(λ) dλ

(6.21)
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and∫ λ̃

0

q

p
λ

q
p −1

μ1(λ) dλ ≤ λ̃
q
p |Q R | = c(n, λ0)

q
p B

s
p2

q

⎛
⎜⎝⨍

Q2R

(μ2 + |Du|2) p
2 b dx

⎞
⎟⎠

q
p

|Q R |

≤ c(n, λ0)
s
p B

s
p2

q

⎛
⎜⎝⨍

Q2R

(μ2 + |Du|2) p
2 b dx

⎞
⎟⎠

q
p

|Q R |

= c(p, k, λ0, n, ‖b‖∗,DK )B
s

p2
q

⎛
⎜⎝⨍

Q2R

(μ2 + |Du|2) p
2 b dx

⎞
⎟⎠

q
p

|Q R |,

where we assumed c(n, λ0) > 1. In a similar way we have
∫ ∞

λ̃

q

p
λ

q
p −1

μ1(λ) dλ =
∞∑

n=0

∫ (AB)
n+1

p λ̃

(AB)
n
p λ̃

qλq−1μ1(λ) dλ

≤ (ABλ̃)
q
p

∞∑
n=0

(AB)
nq
p μ1((AB)n λ̃).

Again,

(ABλ̃)
q
p μ1(λ̃) ≤ (ABλ̃)

q
p

∣∣∣∣
{

x ∈ Q R : M∗
[(

μ2 + |Du|2) p
2 b

]
(x) > λ̃λ0

}∣∣∣∣
≤ c(n, λ0)(AB)

q
p λ̃

q
p −1

∫
Q2R

(μ2 + |Du|2) p
2 b dx

≤ c(p, k, λ0, n, ‖b‖∗,DK )(A)
s
p B− s−q

p B
s

p2
q |Q2R |

⎛
⎜⎝⨍

Q2R

(μ2 + |Du|2) p
2 b dx

⎞
⎟⎠

q
p

.

Joining the last three estimates to (6.21) yields

∫
Q R

(μ2 + |Du|2) q
2 b dx ≤ cB

s
p2

q

⎛
⎜⎝⨍

Q2R

(μ2 + |Du|2) p
2 b dx

⎞
⎟⎠

q
p

|Q R |

+ (ABλ̃)
q
p μ1(λ̃) + (ABλ̃)

q
p

∞∑
k=1

(AB)
k q

p μ1((AB)k λ̃)

≤ cB
s

p2
q

⎛
⎜⎝⨍

Q2R

(μ2 + |Du|2) p
2 b dx

⎞
⎟⎠

q
p

|Q R |

+ 2(ABλ̃)
q
p μ1(λ̃) + 2(ABλ̃)

q
p

∞∑
k=0

(AB)
k q

p μ2((AB)kε0λ̃)

≤ cB
s

p2
q

⎛
⎜⎝⨍

Q2R

(μ2 + |Du|2) p
2 b dx

⎞
⎟⎠

q
p

|Q R | + cB
2s
p λ̃

∞∑
k=0

(AB)
k q

p μ2((AB)kε0λ̃),

(6.22)
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where c = c(p, k, λ0, n, s − q, ‖b‖∗,DK ). It remains to estimate the last series. To this aim,
observe that, as before,

∫
Q R

∣∣∣∣M∗
[(

μ2 + |G|2) p
2

]
(x)

∣∣∣∣
q
p

dx =
∫ ∞

0

q

p
λ

q
p −1

μ2(λ) dλ

=
∫ ε0λ̃

0

q

p
λ

q
p −1

μ2(λ) dλ +
∫ ∞

ε0λ̃

q

p
λ

q
p −1

μ2(λ) dλ.

Then

∫ ε0λ̃

0

q

p
λ

q
p −1

μ2(λ) dλ ≥ (ε0λ̃)
q
p μ2(ε0λ̃),

and

∫ ∞

ε0λ̃

q

p
λ

q
p −1

μ2(λ) dλ =
∞∑

k=0

∫ (AB)k+1ε0λ̃

(AB)kε0λ̃

q

p
λ

q
p −1

μ2(λ) dλ

≥
∞∑

k=0

μ2((AB)k+1ε0λ̃)
[
((AB)k+1ε0λ̃)

q
p − ((AB)kε0λ̃)

q
p

]

= (ε0λ̃)
q
p

∞∑
k=0

(AB)
(k+1) q

p μ2((AB)k+1ε0λ̃)
[
1 − (AB)

− q
p

]

≥ 1

2
(ε0λ̃)

q
p

∞∑
k=1

(AB)
k q

p μ2((AB)kε0λ̃).

Combining the last estimates with the maximal inequality we finally get

p

2q
(ε0λ̃)

q
p

∞∑
k=1

(AB)
k q

p μ2((AB)kε0λ̃) + p(ε0λ̃)
q
p

q
μ2(ε0λ̃)

≤ p

q
(ε0λ̃)

q
p

∞∑
k=0

(AB)
k q

p μ2((AB)kε0λ̃) ≤ 2p

q

∫
Q R

∣∣∣∣M∗
[(

μ2 + |G|2) p
2

]
(x)

∣∣∣∣
q
p

dx

≤ c(n, p, s, ‖b‖∗)
∫

Q2R

(
μ2 + |G|2) q

2 dx ≤ c(n, p, s, λ0, ‖b‖∗)
∫

Q2R

(
μ2 + |G|2) q

2 b dx .

Using this estimate in (6.22) and passing to averages we have

⎛
⎜⎝⨍

Q R

(
μ2 + |Du|2) q

2 b dx

⎞
⎟⎠

1
q

≤ c

⎛
⎜⎝⨍

Q2R

(
μ2 + |Du|2) p

2 b dx

⎞
⎟⎠

1
p

+ c

⎛
⎜⎝⨍

Q2R

(
μ2 + |G|2) q

2 b dx

⎞
⎟⎠

1
q

,

��
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7 Globality

The goal of this section is to prove global versions of the estimates in Theorems 1.1 and 1.2
when we consider solutions of the corresponding Dirichlet problem on a bounded domain
� ⊂ R

n with C2 boundary. In the following we assume that

� ⊂⊂ B2R ⊂ Q0,

where, without loss of generality, we suppose that the ball B2R and the cube Q0 are centered
in the origin.
Let conditions (1.2)–(1.6) hold in B2R . Set A(x, ξ) = 0 for any x ∈ R

n\Q0, we consider
a standard mollifier ρ : R

n → [0,∞) with compact support contained in B1 ⊂ R
n . If

0 < ε < min{R, 1}, for any x ∈ B2R−ε and ξ ∈ R
N×n we consider

Aε(x, ξ) : =
∫

B1

A(x + εy, ξ) ρ(y) dy,

Kε(x) : =
∫

B1

K (x + εy) ρ(y) dy,

bε(x) : =
∫

B1

b(x + εy) ρ(y) dy,

Fε(x) : =
∫

B1

F(x + εy)ρ(y) dy.

It is easy to verify that for a.e. x, y ∈ � and for every ξ , η ∈ R
N×n

|Aε(x, ξ) − Aε(x, η)| ≤ kbε(x)|ξ − η| (μ2 + |ξ |2 + |η|2) p−2
2 , (7.1)

1

k
bε(x)|ξ − η|2 (μ2 + |ξ |2 + |η|2) p−2

2 ≤ 〈Aε(x, ξ) − Aε(x, η), ξ − η〉, (7.2)

|Aε(x, η) − Aε(y, η)| ≤ |x − y| [Kε(x) + Kε(y)] (μ2 + |η|2) p−1
2 , (7.3)

Aε(x, 0) = 0, (7.4)

|bε(x) − bε(y)| ≤ |x − y| [Kε(x) + Kε(y)]. (7.5)

7.1 Global differentiability

The following lemma holds

Lemma 7.1 Let U a bounded Lipschitz domain such that, if we denote by Qr a cube centered
in the origin and with side of length r and

Q+
r = Qr ∩ {xn > 0},

then

Q+
4d ⊂ U ⊆ Q+

1 ,

with d > 0. Let Aε : U × R
N×n → R

N×n satisfy Assumptions (7.1)–(7.5) for x ∈ U, p ≥ 2
and bε ∈ L∞(U ). Let F ∈ W 1,2(b, U ; R

N×n). Consider the problem{
div Aε(x, Duε) = div Fε in U

uε = 0 on ∂U ∩ {xn = 0}. (7.6)
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If α1 > 0 is the constant, depending on p, n, λ0, μ and k, in Theorem 1.1 and if

DK ≡ distLn,∞(K (x), L∞) < α1,

then∫
Q+
2d

|D(Vμ(Duε))|2bε dx ≤ c
∫

Q+
4d

((
1 + 1

d2

)
(μ2 + |Duε|2) p

2 + (μ2 + |DFε|2)
)

bε,

(7.7)

for a constant c depending on p, k, λ0, n, μ and DK .

Regarding the proof of Lemma 7.1, we refer to [29, Theorem 2.3]. Actually, we can firstly
repeat the proof of Theorem 1.1 by using the standard difference quotient method in the
tangential directions. This allows to prove the existence of Ds(Vμ(Duε)), s = 1, . . . , n − 1,
in L2. Secondly, we can use the definition of (7.6) to bound the L2-norm of Dn(Vμ(Duε))

by the L2-norm of the tangential derivatives.
Now let u ∈ W 1,p

0 (b,�; R
N×n) be the unique solution of the problem
{

div A(x, Du) = div F in �

u = 0 on ∂�,

where F ∈ W 1,2(b,�; R
N×n). Then

Theorem 7.1 There exists α3 > 0, depending on p, n, λ0, μ, k and �, such that, if

DK ≡ distLn,∞(K (x), L∞) < α3,

then D(Vμ(Du)) ∈ L2(b,�; R
N×n) and

∫
�

|D(Vμ(Du))|2b dx ≤ c
∫

�

(
(μ2 + |Du|2) p

2 + (μ2 + |DF |2)
)

b dx, (7.8)

where c = c(p, k, λ0, n, μ,DK ,�).

Proof Firstly we prove (7.8) when b(x) ∈ L∞(�) with a constant c = c(p, k, λ0, n, μ, DK ,
�). If b(x) ∈ L∞(�), let Aε(x, ξ) satisfy (7.1)–(7.5) and let uε be the unique solution of
the system {

div Aε(x, Duε) = div Fε in �

uε = 0 on ∂�.

In a standard way (see for example [19, 42, 44, 59, 65]), we cover � by a family of open sets
�′, �′′, U1, . . . , Um , V1, . . . , Vm such that

• �′ ⊂⊂ �′′ ⊂⊂ �;
• Ul , Vl are cubes centered in xl ∈ ∂�, with l = 1, . . . m;
• Vl ⊂⊂ Ul , with l = 1, . . . , m;
• ∪m

l=1Vl � ∂�;
• � � ∪m

l=1Vl ∪ �′.

Covering �̄′ by a finite number of balls, by Theorem 1.1 we have that∫
�′

|D(Vμ(Duε))|2bε dx ≤ c
∫

�

(
(μ2 + |Duε|2) p

2 + (μ2 + |DFε|2)
)

bε dx,
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with c = c(p, k, λ0, n, μ,DK ,�). Regarding the boundary regularity of the solution, on
every Ul we can consider a diffeomorphism � which maps �l ≡ Ul ∩ � to an open set of
R

n and such that

�(Ul ∩ �) ⊂ {y ∈ R
n : yn > 0}, �{Ul ∩ ∂�} ⊂ {y ∈ R

n : yn = 0}.
If ũε is such that uε(x) = (ũε ◦ �)(x), with x ∈ Ul ∩ �̄, then ũε solves in �̃l ≡ �(Ul ∩ �)

a system {
div Ãε(x, Dũε) = div F̃ε in �̃l

ũε = 0 on {yn = 0} ∩ ∂�̃l ,

where Ãε satisfies conditions similar to (7.1)–(7.5) with new constants λ̃0 and k̃ depending
on �. This diffeomorphism preserves the B M O norm and the distance (see [5, 10]), that is

‖bε ◦ �‖∗ ≤ ‖bε‖∗ ≤ ‖b‖∗,
DKε◦� ≤ DKε ≤ DK

and we apply Lemma 7.1 in �̃l , giving (7.7) with a new constant c = c(λ̃0, k̃, p, n, μ, DK ).
Coming back to the original variables and summing on l, we get that, for any 0 < ε < 1,
|DVμ(Duε)| ∈ L2(�) and∫

�

|DVμ(Duε)|2bε dx ≤ c

(∫
�

(μ2 + |Duε|2)
p
2 bε dx +

∫
�

(μ2 + |DFε|2)bε dx

)
.

(7.9)

Now we prove that Duε → Du in L p(b,�; R
N×n). From (7.2)

1

k

∫
�

(μ2 + |Duε|2 + |Du|2) p−2
2 |Du − Duε|2bε dx

≤
∫

�

〈Aε(x, Du) − Aε(x, Duε), Du − Duε〉 dx

=
∫

�

〈F − Fε, Du − Duε〉 dx +
∫

�

〈Aε(x, Du) − A(x, Du), Du − Duε〉 dx

≤ ν

p
‖Du − Duε‖p

p + c

ν
‖F − Fε‖p′

p′ + c

ν

∫
�

|Aε(x, Du) − A(x, Du)|p′
dx .

(7.10)

We remark that from (7.3) we deduce that Aε(x, Du) → A(x, Du) a.e. Moreover (7.1)
and (7.4) give

|Aε(x, Du)| p
p−1 ≤ k

p
p−1 ‖b‖

p
p−1
L∞ (μ2 + |Du|2) p

2 ,

and by dominated convergence theorem we obtain that Aε(x, Du) → A(x, Du) in L
p

p−1 .
Then, from (7.10) with a suitable choice of ν, we get that Duε → Du in L p . From (7.9) and
the semicontinuity of the normwith respect toweak convergence,we get (7.8) for b(x) ∈ L∞.
Now let A j (x, ξ), j ∈ N, be the operators defined in Sect. 5. We consider the problem{

div A j (x, Du j ) = div F in �

u j = u on ∂�,
(7.11)

Since (7.8) holds for b j (x), we get that for any j ∈ N∫
�

|DVμ(Du j )|2b j dx ≤ c

(∫
�

(μ2 + |Du j |2)
p
2 b j dx +

∫
�

(μ2 + |DF |2)b dx

)
.
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(7.12)

Now we prove that Du j → Du in L p(b,�; R
N×n). From (1.3) we get

1

k

∫
�

(μ2 + |Du|2 + |Du j |2)
p−2
2 |Du − Du j |2b dx

≤
∫

�

〈A(x, Du) − A(x, Du j ), Du − Du j 〉 dx

=
∫

�

〈A j (x, Du j ) − A(x, Du j ), Du − Du j 〉 dx

≤ k
∫

�

(
1 − b j

b

)
(μ2 + |Du j |2)

p−1
2 |Du − Du j |b dx

= k
∫

�

(b − b j )(μ
2 + |Du j |2)

p−1
2 |Du − Du j | dx .

Then from Young inequality we get∫
�

|Du − Du j |b dx ≤ c
∫

�

(b − b j )
p

p−1 (μ2 + |Du j |2)
p
2 dx

≤ c

(∫
�

(b − b j )
r dx

) 1
2 ·
(∫

�

(μ2 + |Du j |2)
np

n−2 dx

) n−2
2n

,

(7.13)

where r = p
p−1 · 2n

n+1 . The last term goes to zero as j → +∞ thanks to (7.12), the embedding
Sobolev Theorem and the convergence of b j to b in every Lebesgue space Lq with 1 ≤ q < n.
Now, from (7.12), by using (7.11) and (5.1), we obtain that {|DVμ(Du j )|} is a bounded
sequence in L2(b j ,�). Then, by the semicontinuity of the norm with respect to the weak
convergence, we get the result. ��

7.2 Global integrability

For G ∈ L p(b, Q2R; R
N×n), consider the problem{

div Aε(x, Duε) = div |Gε|p−2Gε in Q+
2R

uε = 0 on Q2R ∩ {xn = 0}.
Lemma 7.2 If α2 > 0 is the constant, depending on p, n, λ0 and k, in Theorem 1.2, if

DK ≡ distLn,∞(K (x), L∞) < α2

and if G ∈ Lq(b, Q2R; R
N×n), for q ∈ (p, s), then

⎛
⎜⎜⎝⨍

Q+
R

(μ2 + |Duε|2)
q
2 bε dx

⎞
⎟⎟⎠

1
q

≤ c

⎛
⎜⎜⎝⨍

Q+
2R

(μ2 + |Duε|2)
p
2 bε dx

⎞
⎟⎟⎠

1
p

+ c

⎛
⎜⎜⎝⨍

Q+
2R

(μ2 + |Gε|2)
q
2 bε dx

⎞
⎟⎟⎠

1
q

,

123



   80 Page 42 of 47 G. Moscariello, G. Pascale

where c = c(p, n, λ0, k,DK , ‖b‖∗).

Proof We proceed as in the proof of Theorem 1.2.We consider in Lemma 6.1 the comparison
map defined as the unique solution of the problem{

div Aε(x, Dwε) = 0 in 3Q+

wε − uε ∈ W 1,p
0 (3Q+; R

N ).

Moreover M∗
bε

≡ M∗
bε,Q+

2R
and we continue arguing as in [55, Lemma 7.5]. ��

Now we consider the problem{
div A(x, Du) = div |G|p−2G in �

u = 0 on ∂�.

we prove the following

Theorem 7.2 Let u ∈ W 1,p(b,�, R
N ) be the solution of (7.14). There exists α4 > 0, depend-

ing on p, n, λ0, k and �, such that, if

DK ≡ distLn,∞(K (x), L∞) < α4

and G ∈ Lq(b,�; R
N×n), for q ∈ (p, s), then

⎛
⎝⨍

�

(μ2 + |Du|2) q
2 b dx

⎞
⎠

1
q

≤ c

⎛
⎝⨍

�

(μ2 + |G|2) q
2 b dx

⎞
⎠

1
q

,

where c = c(p, n, λ0, k,DK , ‖b‖∗,�).

Proof Firstly, assuming b(x) ∈ L∞(�), we consider for any 0 < ε < 1 the system{
div Aε(x, Duε) = div |Gε|p−2Gε in �

uε = 0 on ∂�.
(7.14)

Following the lines of Theorem 7.1, by using Lemma 7.2, since uε solve the system (7.14),
we obtain that ∫

�

(μ2 + |Duε|2)
q
2 bε dx ≤ c

∫
�

(μ2 + |Gε|2)
q
2 bε dx

≤ c
∫

�

(μ2 + |G|2) q
2 b dx,

(7.15)

where c = c(p, n, k, λ0,DK , ‖b‖∗). Arguing as in (7.10) we get that Duε → Du in
L p(b,�; R

N×n). Then the result follows by (7.15). In order to study the case b(x) ∈ B M O ,
as in Theorem 7.1 we consider for any j ∈ N the problems{

div A j (x, Du j ) = div |G|p−2G in �

u j = 0 on ∂�,

and we apply (7.15) to get∫
�

(μ2 + |Du j |2) q
2 b j dx ≤ c

∫
�

(μ2 + |G|2) q
2 b dx . (7.16)
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As in Theorem 7.1 we get that Du j → Du in L p(b,�; R
N×n). Indeed in (7.13) we have

∫
�

|Du − Du j |pb dx ≤ c
∫

�

(b − b j )
p

p−1 · (μ2 + |Du j |2)
p
2 dx

≤ c

(∫
�

(b − b j )
pr

p−1 dx

) 1
r ·
(∫

�

(μ2 + |Du j |2)
q
2 dx

) p
q

,

where r = p
p−q , and from (7.16) ‖Du j − Du‖ → 0 as j → +∞. Now, from the semicon-

tinuity of the norm with respect to weak convergence, (7.16) gives the conclusion. ��
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Appendix

In this section we prove (5.3). Assume for the moment that A(x, η) ≥ 0 and A(y, η) ≥ 0.
We note that

• If b(x) ≤ j and b(y) ≤ j , then

|A j (x, η) − A j (y, η)| = |A(x, η) − A(y, η)|
≤ |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

≤ (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 .
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• If b(y) ≥ b(x) > j , then

− (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2

≤ − j

b(y)
|x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

≤ j

b(y)
[A(x, η) − A(y, η)] ≤ A j (x, η) − A j (y, η)

= j

b(x)
[A(x, η) − A(y, η)] +

(
j

b(x)
− j

b(y)

)
A(y, η)

≤ j

b(x)
|x − y| [K (x) + K (y)](μ2 + |η|2) p−1

2

+ j

b(x)
k |x − y| [K (x) + K (y)](μ2 + |η|2) p−1

2

≤ (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 .

• If b(x) > b(y) > j , then

− (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2

≤ − j

b(x)
(k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

= − j

b(x)
|x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

− j

b(x)
k |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

≤ j

b(x)
[A(x, η) − A(y, η)] − j

(
b(x) − b(y)

b(y)b(x)

)
A(y, η)

= A j (x, η) − A j (y, η) ≤ j

b(y)
[A(x, η) − A(y, η)]

≤ (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 .

• If b(y) > j ≥ b(x) then

− (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2

≤ − j

b(y)
|x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

≤ j

b(y)
[A(x, η) − A(y, η)] ≤ A j (x, η) − A j (y, η)

= A(x, η) − A(y, η) +
(
1 − j

b(y)

)
A(y, η)

≤ |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 +

(
b(y) − b(x)

b(y)

)
kb(y)(μ2 + |η|2) p−1

2

≤ (k + 1)|x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 .
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• If b(x) > j ≥ b(y) then

− (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2

≤ − j

b(x)
|x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

− j

b(x)
k |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

≤ − j

b(x)
|x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

− b(y)

b(x)
k|x − y| [K (x) + K (y)] (μ2 + |η|2) p−1

2

≤ j

b(x)
[A(x, η) − A(y, η)] −

(
b(x) − b(y)

b(x)

)
A(y, η)

= A j (x, η) − A j (y, η) ≤ [A(x, η) − A(y, η)]

≤ (k + 1) |x − y| [K (x) + K (y)] (μ2 + |η|2) p−1
2 .

The proof of the remaining cases is analogous, therefore (5.3) is proved.
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