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Abstract
The aim of this paper is to deal with the anisotropic doubly critical equation
Hu—Lup_lzup*_1 in RN,
P [He(x)]P
where H is in some cases called Finsler norm, H° is the dual norm, 1 < p < N,0 <y <
(N = p)/p)? and p* = Np/(N — p). In particular, we provide a complete asymptotic
analysis of u € D7 (RV) near the origin and at infinity, showing that this solution has the

same features of its euclidean counterpart. Some of the techniques used in the proofs are new
even in the Euclidean framework.
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1 Introduction and main results

This work is devoted to the study of the following anisotropic doubly critical problem

—Afy - 4 ub=t =P =1 in RV

14 Ho(x)l’
u>0 in RV (Pr)
u € DLPRN),

where | < p < N, p* := Np/(N — p) is the Sobolev critical exponent, 0 < y < Cp :=
((N — p)/p)? is the Hardy constant and

A,’ju = div(HP " (Vu)VH (Vu)), (1.1)

where Ag is the so-called anisotropic p-Laplacian or Finsler p-Laplacian. We point out that
H is aFinsler type norm and H° is its the dual norm (H satisfies assumptions (2 ), see Sect. 2
for further details). In particular, when H (§) = |§| = H°(§) the Finsler type p-Laplacian
coincides with the classical p-Laplacian, and, hence it is singular when 1 < p < 2 and
degenerate when p > 2. Then, according with standard regularity theory [13, 27] and the
regularity results in the anisotropic framework [2, 6], we say that any solution of (Pg) has to
be understood in the weak distributional meaning, i.e. u € D7 (RN ) satisfies the following
integral equality

p—1 _ )4 p—1
/RN (H (Vu)(VH(Vu), Vo) H"(x)f’u (p) dx

:/ u” lodx Vo e CCRY). (1.2)
RN

The literature about critical problems is really huge. Going back to the Euclidean frame-
work, i.e. when we consider H (§) = |£€| = H°(&) in (Py), we deal with

— Apu— #up—l —u”~! inRV. (1.3)
In the seminal paper [5], Caffarelli, Gidas and Spruck classified any positive solution to (1.3)
with p =2, N > 3,and y = 0. We point out that a first result, under stronger assumption on
the decay of solutions, was obtained by Gidas, Ni and Nirenberg in [14]. Moreover, in this
setting a complete answer in the subcritical case was done in the celebrasted work of Gidas
and Spruck [15], where the authors proved Liouville-type theorems.

In the quasilinear framework, the situation is much more involved due to the nonlinear
nature of the operator. Recently, a classification result of positive solutions to (1.3) with
p>2y=0andu € D"P@RN) := {u € LP"RN) | Vu € LP(RV)} was obtained in
[24]. The proof of this result is based on a refined version of the well-known moving plane
method of Alexandrov-Serrin [1, 23] and on some a priori estimates of the solutions and their
gradients, proved in [29]. To be more precise, we note that the classification result of positive
solution to the Sobolev critical quasilinear equation with finite energy started in [12] in the
case, and then was extended in [29] for every 1 < p < 2. Subsequently the full case was
obtained in [24]. Recently, we refer to the papers [7, 21, 30] for new partial results on the
classification of positive solutions without a priori assumption on the energy of solutions. In
the anisotropic setting, Ciraolo, Figalli and Roncoroni [9], obtained a complete classification
result for positive solution to (Pg) with y = 0 using different techniques that do not require
the use of the moving plane method, which could not be used in the anisotropic context due
to the lack of invariance.
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When y # 0 the situation is really different. In the seminal paper of Terracini [26],
it was proved for the first time the classification result for positive solutions to (1.3) in
the case p = 2. The author firstly showed the existence of solutions to this problem with a
minimization argument based on the concentration and compactness principle. Subsequently,
she proved that any solution to this problem is radial and radially decreasing about the origin
combining the moving-plane technique and the use of the Kelvin transformation, in the same
spirit of [5]. The case p # 2 and y # 0 is much more involved and it is available in
[20], where the techniques used are mainly based on a fine asymptotic analysis at infinity
and refined versions of the moving plane procedure, and also on some asymptotic estimates
proved in [31, 32].

Our aim is to prove some decay estimates for positive weak solutions to (Pg) in the
anisotropic framework 1 < p < N and y # 0. More precisely, our first main result is the
following:

Theorem 1.1 Letu € D' (RN) be a weak solution of (Pg)withl < p<N,0<y <Cyg.
Then there exist positive constants 0 < Ry < 1 < Ry depending on N, p,y and u, such
that

a Ci o
oo = “Y = e ¥ € Bre (1.4)
and
© G Ho e
Ho ] <u(x) =< THo ]2 x € (Bg,)", (1.5)

where |11, Ly are the solutions of
uP2(p— D — (N — pyul +y =0, (1.6)

C1, Cy are positive constants depending on N, p,y, H and u, c| is a positive con-
stant depending on N, p,y, H, Ry, 1 and u, cy is a positive constant depending on
N,p,vy,H, Ry, iy and u.

Remark 1.2 In the following we shall assume that ;17 < w and it is easy to see that

N-p <M2§N_p'
p—1

0<m <

furthermore Bg ° is the dual anisotropic ball also known as Frank diagram (see Sect.2 for
further details).

In the proof we will also exploit some clever ideas from [31] facing the difficulties of
the anisotropic issue. A different approach is in fact needed for the study of the asymptotic
behaviour of the gradient. In particular, the fact that the moving plane plane technique cannot
be applied, a crucial point is given by the following classification result:

Theorem 1.3 Letv e C1¢ (RN \ {0}) be a positive weak solution of the equation

loc

Wy ¥
P [H°(x)]?

- VP =0in RN\ {0}, (1.7)
where 0 < y < Cpy. Assume that there exist two positive constants C and c such that

c C N
W < U(X) < W Vx e R \{O}, (18)
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where [u; (i = 1, 2) are the roots of (1.6) and suppose that there exists a positive constant ¢
such that

A~

[Vo(x)| < vx € RV \ {0}, (1.9)

[He(x)]Hit!
then

c
- < 1.10
YO = T (1o

for some ¢ > 0.

Theorem 1.3 is new and interesting in itself. The proof is very much different than the ones
available in the euclidean case H(§) = |&|. Here we shall exploit it to deduce the precise
asymptotic estimates for the gradient. more precisely we have the following:

Theorem 1.4 Letu € DMP(RYN) be a weak:volution of (Pu)withl < p <N,and0 <y <
Cp. Then there exist positive constants ¢, C depending on N, p,y, H and u such that

C o
WE|VM(X)|EW xer{l, (1.11)
and
¢ C H°\c
W§|VM(X)|EW XE(BRZ) , (1.12)

where |11, o are roots of (1.6) as in Theorem 1.1, and 0 < Ry < 1 < R, are constants
depending on N, p, y and u.

The paper is structured as follows:

e In Sect.2 we recall some notions about Finsler type anisotropic geometry, and we prove
some technical lemmas that will be crucial in the proof of the main results.

e In Sect.3 we prove some preliminary estimates, elliptic estimates and weak compari-
son principles in bounded and exterior domains that will be essential in the proof of
Theorem 1.1.

e In Sect.4 we give the proof of decay estimates of solutions to (Px) near the origin and at
infinity, i.e. we prove Theorem 1.1. The, using this result we also prove decay estimates
for the gradient of positive weak solutions to (Py) near the origin and at infinity, i.e. we
prove Theorem 1.4.

e Although the existence of solutions can be easy deduced in the radial-anisotropic setting,
in the “Appendix A” we show that problem (Pp) admits at least a positive solution
u € DP(RV) that minimizes the Hardy-Sobolev anisotropic inequality. This result
follows using classical arguments (see also [26]) that we decide to add for the readers’
convenience.

2 Preliminaries
Notation. Generic fixed and numerical constants will be denoted by C (with subscript in

some case) and they will be allowed to vary within a single line or formula. By |A| we will
denote the Lebesgue measure of a measurable set A.
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The aim of this section is to recall some properties and geometrical tools about the
anisotropic elliptic operator defined above. For a, b € RY we denote by a ® b the matrix
whose entries are (@ ® b);; = a;b;. We remark that for any v, w € R¥ it holds that:

(a®bv,w)=(b,v){a,w).
Now, we recall the definition of anisotropic norm.

(hy) Let H € C2(RN \ {0}). In all the paper we assume that H is a anisotropic norm if it
satisfies the following set of assumptions:

(i) HE) >0 V& eRV\ {0}
(i) H(s&) = |s|H(E) VE e RV \ {0}, Vs e R;
(iii) H is uniformly elliptic, that means the set Bf’ = (£ e RN : H(&) < 1} is uniformly
convex

A >0: (D*H(E)v,v) > Alv|> Ve €dB, Yo e VH(E):. (2.1)

A set is said uniformly convex if the principal curvatures of its boundary are all strictly
positive. Moreover, assumption (iii) is equivalent to assume that D?(H?) is definite positive.
The dual norm H° : RN — [0, +00) is defined as:

H®(x) = sup (&, x).
H@E)<l

Itis possible to show that H° is also a Finsler norm and it has the same regularity properties
of H. Moreover, it holds (H°)° = H. For R > 0 and ¥ € R" we define:

B &) ={x eRY H(x — %) < R}
and
B (%) = {x eRY H°(x — %) < R).

For simplicity of exposition, when x = 0, we set: Bllg = Bg 0), Bgo = Bgo(O). In
literature Bg and Bg ° are also called “Wulff shape” and “Frank diagram” respectively. We
remark that there holds the following identities:

H(VH(x)) =1= H°(VH(x)); 2.2)
and
H(x)VH°(VH(x)) =x = H°(x)VH(VH®(x)). 2.3)

We refer the reader to [3, 8] for further details. Observe also that H is a norm equivalent to
the euclidean one, i.e. there exist o, ap > 0 such that:

arlEl < HE) < aplé] V& e RN, (24)

Moreover, recalling that H is 1-homogeneous, by the Euler’s Theorem it follows

(VH(E),£) = HE)  VE e RV \ {0} (2.5)
Since H is 1-homogeneous, we have that V H is 0-homogeneous and it satisfies
VH(E)=VH <|$|é—|> =VH <é—|> V¢ e RN \ {0}.
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Hence, by the previous equality, we infer that there exists M > 0 such that

IVHE| <M Ve e RV \ {0}, (2.6)

For the same reasons there exists a constant M > 0 such that:
ID*H ()| < % vE e RM\ {0}, @7

where | - | denotes the usual Euclidean norm of a matrix, and
D*HEE=0 VEeRY\{0). (2.8)

We start with some elliptic estimates that can be proved in the same spirit of the Euclidean
framework.

Proposition 2.1 Forany p > 1 and n, 7' € RY such that |n| + |n'| > 0, it holds
\HP~ DV H ) — HP~ @ )VH@)] < Cpllnl + 10D~ = 1. 2.9)
Moreover, any p > 2 it holds the following inequality
HP(p) = HP () + pHP ' ) (VH@), n =) + C(pHP (=), (2.10)
forany n,n’ € RN. Furthermore, if 1 < p < 2 we have that
HP () = H' () + pH"™ () )(VH (). 0 =) + CplH () + HOOP 2 H? (= 1),
(2.11)
forany n, 0’ € RN such that |n| + |n'| > 0.

Proof We start the proof showing (2.9). First of all we note that (2.9) is symmetric in 7,
1. Hence, without loss of generality, we can assume that |'| > |n| > 0. We note that for
j=1,...,N:

oH oH
HP~ () o—(n) — HP ™' () =— (")

on; on;

1 -2,/ / 0H 0H / /

=/ Z[(p—l)H" (n +r(n—n>)(a—-—><n +1(n—1)
0 5 N 0n;
—1,./ / azH / / /
+HP™ (' +t(n — 1)) M +tm—n)) |- (i —n)de. (2.12)
n;0n;

By (2.12), using (2.4), (2.6) and (2.7) we have
|HP~ () VH () — H?~ () VH ()]
< /01 (p = DHP 20+t = DVH® +1(— 1) @ VHG +t(n — 1))
+HP N 1= ))DPHM + 1t — ') - In—n'ldt
< ((p— Dy 2M* + a8~ M)ln — 7| /Ol(m/ +e—n))P2dr, 2.13)

where | - | denotes the standard matrix Euclidean norm.
Now, we observe that

I+t —n)l < Inl+ 'l (2.14)
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and, since |n’| > |n|, we have either

[ 'l _ 'l + Inl
m—nl<— = W+t—)l=nl—In—7'I= >
2 2 4
(2.15)
/
or, putting ty := ] € 0, 2),
n—nl
I’
n=nl> =5 = I +i—nl= [l —tln—n'l| = lto — t] - In — 0|
4 Il
> tg—t] - — = |tg — t| —
> |tg — 1| 5 [t — 1] 5
+ /
> |t — ¢ 7] 4|”|. (2.16)

If p > 2, using (2.14) in (2.13) we have
|HP= () VH () — HP 7 () )WH )| < Cp(In'| + 0P 2| — 1| (2.17)

where C, = (p — 1)015_2M2 + aé’_lﬁ. Hence (2.9) holds.
If p <2 and (2.15) holds, by (2.13) we obtain

|HP~ \()VH () — HP '/ )VH ()|

1
< ((p—1)a5’*2M2+a§*1M>|n—n’|/ (' + 10y — )P ds.
0

1 ’ p—2
2 g 7'l + In
<((p-Dad "M +af M)|n—n’|/0 (f dt

< Cp(n'1 + )P~ —n'l, (2.18)

where €, = ((p — Dad 7> M? + o ~'M) /4P=2. Hence (2.9) holds
If p <2 and (2.16) holds, by (2.13) we obtain

|HP~ ") VH () — HP ' (f)VH ()]

1
-2 —15 _
<((p—Day "M* +af M)In—n’l/o (In" +t(n — nHHP~ 2 dt.

1 ’ p—2
-2 1 _o (101 +n]
<(p— Db "M + o M)In—n/I/O lto — t|P 2(T dt
=232 p—1l37 1
(p—Dad " M?>+al M _ _
= 2 2 (Il + D" = [ It — 2P ar
4p 0
=232 p—l37 1
(p—Da"M> +af™'M 3 B
< 22— (I I+ PP =12 | Pz
4 0
= Cp(In'| + P2 — 7'l (2.19)

where C, = 2(p — ol > M? 4 2a0~ "' M) /4772,

Collecting the estimates above, we deduce that inequality (2.9) holds for every p > 1 and
for Cp = ((p — Ded > M? + o~ "M) - max{1,4>7,2. 4277},

Now we will show (2.10) and (2.11). For 5, n’ € RV, we define

f@)=HP (' +1(n—1")
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and Taylor’s formula yields

1
HP(p) = HP (') + pH? ™' 0 )(VH®), n =) +/0 (=0 f"®ydt, (220

provided |n" +t(n — )| # 0, for 0 < ¢ < 1. But the case when " + 7(n — n’) = 0 can be
easily verified. By [10, Theorem 1.5] we obtain that

@) = (D*(HP (' + 1t — ")) — 1) — 1)
> C(p)n' +t — )P — ', 2.21)

where C(p) is a constant depending on p. We remark that

1 3 L
/ =0 f"(t)dt > 7/4 £y dt. (2.22)
0 4 Jo
If1 < p <2,by(2.14) we have

(Ha) +H@)P™ 2 <ol 2 + 10— )72

and using (2.22) we arrive at (2.11).
If p > 2, using a similar argument as in the proof of the inequality (2.9), we obtain

1
/04 '@ = Cp)(Unl + 10’ DIP2n — '3, (2.23)

with C(p) constant depending on p. Since | —n’| < |n|+|n’| and using (2.4), we get (2.10).
O

We state now the Hardy inequality for the anisotropic operator AII;I u, defined in (1.1). We
refer to [28, Proposition 7.5].

Theorem 2.2 (Hardy inequality) For any H satisfying the assumption (hy) and any u €
DY'P(RNYand1 < p < N,
|u|?
rY H°(x)P

Cy dx < / H?(Vu)dx, (2.24)
RN
where Cy = ((N — p)/p)? is optimal.

Now we prove a technical lemma that will be very important in the proof of the asymptotic
estimates.

Lemma23 Let p > 1 anda,b > 0. Then, for all § > O there exist Cs > 0 such that

(a +b)P — CsbP. (2.25)

1
al > ——
T 14207t

Proof Let us consider p > 1 as follows:

p=Lrl+{p}

where | -] is the floor function and {-} is the mantissa function. Without loss of generality we
assume that {p} # 0 and, moreover, we set m := | p]. Hence, we have

(@+b)?=@+b)"@a+b"=@+bn"y" (’Z)w-kbk = (%) (2.26)
k=0
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Noticing that 0 < {p} < 1 it follows that
(a + )P < qfPt 4 plrt,

Using this inequality in (2.26), we deduce

m

m
*) < a'?! Z (r]:l)am_kbk + b7 Z <IZ>am_kbk
k=0

k=0

m m—1
NETESY (’Z)ap*"b" +2 ('Z)a’"”‘bk“”} = (),
k=0

k=1

2.27)

where we used the fact that p = m +{p}. Now, we can apply the weighted Young’s inequality
to each member of the first sum with conjugate exponents (p/(p — k), p/k) and to each
member of the second sum with conjugate exponents (p/(m — k), p/(k + {p})) as follows

—k k
aP~*pk < P850 4 Boopr < saP 4+ csb?
D p (2.28)

a" Tk pFHPY < 5aP 4 CsbP .
Hence, using this estimate we deduce

m m—1
(%) < aP +bP + (8a” + CsbP) Z (7:) + (8a? 4 C5b?) Z (7:)

k=1 k=0
< (142°H18)a? 4+ C5b”,

(2.29)

where we renamed Cs := (1 + 2p+1C5). Collecting (2.26), (2.27) and (2.29), we deduce that

> ¥(a +b)P — Csb? (2.30)
= 1+20tls ’ '

with Cs := Cs /(1 + 27*18), and hence the thesis (2.25). O

al

Finally, we recall alemma (see Lemma 4.19 in [16]) that will be very useful in the proofs
of our results.

Lemma 2.4 [16] Let £ and g be two nondecreasing functions on the interval (0, R], for some
R > 0. Suppose that it holds

L(tR) <o L(R)+ g(R) forall R <R,

for some 0 < o,t < 1. Then, for any n € (0, 1) and R < R we have

L(R) < ! (5> L(R) + ¥g(R“R‘*“>
o \ R 1

— 0

where o« = a(o, 7, ) = (1 — u)logo/logr.

3 Preliminary asymptotic estimates and comparison principles

The aim of this section is to prove some preliminary estimates that will be crucial in the
proofs of the main results.
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Lemma 3.1 There exists a positive constant T depending only on N, p and y such that for
any R > 0 and for any solution u to problem (Pp ) satisfying
”u“LP*(Bg(’) + ”u”LP*(RN\BSE) by 3.

there exists a positive constant C depending only on N, p, y and R such that

el ey < CR?" for R < R, (3.2)

and that
< ¢ R > ! 3.3
”u”LP*((BgC’)v) = ﬁ for = Ev ( . )

where o1, 02 are two positive constants depending on N, p and y .

Proof We start proving (3.2). To this aim let us consider R > 0 and a cut-off function
n € CX®(RY) such that

0<p<1inRV

n=0 in (BH")¢
n=1 inBf,

IVl < % in BE \BE),.

34

By density argument it is possible to put ¢ = n”u as test function in (1.2), so that we obtain

/pnf’_luH”_l(Vu)(VH(Vu),Vn)dx+/ n? HP~'(Vu)(VH (Vu), Vu) dx
RN RY (3.5)

Yy op-1p / pr=1,p
= u udx u udx.
v Hogop' T L

First of all, using Euler’s Theorem (2.5), the 0-homogeneity of VH (2.6) and Schwarz’s
inequality, equation (3.5) becomes

/ H”(Vu)n”dx:/ HP~Y(Vu)(VH (Vu), Vu)n? dx
RN RN

Y
He(x)P

uPnP dx +/ ul” nP dx.
RN
(3.6)

< pM/NHp_l(Vu)|Vn|np_1udx+/N
R R

Recalling that H is 1-homogeneous function, using the weighted Young’s inequality ab <
P
egar=T + C.bP on the first term of the right hand side of (3.6), for any 0 < & < 1 we have

/ HP(nVu)dx 58/ Hp(nVu)dx—i-C(p,M,s)/ IVn|Pu? dx
RN RN RN

3.7
y (3.7

rY H°(x)P

uPn? dx +/ ul” nP dx,
RN

where C(p, M, ¢) := (pM)?C.. Now, noticing that V(nu) = uVn + nVu, by the triangular
inequality, we deduce that for every p > 1 it holds

HP(V(qu)) = H? (uVn +nVu) < [HuVn) + HnVu)l”. (3.8)
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Thanks to (3.8) and applying Lemma 2.3 with a = H(nVu) and b = H (uVn), we deduce
that

/ HP(nVu)dx > / H?(V(nqu))dx — Cs / HP(uVn)dx. (3.9)

T 14+ 21’+18
Using (3.9) in (3.7) we obtain

/ H"(V(nu))dx<05/ H?wuVn)dx + C(p, M, 8)/ IVn|Pu? dx

(um)” dx—l—/ ul’ P dx.
RN He(x)? RN

1+2P+15

(3.10)

Now, applying the anisotropic Hardy inequality (see Theorem 2.2 or [28]) and (2.4) we
have

P
m/ HP(V(nu)) dx <( a,Cs +C(p, M, 5)) /RN V| u? dx

L/ H"(V(nu))a’x—l—/ WP pPdx. (3.11)
H JRN RN

Let us fix ¢, § > 0 sufficiently small such that C; := (1 —¢)/(1 + 2ptlsy — y/Chg > 0, so
that

C1/ H”(V(nu))dxfcz/ Ianpupdx—i-/ ul” nP dx, (3.12)
RN RN RN

where Cr := C(p, M, ¢e) + ang. By (2.4) we have

alpCl/ |V(nu)|pdx§(,’2/ |Vn|pupdx+/ up*npdx. (3.13)
RN RN RN

Now, using the Sobolev inequality in the left hand side of (3.13), the Holder inequality and
(3.4) in the right hand side, we obtain

afclcg Inu|P” dx
RN

a
3

’ <alcl/ IV )P dx
RN

ECz/ IVnI”u”dx+/ uP" =P () dx
RN RN

)4
F

¥ »
<O (/ IanNdx> </ ul” dx)
BE\BY, BE\BY,
2 2 (3.14)
+ (/ na dx) (/ (qu)?” dx) !
BH® RY
P

R/2

+||u||p p(/ (nu)?” dx) :

S
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hence we deduce

P

. \7¥ _GC(p.N .\
(/ nul” dx)” el
RV a; CiCy BHN\BH

R/2

IIMII’L’p*(BHo) i i
+ </ (nu)? dx) , (3.15)
a; CiCy RN

where C(p, N) is a positive constant depending on p and N.
Setting
_1
(X{]C]C? rip
T= ,
2

and choosing R > 0 sufficiently small such that (3.1) holds, then ||u ||£Z:(’;Ho)/(afclc§) <
R

1/2forall0 < R < R. Hence we obtain that

/H up*dxf/ |nu|”*dx§C_'/H . uP"dx VO0<R<R,
B RN BH\BH

R/2 R/2

_ r*
where C := ((2C2C(p. N))/(a]CiC¥)) 7 and it depends only on N, p and y. Denoting
with L(R) := / u? dx for0 < R < R, we get that
BH®

R
L(R/2) <9L(R) YO0<R<R,

where ¥ = C/(C +1) € (0, 1), depends only on N, p and y. Now, by Lemma 2.4 it follows
that

1~ (R\" _
L(R) < —L(R) (—_) VO <R <R,
s R
where | = 1 log(1/1)/log2 depends only on ¢, Now (3.2) follows by setting oy = o/ p*
and C = (z?flf_dlﬁ(lé))l/p*. In a similar way, we can deduce (3.3). ]
Now, we denote by Ar = Bg; \BIIEI;S and D = BZ; \Bg;4 for R > 0.

Lemma3.2 Lett € (p*, N/u1). There exists a positive constant 6 = o (N, p, y, 1) such
that for any solution u to problem (P ) and for any R > 0 satisfying the following inequality

||’4||Lp*(3k) + ”M”Lp*(RN\BI/R) <o, (3.16)
then
! *
(][ u’dx> <c <][ ub" dx)p VR < R/8orR > 8/R, (3.17)
Dr Ag
1
where ][ u'dx = —/ u' dx and C is a positive constant depending only on
7DR |DR| Dr
N,p,y,Randt.
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Proof 1t is easy to see that, setting it(x) = u(Rx), for R > 0,

AT ar— = RPHP! in A
—Ay _yH°(x)P = u m Aj.
Letm > 1 and set
A=A N{u <m} and B:= A N{i > m}. (3.18)

Hence we can consider the weak formulation of the last equation as follows

L+ :=/ HP—l(Vﬁ)<VH(Vﬁ),V¢>dx+/ HP~\ (Vi) (VH(Vi), Vo) dx
A B

o (3.19)

= 14

7<pdx+Rp/ A" lodx Ve e CP(A)).
A HO(x)p Ap ¢

Let define i, := min(it, m) for m > 1. By density argument, for any n € C°(A;) it is

possible to choose ¢ = r]pﬁﬁ,(s_l)ﬁ, with s > 1, as test function in (3.19), so that, using

(3.18) and (2.5), we can compute /] and I,
I = / HP=Y (V) (VH Vi), ppP~taPS=D+1vy) dx
A
+p(s—1) + 1]/ HP~Y(Va)(VH Vi), n? P~ Dvi) dx
A (3.20)

:p/ HP~Y (Vi) (VH V), VipynP~1aPG=DF1 gy
A

+lpts—1)+ 1]/ HP (VinPaPt=b dx.
A
In the same way, we obtain

122/ HP~Y(Va)(VH (V) pn?~ 'mPS~Divn) dx
B
+/ HP~Y (Vi) (VH(VE), n”mPC~DVih) dx
B

=p/ HP~Y(V(VH(VD), Vi)n? ImP6—Dg dx+/ HP (Vi)n?mPE=Y dx.
B B
(3.21)
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77 Page 14 of 44 F. Esposito et al.

Collecting both (3.20), (3.21), using the Scwharz’s inequality and recalling (2.6) we obtain

[p(s =D +1] / HP (Viyn?a?e =D dx + / HP (Viyn?mP D dx
A B

<pM /AHP*I(Vﬁ)nf’*lal’(S*”“|vn|dx+/BHf’*l(va)np”mﬂ“*”|Vn|ﬁdx}

~p—1 .
+/ yh(pdx—i-Rp/ u? 71(pdx
A X Ay
_ (3.22)
=pM /Hp_l(Vﬁ)n’"lﬁ“’_““_”ﬁs|Vn|dx
A

+/ H”fl(Vﬁ)n”ilm(pfl)(kl)m“lIanftdx]
B
P! d » iy g
+ yitpx—i-R/u*(px.
A Ho(x)p A

Now we can apply the weighted Young’s inequality to the first two terms in the right hand
side of (3.22) with conjugate exponent (p/(p — 1), p) in order to obtain

[p(s — 1)+1]/ HP (VaypParts—Y dx+/ HP (Vayn?mPS=V dx
A B
581[p(s—1)+1]/ Hp(Vﬁ)npﬁp(‘_l)dx—i—Csl(p,s,M)/ aPs|vn|P dx
A A

s / HP (Vi) m?=D dx + Coy(p, M) / (VnIPmPO D dx (3.23)
B B

ir=!

Ho )y ?

+ 14
A
+Rp/ ﬁp*_lgodx,
A
where C¢, (p, s, M) and C¢, (p, M) are two positive constants. Hence we obtain
(1 —e)p(s — 1)+1]/ HP (s Vi dx + (1 —52)/ HP (nis; ' Vi) dx
—(1—81)[p(s—1)+1]/ HP(Vi)n?aPt— l)dx—i-(l—&‘z)/ HP (Vi)n?m?C=Y dx

(3.24)
SCSI(p,s,M)/ [V|PaPS=Dar dx + Ce, (p, M)/ [V|PmPE=Dar dx

ubl~ ln”ﬁp(b 1)Adx+R”/ ﬁ”tln AP(A Vi dx.
/ H"(X)f’ A

Thanks to (3.8) and applying Lemma 2.3, with ¢ = H(na*~'Vi) and b = H(4° V), we
deduce that there hold the following inequalities in the sets .4 and B respectively:

/H”(nﬁfn_lvﬁ)dx:/ HP (i*~'Vi) dx

1
P - p
> T / HP (Y (i) dx — Cy, / HP @5 Vn) dx (3.25)
1
- HP(Vit~ 0 _ HpAslv
T3 20, / (V(nity, ")) dx Csl/ (i, "uVn)dx
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/H”(nﬁfn_lvﬁ)dx:/ H”(nms_IVﬁ)dx
B B

/ HP (V(qpm*~'0)) dx

- 1+2P+18
—Cs, / HP(m*~'iVn) dx (3.26)
B
1
_ P ~s—1
_71-1-217“‘18 /H (V(nu,, 1)) dx

—C,;z/Hp(” 1an)a’x

By (3.25) and (3.26), we obtain

1—81 p(S—1)+l P As—1 A 1 - P As—1n
1+2P+181 / H (V(T] M))dx+m H (V(Y] u))dx
§C51(81,p,s)/ Hp(ﬁfn_lﬁVn)dx-l-ng(Ez)/ HP @7 avn) dx
A 5 (3.27)
T Coy(pos, M) / Vol e dx + Cop M) [ (9PaLe Va0 ds
B
ar—! PAP(A D~ p Ap*—p pAP—1-p
n udx+ R / i nfu u?dx.
/ Ho(x)f’ A "
Using (2.4), we deduce that
1—¢; p(s - 1) +1 A
1+2p+151 / HP(V(nity, i) dx
1+2p+15 /HP(V(WAS ') dx
(3.28)

— L _gr! ”ﬁ"“ 1)Adx-i—c/ VnlPalSVar ax
/ Ho(x)p n A1| N1 tm

+ RP/ AP P (it P dx,
Ay

where C dependsondy, 82, €1, €2, p, s, M. Using Hardy’s and Holder’s inequality in the right
hand side of (3.28), and the definition of the sets A and B3, we obtain

1— &1 ( 1) +1 As—1 A As—1 A
T 21"“181 / HP (Vi i) dx + —————— T ZP‘HS / HP(V(na,, ")) dx
= & [ i+ L[ i) ds (329)

P =p 1
. 1. s " o X
—I—C/ |Vr7|”ft,p,,(‘Y Darax + (/ al RN dx) ' ( (nit, Liyrx dx) ,
Ay Ay Ay
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77 Page 16 of 44 F. Esposito et al.

where x = p*/p. Finally, we deduce

( l—&  p-D+I1 _L>/ HP (V(nity, ') dx

1 +2r+18, 4 Ch

1 —& ~s—1
+ <m CH)/ HP (V (nity, b)) dx (3.30)

5 Ap(s—1) » p*=p As—1 A x
< C/ \Vn|Pih, P dx + ull’; - (/ (nity, " i)P* dx)
A, m LP" (Ag) A m

Noticing that (p(s — 1) +1)/s? > y/Cy forall s € (N — p)/(pu2), (N — p)(pir1)), we
can fix 81, &1 > O sufficiently small such that

1—¢ p(s—l)—i—l_L

1 +2r+ls, sP Cu
and 87, g2 > 0 sufficiently small such that

> 0,

1—¢& y

=2 Y .
112018,  Cy

Hence by (3.30) we get

¢ | HP(V@is 1u))dxsé/ VPl ar dx + lu)l -

A . L (A )

( i (nas, L ayrx dx)x : (3.31)
1

where C isa positive constant depending on €1, €2, 81, 82, p, s, ¥, Cg. Inconclusion, by (2.4)
and Sobolev inequality we have

1
ol ich (/ (nizy )Pde)* <alc/ IV ity 1u)|desé/ HP (Y iy i) dx
Ay A

gé/ IV Pale~Var ax (3.32)
Al

1
e 1 A X
+ [lull? LP*(A ) (/A (isT Vi) Px dx)
1

In order to apply the Moser’s iteration method we need to rewrite the last inequality as follows

1
X
</ (nias~i)Px dx)
Ay

SC1/ Ianpu”(Y l)updx+C2||u||Lp A )</ (nias” 1~ )pxdx>x’ (333)
Al

where C; := C/(a}CCE), Cr := 1/(a]CCY) and X =p */p.
Fix t € (p*,N/u) and k € N so that pyx* < r < py**!. Then there exist posmve
constants C; and C; such that (3.33) holds for all 1 < s < min {(N — p)/(pu1), x*}. Now,
1 _
we set o = (1/(2C3)) »*~» and choosing R sufficiently small such that (3.16) holds, we get

1

( s i Px dx)x 50/ [Vn|Pa20 V4P gy (3.34)
.A] -Al
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forall1 <s < min {(N — p)/(pu1), x*} andC = C; /2. Applying Moser’s iteration method
(see e.g. [16, 31] for further details), we conclude, after finitely many times of iteration,

Y e\
(][ |u|tdx> <C <][ li|? dx) . (3.35)
Dy Ay
for any r € (p*, N/u1). This proves (3.17). O

Let us now prove the following:

Theorem 3.3 Let u be a weak solution of (Pg ). Then there exists a positive constant C =
C(N, p, y,u) such that

C

. H°
lu(x)| < inBg, ,

[How)] 7 7

and that

lu(x)| < in (BR,)°.

[Ho@)] 7+

where o1, 02 are givem in Lemma 3.1 and Ry, R» > 0 are constants depending on N, p, y
and u.

Proof Letus fixt := (p*+ N/u1)/2 € (p*, N/u1) as in Lemma 3.2 and « := min{z, o},
where 7 and o are respectively as in Lemma 3.1 and Lemma 3.2. Let R > 0 such that (3.1)
holds for « and let us consider i (x) = u(Rx), for R > 0 fixed. We note that i satisfies the
equation

—AMi+car~' =0 inDy,

where

Y
He(x)?

c(x) = — RPAP 7P (x).

We note that H°(x)~? is bounded in DP; and Vg (x) := RP4P ~P(x) € L4(D;) with g =
t/(p* — p) > N/p due to Lemma 3.2. Hence, as in the proof of [22, Theorem 1] a classical
Moser iteration argument yields

1
P
sup u <C ][ u? dx (3.36)
BH® (x) B (x)

for any ball Bgo (x) C Dy, where C = C(N, p, v, IVRllLa(p;)). We claim that || Vg || La(D;)
is uniformly bounded with respect to R. Indeed from Lemma 3.2, since

* *

— P
t p*

N
p—=~+nN7
q
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we get
1 1
(/ vi dx)q = RP_% (/ uP =pa dx)q
Dy Dr
r*=p
Dg
b 3.37)

_N p*=p _np*-p PF
<CRVT NI NG (/ up*dx>
ARr

* I)P;p F 8
<C u? dx VO<R< —orR>—,
RN 8 R

where C is a positive constant depending on N, p, ¥, g and R.
Using a covering argument we deduce that

1
sup i <C (f i dx) ' (3.38)
BY\BH® Dy
Noticing that i1(x) = u(Rx), by (3.38) we obtain that
1
14
sup u<C (][ u”dx) (3.39)
BEA\BH® Dr

foreach 0 < R < R/8 or R > 8/R. By applying the Holder’s inequality in (3.39), we get

1 1
» * »* p=N
sup u 50(][ u”dx)p gc(][ u? dx)” = Cllull py R 7, (3.40)
B \BY Pr Pr

foreachO < R < R/8 or R > 8/R and C depends only on N, p, ¥, ¢, R and ”””LP*(RN)'

Now we note that, since Ag C Bgo forany 0 < R < R/S and Ap C (BZ})C for any

R >18/ R, there exist, by Lemma 3.1, 01, 03 > 0 depending only on N, p, y such that

ol R
||M|IL,,*(B£1°) <CR°" for0 <R < 3
and that
C _
leall o= (o yey = T for R > 8/R.
Now, if we set Ry = R/8 and R, = 8/R, by (3.40) we get the thesis. O

The next result is devoted to show the existence of some special supersolutions of our
problem, in order to perform a comparison between them and the solutions of the doubly
critical equation (Pg).

Proposition 3.4 Given two constants A > 0 and o < p, there exist constants 0 < &,8 < 1,
depending on N, p,y, A, «, such that
1 —38[H°(x)]*

V(H ) =~ s € DL (BR) (3.41)
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is a positive supersolution to equation
Hy - Y
He(x)?

Pt =g ! inBY, (3.42)

for some positive constant 0 < Ry < 1 depending only on N, p, y, A and o, where g(x) is

N o
a positive function that belongs to L » (B’f;’l ) such that
g(x) = A[H° ()] in By, . (3.43)

In a similar way, given A > 0 and o« > p, there exist 0 < €, § < 1 such that

v(H®(x)) = % e phP ((BR;)C) (3.44)

is a positive supersolution to equation

vl =g’ in (BE))C, (3.45)

for some positive constant Ry > 1 depending only on N, p, y and a, where g(x) is a positive
N o
Sfunction that belongs to L » ((Bllg2 )) such that

g(x) = A[H°(0)]™® in (BR,)". (3.46)

Proof Let us consider i, 8, & > 0 and let us define the function
1 —68[H°(x)]*
ux) =v(H°(x)) = —————.
[H°(x)]*

It is easy to deduce that
Vu(x) = s(H°(x))VH®(x), (3.47)
where s(f) := t *~![—u 4+ 8(u — £)¢°]. Using (2.2), we now compute
—Alu = —div (H'~'(Vu)VH (Vu)) = —div (|s(H°(x))|” " sign(s)VH (VH°(x)))
=—(p— DIs(H®()|?™%s'(H°(x))(VH® (x), VH(VH (x)))
— Is(H®(x)|P~ " sign(s) div (VH (VH°(x))) (3.48)
Is (H° () |7~ %5 (H® (x))
He(x)
where in the last line we used the fact that (VH®(x), VH(VH®(x))) = 1 and

, . N—1
div(VH(VH®(x))) = 7]

=—(p— DIs(H ()P 72" (H°(x)) — (N = 1)

3

due to (2.2) and (2.3).
Making standard computations on the right hand side of (3.48), one can deduce

N mmp—zu — g(H° (X)) |ul"2u, (3.49)
where
h(t)
[1 —8t8|P=2(1 — 8¢t8)tP’

g(t) =
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and
-2
h(t) == |n =8 = [" " {2 (p =D = (N = pu = (p = D(n — &)*81°
+(N = p)(u — £)81°} (3.50)
— Il =8t51P72(1 = 8t°),  fort € [0, +00).
‘We note that 2(0) = —|u|p_2[uz(p — 1) — (N — p)] — y. Hence, using the definition of

w1 and o, we deduce that 2(0) = 0 when u = 1 and p = po. Also we have /2/(0) > 0 if
w=pui,&>0oru=pu e < 0. This implies there exist 0 < 85 < 1 such that

20 (0)t > h(r) > %h’(O)t >0 Vie(08). (3.51)

We set § = min{§;,, 1/2}, e = (p — «)/2 and

5, Ve
Ry = l,<ﬁh(0)> .

It easy to check that v(H°(x)) = (1 — §[H°(xX)I®)[H°(x)] ™ € Dl'p([)’glo) is positive,

N o
which thanks to (3.51), g(x) € L» (Bf;’1 ) and it satisfies (3.43). The other case is similar. O

Now, we consider the following equation

Hy, 4

Y. w’ = fow!™ i@, (3.52)

where € is an open subset of RY, w > 0 and w € D7 (Q). Let us start with a comparison
principle in bounded domains.
The first result is given by the following pointwise estimate, in the same spirit of [20, 31].

Proposition 3.5 Leru, v two weakly differentiable strictly positive functions on a domain 2.
We have that:

(@) if p > 2, then
vP ub
HP ™Y (Vu)(VH(Vu), V (u - u—pu)) + HP"Y(Vu)(VH(Vv), V (v - v—pv))
> Cp? +vP)YHP (V(Inu — Inv)),
(3.53)

for some positive constant C, depending only on p;
(@) if 1 < p <2, then

HP~!(Vu)(VH (Vu), V (u - Z—Zu)) + HP"Y(Vv)(VH(Vv), V (u — §”>>

> Cp(uP +vP)[H(VInu) + H(VInv)]P~2 H*(V(nu — Inv)),
(3.54)

‘or some positive constant C,, depending only on p.
p p aep g only on p

1 We mean that u,v > C > O a.e.in Q.
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Proof Let u, v two weakly differentiable positive functions and consider the following

p uP

v
‘=u— —u and =v— —0.
14 " () o7

Then, thanks to the Euler’s theorem for 1-homogeneous functions, and since VH is 0O-
homogeneus, we deduce that

HP~Y(Vu)(VH(Vu), Vi)

vp7] 1 UP
= HP(Vu) — pup—_lﬂl’ (Vu)(VH(Vu), Vv) + (p — 1)M7HP(W)

(3.55)
= HP (Vu) — vP [(1 — p)HP (%) + pHP! (%) (VH(Vu), %)]

= HP(Vu) — P [HP(V nu) + pHP~ (VInu)(VH(VInu), Vinv — Vlnu)]
and

HP~N (Vo) (VH (Vv), Vi)

ub—1 ul
— HP" N (Vo) (VH (Vv), Vu) + (p — 1)— HP (Vv)

vP vP

— HP(Vv) — p
(3.56)
A e {(l - (%) Hpr (%) (VH(VV). %J

= HP(Vv) — uP [Hp(vm V) 4+ pHP " (VInv)(VH(VInv), Vinu — Vin v)i| .
(i) p > 2. We recall that when p > 2, it holds (2.10), i.e.

HP () = HP (') + pHP ™' )Y (VH ('), n — 1)

+ HP(n—1n'), Vn,n eRV. (3.57)

2r=1 1
Hence we can apply this inequality, in order to give an estimate from below for (3.55) and
(3.56):
HP~Y(Vu)(VH(Vu), Vi) = HP (Vu) — vP[HP(V Inu) + pH? " (Vinu)
(VH(VInu), Vinv— Vin u)]
> H?(Vu) — v?
[HP(VInv) — C,HP(V(Inv — Inu))]

= H"(Vu) — H’(Vv) + C,oP HP (V(Inv — Inu)),
(3.58)

HP~Y(Vv)(VH(Vv), Vin) = HP (Vv) — u”[H”(V Inv) + pH?~'(VInv)
(VH(VInv), Vinu — Vin v)]

> HP(Vv) —u? [H?(VInu) — C, H?(V(Inu — Inv))]
= HP(Vv) — H?(Vu) + Cpu? H?(V(Inu — Inv)).
(3.59)
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Adding both these two inequalities, we obtain

HP~Y(Vu)(VH(Vu), Vi) + HP (Vo) (VH (Vv), Vi)

(3.60)
> Cp? +vP)HP (V(Inu — Inv)).
(i) 1 < p < 2. We recall that when 1 < p < 2, itholds (2.11), i.e.
HP () = HP(n) + pH? ' (' )(VH (). n — 1)
+CHlHm) + HIP2H* (0 — 1), V.0’ e RV, (3.61)

where C), is a positive constant depending only on p.
Now we proceed exactly as in the previous case to get an estimate from below for (3.55)
and (3.56):

HP! (Vu)(VH(Vu), Vi)

= HP(Vu) — vP [Hp(vm u) + pHP~ Y (VInu)(VH(VInu), Vinv — Vin u)]

> HP(Vu) = o [HP (VInw) = CplH (VInw) + H(VIn )P 2 HA(V(Inv = In )| (.62
= HP(Vu) — HP (Vo) + CpoP [[H(v nu) + HVIn )P 2H2(V(nv — In u)] ,
HP~L (Vo) (VH(Vv), Vi)
— HP (Vo) — uP [Hl’(vm v+ pHP~ L (VInv)(VH(VInv), Vinu — Vin v)j| .
> HP(Vv) — uP [HP(V Inu) — Cp[H(VInu) + H(VInv)P2H2(V(Inv — In u))] '
= HP (V) — HP (Vu) + CpuP [H(VInu) + H(V Inv)]P"2H>(V(Inv — Inu)).
Adding both these two inequalities, we obtain
HP_I(VM)(VH(VM), Vi) + Hp_l(Vv)(VH(Vv), Vi)
> Cpu? + vP)[H(VInu) + H(VInv)]P2H>(V(Inv — Inu)). 664
o

Now, we are ready to prove the comparison principles in bounded and exteriors domains.

N
Proposition 3.6 Let Q2 be an open bounded smooth domain of RN and f € L7 (Q). Let
u € DVP(Q) be a weak positive subsolution to (3.52) and v € DLP(Q) be a weak positive
supersolution of

— Ay 4

1 1 .
P o VP = g(x)? in Q, (3.65)

N
with g € L7 (2). Assume thatinfqv > Oand f < gin Q. Ifu < von 0%, then

u<v inS.

Proof We will give the proof of this result in the case p > 2. The case | < p < 2 is similar.
Let us define

min{(u? — vP)*, m}

N = o and =

min{(u? — vP)*, m}
vr—1
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where m > 1. It is quite standard to show that n; and 7, are good test function that we
can use in the weak formulations of (3.52) and (3.65). Taking both these test function and
subtracting the two equations, we obtain

/Hp_l(Vu)(VH(Vu),Vm)dx—/ HP~Y(Vu)(VH(Vv), Vi) dx
Q Q

Y 1 14 —1
< P dx — P d
—/QH°<x>ﬂ” e /QHO(x)ﬂ” e

+/f(x)u”flmdx—/g(x)vpflnzdx (3.66)
Q Q

Y — _
= [ g =

4 / FEOu 0 = (P " nydx < 0,
Q

since f < g in Q. Hence, setting Q) := {x € Q|0 < u? —v” < m}and Q; := {x €
Q | u? — v? > m}, we deduce that

HP"Y (Vu)(VH(Vu), V (u - ﬁu)) dx
Q) up

+ [ HPTYV)(VH(Vv), V (v - ﬁv>) dx
Q vP

(3.67)
+m(1 — p) |:/ HP~Y(Vu)(VH (Vu), u"PVu) dx
Q)
—/ HP~Y(Vv)(VH(Vv), v_va)dxi| <0.
Q)
Applying (3.53) in (3.67) and making some computations we obtain
Cp WP +vP)YHP(V(lnu — Inv)) dx
@ (3.68)
+m(p—1)|: HP(VInv)dx — H”(Vlnu)dxj|§0,
Qo Q2

but this implies that

Cp W? +vP)HP(V(nu —Inv))dx <m(p — 1) HP?(VInu)dx. (3.69)
931 Q)
For the right hand side of (3.69), we have
m(p —1) Hp(Vlnu)dx=(p—1)/ mu~ PHP(Vu)dx
Q)

= (3.70)

<(p- 1)/ H”(Vu)dx,
2%
where ) := {x € Q| u” > m} and it holds that

/ HP?(Vu)dx — 0  form — +o0.
Q

/
2
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Hence, passing to the limit for m — +o00 in (3.69) we obtain that
/ W? +v")YH?(V(nu — Inv))dx =0, 3.71)
{uP —vP >0}

which clearly implies that
u=Kv intheset{x € Q|u(x) > v(x)},

for some positive constant K. By our assumptions inf,cq v > 0 and u < v on 9€2, hence it
follows that K = 1. But this implies that

u<v in Q

and this complete the proof of this result in the case p > 2. The case 1 < p < 2 follows
repeating verbatim the proof of the case p > 2, but applying inequality (3.54) instead of
(3.53). O

Now we want to prove the corresponding result of Proposition 3.6 in exterior domains.

N
Proposition 3.7 Let 2 be an exterior domain such that RN \ Q is bounded and f € L7 ().
Let u € DVP(Q) be a weak positive subsolutions to (3.52) and v € D"P () be a positive
supersolution of

H 14

-1 _ 1 .
» Ho()? v = g(x)v? in Q, (3.72)

N
with g € L7 (). Assume thatinfqv > OQand f < gin Q. Ifu < von dQ and
1
lim sup — / uP|Viogv|P~! =0, (3.73)
R—+00 Byp\Br

then
u<v in.

Proof In the same spirit of Proposition 3.6 we prove our result in the case p > 2. The other
case is similar and it can be shown using the same arguments. To this aim, let gz € C2°(B2r)
be a standard cut-off function such that

0<g¢r =1

pr=1 on Bg

|Vogl < % on Byg \ Bg.
Let us define
min{(u? — v”)*, m}

ub=1

min{(u? — vP)*, m}
vp-l

N1 = QR and 72 :=¢R

where m > 1. As pointed out in the proof of previous proposition, it is possible to show, by
standard arguments, that n; and n, are good test functions for the weak formulations (3.52)
and (3.72). Hence, we obtain

/H"_](Vu)(VH(Vu),Vm)dx—/ HP~Y(Vv)(VH(Vv), Vi) dx
Q Q

14 p—1 _ -1
E/QHO(x)P (u n—v 172) dx (3.74)

+ / FOutyy — gov?ppdx <0,
Q
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since f < g in Q. Now we explicitly compute the left hand side of (3.74).

03/ Hf’*'(W)(VH(Vu),vm)dx—/ HP~Y(Vv)(VH(Vv), Vi) dx
Q Q

= / HP~Y(Vu)(VH(Vu), V <u - ﬁu>)<pR
Q up
+ HP~Y(Vu)(VH(Vv), V (v — :—Zu))w dx
‘Up
+/ <u - —u> HP~Y(Vu)(VH (Vu), Vog)
Q up
+ (v - Z—iv) HP~Y(Vu)(VH(Vv), Vg) dx
+/ HP™ (Vu)(VH(Vu), V (u'~P))ymeg dx
Q2
+/ HP~Y(Vu)(VH (Vu), Vog)mu' =P dx
Q)
— [ HPTYVU(VH(VY), V (v' 7)) meg dx

2

— [ HPTY(Vu)(VH(Vv), Vor)mv' =P dx
Q2

=L+ DL+ 15+ 14,

(3.75)

where Q) :={x € Q|0 < u? —v? <m}and Q; := {x € Q| u? —vP > m}. By Proposition
3.5 and using the definition of ¢g, it follows that there exits a positive constant depending

only on p such that

L= c,,/ WP + vP)H? (V(In u — Inv)) dx.
QNBRr

(3.76)

Now we are going to give estimates for I, I3 and 4. We start with /5. Using (2.6) and the

Cauchy—Schwarz inequality, setting Q1 := {x €  : v” < u”}, we have

ub
vV— —V
vP

HP~Y(Vv)|Veg|dx

P
Ll <M [ |u—"u| HP"'(Vu)|Vor|dx + M
Q u? Q)
< M/ (uHP™'(Vu) + vHP " (V) |Vgldx + M | u? HP~'(VInv)|Veg|dx
Q2
C -1 C -1
< — u-HP7'(Vu)dx + — v- HP7(Vv)dx
Bogr\Br R Byr\BR

R
C

+—/ uP? HP~1(VInv) dx
R Byr\Br

1
<c (/ H”(Vu)dx) ' (/ u?" dx)P
Byr\Br Bar\Br

p—1

B
+C (/ HP (Vo) dx) ' </ " dx)p
Bor\Br Byp\Br

C
+ = uP? HP~Y(V1Inv) dx,
R Bor\Br

3.77)
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where in the last line we applied the Holder inequality with conjugate exponent (N, p/(p — 1),
p*) and C := 2M. Passing to the limit for R that goes to +oo in the right hand side of (3.77),
using also assumption (3.73) and (2.4), we deduce that I, goes to zero.

Now we proceed with the estimate of the term /3. By (2.5), we have

L=m | HP Y Vu)(VH(Vu), Vor)u' P dx +m(l — p)/ H? (Vu)pru~P dx
Qo Q)

Therefore

3] < mM/~ HPY(Vu) | Vor|u'=P dx +m(p — 1)/~ H? (Vu)pru " dx,
Q> Q)

where Q5 := {x € Q| u” > m}. Using this definition and also the properties of gz we
deduce that

2M -1 »
|I3|§? ~u-HP (Vu)dx +(p—1) [ HP(Vu)dx
2 Q
(3.78)

p=1 1
50(/ H”(Vu)dx) ’ (/ ur dx)p +(p—1) [ HP(Vu)dx,
Byp\Br Byr\Br 9%}
where C := 2M. Passing to the limit for m, R that go to 400, we deduce that

lim I3 =0. (3.79)

m,R— 400
For the last term 14, by (2.5), recalling 522 = {x € Q:uP > m}, we have

Iy =m(p — 1)/ H?(Vv)prv P dx — / mHP~ (Vv)(VH (Vv), Vog)v' 7P dx
Qo Q

~M [ mHPN(VInv)|Verldx > M | u? HP~'(VInv)|Veg|dx (3.80)
Qo Q2

v

2M
Z [

uPHP~Y(VInv) dx
R JByr\Bx

Hence, passing to the limit the right hand side of (3.80), by (3.73) we have that 14 goes to
zero when R tends to +-00.

Finally, if we combine all the estimates (3.76), (3.77), (3.79), (3.80) and we pass to the
limit for m, R — 400 we deduce that

03/ Hp_l(Vu)(VH(Vu),Vm)dx—/ HP~Y(Vv)(VH(Vv), Vi) dx
Q Q

=limsup(/y + I + I3 + I4) > liminf (11 + I + I3 + I4)
R—+00 R—>+00

2/ w? +vP)YHP(V(Inu —Inv))dx > 0,
{u=v}

which implies # < v in Q as we concluded in the proof of Proposition 3.6. O

4 Proof of the main results

This section is dedicated to the proof of our main results: Theorems 1.1, 1.3 and 1.4.
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Proof of Theorem 1.1 We start by proving (1.4). To this aim, let us consider u a solution of
SN PR S o W S B U 4.1)
b [He(x)]P
In particular, we have that « is a subsolution of (4.1) in any bounded domain Q = Bglo.
« N o . .
We note that f(x) := u? P € L» (Bg1 ) and satisfies | f(x)| < A[H°(x)]™* with @ =

(N—=p)/p—o0o1)(p*—p) <pforx e Bglo due to Theorem 3.3. By Proposition 3.4 we
have that the function

o 1 —38[H°(x)]® 1 p o H®
W(H () = s m e DB
° N o
is a positive supersolution of (3.65) in Bgl C Q,withg € L» (5’11;11 ) satisfying g(x) >
A[H®°(x)]"*and where 0 < §, &, R < 1are positive constants dependingonlyon N, p, y, A
and o.
Let us consider I' > 0, M = supwg]o u, N' = SuPasgl" 1/v and define

w(x) :=NM +Tv(H®(x)).

It is easy to chek that w is a positive supersolution of (3.65) in Bg} ° € Q and inf Bl W =
1

M+T >0andu < won 88,’;’:. Hence, by Proposition 3.6 we deduce that
u<w in B RIO.

Passing to the limit for ' — 0 we obtain that

C . o
M(.x) < W m BRI .
where C = M - N.
Now we have to show the estimate from below. Let u be a weak solution of (Pg), then u

is a supersolution of

H 14 -1 _ i 1pH°
—APM—WMP =0 lnBR] . (42)
We set ¢; 1= infBHo u > 0.
Ry
Now, we define
~ L C1 . °
wx) = Ci[H"(x)]l‘l in BR1 ,

where ¢ = inf gye [H°(x)]*! = Rﬁ“ . The function w is a subsolution to (4.2) in Bf{:. Since,
Ry
it holds that u > w in aB,’gl", we conclude by using Proposition 3.6 to obtain
u>w inB Rlo,

and hence combining the estimates from above and below we deduce that (1.4) is proved.
Now, our aim is to prove (1.5). Let us consider u a subsolution of

— Aty - mup_l —uPPurl i (BEE 4.3)

@ Springer



77 Page 28 of 44 F. Esposito et al.

* E o
We note that f(x) := u? P € L» ((B’g2 )¢) and by Theorem 3.3 we have | f(x)| <
A[H°(x)]7* witha = (N — p)/p+o02) (p* — p) > pforx € (Bg;)c. By Proposition
3.4 the function

o 1 —8[H°(x)]7¢ 1Ly o e
v(H"(x)) = W € DP((Bg,)%)
o N °
is a positive supersolution of (3.72) in (Bfg2 ) C @, withg € L» ((81';12 )¢) satisfying
g(x) > A[H®°(x)]"* and where 0 < §, & < 1 and R, > 1 are positive constants depending
onlyon N, p, y, A and «.
Let us consider I' > 0, M = sup(wgzo)f u, N = SuP(an{;)f 1/v and define

wx) ;= NWM +T)v(H®(x)).

We note that w is a positive supersolution of (3.72) in (Bf{;)” C Q and inf (B w=M -+
2

I'>0andu < won (86?;)0. We verify the condition (3.73). Since |V log v(x)| < C|x|_1,
by Holder inequality we have

P
1 C * »F
limsup—/ uP|Vlogv|P~!dx < lim sup — (/ lu|? dx)p =0, (44)
R—+00 Bar\Br R—+00 Byr\BR

where C is a constant independent of R.
Hence, by Proposition 3.7 we deduce that

u<w in(B)".

Passing to the limit for ' — 0 we obtain that

u(x) < W in (Blf{;)c’

where C = M - N
We conclude with the estimate from below. Let u be a weak solution of (Pg). Then u is
a supersolution of

“AHy Y 1= inRV (4.5)
P [H°(x)]? ) '
We claim that
/ |Vlogu|? < CRN=P (4.6)
Byr\Br

for R sufficiently large and constant C independent of R. Indeed, by (4.5), we have
—Au=0 inR". 4.7

Therefore, considering the test function n = ¢Pu'~?, with ¢ € Ccl. (R™) nonnegative func-
tion, and taking in (4.7) we have

—(p— 1)/ HP(Vu)cPu™P dx + p/ HP™ Y (Vu)(VH(Vu), V)eP u' =P dx > 0.
RN RN
(4.8)
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By Holder inequality and by 0-homogeneity of VH we get
p—1

/H”(Vlogu){pdstL</ H”(Vlogu){’%ix)i(/ IVg“Ipdx)F.
RV p—1\J/r¥ RN
4.9)

Taking a standard cutoff function ¢ in (4.9) we get the claim (4.6).

Now we set ¢cp = inf(aB,’{;)f u > 0and ¢c = inf(aBgzo)L.[H"(x)]“z. We note that v =
cyc[H®(x)]#2 is a weak solution of (4.5). Moreover the condition (3.73) is verified. Indeed
by Hoélder inequality and (4.6) we have

p—1

L V|V logulP~" dx < CR™\PHty (/ |V10gu|”dx>7
R JByr\Br Bag\Br (4.10)
< CRT\PH IR (=t
since up > (N — p)/p. Applying the Proposition 3.7 we conclude that
ulx) >vx) = C[H‘”Eﬁ in (Bg;)c
and therefore the thesis. O

Now we prove Theorem 1.3 that will be essential to prove the asymptotic behavior of the
gradient of solutions to (P ). For the reader convenience we state a more detailed statement
contained in the following:

Theorem4.1 Letv € Cllo’g (RN \ {0}) be a positive weak solution of the equation
Y 1 . N
Ay — — 7l =0 RN\ {0}, 4.11
R Tl in RN \ {0} @.11)

where 0 < y < Cg. Assume that there exist two positive constants C and ¢ such that

_c __c N
[He°(x)]H2 =v() = [H°(x)]"2 Vx € R™\ {0}, (4.12)

and suppose that there exists a positive constant C such that

A

¢ N
|VU(X)| < W Vx e R \{0}, (413)
then
V) = (4.14)
with

¢1 := lim sup[H° (x)]*?v(x).

[x|—0

On the other hand, suppose that there exist two positive constants C and & such that

C C N
o = @ = e W ERVAOL (4.15)
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and suppose that there exists a positive constant C such that

¢ N
then
— €
V) = @.17)
with

¢7 = limsup[H°(x)]* v(x).
|x]—+400

Proof We prove this result only for p > 2. The other case is similar. Suppose that (4.12)
holds. From definition of ¢y, there exist r (sufficiently small) such that

E1 + ay

given a, — 0.
On the other hand, there exist sequences of radii R,, and points x, with R, tending to zero
and H°(x,,) = R, such that

() = L= (4.19)
V(X e — .
"7 HC (x) 02
Now we set

w, (x) := RICV(Ryx)  Yx € By \ B, (4.20)

By (4.12), it follows that w), is uniformly bounded in L°°(B; o\Bﬂ;) and, since w, satisfies
the equation (4.11), by [2, 17, 18], it is also uniformly bounded in cle (K), for0 <a <1
and for any compact set K C Bf’ D\B{';;. Moreover, from Ascoli-Arzela’s Theorem, we
deduce that w, — W in the norm || - [[¢1.e(g), for any compact set K C 850\65;. By
(4.18), we have
< <
w -
RN RN

and by (4.19), there exist a point X € 88{1 ° such that weo (X) = €. By the strong comparison
principle [11], that holds under our assumption on H (see Sect.2), we have

in By \ BfY. (4.21)

Cl
Woo = ——————
[H°(x)]H2
Now we set
0= 571 (4.22)
[He(x)]H2

and we note that it solves (4.11). Fix R > 0 sufficiently large and let pr € CZ°(Bag) be a
standard cut-off function such that

O0<gr=1
pr=1 on By (4.23)
IVogr| < % on By \ Bg.
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Let us define

min{(v? — vP)T, m}) min{(v? — dP)*, m}
@1 = QR — and @2 = QR ~ s (4-24)
vp—1 vr—1

where m > 1. -
We remark that ¢; and ¢, are good test function in any domain 0 ¢ €. Testing
(4.24) in (4.11) on the domain ]RN\BHO, and, since the stress field H(Vu)?~'VH(Vu) €

Wl o (RN \BH ) (see [19]), exploiting the divergence theorem, we have

/ HP~Y(Vv)(VH(Vv), Ve )dx —/ HP~Y(VO)(VH VD), Vgr)dx
RN\BH® RV\BJ”
)4 p—1 p—1
- v — v o) dx 4.25
/RN\B;'; o7 ¢ ) (4.25)

= / HP Y (Vo) (VH(Vv), ny)er — HP~H(VO)(VH(VD), na)gadx,
aBH®

where 7, is the inner unite normal vector at 8BH Now we set A := {0 < v” — 0P < m}
and B := {v” — v” > m}. Then (4.25) becomes

/a ” —HP~ (Vo) (VH(VV), na)e1 + HP "N (VO)(VH (YD), n)¢2 dx

/ HP~\ (Vo) (VH (Vv), V <u - U—v))(pR dx
(RN\BH NA vP

P
/ HP~ (VD) (VH(VD), V <v _ Lu))m dx
RN\BE")NA vP

RN B ﬁ R d.x
) (

P
ot
RN\BH )mA

+/ HPY (Vo) (VH(Vv), V (v' 7)) meg
®RN\BE)nB

+

+

HP~Y(VD)(VH(VD), Vog) dx (4.26)

| <
"tx

+ HP~Y(Vu)(VH (Vv), Vor)mv' P dx
_/ (HP~ (VH)(VH(VD), V (' 7))mog
RVM\BZ)nB

+HP™N(VO(VH(VD), Vor)md' ~P) dx
=h+hLh+L+1L+1s+ 1.

Now we set Q21 := (RN\BII;{;) NAand Q) := (RN\BI%O) N B. By Proposition 3.5, it follows
that there exits a positive constant depending only on p such that

I+ 1, > Cp/ WP +0P)HP(V(Inv — In0))pg dx. 4.27)
Q1NBag
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Now we estimate I3 + I4. Using (2.6) and the Holder inequality with conjugate exponent
(N, p/(p—1), p*) we have

14
|3+ 1Ly <M v HP~\(Vv)|Vog|dx
v

Q

+M HP~Y(VD)|Vg| dx

Q)

b——0
vP
<M [ (20HP"'(Vv) + 0HP1 (VD)) [Vor|dx
Q

+M [ vPHP Y (VIn0)|Vegr|dx
Q)

<M HP Y (Vv)dx + M VHP~L (VD) d
— v v X —_— v v X
R Byr\Br R Byr\Br (4.28)

2M

vPHP~Y(VIn0)dx
R Byr\Br

p=l 1

<2M (/ HP(Vv)dx> 3 </ vp*a'x>p
Byp\Br Byr\Br
=l
roMm (/ HP (VD) dx> ’ (/ P dx)
Byr\Br Bap\Br

2M

R Byr\Br

S

VP HP~1(V In ) dx.

By (4.22) we have H(V In 0(x)) < C[H"(x)]_l, where C = u;, we have that
1 C
— v HP~H(VInD) < —/ lv|?
R Byr\Br RP Byr\Br
. (4.29)

sc(/ |v|"*) ,
Byr\Br

where we used the Holder inequality. Since v has the right summability at the infinity, for R
that goes to infinity in the right hand side of (4.28), we obtain that I3 + I4 goes to zero.
Now we proceed with the estimate of the term /5. Recalling that v¥ > m in 5, we get

=

[Is| <mM | HP™Y(Vv)|Veg|v' Pdx +m(p—1) | HP(Vv)pgv? dx,
Q0 Q2

Using the properties of ¢ we obtain that

M
|15|§*/ vafl(Vv)dX-i-(p—l)/ HP(Vv)dx
R JByg\Br o
p—1 (4.30)

5 .\
§M</ Hp(Vv)dx> (/ v? dx) +(p—1)/ HP?(Vv)dx,
Byr\Br Bar\Br o}

Passing to the limit for m, R that go to 400, we deduce that I5s goes to zero since the set 2
vanishes as m — +o0.
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For the last term /g we obtain

s =m(p— 1)/ HP(VO)prd~ " dx —/ mHP~ (VD) (VH (YD), Vog)d' P dx
195)

Q0
>—-M [ mHP"'(VInd)|Veg|dx 4.31)
Q2
2M
> VP HP™N(VInd) dx
R Bar\Bgr

Hence, passing to the limit in the right hand side of (4.31) and using (4.29) we have that the
right hand of (4.31) tends to zero when R tends to the infinity.

Now we estimate the left hand of (4.26). By (4.24) and Proposition 2.1 (in particular see
(2.11)), we get

/3 " —HP Y (VO (VH(VD), na)pa + HP "N (Vo) (VH (V), n,) @1 dx

Rn

= _/BBHO o1 (HP'(VO)(VH(VD), n,) — HP'(Vu)(VH(Vv), n,)) dx

Rn

- /33H° (92 — 1) HP 1 (VO)(VH (VD), 1) dx

Rn

(4.32)

m - N _ R 2m e
< —Cp(IVD|P72 4 [Vo|P )| VD — V| + —— Man|VD|P ™ dx,
aBHe VP vP

=J1+ ).
where, in the last line, we used (2.4) and (2.6).

We set x = R, y, with y € 8BIHO. Using this change of variables and recalling (4.12),
(4.20) and (4.21), Ji can be estimated as

= N—1 —1)— 1 —1 — o
D= RO GND| g V ) — V()] dy
aBl 4.33)

= é]R,ivjpie

where we choose m = R ¢, for € > 0 fixed sufficiently small, and C 1 is a positive constant.
In a similar way J; is estimated as

D < CoRYTPTE, (4.34)

where C, is a positive constant.

Finally, if we combine all the estimates (4.27), (4.28), (4.30), (4.31), (4.33), (4.34) and
passing to the limit for R, — 0, and then, exploiting the Fatou’s lemma, for R — +o00, we
deduce that

/ (w? +vP)HP(V(nv —Inv))dx = 0,
{v=0}

which implies v < v as we concluded in the proof of Proposition 3.6.
To prove that 0 < v, let us consider
min{(0” — vP)T, m} min{(3” — v”)T, m}

@1 = @R Py and @2 = ¢R o . (435)
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where m > 1 and ¢p is the standard cutoff function defined in (4.23). Using (4.35) in the
weak formulation of (4.11), proceeding in a similar way as above we obtain (4.14). The only
thing to check is that

1
— PHP" N (VInv)dx — 0. (4.36)
R Bar\Br

Assumption (4.13) ensures (4.36), and therefore we are done.

Now, assume that (4.15) holds and suppose that p > 2, the other case is similar. The proof
is similar to the previous one and, for this reason, we omit some details. From definition of
C2, there exist r (sufficiently large) such that

v(x) < % in RV \ B, (0), 4.37)

given a, — 0.
On the other hand, there exist sequences of radii R, and points x, with R, tending to
infinity and H°(x,) = R, such that

Cy) —ay
> = 4.38
V) = THe ey *39
Now we set
wa(x) := Ry (Ri) vx e B\ BY. (4.39)
n
As in the previous case we obtain
— ) H° H°
Weo = W in B; \61/2. (4.40)
Now we set
. 2
Vi= ————
[He(x)]™

and we remark that it solves (4.11). We show that v = ¥ in RV. To this aim, fix ¢ > 0
sufficiently small and let ¢, € C °(R¥) be a function such that

0<e¢: <1
=0 B
Pe on Ge . (4.41)
e =1 on (Bag)
IVge| <2 on By \ Be.
Let us define
min{(v? — 97)T, m} min{(v?” — 07)", m}
Q1= ¢ = and ¢ =g Py . (442)

where m > 1.
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We note that ¢; and ¢, are good test function in any bounded domain 0 € Q. Testing
(4.42) in (4.11) on the domain BII;I: we get

/HO HP~Y(Vv)(VH(Vv), Vo )dx — /HO HP~Y(VO)(VH(VD), Vo )dx
BRn BRn

_ 4 p—1, _ -l
/BH" B (V"7 'or — 0P ) dx (4.43)
Rn

= / » HPY (Vo) (VH(Vv), n)e1 — HP ™Y (VO (VH(VD), na)ga dx,
8L

where 7, is the outward unite normal vector at 36113:. By (4.42) and Proposition 2.1, the
right hand of (4.43) becomes

/ o —HP TN VOVH (VD). na)g2 + HP™H(V0)(VH (V). 1)1 dx
aBg

= /aBH" —1 (HP N (VO(VH (VD). 1a) — HP™ (Vo)(VH (V). 1)) dix

- /BBH° (02 — ) HP ™YV (VH(VD), n,) dx (4.44)

Rn

~ o _ R v? o
5/ L Cpu(IVOIP ™2 4 Vo2V = Vo) + = M| VD[P dx,
By v

= j] + .iz.

where, in the last line, we used (2.4) and (2.6).
We consider the following change of variables x = y/R,, with y € 88{1 ° Using this
fact, by (4.39) and (4.40), we have

7 al 1-N— D(p—1 —
By [ RO ey - Va0l dy
OB

(4.45)
— 61 Rn_NJFMI p+p
where C1 is a positive constant.
In a similar way J; is estimated as
ey (4.46)

where C» is a positive constant. We note that —N 41 p+p < Osince 0 < u1 < (N—p)/p.
Proceeding as in the case (4.12), we prove that

/ w? + 0P)HP? (V(Inv — In0))dx = 0, (4.47)
{v=0}
which implies v < ¥ in € as we concluded in the proof of Proposition 3.6.
To prove that 0 < v, let us consider
min{(d? — vP)T, m} min{(?? — v?)*, m}

@1 = @ p and @2 =@ = . (448)

where m > 1 and ¢, is defined as (4.41). Testing (4.48) in (4.11), using the assumption (4.16)
and proceeding in a similar way as above we get (4.17). O
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At this point we are ready to prove

Proof of Theorem 1.4 We prove (1.12), the other case is similar and it can be proved in a
similar way. We start by showing the estimate from above. For R, tending to infinity, let us
consider

wy(x) = RIPu(R,x)  Vx e By \ Bl (4.49)
We remark that w,, is uniformly bounded in L”(Bf’ ° \BZ;) and it weakly solves

— Ay, — HOJ(/x)P wh™l = RPNt PTG RN g 50y

p

Since ua(p — 1) + p — no(p* — 1) < 0, by [2, 17, 18], wy, is also uniformly bounded in
C'%(K), for0 < a < 1 and for any compact set K C Bfo\Bf%. For R, sufficiently large
we get the estimate from above in (1.12).

Now we prove the estimate from below. Suppose by contradiction that there exist
sequences of points x, such that

[H°(xn)]“2+1|Vu(x,,)| — 0  for |x,| — oc. (4.51)
For 0 < a < A fixed, let us consider
wp(x) := RF2u(R,x).

For n sufficiently large, from Theorem 1.1, relabeling the constants, we have
c c AN RHC
mfwn(x)fﬁ in B\ BH°.

Furthermore, recalling the estimate from above of the gradients of the weak solution u, proved
previously, we get

[V, (x)] < in BH®\ BH°. (4.52)

al‘«2+1

For a, A fixed, by [2, 17, 18], w,, is also uniformly bounded in Cl*"‘(K), forO < @ < 1 and
for any compact set K C Bf ‘ \Bf °. Moreover

wy (x) — Wq, A in By \ B,

. ! .
in the norm C1¢', for 0 < o’ < «. Moreover, since wj, weakly solves

)4 -1 —D+p— -1 1 . ° °
= A = = Ry PV, p in B4\ BH", (4.53)

we deduce that

)4 p—1

Togyr Yaa =0 in B\ BE”. (4.54)

H
— Ap Wq, A —

Now wetakea; = 1/jand A; = j, for j € Nand we construct wg;, 4; as above. For j goes
to infinity, using a standard diagonal process, we construct a limiting profile w, so that

Ay —— Y w0 inRY\ {0}, (4.55)
with woo = wa,.a; in B\ BT
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Since weo satisfies the assumptions (4.12), (4.13) of the Theorem 4.1, we get
[3)

THow2 (4.56)

Woo(X) =
where we set ¢; := lim supm_)o[H"(x)]“2 Weo (X).
Now we set y, = x,/R,, and by (4.51), we deduce that [Vw, (y,)| tends to zero as R,
tends to infinity. This fact and the uniform convergence of the gradients imply that there exist
ye 88{10 such that

[Vwoo (y)| = 0.

This is an absurd since the solution wy, has no critical points. O
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Appendix A

In this section we prove the existence of a weak solution to problem (Pg) by means of a
minimization problem. For this reason we define the following minimization problem: Let
S(y) defined as

c
S():=  inf (@) . (A1)
ueDLP (RN )\ {0} i &
</ lu|P dx)
RN
where
L(u) :/ Py — Ty (A2)
RN He(x)p ’

Thanks to the Hardy inequality (2.24) we deduce that S(y) > 0.

Theorem 5.1 Let 0 < y < Cy. The problem (Py) has a positive weak solution that it
minimizes the quotient (A.1).

Proof Let {u,} be a minimizing sequence to (A.1). Without loss of generality, because of the
homogeneity of the quotient in (A.1), we assume that

L(uy) = 1. (A.3)

By Hardy inequality (observe that H is a norm equivalent to the euclidean one), £(-)!/7 is
an equivalent norm to the standard one || - || p1.pgn), We have that

lunllprr@yy < C,
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with C that does not depend on n. Hence up to a subsequence u,, —ug in DLP(RY). Moreover
let us also assume that (we will prove it later)

up # 0. (A4)
Recalling (A.1), using the weak lower semicontinuity of the norm and (A.3), we deduce

Sy < —FU)ing £(un)

P P
P »r n Pt »F
uy dx up dx
RN RN

(A.S5)

Using Sobolev inequality we have thatu,, — uga.e.in RY . Therefore by the Breis-Lieb result
[4], it follows that

/N ul dx = /N ull dx — /N(u,, —up)?" dx + o(1).
R R R

Then from (A.5) we obtain

S(y) < : 7 (A.6)

</RN u,};*dx —/RN(M,, —uo)p*dx+0(l)>p

From (A.1), we deduce

b
3

LGy = S(3) (/ u{;’*dx>” +o(1)
RN

and
L
* P
Lo — n) = S() ( / o — ] dx)
RN

Using these last inequalities in (A.6) we get

1
Siy) =SWy) y

<£L‘:(un) - E%(MO —uy) + 0(1)> ’

| (A7)

<S) - 7
<1 — £p7(u() —up) + 0(1)> !

where in the last line we used (A.3). Taking the limit superior of (A.7) we get a contradicition,
i.e. S(y) < S(y) unless the sequence L(up —u,) — 0. Hence, since L(-) /P is an equivalent
norm to || - || p1.p gy, we finally get that u, — ug in D7 (R"). Therefore passing to the
limit in (A.1), we obtain
S(y) = %,
(fRN luolP* dx) a
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namely u( (eventually redefining it as Cu, for some positive constant) is a weak solution to
(PH).

Now we prove that actually (A.4) holds, concluding indeed the proof. Let {u,} the min-
imizing sequence such that (A.3) holds. For every n let us take a sequence of radii R, such
that

p P r
HP(Vuy) — y—nl” g = / HP (Vi) — p—nl” g = £ g
Bg, He(x)? RN\ Bg, He(x)? 2
and let us define the rescaled sequence
o — R (X (A9)
n — n n Rn . .
Using assumptions (hg), (A.8) and (A.9) we deduce that
p p L
/ HP (V) — y 22 gy :/ HP (Vi) — y 20l g = £ 4 10
B He(x)? RV\ B He(x)P 2

Now we prove the following

Lemma 5.2 Let {u,} be a minimizing sequence, weakly converging to zero. Then, for every
ball B, and for every e € (—r, r) there exists p € (0, €) U (e, 0) such that for a subsequence

either HP(Vuy,)dx — 0, or / HP(Vu,)dx — 0. (A.11)
RM\B,4,

Br+,0

Proof By the homogeneity of the quotient in (A.1) we can assume that the minimizing
sequence {u,} is such that ””n”LP*(RN) = 1, so that L(u,) — S(y). By Ekeland’s
e—principle, we can suppose that the minimizing sequence has the Palais-Smale property,
that is

_ y _
ox H?~Y(Vu,)(VH(Vuy,), Vo) — HO(x)Pug 1(pdx
=500 [ v dx+ oDllelonsen (A12)

for all ¢ € DL?(RN) We have that

r+e
/ dp / H? (Vi) = / H? (Vuy)
r pSN-1 Byte\ By

is bounded. Then we can find p € (0, ) such that for infinitely many »’s it holds

/ H?(Vu,) < C/ H”(Vuy),
(r+p)SN*] Br+s\Br

for some positive constant C and hence up to redefining the constant

/ [Vu, | < C/ H?(Vuy).
(r+p)SN-1 Byrye\Br

Therefore (see [25, Theorem A.8]) since

WP ((r 4 oSV > WP ((r 4+ p)SVTY) e L2 (G + SV (AL13)
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with both embedding compact, we can assume that a subsequence converges strongly to some
1
limit, say u in the trace space w'=e? ((r + p)SN—1). Using the fact that the trace operator
1
has a continuous embedding from WI*I’(BHP) into W]_F’p((r + p)SN1), by the weak
convergence to zero of {u,}, we deduce that indeed u = 0.
Now we show the following
CLAIM: Let Q C RY a generic smooth bounded domain. The inverse operator

(—af)=1, WP (0Q) > Whr(Q),

_1
is continuous. Indeed we consider a succession g, — g in |/l (), and let u,,u €
WLP(Q) be the solutions to

(A.14)

u=g on 092,

—Aguzo in Q —Afju,,zo in Q
Uy = gn on 0%2.

The solution to (A.14) can be obtained minimizing the functional
1
Jw)=— [ HP(Vu)dx
pPJQ

on the set {{g} + W(}’p(Q)], [{gn} + W(;’p(Q)} respectively. Since (u — g), (u, — gn) €

Wo1 "7(£), integrating by parts (A.14) and subtracting the equations, we obtain
0= /Q HP~Y (Vu)(VH (Vu), V(u — g)) dx
- /Q HP= (V) (VH (V) VGt — g)) dx
= /Q(H”"(VM)VH(VM) — HP"Y(Vu,)VH (Vuy,), Vu — Vuy,) dx
— /Q(Hp’l(Vu)VH(Vu) — HP"Y(Vu,)VH(Vuy,), Vg — Vg,) dx.

We recall (see [6, Lemma 4.1]) that for x € ]RN\{O}, y € R¥ there exist a constant C > 0
such that

(HP'()VH(x) — HP7'(»)VH (y), x — y) = C(Ix| + |yDP2x — y|%,  (A.15)

Therefore, by (A.15) and (2.9) we get
c/ (IVul + |Vun )% (\Vu — Vu,|)?) dx
Q

< ép/(IVul+IVunI)p_ZIVu—WnIIVg—VgnIdx (A.16)
Q

1

p=t
<Cp </(|Vu|+|Vun|)"dX> ' </ IVg—ngzlde>p :
Q Q

where in the last inequality we have used the Holder inequality.
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1
We recall that by w'=pP (0€2) we denote the space of traces u|yq, namely the set (of

equivalence classes) { {u} + Wol’p (Q),uewhr (Q)], endowed with the trace norm
(A.17)

. 1,
IIM\aszIIWI_%,,,(m) = inf{|[vllyrrq : u—ve Wy (Q)
Hence using (A.16) letting the boundary data g, — g in the sense of (A.17) we obtain the

claim.
Let us define the two auxiliary sequences of D7 (R") as follows:

up,(x) ifx € By
urp(x) = qwin(x) ifx € Brye \ Bryp
0 elsewhere;
and
0 if x € B,_¢
U2 (X) = L W n(x) if x € Brip\ Brs (A.18)
U, (x) elsewhere,

where w1 , respectively wy , denote the solutions to

—Awi, =0 in By \ Bryp
wi, =0 on 0B, 4, (A.19)
Wi,n = Up on aBr+;o
respectively
—Allwy =0 in Bryy\ Bre
Wy, = Uy on dB, 4, (A.20)
wy, =0 on dB,_,.

1
Since u, — 0ond B, inthe W'™ 77 norm, see (A.13), by the above claim we immediately

get that both
whe whe =
wiy, —> 0 in By \ Bryp and wy, —> 0 inBy,\ Br_. (A.21)

Using uy , as test function in (A.12) we obtain
_ -1
HP ™ (Vian) (VH (Vi) Vit ) = ol ™ d

]RN
1
= 5() / ol ey,
R

and recalling the definition of u , and by (A.21), we obtain

p Y Py p* _ P
H?(Vuy) O U, dx = S(y) u, dx+o(l)=S() uy ,dx +o(l)
H (x)ﬁ Br+,o Br+p '

Br+p
In the same way, using u; , as test function in (A.12) we obtain

v p
H?(Vu,) — u, dx = S(y)
/RN\BrJrﬂ He(x)P !

u,’,j* dx + o(1)

RN \Br+p
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=S(y) ul” dx +o(1).
RVM\B,y,

Moreover, by definition (A.2), using the two sequences {u ,} and {u> ,} we infer that actually

Ly, = H? (Vup) — —2—ul dx + o(1)
Bryp He(x)P
and
L(uz ) = / H?(Vuy,) — 4 ul dx + o(1)
RN\ B, 4, He(x)?

so that

Lun) = L(u1,n) + Lu2,n) + o(1) (A.22)
and ||u, ||£i = |luin ||£i + lluz,n ||£: + o(1). Let us assume for example, that {1 ,} does not

converges to zero. Since {u,} is a minimizing sequence we have that (see (A.1))
Lun) = SO unllh: 4+ o0(1)
and also that L(u2,,) = S(y)|u2,x |}, and
L) L) — L(uzp) +o(1)

P * * A
et nllye (Uunllbe = lluznllhs 4 0(1)) 7"

L(tn) — LGtz + (1)
(LGun) T — Latan) T +o0(1)7

IA

S¥)

By (A.22) we deduce that

lim sup L(u2,,) = lim sup(L(u,) — L(u1,,) + o(1)) < limsup L(u,),
n n n
by some computations we deduce that actually

. [r(ul,n)
lim sup —————

<S5,
n o luralll

a contradiction with (A.1) unless L(u2 ,) tends to zero. Using Hardy inequality in (A.2),
recalling (A.18), we obtain

0 <—/ Hp(Vuz,n)dx=/ HP(Vun)dx+/ HP (Vwy ) dx
RN RN\ B,, Brip\Br—¢

:/ H?(Vuy,)dx + o(1).
RN\BrJr/)

The other case of (A.11) can be proved arguing in the same as we have done above, assuming
that {u5 ,} does not converge to zero. This concludes the proof of the lemma. O
Using the invariance of the problem under the scaling R,(,p —N/p u(x/R;), the sequence {w,}
(see (A.9) and (A.10)) is still a minimizing sequence bounded in DLP(RY): hence it admits
(up to a subsequence) a weakly convergence sequence. We want to show that the weak limit
cannot be zero. We argue by contradiction and we apply Lemma 5.2 twice choosing r = 1
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and & = #£1/4 respectively. We find the existence of p™ € (0, 1/4) and p~ € (—1/4,0)
such that (A.11) holds. Using the alternative (A.11) together with (A.10), we obtain that

/ H?(Vw,)dx — 0 and / HP (Vw,)dx — 0. (A.23)
B R

N
I+p~ \BH/:*

Since w, —0 using the strong convergence on compacts K of w, — 0in L?(K) we deduce
that

|w, [P
—dx — 0. (A.24)
JB01\B0), He(x)?

Let us take a smooth cut-off function n, with 0 < 5 < 1, such that n = 1in B(0)5,4\B(0)3,4
andn = 0in RN\ (B(0)3 72\ B(0)1,2). Take in to account Hardy inequality, (A.23) and (A.24)
we deduce that

/ |H? (mVw,) — H? (Vw,)|dx — 0,
RN
for n — +o00 and therefore we infer that
/ H?(nVw,)dx =/ HP(Vw,)dx + o(1).
RN RN

Then, recalling also (A.1) we get

p
S(0) < /R”H A R )

</ Inwnlp*dX)p (/ |wn|1’*dx>p +o(1)
RN RN

Passing to the limit we obtain

$(0) = S(»). (A.25)

We claim that (A.25) is not possible. Indeed let o be a minimizer of (A.1) for y = 0 ( [9]).
Therefore we clearly deduce the following

uol?
HP (Vug) — yL dx HP (Vug) dx
RN He(x)P RN
S(y) < " < - =50).  (A26)
* P* * p*
([, mor ax) ([, mor ax)
RN RN
Inequality (A.26) gives the desired contradiction, concluding the proof. O
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