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Abstract
The aim of this paper is to deal with the anisotropic doubly critical equation

−�H
p u − γ

[H◦(x)]p u
p−1 = u p∗−1 in R

N ,

where H is in some cases called Finsler norm, H◦ is the dual norm, 1 < p < N , 0 ≤ γ <

((N − p)/p)p and p∗ = Np/(N − p). In particular, we provide a complete asymptotic
analysis of u ∈ D1,p(RN ) near the origin and at infinity, showing that this solution has the
same features of its euclidean counterpart. Some of the techniques used in the proofs are new
even in the Euclidean framework.
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1 Introduction andmain results

This work is devoted to the study of the following anisotropic doubly critical problem
⎧
⎪⎪⎨

⎪⎪⎩

−�H
p u − γ

H◦(x)p
u p−1 = u p∗−1 in R

N

u > 0 in R
N

u ∈ D1,p(RN ),

(PH )

where 1 < p < N , p∗ := Np/(N − p) is the Sobolev critical exponent, 0 ≤ γ < CH :=
((N − p)/p)p is the Hardy constant and

�H
p u := div(H p−1(∇u)∇H(∇u)), (1.1)

where �H
p is the so-called anisotropic p-Laplacian or Finsler p-Laplacian. We point out that

H is a Finsler type norm and H◦ is its the dual norm (H satisfies assumptions (hH ), see Sect. 2
for further details). In particular, when H(ξ) = |ξ | = H◦(ξ) the Finsler type p-Laplacian
coincides with the classical p-Laplacian, and, hence it is singular when 1 < p < 2 and
degenerate when p > 2. Then, according with standard regularity theory [13, 27] and the
regularity results in the anisotropic framework [2, 6], we say that any solution of (PH ) has to
be understood in the weak distributional meaning, i.e. u ∈ D1,p(RN ) satisfies the following
integral equality ˆ

RN

(

H p−1(∇u)〈∇H(∇u),∇ϕ〉 − γ

H◦(x)p
u p−1ϕ

)

dx

=
ˆ
RN

u p∗−1ϕ dx ∀ϕ ∈ C∞
c (RN ). (1.2)

The literature about critical problems is really huge. Going back to the Euclidean frame-
work, i.e. when we consider H(ξ) = |ξ | = H◦(ξ) in (PH ), we deal with

− �pu − γ

|x |p u
p−1 = u p∗−1 in R

N . (1.3)

In the seminal paper [5], Caffarelli, Gidas and Spruck classified any positive solution to (1.3)
with p = 2, N ≥ 3, and γ = 0. We point out that a first result, under stronger assumption on
the decay of solutions, was obtained by Gidas, Ni and Nirenberg in [14]. Moreover, in this
setting a complete answer in the subcritical case was done in the celebrasted work of Gidas
and Spruck [15], where the authors proved Liouville-type theorems.

In the quasilinear framework, the situation is much more involved due to the nonlinear
nature of the operator. Recently, a classification result of positive solutions to (1.3) with
p > 2, γ = 0 and u ∈ D1,p(RN ) := {u ∈ L p∗

(RN ) | ∇u ∈ L p(RN )} was obtained in
[24]. The proof of this result is based on a refined version of the well-known moving plane
method of Alexandrov-Serrin [1, 23] and on some a priori estimates of the solutions and their
gradients, proved in [29]. To be more precise, we note that the classification result of positive
solution to the Sobolev critical quasilinear equation with finite energy started in [12] in the
case, and then was extended in [29] for every 1 < p < 2. Subsequently the full case was
obtained in [24]. Recently, we refer to the papers [7, 21, 30] for new partial results on the
classification of positive solutions without a priori assumption on the energy of solutions. In
the anisotropic setting, Ciraolo, Figalli and Roncoroni [9], obtained a complete classification
result for positive solution to (PH ) with γ = 0 using different techniques that do not require
the use of the moving plane method, which could not be used in the anisotropic context due
to the lack of invariance.
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When γ �= 0 the situation is really different. In the seminal paper of Terracini [26],
it was proved for the first time the classification result for positive solutions to (1.3) in
the case p = 2. The author firstly showed the existence of solutions to this problem with a
minimization argument based on the concentration and compactness principle. Subsequently,
she proved that any solution to this problem is radial and radially decreasing about the origin
combining the moving-plane technique and the use of the Kelvin transformation, in the same
spirit of [5]. The case p �= 2 and γ �= 0 is much more involved and it is available in
[20], where the techniques used are mainly based on a fine asymptotic analysis at infinity
and refined versions of the moving plane procedure, and also on some asymptotic estimates
proved in [31, 32].

Our aim is to prove some decay estimates for positive weak solutions to (PH ) in the
anisotropic framework 1 < p < N and γ �= 0. More precisely, our first main result is the
following:

Theorem 1.1 Let u ∈ D1,p(RN ) be a weak solution of (PH ) with 1 < p < N, 0 ≤ γ < CH .
Then there exist positive constants 0 < R1 < 1 < R2 depending on N , p, γ and u, such
that

c1
[H◦(x)]μ1

≤ u(x) ≤ C1

[H◦(x)]μ1
x ∈ BH◦

R1
, (1.4)

and

c2
[H◦(x)]μ2

≤ u(x) ≤ C2

[H◦(x)]μ2
x ∈ (BH◦

R2
)c, (1.5)

where μ1, μ2 are the solutions of

μp−2[(p − 1)μ2 − (N − p)μ] + γ = 0, (1.6)

C1,C2 are positive constants depending on N , p, γ, H and u, c1 is a positive con-
stant depending on N , p, γ, H , R1, μ1 and u, c2 is a positive constant depending on
N , p, γ, H , R2, μ2 and u.

Remark 1.2 In the following we shall assume that μ1 < μ2 and it is easy to see that

0 ≤ μ1 <
N − p

p
< μ2 ≤ N − p

p − 1
.

furthermore BH◦
R is the dual anisotropic ball also known as Frank diagram (see Sect. 2 for

further details).

In the proof we will also exploit some clever ideas from [31] facing the difficulties of
the anisotropic issue. A different approach is in fact needed for the study of the asymptotic
behaviour of the gradient. In particular, the fact that the moving plane plane technique cannot
be applied, a crucial point is given by the following classification result:

Theorem 1.3 Let v ∈ C1,α
loc (RN \ {0}) be a positive weak solution of the equation

− �H
p v − γ

[H◦(x)]p v p−1 = 0 in R
N \ {0}, (1.7)

where 0 ≤ γ < CH . Assume that there exist two positive constants C and c such that

c

[H◦(x)]μi
≤ v(x) ≤ C

[H◦(x)]μi
∀x ∈ R

N \ {0}, (1.8)
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where μi (i = 1, 2) are the roots of (1.6) and suppose that there exists a positive constant Ĉ
such that

|∇v(x)| ≤ Ĉ

[H◦(x)]μi+1 ∀x ∈ R
N \ {0}, (1.9)

then

v(x) = c

[H◦(x)]μi
, (1.10)

for some c̄ > 0.

Theorem 1.3 is new and interesting in itself. The proof is very much different than the ones
available in the euclidean case H(ξ) = |ξ |. Here we shall exploit it to deduce the precise
asymptotic estimates for the gradient. more precisely we have the following:

Theorem 1.4 Let u ∈ D1,p(RN ) be a weak solution of (PH ) with 1 < p < N, and 0 ≤ γ <

CH . Then there exist positive constants c̃, C̃ depending on N , p, γ, H and u such that

c̃

[H◦(x)]μ1+1 ≤ |∇u(x)| ≤ C̃

[H◦(x)]μ1+1 x ∈ BH◦
R1

, (1.11)

and

c̃

[H◦(x)]μ2+1 ≤ |∇u(x)| ≤ C̃

[H◦(x)]μ2+1 x ∈ (BH◦
R2

)c, (1.12)

where μ1, μ2 are roots of (1.6) as in Theorem 1.1, and 0 < R1 < 1 < R2 are constants
depending on N , p, γ and u.

The paper is structured as follows:

• In Sect. 2 we recall some notions about Finsler type anisotropic geometry, and we prove
some technical lemmas that will be crucial in the proof of the main results.

• In Sect. 3 we prove some preliminary estimates, elliptic estimates and weak compari-
son principles in bounded and exterior domains that will be essential in the proof of
Theorem 1.1.

• In Sect. 4 we give the proof of decay estimates of solutions to (PH ) near the origin and at
infinity, i.e. we prove Theorem 1.1. The, using this result we also prove decay estimates
for the gradient of positive weak solutions to (PH ) near the origin and at infinity, i.e. we
prove Theorem 1.4.

• Although the existence of solutions can be easy deduced in the radial-anisotropic setting,
in the “Appendix A” we show that problem (PH ) admits at least a positive solution
u ∈ D1,p(RN ) that minimizes the Hardy-Sobolev anisotropic inequality. This result
follows using classical arguments (see also [26]) that we decide to add for the readers’
convenience.

2 Preliminaries

Notation. Generic fixed and numerical constants will be denoted by C (with subscript in
some case) and they will be allowed to vary within a single line or formula. By |A| we will
denote the Lebesgue measure of a measurable set A.

123



Asymptotic behaviour of solutions to the anisotropic doubly… Page 5 of 44 77

The aim of this section is to recall some properties and geometrical tools about the
anisotropic elliptic operator defined above. For a, b ∈ R

N we denote by a ⊗ b the matrix
whose entries are (a ⊗ b)i j = aib j . We remark that for any v,w ∈ R

N it holds that:

〈a ⊗ b v,w〉 = 〈b, v〉〈a, w〉.
Now, we recall the definition of anisotropic norm.

(hH ) Let H ∈ C2(RN \ {0}). In all the paper we assume that H is a anisotropic norm if it
satisfies the following set of assumptions:

(i) H(ξ) > 0 ∀ξ ∈ R
N \ {0};

(ii) H(sξ) = |s|H(ξ) ∀ξ ∈ R
N \ {0}, ∀s ∈ R;

(iii) H is uniformly elliptic, that means the set BH
1 := {ξ ∈ R

N : H(ξ) < 1} is uniformly
convex

∃� > 0 : 〈D2H(ξ)v, v〉 ≥ �|v|2 ∀ξ ∈ ∂BH
1 , ∀v ∈ ∇H(ξ)⊥. (2.1)

A set is said uniformly convex if the principal curvatures of its boundary are all strictly
positive. Moreover, assumption (iii) is equivalent to assume that D2(H2) is definite positive.

The dual norm H◦ : RN → [0,+∞) is defined as:

H◦(x) = sup
H(ξ)≤1

〈ξ, x〉.

It is possible to show that H◦ is also a Finsler norm and it has the same regularity properties
of H . Moreover, it holds (H◦)◦ = H . For R > 0 and x̄ ∈ R

N we define:

BH
R (x̄) = {x ∈ R

N H(x − x̄) < R}
and

BH◦
R (x̄) = {x ∈ R

N H◦(x − x̄) < R}.
For simplicity of exposition, when x̄ = 0, we set: BH

R = BH
R (0), BH◦

R = BH◦
R (0). In

literature BH
R and BH◦

R are also called “Wulff shape” and “Frank diagram” respectively. We
remark that there holds the following identities:

H(∇H◦(x)) = 1 = H◦(∇H(x)); (2.2)

and

H(x)∇H◦(∇H(x)) = x = H◦(x)∇H(∇H◦(x)). (2.3)

We refer the reader to [3, 8] for further details. Observe also that H is a norm equivalent to
the euclidean one, i.e. there exist α1, α2 > 0 such that:

α1|ξ | ≤ H(ξ) ≤ α2|ξ | ∀ξ ∈ R
N . (2.4)

Moreover, recalling that H is 1-homogeneous, by the Euler’s Theorem it follows

〈∇H(ξ), ξ 〉 = H(ξ) ∀ξ ∈ R
N \ {0}. (2.5)

Since H is 1-homogeneous, we have that ∇H is 0-homogeneous and it satisfies

∇H(ξ) = ∇H

(

|ξ | ξ

|ξ |
)

= ∇H

(
ξ

|ξ |
)

∀ξ ∈ R
N \ {0}.
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Hence, by the previous equality, we infer that there exists M > 0 such that

|∇H(ξ)| ≤ M ∀ξ ∈ R
N \ {0}. (2.6)

For the same reasons there exists a constant M > 0 such that:

|D2H(ξ)| ≤ M

|ξ | ∀ ξ ∈ R
N \ {0}, (2.7)

where | · | denotes the usual Euclidean norm of a matrix, and

D2H(ξ)ξ = 0 ∀ ξ ∈ R
N \ {0}. (2.8)

We start with some elliptic estimates that can be proved in the same spirit of the Euclidean
framework.

Proposition 2.1 For any p > 1 and η, η′ ∈ R
N such that |η| + |η′| > 0, it holds

|H p−1(η)∇H(η) − H p−1(η′)∇H(η′)| ≤ C̃ p(|η| + |η′|)p−2|η − η′|. (2.9)

Moreover, any p ≥ 2 it holds the following inequality

H p(η) ≥ H p(η′) + pH p−1(η′)〈∇H(η′), η − η′〉 + Ĉ(p)H p(η − η′), (2.10)

for any η, η′ ∈ R
N . Furthermore, if 1 < p < 2 we have that

H p(η) ≥ H p(η′) + pH p−1(η′)〈∇H(η′), η − η′〉 + Cp[H(η) + H(η′)]p−2H2(η − η′),
(2.11)

for any η, η′ ∈ R
N such that |η| + |η′| > 0.

Proof We start the proof showing (2.9). First of all we note that (2.9) is symmetric in η,
η′. Hence, without loss of generality, we can assume that |η′| ≥ |η| > 0. We note that for
j = 1, . . . , N :

H p−1(η)
∂H

∂η j
(η) − H p−1(η′) ∂H

∂η j
(η′)

=
ˆ 1

0

N∑

i=1

[

(p − 1)H p−2(η′ + t(η − η′))
(

∂H

∂ηi
· ∂H

∂η j

)

(η′ + t(η − η′))

+H p−1(η′ + t(η − η′)) ∂2H

∂ηi∂η j
(η′ + t(η − η′))

]

· (ηi − η′
i ) dt . (2.12)

By (2.12), using (2.4), (2.6) and (2.7) we have

|H p−1(η)∇H(η) − H p−1(η′)∇H(η′)|

≤
ˆ 1

0
|(p − 1)H p−2(η′ + t(η − η′))∇H(η′ + t(η − η′)) ⊗ ∇H(η′ + t(η − η′))

+ H p−1(η′ + t(η − η′)))D2H(η′ + t(η − η′))| · |η − η′| dt

≤ ((p − 1)α p−2
2 M2 + α

p−1
2 M)|η − η′|

ˆ 1

0
(|η′ + t(η − η′)|)p−2 dt, (2.13)

where | · | denotes the standard matrix Euclidean norm.
Now, we observe that

|η′ + t(η − η′)| ≤ |η| + |η′|, (2.14)
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and, since |η′| ≥ |η|, we have either

|η − η′| ≤ |η′|
2

�⇒ |η′ + t(η − η′)| ≥ |η′| − |η − η′| ≥ |η′|
2

≥ |η′| + |η|
4

(2.15)

or, putting t0 := |η′|
|η − η′| ∈ (0, 2),

|η − η′| >
|η′|
2

�⇒ |η′ + t(η − η′)| ≥ ∣
∣|η′| − t |η − η′|∣∣ = |t0 − t | · |η − η′|

≥ |t0 − t | · |η′|
2

= |t0 − t | |η
′|
2

≥ |t0 − t | |η| + |η′|
4

. (2.16)

If p > 2, using (2.14) in (2.13) we have

|H p−1(η)∇H(η) − H p−1(η′)∇H(η′)| ≤ C̃ p(|η′| + |η|)p−2|η − η′| (2.17)

where C̃ p = (p − 1)α p−2
2 M2 + α

p−1
2 M . Hence (2.9) holds.

If p ≤ 2 and (2.15) holds, by (2.13) we obtain

|H p−1(η)∇H(η) − H p−1(η′)∇H(η′)|

≤ ((p − 1)α p−2
2 M2 + α

p−1
2 M)|η − η′|

ˆ 1

0
(|η′ + t(η − η′)|)p−2 dt .

≤ ((p − 1)α p−2
2 M2 + α

p−1
2 M)|η − η′|

ˆ 1

0

( |η′| + |η|
4

)p−2

dt

≤ C̃ p(|η′| + |η|)p−2|η − η′|, (2.18)

where C̃ p = ((p − 1)α p−2
2 M2 + α

p−1
2 M)/4p−2. Hence (2.9) holds

If p ≤ 2 and (2.16) holds, by (2.13) we obtain

|H p−1(η)∇H(η) − H p−1(η′)∇H(η′)|

≤ ((p − 1)α p−2
2 M2 + α

p−1
2 M)|η − η′|

ˆ 1

0
(|η′ + t(η − η′)|)p−2 dt .

≤ ((p − 1)α p−2
2 M2 + α

p−1
2 M)|η − η′|

ˆ 1

0
|t0 − t |p−2

( |η′| + |η|
4

)p−2

dt

= (p − 1)α p−2
2 M2 + α

p−1
2 M

4p−2 (|η′| + |η|)p−2|η − η′|
ˆ 1

0
|t0 − t |p−2 dt

≤ (p − 1)α p−2
2 M2 + α

p−1
2 M

4p−2 (|η′| + |η|)p−2|η − η′| 2
ˆ 1

0
z p−2 dz

= C̃ p(|η′| + |η|)p−2|η − η′|, (2.19)

where C̃ p = (2(p − 1)α p−2
2 M2 + 2α p−1

2 M)/4p−2.
Collecting the estimates above, we deduce that inequality (2.9) holds for every p > 1 and

for C̃ p = ((p − 1)α p−2
2 M2 + α

p−1
2 M) · max{1, 42−p, 2 · 42−p}.

Now we will show (2.10) and (2.11). For η, η′ ∈ R
N , we define

f (t) = H p(η′ + t(η − η′))
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and Taylor’s formula yields

H p(η) = H p(η′) + pH p−1(η′)〈∇H(η′), η − η′〉 +
ˆ 1

0
(1 − t) f ′′(t) dt, (2.20)

provided |η′ + t(η − η′)| �= 0, for 0 ≤ t ≤ 1. But the case when η′ + t(η − η′) = 0 can be
easily verified. By [10, Theorem 1.5] we obtain that

f ′′(t) = 〈D2(H p(η′ + t(η − η′)))(η − η′), η − η′〉
≥ C(p)|η′ + t(η − η′)|p−2|η − η′|2, (2.21)

where C(p) is a constant depending on p. We remark that

ˆ 1

0
(1 − t) f ′′(t) dt ≥ 3

4

ˆ 1
4

0
f ′′(t) dt . (2.22)

If 1 < p < 2, by (2.14) we have

(H(η) + H(η′))p−2 ≤ α
p−2
2 |η′ + t(η − η′)|p−2

and using (2.22) we arrive at (2.11).
If p ≥ 2, using a similar argument as in the proof of the inequality (2.9), we obtain

ˆ 1
4

0
f ′′(t) ≥ C(p)(|η| + |η′|)|p−2|η − η′|2, (2.23)

withC(p) constant depending on p. Since |η−η′| ≤ |η|+|η′| and using (2.4), we get (2.10).
��

We state now the Hardy inequality for the anisotropic operator �H
p u, defined in (1.1). We

refer to [28, Proposition 7.5].

Theorem 2.2 (Hardy inequality) For any H satisfying the assumption (hH ) and any u ∈
D1,p(RN ) and 1 < p < N,

CH

ˆ
RN

|u|p
H◦(x)p

dx ≤
ˆ
RN

H p(∇u) dx, (2.24)

where CH = ((N − p)/p)p is optimal.

Nowwe prove a technical lemma that will be very important in the proof of the asymptotic
estimates.

Lemma 2.3 Let p > 1 and a, b ≥ 0. Then, for all δ > 0 there exist Cδ > 0 such that

a p ≥ 1

1 + 2p+1δ
(a + b)p − Cδb

p. (2.25)

Proof Let us consider p > 1 as follows:

p = �p� + {p},
where �·� is the floor function and {·} is the mantissa function. Without loss of generality we
assume that {p} �= 0 and, moreover, we set m := �p�. Hence, we have

(a + b)p = (a + b){p}(a + b)m = (a + b){p}
m∑

k=0

(
m

k

)

am−kbk = (�) (2.26)
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Noticing that 0 ≤ {p} < 1 it follows that

(a + b){p} ≤ a{p} + b{p}.

Using this inequality in (2.26), we deduce

(�) ≤ a{p}
m∑

k=0

(
m

k

)

am−kbk + b{p}
m∑

k=0

(
m

k

)

am−kbk

= a p + bp +
m∑

k=1

(
m

k

)

a p−kbk +
m−1∑

k=0

(
m

k

)

am−kbk+{p} = (∗),

(2.27)

where we used the fact that p = m+{p}. Now, we can apply the weighted Young’s inequality
to each member of the first sum with conjugate exponents (p/(p − k), p/k) and to each
member of the second sum with conjugate exponents (p/(m − k), p/(k + {p})) as follows

a p−kbk ≤ p − k

p
δa p + k

p
Cδb

p ≤ δa p + Cδb
p,

am−kbk+{p} ≤ δa p + Cδb
p.

(2.28)

Hence, using this estimate we deduce

(∗) ≤ a p + bp + (
δa p + Cδb

p)
m∑

k=1

(
m

k

)

+ (
δa p + Cδb

p)
m−1∑

k=0

(
m

k

)

≤ (
1 + 2p+1δ

)
a p + Cδb

p,

(2.29)

where we renamed Cδ := (
1 + 2p+1Cδ

)
. Collecting (2.26), (2.27) and (2.29), we deduce that

a p ≥ 1

1 + 2p+1δ
(a + b)p − Cδb

p, (2.30)

with Cδ := Cδ/(1 + 2p+1δ), and hence the thesis (2.25). ��
Finally, we recall a lemma (see Lemma 4.19 in [16]) that will be very useful in the proofs

of our results.

Lemma 2.4 [16] LetL and g be two nondecreasing functions on the interval (0, R̄], for some
R̄ > 0. Suppose that it holds

L(τ R) ≤ σL(R) + g(R) for all R ≤ R̄,

for some 0 < σ, τ < 1. Then, for any μ ∈ (0, 1) and R ≤ R̄ we have

L(R) ≤ 1

σ

(
R

R̄

)α

L(R̄) + 1

1 − σ
g(R̄μR1−μ)

where α = α(σ, τ, μ) = (1 − μ) log σ/ log τ .

3 Preliminary asymptotic estimates and comparison principles

The aim of this section is to prove some preliminary estimates that will be crucial in the
proofs of the main results.
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Lemma 3.1 There exists a positive constant τ depending only on N , p and γ such that for
any R̄ > 0 and for any solution u to problem (PH ) satisfying

‖u‖L p∗ (BH◦
R̄

)
+ ‖u‖L p∗ (RN \BH◦

1/R̄
)
≤ τ, (3.1)

there exists a positive constant C depending only on N , p, γ and R such that

‖u‖L p∗ (BH◦
R )

≤ CRσ1 for R ≤ R̄, (3.2)

and that

‖u‖L p∗ ((BH◦
R )c)

≤ C
Rσ2

for R ≥ 1

R̄
, (3.3)

where σ1, σ2 are two positive constants depending on N , p and γ .

Proof We start proving (3.2). To this aim let us consider R > 0 and a cut-off function
η ∈ C∞

c (RN ) such that

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ η ≤ 1 in R
N

η ≡ 0 in (BH◦
R )c

η ≡ 1 in BH◦
R/2

|∇η| ≤ 4
R in BH◦

R \ BH◦
R/2.

(3.4)

By density argument it is possible to put ϕ = ηpu as test function in (1.2), so that we obtain
ˆ
RN

pηp−1uH p−1(∇u)〈∇H(∇u),∇η〉 dx +
ˆ
RN

ηpH p−1(∇u)〈∇H(∇u),∇u〉 dx

=
ˆ
RN

γ

H◦(x)p
u p−1ηpu dx +

ˆ
RN

u p∗−1ηpu dx .
.(3.5)

First of all, using Euler’s Theorem (2.5), the 0-homogeneity of ∇H (2.6) and Schwarz’s
inequality, equation (3.5) becomes

ˆ
RN

H p(∇u)ηp dx =
ˆ
RN

H p−1(∇u)〈∇H(∇u),∇u〉ηp dx

≤ p M
ˆ
RN

H p−1(∇u)|∇η|ηp−1u dx +
ˆ
RN

γ

H◦(x)p
u pηp dx +

ˆ
RN

u p∗
ηp dx .

(3.6)

Recalling that H is 1-homogeneous function, using the weighted Young’s inequality ab ≤
εa

p
p−1 + Cεbp on the first term of the right hand side of (3.6), for any 0 < ε < 1 we have

ˆ
RN

H p(η∇u) dx ≤ ε

ˆ
RN

H p(η∇u) dx + C(p, M, ε)

ˆ
RN

|∇η|pu p dx

+
ˆ
RN

γ

H◦(x)p
u pηp dx +

ˆ
RN

u p∗
ηp dx,

(3.7)

where C(p, M, ε) := (pM)pCε . Now, noticing that ∇(ηu) = u∇η + η∇u, by the triangular
inequality, we deduce that for every p > 1 it holds

H p(∇(ηu)) = H p(u∇η + η∇u) ≤ [H(u∇η) + H(η∇u)]p . (3.8)
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Thanks to (3.8) and applying Lemma 2.3 with a = H(η∇u) and b = H(u∇η), we deduce
that ˆ

RN
H p(η∇u) dx ≥ 1

1 + 2p+1δ

ˆ
RN

H p(∇(ηu)) dx − Cδ

ˆ
RN

H p(u∇η) dx . (3.9)

Using (3.9) in (3.7) we obtain

1 − ε

1 + 2p+1δ

ˆ
RN

H p(∇(ηu)) dx ≤ Cδ

ˆ
RN

H p(u∇η) dx + C(p, M, ε)

ˆ
RN

|∇η|pu p dx

+ γ

ˆ
RN

(uη)p

H◦(x)p
dx +

ˆ
RN

u p∗
ηp dx .

(3.10)

Now, applying the anisotropic Hardy inequality (see Theorem 2.2 or [28]) and (2.4) we
have

1 − ε

1 + 2p+1δ

ˆ
RN

H p(∇(ηu)) dx ≤ (
α
p
2 Cδ + C(p, M, ε)

)
ˆ
RN

|∇η|pu p dx

+ γ

CH

ˆ
RN

H p(∇(ηu)) dx +
ˆ
RN

u p∗
ηp dx . (3.11)

Let us fix ε, δ > 0 sufficiently small such that C1 := (1 − ε)/(1 + 2p+1δ) − γ /CH > 0, so
that

C1
ˆ
RN

H p(∇(ηu)) dx ≤ C2
ˆ
RN

|∇η|pu p dx +
ˆ
RN

u p∗
ηp dx, (3.12)

where C2 := C(p, M, ε) + α
p
2 Cδ . By (2.4) we have

α
p
1 C1

ˆ
RN

|∇(ηu)|p dx ≤ C2
ˆ
RN

|∇η|pu p dx +
ˆ
RN

u p∗
ηp dx . (3.13)

Now, using the Sobolev inequality in the left hand side of (3.13), the Hölder inequality and
(3.4) in the right hand side, we obtain

α
p
1 C1C

p
S

(ˆ
RN

|ηu|p∗
dx

) p
p∗ ≤ α

p
1 C1

ˆ
RN

|∇(ηu)|p dx

≤ C2
ˆ
RN

|∇η|pu p dx +
ˆ
RN

u p∗−p(ηu)p dx

≤ C2
(ˆ

BH◦
R \BH◦

R/2

|∇η|N dx

) p
N

(ˆ
BH◦

R \BH◦
R/2

u p∗
dx

) p
p∗

+
(ˆ

BH◦
R

u p∗
dx

) p
N (ˆ

RN
(ηu)p

∗
dx

) p
p∗

≤ C2C(p, N )

(ˆ
BH◦

R \BH◦
R/2

u p∗
dx

) p
p∗

+ ‖u‖p∗−p
p∗

(ˆ
RN

(ηu)p
∗
dx

) p
p∗

,

(3.14)
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hence we deduce

(ˆ
RN

|ηu|p∗
dx

) p
p∗ ≤ C2C(p, N )

α
p
1 C1C

p
S

(ˆ
BH◦

R \BH◦
R/2

u p∗
dx

) p
p∗

+
‖u‖p∗−p

L p∗ (BH◦
R )

α
p
1 C1C

p
S

(ˆ
RN

(ηu)p
∗
dx

) p
p∗

, (3.15)

where C(p, N ) is a positive constant depending on p and N .
Setting

τ =
(

α
p
1 C1C

p
S

2

) 1
p∗−p

,

and choosing R > 0 sufficiently small such that (3.1) holds, then ‖u‖p∗−p

L p∗ (BH◦
R )

/(α
p
1 C1C

p
S ) ≤

1/2 for all 0 < R ≤ R. Hence we obtain thatˆ
BH◦

R/2

u p∗
dx ≤

ˆ
RN

|ηu|p∗
dx ≤ C̄

ˆ
BH◦

R \BH◦
R/2

u p∗
dx ∀ 0 < R ≤ R̄,

where C̄ := (
(2C2C(p, N ))/(α

p
1 C1C

p
S )

) p∗
p and it depends only on N , p and γ . Denoting

with L(R) :=
ˆ
BH◦

R

u p∗
dx for 0 < R ≤ R̄, we get that

L(R/2) ≤ ϑL(R) ∀ 0 < R ≤ R̄,

where ϑ = C̄/(C̄ +1) ∈ (0, 1), depends only on N , p and γ . Now, by Lemma 2.4 it follows
that

L(R) ≤ 1

ϑ
L(R̄)

(
R

R̄

)σ ′
1 ∀ 0 < R ≤ R̄,

where σ ′
1 = 1

2 log(1/ϑ)/ log 2 depends only on ϑ , Now (3.2) follows by setting σ1 = σ ′
1/p

∗

and C = (ϑ−1R
−σ ′

1L(R̄))1/p
∗
. In a similar way, we can deduce (3.3). ��

Now, we denote by AR = BH◦
8R \BH◦

R/8 and DR = BH◦
4R \BH◦

R/4 for R > 0.

Lemma 3.2 Let t ∈ (p∗, N/μ1). There exists a positive constant σ = σ(N , p, γ, t) such
that for any solution u to problem (PH ) and for any R̄ > 0 satisfying the following inequality

‖u‖L p∗ (BR̄) + ‖u‖L p∗ (RN \B1/R̄) ≤ σ, (3.16)

then
( 

DR

ut dx

) 1
t ≤ C

( 
AR

u p∗
dx

) 1
p∗ ∀R < R/8 or R > 8/R, (3.17)

where
 
DR

ut dx = 1

|DR |
ˆ
DR

ut dx and C is a positive constant depending only on

N , p, γ, R and t.

123



Asymptotic behaviour of solutions to the anisotropic doubly… Page 13 of 44 77

Proof It is easy to see that, setting û(x) = u(Rx), for R > 0,

−�H
p û − γ

û p−1

H◦(x)p
= Rpû p∗−1 in A1.

Let m ≥ 1 and set

A := A1 ∩ {û < m} and B := A1 ∩ {û ≥ m}. (3.18)

Hence we can consider the weak formulation of the last equation as follows

I1 + I2 :=
ˆ
A
H p−1(∇û)〈∇H(∇û),∇ϕ〉 dx +

ˆ
B
H p−1(∇û)〈∇H(∇û),∇ϕ〉 dx

=
ˆ
A1

γ
û p−1

H◦(x)p
ϕ dx + Rp

ˆ
A1

û p∗−1ϕ dx ∀ϕ ∈ C∞
c (A1).

(3.19)

Let define ûm := min(û,m) for m ≥ 1. By density argument, for any η ∈ C∞
c (A1) it is

possible to choose ϕ = ηpû p(s−1)
m û, with s ≥ 1, as test function in (3.19), so that, using

(3.18) and (2.5), we can compute I1 and I2

I1 =
ˆ
A
H p−1(∇û)〈∇H(∇û), pηp−1û p(s−1)+1∇η〉 dx

+ [p(s − 1) + 1]
ˆ
A
H p−1(∇û)〈∇H(∇û), ηpû p(s−1)∇û〉 dx

= p
ˆ
A
H p−1(∇û)〈∇H(∇û),∇η〉ηp−1û p(s−1)+1 dx

+ [p(s − 1) + 1]
ˆ
A
H p(∇û)ηpû p(s−1) dx .

(3.20)

In the same way, we obtain

I2 =
ˆ
B
H p−1(∇û)〈∇H(∇û), pηp−1mp(s−1)û∇η〉 dx

+
ˆ
B
H p−1(∇û)〈∇H(∇û), ηpm p(s−1)∇û〉 dx

= p
ˆ
B
H p−1(∇û)〈∇H(∇û),∇η〉ηp−1mp(s−1)û dx +

ˆ
B
H p(∇û)ηpm p(s−1) dx .

(3.21)
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Collecting both (3.20), (3.21), using the Scwharz’s inequality and recalling (2.6) we obtain

[p(s − 1) + 1]
ˆ
A
H p(∇û)ηpû p(s−1) dx +

ˆ
B
H p(∇û)ηpm p(s−1) dx

≤ pM

[ˆ
A
H p−1(∇û)ηp−1û p(s−1)+1|∇η| dx +

ˆ
B
H p−1(∇û)ηp−1mp(s−1)|∇η|û dx

]

+
ˆ
A1

γ
û p−1

H◦(x)p
ϕ dx + Rp

ˆ
A1

û p∗−1ϕ dx

= pM

[ˆ
A
H p−1(∇û)ηp−1û(p−1)(s−1)ûs |∇η| dx

+
ˆ
B
H p−1(∇û)ηp−1m(p−1)(s−1)ms−1|∇η|û dx

]

+
ˆ
A1

γ
û p−1

H◦(x)p
ϕ dx + Rp

ˆ
A1

û p∗−1ϕ dx .

(3.22)

Now we can apply the weighted Young’s inequality to the first two terms in the right hand
side of (3.22) with conjugate exponent (p/(p − 1), p) in order to obtain

[p(s − 1) + 1]
ˆ
A
H p(∇û)ηpû p(s−1) dx +

ˆ
B
H p(∇û)ηpm p(s−1) dx

≤ ε1[p(s − 1) + 1]
ˆ
A
H p(∇û)ηpû p(s−1) dx + Cε1(p, s, M)

ˆ
A
û ps |∇η|p dx

+ ε2

ˆ
B
H p(∇û)ηpm p(s−1) dx + Cε2(p, M)

ˆ
B

|∇η|pm p(s−1)û p dx

+
ˆ
A1

γ
û p−1

H◦(x)p
ϕ dx

+ Rp
ˆ
A1

û p∗−1ϕ dx,

(3.23)

where Cε1(p, s, M) and Cε2(p, M) are two positive constants. Hence we obtain

(1 − ε1)[p(s − 1) + 1]
ˆ
A
H p(ηûs−1

m ∇û) dx + (1 − ε2)

ˆ
B
H p(ηûs−1

m ∇û) dx

= (1 − ε1)[p(s − 1) + 1]
ˆ
A
H p(∇û)ηpû p(s−1) dx + (1 − ε2)

ˆ
B
H p(∇û)ηpm p(s−1) dx

≤ Cε1(p, s, M)

ˆ
A

|∇η|pû p(s−1)û p dx + Cε2(p, M)

ˆ
B

|∇η|pm p(s−1)û p dx

+
ˆ
A1

γ

H◦(x)p
û p−1ηpû p(s−1)

m û dx + Rp
ˆ
A1

û p∗−1ηpû p(s−1)
m û dx .

(3.24)

Thanks to (3.8) and applying Lemma 2.3, with a = H(ηûs−1∇û) and b = H(ûs∇η), we
deduce that there hold the following inequalities in the sets A and B respectively:ˆ

A
H p(ηûs−1

m ∇û) dx =
ˆ
A
H p(ηûs−1∇û) dx

≥ 1

1 + 2p+1δ1
· 1

s p

ˆ
A
H p(∇(ηûs)) dx − Cδ1

ˆ
A
H p(ûs∇η) dx

= 1

1 + 2p+1δ1
· 1

s p

ˆ
A
H p(∇(ηûs−1

m û)) dx − Cδ1

ˆ
A
H p(ûs−1

m û∇η) dx

(3.25)
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ˆ
B
H p(ηûs−1

m ∇û) dx =
ˆ
B
H p(ηms−1∇û) dx

≥ 1

1 + 2p+1δ2

ˆ
B
H p(∇(ηms−1û)) dx

− Cδ2

ˆ
B
H p(ms−1û∇η) dx

= 1

1 + 2p+1δ2

ˆ
B
H p(∇(ηûs−1

m û)) dx

− Cδ2

ˆ
B
H p(ûs−1

m û∇η) dx

(3.26)

By (3.25) and (3.26), we obtain

1 − ε1

1 + 2p+1δ1
· p(s − 1) + 1

s p

ˆ
A
H p(∇(ηûs−1

m û)) dx + 1 − ε2

1 + 2p+1δ2

ˆ
B
H p(∇(ηûs−1

m û)) dx

≤ Cδ1(ε1, p, s)
ˆ
A
H p(ûs−1

m û∇η) dx + Cδ2(ε2)

ˆ
B
H p(ûs−1

m û∇η) dx

+ Cε1(p, s, M)

ˆ
A

|∇η|pû p(s−1)
m û p dx + Cε2(p, M)

ˆ
B

|∇η|pû p(s−1)
m û p dx

+
ˆ
A1

γ

H◦(x)p
û p−1ηpû p(s−1)

m û dx + Rp
ˆ
A1

û p∗−pηpû p(s−1)
m û p dx .

(3.27)

Using (2.4), we deduce that

1 − ε1

1 + 2p+1δ1
· p(s − 1) + 1

s p

ˆ
A
H p(∇(ηûs−1

m û)) dx

+ 1 − ε2

1 + 2p+1δ2

ˆ
B
H p(∇(ηûs−1

m û)) dx

≤
ˆ
A1

γ

H◦(x)p
û p−1ηpû p(s−1)

m û dx + Ĉ
ˆ
A1

|∇η|pû p(s−1)
m û p dx

+ Rp
ˆ
A1

û p∗−p(ηûs−1
m û)p dx,

(3.28)

where Ĉ depends on δ1, δ2, ε1, ε2, p, s, M . UsingHardy’s andHölder’s inequality in the right
hand side of (3.28), and the definition of the sets A and B, we obtain

1 − ε1

1 + 2p+1δ1
· p(s − 1) + 1

s p

ˆ
A
H p(∇(ηûs−1

m û)) dx + 1 − ε2

1 + 2p+1δ2

ˆ
B
H p(∇(ηûs−1

m û)) dx

≤ γ

CH

ˆ
A
H p(∇(ηûs−1

m û)) dx + γ

CH

ˆ
B
H p(∇(ηûs−1

m û)) dx

+ Ĉ
ˆ
A1

|∇η|pû p(s−1)
m û p dx +

(ˆ
A1

û p∗
RN dx

) p∗−p
p∗

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ

,

(3.29)
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where χ = p∗/p. Finally, we deduce
(

1 − ε1

1 + 2p+1δ1
· p(s − 1) + 1

s p
− γ

CH

)ˆ
A
H p(∇(ηûs−1

m û)) dx

+
(

1 − ε2

1 + 2p+1δ2
− γ

CH

)ˆ
B
H p(∇(ηûs−1

m û)) dx

≤ Ĉ
ˆ
A1

|∇η|pû p(s−1)
m û p dx + ‖u‖p∗−p

L p∗ (AR)

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ

.

(3.30)

Noticing that (p(s − 1) + 1)/s p > γ/CH for all s ∈ ((N − p)/(pμ2), (N − p)(pμ1)), we
can fix δ1, ε1 > 0 sufficiently small such that

1 − ε1

1 + 2p+1δ1
· p(s − 1) + 1

s p
− γ

CH
> 0,

and δ2, ε2 > 0 sufficiently small such that

1 − ε2

1 + 2p+1δ2
− γ

CH
> 0.

Hence by (3.30) we get

C̄
ˆ
A1

H p(∇(ηûs−1
m û)) dx ≤ Ĉ

ˆ
A1

|∇η|pû p(s−1)
m û p dx + ‖u‖p∗−p

L p∗ (AR)

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ

, (3.31)

where C̄ is a positive constant depending on ε1, ε2, δ1, δ2, p, s, γ,CH . In conclusion, by (2.4)
and Sobolev inequality we have

α
p
1 C̄C

p
S

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ ≤ α

p
1 C̄

ˆ
A1

|∇(ηûs−1
m û)|p dx ≤ C̄

ˆ
A1

H p(∇(ηûs−1
m û)) dx

≤ Ĉ
ˆ
A1

|∇η|pû p(s−1)
m û p dx

+ ‖u‖p∗−p
L p∗ (AR)

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ

.

(3.32)

In order to apply theMoser’s iterationmethodwe need to rewrite the last inequality as follows

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ

≤ C1
ˆ
A1

|∇η|pû p(s−1)
m û p dx + C2‖u‖p∗−p

L p∗ (AR)

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ

, (3.33)

where C1 := Ĉ/(α
p
1 C̄C

p
S ), C2 := 1/(α p

1 C̄C
p
S ) and χ = p∗/p.

Fix t ∈ (p∗, N/μ1) and k ∈ N so that pχk ≤ t ≤ pχk+1. Then there exist positive
constants C1 and C2 such that (3.33) holds for all 1 ≤ s ≤ min

{
(N − p)/(pμ1), χ

k
}
. Now,

we set σ = (1/(2C2))
1

p∗−p and choosing R sufficiently small such that (3.16) holds, we get

(ˆ
A1

(ηûs−1
m û)pχ dx

) 1
χ ≤ C

ˆ
A1

|∇η|pû p(s−1)
m û p dx (3.34)
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for all 1 ≤ s ≤ min
{
(N − p)/(pμ1), χ

k
}
andC = C1/2.ApplyingMoser’s iterationmethod

(see e.g. [16, 31] for further details), we conclude, after finitely many times of iteration,

( 
D1

|û|t dx
) 1

t ≤ C
( 

A1

|û|p∗
dx

) 1
p∗

. (3.35)

for any t ∈ (p∗, N/μ1). This proves (3.17). ��

Let us now prove the following:

Theorem 3.3 Let u be a weak solution of (PH ). Then there exists a positive constant C =
C(N , p, γ, u) such that

|u(x)| ≤ C

[H◦(x)] N−p
p −σ1

in BH◦
R1

,

and that

|u(x)| ≤ C

[H◦(x)] N−p
p +σ2

in (BH◦
R2

)c,

where σ1, σ2 are givem in Lemma 3.1 and R1, R2 > 0 are constants depending on N , p, γ
and u.

Proof Let us fix t := (p∗ + N/μ1)/2 ∈ (p∗, N/μ1) as in Lemma 3.2 and κ := min{τ, σ },
where τ and σ are respectively as in Lemma 3.1 and Lemma 3.2. Let R̄ > 0 such that (3.1)
holds for κ and let us consider û(x) = u(Rx), for R > 0 fixed. We note that û satisfies the
equation

−�H
p û + c(x)û p−1 = 0 in D1,

where

c(x) = − γ

H◦(x)p
− Rpû p∗−p(x).

We note that H◦(x)−p is bounded in D1 and VR(x) := Rpû p∗−p(x) ∈ Lq(D1) with q =
t/(p∗ − p) > N/p due to Lemma 3.2. Hence, as in the proof of [22, Theorem 1] a classical
Moser iteration argument yields

sup
BH◦
r (x)

û ≤ C

( 
BH◦
2r (x)

û p dx

) 1
p

(3.36)

for any ball BH◦
2r (x) ⊂ D1, where C = C(N , p, γ, ‖VR‖Lq (D1)). We claim that ‖VR‖Lq (D1)

is uniformly bounded with respect to R. Indeed from Lemma 3.2, since

p − N

q
+ N

p∗ − p

t
− N

p∗ − p

p∗ = 0,
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we get

(ˆ
D1

Vq
R dx

) 1
q = Rp− N

q

(ˆ
DR

u(p∗−p)q dx

) 1
q

≤ CRp− N
q +N p∗−p

t

( 
DR

ut dx

) p∗−p
t

≤ CRp− N
q +N p∗−p

t −N p∗−p
p∗

(ˆ
AR

u p∗
dx

) p∗−p
p∗

≤ C
(ˆ

RN
u p∗

dx

) p∗−p
p∗ ∀0 < R ≤ R

8
or R ≥ 8

R
,

(3.37)

where C is a positive constant depending on N , p, γ, q and R.
Using a covering argument we deduce that

sup
BH◦
2 \BH◦

1

û ≤ C
( 

D1

û p dx

) 1
p

(3.38)

Noticing that û(x) = u(Rx), by (3.38) we obtain that

sup
BH◦
2R \BH◦

R

u ≤ C
( 

DR

u p dx

) 1
p

(3.39)

for each 0 < R ≤ R̄/8 or R ≥ 8/R̄. By applying the Hölder’s inequality in (3.39), we get

sup
BH◦
2R \BH◦

R

u ≤ C
( 

DR

u p dx

) 1
p ≤ C

( 
DR

u p∗
dx

) 1
p∗ = C‖u‖L p∗ (DR)R

p−N
p , (3.40)

for each 0 < R ≤ R̄/8 or R ≥ 8/R̄ and C depends only on N , p, γ, q, R̄ and ‖u‖L p∗ (RN ).

Now we note that, since AR ⊂ BH◦
R̄

for any 0 < R ≤ R̄/8 and AR ⊂ (BH◦
1/R̄

)c for any

R ≥ 8/R̄, there exist, by Lemma 3.1, σ1, σ2 > 0 depending only on N , p, γ such that

‖u‖L p∗ (BH◦
R )

≤ CRσ1 for 0 < R ≤ R̄

8

and that

‖u‖L p∗ ((BH◦
R )c)

≤ C
Rσ2

for R ≥ 8/R̄.

Now, if we set R1 = R̄/8 and R2 = 8/R̄, by (3.40) we get the thesis. ��
The next result is devoted to show the existence of some special supersolutions of our

problem, in order to perform a comparison between them and the solutions of the doubly
critical equation (PH ).

Proposition 3.4 Given two constants A > 0 and α < p, there exist constants 0 < ε, δ < 1,
depending on N , p, γ, A, α, such that

v(H◦(x)) = 1 − δ[H◦(x)]ε
[H◦(x)]μ1

∈ D1,p(BH◦
R1

) (3.41)
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is a positive supersolution to equation

− �H
p v − γ

H◦(x)p
v p−1 = g(x)v p−1 in BH◦

R1
, (3.42)

for some positive constant 0 < R1 < 1 depending only on N , p, γ, A and α, where g(x) is

a positive function that belongs to L
N
p (BH◦

R1
) such that

g(x) ≥ A[H◦(x)]−α in BH◦
R1

. (3.43)

In a similar way, given A > 0 and α > p, there exist 0 < ε, δ < 1 such that

v(H◦(x)) = 1 − δ[H◦(x)]−ε

[H◦(x)]μ2
∈ D1,p

((
BH◦
R2

)c)
(3.44)

is a positive supersolution to equation

− �H
p v − γ

H◦(x)p
v p−1 = g(x)v p−1 in (BH◦

R2
)c, (3.45)

for some positive constant R2 > 1 depending only on N , p, γ and α, where g(x) is a positive

function that belongs to L
N
p ((BH◦

R2
)c) such that

g(x) ≥ A[H◦(x)]−α in (BH◦
R2

)c. (3.46)

Proof Let us consider μ, δ, ε > 0 and let us define the function

u(x) = v(H◦(x)) = 1 − δ[H◦(x)]ε
[H◦(x)]μ .

It is easy to deduce that

∇u(x) = s(H◦(x))∇H◦(x), (3.47)

where s(t) := t−μ−1[−μ + δ(μ − ε)tε]. Using (2.2), we now compute

−�H
p u = − div

(
H p−1(∇u)∇H(∇u)

) = − div
(|s(H◦(x))|p−1 sign(s)∇H(∇H◦(x))

)

= − (p − 1)|s(H◦(x))|p−2s′(H◦(x))〈∇H◦(x),∇H(∇H◦(x))〉
− |s(H◦(x))|p−1 sign(s) div

(∇H(∇H◦(x))
)

= − (p − 1)|s(H◦(x))|p−2s′(H◦(x)) − (N − 1)
|s(H◦(x))|p−2s(H◦(x))

H◦(x)
,

(3.48)

where in the last line we used the fact that 〈∇H◦(x),∇H(∇H◦(x))〉 = 1 and

div
(∇H(∇H◦(x))

) = N − 1

H◦(x)
due to (2.2) and (2.3).

Making standard computations on the right hand side of (3.48), one can deduce

−�H
p u − γ

[H◦(x)]p |u|p−2u = g(H◦(x))|u|p−2u, (3.49)

where

g(t) = h(t)

|1 − δtε|p−2(1 − δtε)t p
,
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and

h(t) := − ∣
∣μ − δ(μ − ε)tε

∣
∣p−2 {

μ2(p − 1) − (N − p)μ − (p − 1)(μ − ε)2δtε

+(N − p)(μ − ε)δtε
}

− γ |1 − δtε|p−2(1 − δtε), for t ∈ [0,+∞).

(3.50)

We note that h(0) = −|μ|p−2[μ2(p − 1) − μ(N − p)] − γ . Hence, using the definition of
μ1 and μ2, we deduce that h(0) = 0 when μ = μ1 and μ = μ2. Also we have h′(0) > 0 if
μ = μ1, ε > 0 or μ = μ2, ε < 0. This implies there exist 0 < δh < 1 such that

2h′(0)t ≥ h(t) ≥ 1

2
h′(0)t > 0 ∀t ∈ (0, δh). (3.51)

We set δ = min{δh, 1/2}, ε = (p − α)/2 and

R0 =
{

1,

(
δ

2A
h′(0)

)1/(p−α−ε)
}

.

It easy to check that v(H◦(x)) = (1 − δ[H◦(x)]ε)[H◦(x)]−μ1 ∈ D1,p(BH◦
R1

) is positive,

which thanks to (3.51), g(x) ∈ L
N
p (BH◦

R1
) and it satisfies (3.43). The other case is similar. ��

Now, we consider the following equation

− �H
p w − γ

H◦(x)p
w p−1 = f (x)w p−1 in �, (3.52)

where � is an open subset of RN , w > 0 and w ∈ D1,p(�). Let us start with a comparison
principle in bounded domains.

The first result is given by the following pointwise estimate, in the same spirit of [20, 31].

Proposition 3.5 Let u, v two weakly differentiable strictly positive functions on a domain�.1

We have that:

(i) if p ≥ 2, then

H p−1(∇u)〈∇H(∇u),∇
(

u − v p

u p
u

)

〉 + H p−1(∇v)〈∇H(∇v),∇
(

v − u p

v p
v

)

〉
≥ Cp(u

p + v p)H p(∇(ln u − ln v)),

(3.53)

for some positive constant Cp depending only on p;
(ii) if 1 < p < 2, then

H p−1(∇u)〈∇H(∇u),∇
(

u − v p

u p
u

)

〉 + H p−1(∇v)〈∇H(∇v),∇
(

v − u p

v p
v

)

〉
≥ Cp(u

p + v p) [H(∇ ln u) + H(∇ ln v)]p−2 H2(∇(ln u − ln v)),

(3.54)

for some positive constant Cp depending only on p.

1 We mean that u, v ≥ C > 0 a.e. in �.
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Proof Let u, v two weakly differentiable positive functions and consider the following

ψ1 := u − v p

u p
u and ψ2 := v − u p

v p
v.

Then, thanks to the Euler’s theorem for 1-homogeneous functions, and since ∇H is 0-
homogeneus, we deduce that

H p−1(∇u)〈∇H(∇u),∇ψ1〉

= H p(∇u) − p
v p−1

u p−1 H
p−1(∇u)〈∇H(∇u),∇v〉 + (p − 1)

v p

u p
H p(∇u)

= H p(∇u) − v p
[

(1 − p)H p
(∇u

u

)

+ pH p−1
(∇u

u

)

〈∇H(∇u),
∇v

v
〉
]

= H p(∇u) − v p
[
H p(∇ ln u) + pH p−1(∇ ln u)〈∇H(∇ ln u),∇ ln v − ∇ ln u〉

]

(3.55)

and

H p−1(∇v)〈∇H(∇v),∇ψ2〉

= H p(∇v) − p
u p−1

v p−1 H
p−1(∇v)〈∇H(∇v),∇u〉 + (p − 1)

u p

v p
H p(∇v)

= H p(∇v) − u p
[

(1 − p)H p
(∇v

v

)

+ pH p−1
(∇v

v

)

〈∇H(∇v),
∇u

u
〉
]

= H p(∇v) − u p
[
H p(∇ ln v) + pH p−1(∇ ln v)〈∇H(∇ ln v),∇ ln u − ∇ ln v〉

]
.

(3.56)

(i) p ≥ 2. We recall that when p ≥ 2, it holds (2.10), i.e.

H p(η) ≥ H p(η′) + pH p−1(η′)〈∇H(η′), η − η′〉
+ 1

2p−1 − 1
H p(η − η′), ∀η, η′ ∈ R

N . (3.57)

Hence we can apply this inequality, in order to give an estimate from below for (3.55) and
(3.56):

H p−1(∇u)〈∇H(∇u),∇ψ1〉 = H p(∇u) − v p
[
H p(∇ ln u) + pH p−1(∇ ln u)

〈∇H(∇ ln u),∇ ln v − ∇ ln u〉
]

≥ H p(∇u) − v p

[
H p(∇ ln v) − CpH

p(∇(ln v − ln u))
]

= H p(∇u) − H p(∇v) + Cpv
pH p(∇(ln v − ln u)),

(3.58)

H p−1(∇v)〈∇H(∇v),∇ψ2〉 = H p(∇v) − u p
[
H p(∇ ln v) + pH p−1(∇ ln v)

〈∇H(∇ ln v),∇ ln u − ∇ ln v〉
]

≥ H p(∇v) − u p [
H p(∇ ln u) − CpH

p(∇(ln u − ln v))
]

= H p(∇v) − H p(∇u) + Cpu
pH p(∇(ln u − ln v)).

(3.59)
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Adding both these two inequalities, we obtain

H p−1(∇u)〈∇H(∇u),∇ψ1〉 + H p−1(∇v)〈∇H(∇v),∇ψ2〉
≥ Cp(u

p + v p)H p(∇(ln u − ln v)).
(3.60)

(ii) 1 < p < 2. We recall that when 1 < p < 2, it holds (2.11), i.e.

H p(η) ≥ H p(η′) + pH p−1(η′)〈∇H(η′), η − η′〉
+Cp[H(η) + H(η′)]p−2H2(η − η′), ∀η, η′ ∈ R

N , (3.61)

where Cp is a positive constant depending only on p.
Now we proceed exactly as in the previous case to get an estimate from below for (3.55)

and (3.56):

H p−1(∇u)〈∇H(∇u), ∇ψ1〉
= H p(∇u) − v p

[
H p(∇ ln u) + pH p−1(∇ ln u)〈∇H(∇ ln u), ∇ ln v − ∇ ln u〉

]

≥ H p(∇u) − v p
[
H p(∇ ln v) − Cp[H(∇ ln u) + H(∇ ln v)]p−2H2(∇(ln v − ln u))

]

= H p(∇u) − H p(∇v) + Cpv
p

[
[H(∇ ln u) + H(∇ ln v)]p−2H2(∇(ln v − ln u)

]
,

(3.62)

H p−1(∇v)〈∇H(∇v), ∇ψ2〉
= H p(∇v) − u p

[
H p(∇ ln v) + pH p−1(∇ ln v)〈∇H(∇ ln v), ∇ ln u − ∇ ln v〉

]

≥ H p(∇v) − u p
[
H p(∇ ln u) − Cp[H(∇ ln u) + H(∇ ln v)]p−2H2(∇(ln v − ln u))

]

= H p(∇v) − H p(∇u) + Cpu
p[H(∇ ln u) + H(∇ ln v)]p−2H2(∇(ln v − ln u)).

(3.63)

Adding both these two inequalities, we obtain

H p−1(∇u)〈∇H(∇u),∇ψ1〉 + H p−1(∇v)〈∇H(∇v),∇ψ2〉
≥ Cp(u

p + v p)[H(∇ ln u) + H(∇ ln v)]p−2H2(∇(ln v − ln u)).
(3.64)

��

Now, we are ready to prove the comparison principles in bounded and exteriors domains.

Proposition 3.6 Let � be an open bounded smooth domain of RN and f ∈ L
N
p (�). Let

u ∈ D1,p(�) be a weak positive subsolution to (3.52) and v ∈ D1,p(�) be a weak positive
supersolution of

− �H
p v − γ

H◦(x)p
v p−1 = g(x)v p−1 in �, (3.65)

with g ∈ L
N
p (�). Assume that inf� v > 0 and f ≤ g in �. If u ≤ v on ∂�, then

u ≤ v in �.

Proof We will give the proof of this result in the case p ≥ 2. The case 1 < p < 2 is similar.
Let us define

η1 := min{(u p − v p)+,m}
u p−1 and η2 := min{(u p − v p)+,m}

v p−1
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where m > 1. It is quite standard to show that η1 and η2 are good test function that we
can use in the weak formulations of (3.52) and (3.65). Taking both these test function and
subtracting the two equations, we obtain

ˆ
�

H p−1(∇u)〈∇H(∇u),∇η1〉 dx −
ˆ

�

H p−1(∇v)〈∇H(∇v),∇η2〉 dx

≤
ˆ

�

γ

H◦(x)p
u p−1η1 dx −

ˆ
�

γ

H◦(x)p
v p−1η2 dx

+
ˆ

�

f (x)u p−1η1 dx −
ˆ

�

g(x)v p−1η2 dx

=
ˆ

�

γ

H◦(x)p
(
u p−1η1 − v p−1η2

)
dx

+
ˆ

�

f (x)u p−1η1 − g(x)v p−1η2 dx ≤ 0,

(3.66)

since f ≤ g in �. Hence, setting �1 := {x ∈ � | 0 ≤ u p − v p ≤ m} and �2 := {x ∈
� | u p − v p ≥ m}, we deduce that

ˆ
�1

H p−1(∇u)〈∇H(∇u),∇
(

u − v p

u p
u

)

〉 dx

+
ˆ

�1

H p−1(∇v)〈∇H(∇v),∇
(

v − u p

v p
v

)

〉 dx

+ m(1 − p)

[ˆ
�2

H p−1(∇u)〈∇H(∇u), u−p∇u〉 dx

−
ˆ

�2

H p−1(∇v)〈∇H(∇v), v−p∇v〉 dx
]

≤ 0.

(3.67)

Applying (3.53) in (3.67) and making some computations we obtain

Cp

ˆ
�1

(u p + v p)H p(∇(ln u − ln v)) dx

+ m(p − 1)

[ˆ
�2

H p(∇ ln v) dx −
ˆ

�2

H p(∇ ln u) dx

]

≤ 0,
(3.68)

but this implies that

Cp

ˆ
�1

(u p + v p)H p(∇(ln u − ln v)) dx ≤ m(p − 1)
ˆ

�2

H p(∇ ln u) dx . (3.69)

For the right hand side of (3.69), we have

m(p − 1)
ˆ

�2

H p(∇ ln u) dx = (p − 1)
ˆ

�2

mu−pH p(∇u) dx

≤ (p − 1)
ˆ

�′
2

H p(∇u) dx,
(3.70)

where �′
2 := {x ∈ � | u p ≥ m} and it holds that

ˆ
�′
2

H p(∇u) dx → 0 for m → +∞.
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Hence, passing to the limit for m → +∞ in (3.69) we obtain thatˆ
{u p−v p≥0}

(u p + v p)H p(∇(ln u − ln v)) dx = 0, (3.71)

which clearly implies that

u = Kv in the set {x ∈ � | u(x) ≥ v(x)},
for some positive constant K . By our assumptions inf x∈� v > 0 and u ≤ v on ∂�, hence it
follows that K = 1. But this implies that

u ≤ v in �

and this complete the proof of this result in the case p ≥ 2. The case 1 < p < 2 follows
repeating verbatim the proof of the case p ≥ 2, but applying inequality (3.54) instead of
(3.53). ��

Now we want to prove the corresponding result of Proposition 3.6 in exterior domains.

Proposition 3.7 Let � be an exterior domain such that RN \� is bounded and f ∈ L
N
p (�).

Let u ∈ D1,p(�) be a weak positive subsolutions to (3.52) and v ∈ D1,p(�) be a positive
supersolution of

− �H
p v − γ

H◦(x)p
v p−1 = g(x)v p−1 in �, (3.72)

with g ∈ L
N
p (�). Assume that inf� v > 0 and f ≤ g in �. If u ≤ v on ∂� and

lim sup
R→+∞

1

R

ˆ
B2R\BR

u p|∇ log v|p−1 = 0, (3.73)

then

u ≤ v in �.

Proof In the same spirit of Proposition 3.6 we prove our result in the case p ≥ 2. The other
case is similar and it can be shown using the same arguments. To this aim, let ϕR ∈ C∞

c (B2R)

be a standard cut-off function such that
⎧
⎪⎨

⎪⎩

0 ≤ ϕR ≤ 1

ϕR ≡ 1 on BR

|∇ϕR | ≤ 2
R on B2R \ BR .

Let us define

η1 := ϕR
min{(u p − v p)+,m}

u p−1 and η2 := ϕR
min{(u p − v p)+,m}

v p−1 .

where m > 1. As pointed out in the proof of previous proposition, it is possible to show, by
standard arguments, that η1 and η2 are good test functions for the weak formulations (3.52)
and (3.72). Hence, we obtainˆ

�

H p−1(∇u)〈∇H(∇u),∇η1〉 dx −
ˆ

�

H p−1(∇v)〈∇H(∇v),∇η2〉 dx

≤
ˆ

�

γ

H◦(x)p
(
u p−1η1 − v p−1η2

)
dx

+
ˆ

�

f (x)u p−1η1 − g(x)v p−1η2 dx ≤ 0,

(3.74)
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since f ≤ g in �. Now we explicitly compute the left hand side of (3.74).

0 ≥
ˆ

�

H p−1(∇u)〈∇H(∇u),∇η1〉 dx −
ˆ

�

H p−1(∇v)〈∇H(∇v),∇η2〉 dx

=
ˆ

�1

H p−1(∇u)〈∇H(∇u),∇
(

u − v p

u p
u

)

〉ϕR

+ H p−1(∇v)〈∇H(∇v),∇
(

v − u p

v p
v

)

〉ϕR dx

+
ˆ

�1

(

u − v p

u p
u

)

H p−1(∇u)〈∇H(∇u),∇ϕR〉

+
(

v − u p

v p
v

)

H p−1(∇v)〈∇H(∇v),∇ϕR〉 dx

+
ˆ

�2

H p−1(∇u)〈∇H(∇u),∇ (
u1−p)〉mϕR dx

+
ˆ

�2

H p−1(∇u)〈∇H(∇u),∇ϕR〉mu1−p dx

−
ˆ

�2

H p−1(∇v)〈∇H(∇v),∇ (
v1−p)〉mϕR dx

−
ˆ

�2

H p−1(∇v)〈∇H(∇v),∇ϕR〉mv1−p dx

=: I1 + I2 + I3 + I4,

(3.75)

where�1 := {x ∈ � | 0 ≤ u p−v p ≤ m} and�2 := {x ∈ � | u p−v p ≥ m}. By Proposition
3.5 and using the definition of ϕR , it follows that there exits a positive constant depending
only on p such that

I1 ≥ Cp

ˆ
�1∩BR

(u p + v p)H p(∇(ln u − ln v)) dx . (3.76)

Now we are going to give estimates for I2, I3 and I4. We start with I2. Using (2.6) and the
Cauchy–Schwarz inequality, setting �̃1 := {x ∈ � : v p ≤ u p}, we have

|I2| ≤ M
ˆ

�1

∣
∣
∣
∣u − v p

u p
u

∣
∣
∣
∣ H

p−1(∇u)|∇ϕR | dx + M
ˆ

�1

∣
∣
∣
∣v − u p

v p
v

∣
∣
∣
∣ H

p−1(∇v)|∇ϕR | dx

≤ M
ˆ

�̃1

(
2uH p−1(∇u) + vH p−1(∇v)

) |∇ϕR | dx + M
ˆ

�̃1

u pH p−1(∇ ln v)|∇ϕR | dx

≤ C
R

ˆ
B2R\BR

u · H p−1(∇u) dx + C
R

ˆ
B2R\BR

v · H p−1(∇v) dx

+ C
R

ˆ
B2R\BR

u pH p−1(∇ ln v) dx

≤ C
(ˆ

B2R\BR

H p(∇u) dx

) p−1
p

(ˆ
B2R\BR

u p∗
dx

) 1
p∗

+ C
(ˆ

B2R\BR

H p(∇v) dx

) p−1
p

(ˆ
B2R\BR

v p∗
dx

) 1
p∗

+ C
R

ˆ
B2R\BR

u pH p−1(∇ ln v) dx,

(3.77)
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where in the last lineweapplied theHölder inequalitywith conjugate exponent (N , p/(p − 1),
p∗) and C := 2M . Passing to the limit for R that goes to+∞ in the right hand side of (3.77),
using also assumption (3.73) and (2.4), we deduce that I2 goes to zero.

Now we proceed with the estimate of the term I3. By (2.5), we have

I3 = m
ˆ

�2

H p−1(∇u)〈∇H(∇u),∇ϕR〉u1−p dx + m(1 − p)
ˆ

�2

H p(∇u)ϕRu
−p dx

Therefore

|I3| ≤ mM
ˆ

�̃2

H p−1(∇u)|∇ϕR |u1−p dx + m(p − 1)
ˆ

�̃2

H p(∇u)ϕRu
−p dx,

where �̃2 := {x ∈ � | u p ≥ m}. Using this definition and also the properties of ϕR we
deduce that

|I3| ≤ 2M

R

ˆ
�̃2

u · H p−1(∇u) dx + (p − 1)
ˆ

�̃2

H p(∇u) dx

≤ C
(ˆ

B2R\BR

H p(∇u) dx

) p−1
p

(ˆ
B2R\BR

u p∗
dx

) 1
p∗ + (p − 1)

ˆ
�̃2

H p(∇u) dx,

(3.78)

where C := 2M . Passing to the limit for m, R that go to +∞, we deduce that

lim
m,R→+∞ I3 = 0. (3.79)

For the last term I4, by (2.5), recalling �̃2 := {x ∈ � : u p ≥ m}, we have

I4 = m(p − 1)
ˆ

�2

H p(∇v)ϕRv−p dx −
ˆ

�2

mH p−1(∇v)〈∇H(∇v),∇ϕR〉v1−p dx

≥ −M
ˆ

�2

mH p−1(∇ ln v)|∇ϕR | dx ≥ M
ˆ

�̃2

u pH p−1(∇ ln v)|∇ϕR | dx

≥ −2M

R

ˆ
B2R\BR

u pH p−1(∇ ln v) dx

(3.80)

Hence, passing to the limit the right hand side of (3.80), by (3.73) we have that I4 goes to
zero when R tends to +∞.

Finally, if we combine all the estimates (3.76), (3.77), (3.79), (3.80) and we pass to the
limit for m, R → +∞ we deduce that

0 ≥
ˆ

�

H p−1(∇u)〈∇H(∇u),∇η1〉 dx −
ˆ

�

H p−1(∇v)〈∇H(∇v),∇η2〉 dx
= lim sup

R→+∞
(I1 + I2 + I3 + I4) ≥ lim inf

R→+∞(I1 + I2 + I3 + I4)

≥
ˆ

{u≥v}
(u p + v p)H p(∇(ln u − ln v)) dx ≥ 0,

which implies u ≤ v in � as we concluded in the proof of Proposition 3.6. ��

4 Proof of themain results

This section is dedicated to the proof of our main results: Theorems 1.1, 1.3 and 1.4.
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Proof of Theorem 1.1 We start by proving (1.4). To this aim, let us consider u a solution of

− �H
p u − γ

[H◦(x)]p u
p−1 = u p∗−pu p−1 in R

N . (4.1)

In particular, we have that u is a subsolution of (4.1) in any bounded domain � = BH◦
R1

.

We note that f (x) := u p∗−p ∈ L
N
p (BH◦

R1
) and satisfies | f (x)| ≤ A[H◦(x)]−α with α =

((N − p)/p − σ1) (p∗ − p) < p for x ∈ BH◦
R1

due to Theorem 3.3. By Proposition 3.4 we
have that the function

v(H◦(x)) = 1 − δ[H◦(x)]ε
[H◦(x)]μ1

∈ D1,p(BH◦
R1

)

is a positive supersolution of (3.65) in BH◦
R1

⊂ �, with g ∈ L
N
p (BH◦

R1
) satisfying g(x) ≥

A[H◦(x)]−α andwhere 0 < δ, ε, R1 < 1 are positive constants dependingonly on N , p, γ, A
and α.

Let us consider � > 0, M = sup
∂BH◦

R1
u, N = sup

∂BH◦
R1

1/v and define

w(x) := N (M + �)v(H◦(x)).

It is easy to chek that w is a positive supersolution of (3.65) in BH◦
R1

⊂ � and infBH◦
R1

w =
M + � > 0 and u ≤ w on ∂BH◦

R1
. Hence, by Proposition 3.6 we deduce that

u ≤ w in BH◦
R1

.

Passing to the limit for � → 0 we obtain that

u(x) ≤ C

[H◦(x)]μ1
in BH◦

R1
,

where C = M · N .
Now we have to show the estimate from below. Let u be a weak solution of (PH ), then u

is a supersolution of

− �H
p u − γ

[H◦(x)]p u
p−1 = 0 in BH◦

R1
. (4.2)

We set c1 := infBH◦
R1

u > 0.

Now, we define

w̃(x) := c
c1

[H◦(x)]μ1
in BH◦

R1
,

where c = inf
∂BH◦

R1
[H◦(x)]μ1 = Rμ1

1 . The function w̃ is a subsolution to (4.2) inBH◦
R1

. Since,

it holds that u ≥ w̃ in ∂BH◦
R1

, we conclude by using Proposition 3.6 to obtain

u ≥ w̃ in BH◦
R1

,

and hence combining the estimates from above and below we deduce that (1.4) is proved.
Now, our aim is to prove (1.5). Let us consider u a subsolution of

− �H
p u − γ

[H◦(x)]p u
p−1 = u p∗−pu p−1 in (BH◦

R2
)c. (4.3)
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We note that f (x) := u p∗−p ∈ L
N
p ((BH◦

R2
)c) and by Theorem 3.3 we have | f (x)| ≤

A[H◦(x)]−α with α = ((N − p)/p + σ2) (p∗ − p) > p for x ∈ (BH◦
R2

)c. By Proposition
3.4 the function

v(H◦(x)) = 1 − δ[H◦(x)]−ε

[H◦(x)]μ2
∈ D1,p((BH◦

R2
)c)

is a positive supersolution of (3.72) in (BH◦
R2

)c ⊂ �, with g ∈ L
N
p ((BH◦

R2
)c) satisfying

g(x) ≥ A[H◦(x)]−α and where 0 < δ, ε < 1 and R2 > 1 are positive constants depending
only on N , p, γ, A and α.

Let us consider � > 0, M = sup
(∂BH◦

R2
)c
u, N = sup

(∂BH◦
R2

)c
1/v and define

w(x) := N (M + �)v(H◦(x)).

We note that w is a positive supersolution of (3.72) in (BH◦
R2

)c ⊂ � and inf
(BH◦

R2
)c

w = M+
� > 0 and u ≤ w on (∂BH◦

R2
)c. We verify the condition (3.73). Since |∇ log v(x)| ≤ C |x |−1,

by Hölder inequality we have

lim sup
R→+∞

1

R

ˆ
B2R\BR

u p|∇ log v|p−1 dx ≤ lim sup
R→+∞

C

R

(ˆ
B2R\BR

|u|p∗
dx

) p
p∗ = 0, (4.4)

where C is a constant independent of R.
Hence, by Proposition 3.7 we deduce that

u ≤ w in (BH◦
R2

)c.

Passing to the limit for � → 0 we obtain that

u(x) ≤ C

[H◦(x)]μ2
in (BH◦

R2
)c,

where C = M · N
We conclude with the estimate from below. Let u be a weak solution of (PH ). Then u is

a supersolution of

− �H
p u − γ

[H◦(x)]p u
p−1 = 0 in R

N . (4.5)

We claim that ˆ
B2R\BR

|∇ log u|p ≤ CRN−p (4.6)

for R sufficiently large and constant C independent of R. Indeed, by (4.5), we have

− �H
p u ≥ 0 in R

N . (4.7)

Therefore, considering the test function η = ζ pu1−p , with ζ ∈ C1
c (R

N ) nonnegative func-
tion, and taking in (4.7) we have

−(p − 1)
ˆ
RN

H p(∇u)ζ pu−p dx + p
ˆ
RN

H p−1(∇u)〈∇H(∇u),∇ζ 〉ζ p−1u1−p dx ≥ 0.

(4.8)
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By Hölder inequality and by 0-homogeneity of ∇H we get

ˆ
RN

H p(∇ log u)ζ p dx ≤ M
p

p − 1

(ˆ
RN

H p(∇ log u)ζ p dx

) p−1
p

(ˆ
RN

|∇ζ |p dx
) 1

p

.

(4.9)

Taking a standard cutoff function ζ in (4.9) we get the claim (4.6).
Now we set c2 = inf

(∂BH◦
R2

)c
u > 0 and c = inf

(∂BH◦
R2

)c
[H◦(x)]μ2 . We note that v =

c2c[H◦(x)]−μ2 is a weak solution of (4.5). Moreover the condition (3.73) is verified. Indeed
by Hölder inequality and (4.6) we have

1

R

ˆ
B2R\BR

v p|∇ log u|p−1 dx ≤ CR−1−pμ2+ N
p

(ˆ
B2R\BR

|∇ log u|p dx
) p−1

p

≤ CR−1−pμ2+ p−1
p (N−p)+ N

p → 0

(4.10)

since μ2 > (N − p)/p. Applying the Proposition 3.7 we conclude that

u(x) ≥ v(x) = c
c2

[H◦(x)]μ2
in (BH◦

R2
)c

and therefore the thesis. ��
Now we prove Theorem 1.3 that will be essential to prove the asymptotic behavior of the

gradient of solutions to (PH ). For the reader convenience we state a more detailed statement
contained in the following:

Theorem 4.1 Let v ∈ C1,α
loc (RN \ {0}) be a positive weak solution of the equation

− �H
p v − γ

[H◦(x)]p v p−1 = 0 in R
N \ {0}, (4.11)

where 0 ≤ γ < CH . Assume that there exist two positive constants C and c such that

c

[H◦(x)]μ2
≤ v(x) ≤ C

[H◦(x)]μ2
∀x ∈ R

N \ {0}, (4.12)

and suppose that there exists a positive constant Ĉ such that

|∇v(x)| ≤ Ĉ

[H◦(x)]μ2+1 ∀x ∈ R
N \ {0}, (4.13)

then

v(x) = c1
[H◦(x)]μ2

, (4.14)

with

c1 := lim sup
|x |→0

[H◦(x)]μ2v(x).

On the other hand, suppose that there exist two positive constants C̃ and c̃ such that

c̃

[H◦(x)]μ1
≤ v(x) ≤ C̃

[H◦(x)]μ1
∀x ∈ R

N \ {0}, (4.15)
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and suppose that there exists a positive constant C such that

|∇v(x)| ≤ C

[H◦(x)]μ1+1 ∀x ∈ R
N \ {0}, (4.16)

then

v(x) = c2
[H◦(x)]μ1

, (4.17)

with

c2 := lim sup
|x |→+∞

[H◦(x)]μ1v(x).

Proof We prove this result only for p ≥ 2. The other case is similar. Suppose that (4.12)
holds. From definition of c1, there exist r (sufficiently small) such that

v(x) ≤ c1 + an
[H◦(x)]μ2

in Br (0) \ {0}, (4.18)

given an → 0.
On the other hand, there exist sequences of radii Rn and points xn with Rn tending to zero

and H◦(xn) = Rn , such that

v(xn) ≥ c1 − an
[H◦(xn)]μ2

. (4.19)

Now we set

wn(x) := Rμ2
n v(Rnx) ∀x ∈ BH◦

2 \ BH◦
1/2. (4.20)

By (4.12), it follows that wn is uniformly bounded in L∞(BH◦
2 \BH◦

1/2) and, since wn satisfies

the equation (4.11), by [2, 17, 18], it is also uniformly bounded in C1,α(K ), for 0 < α < 1
and for any compact set K ⊂ BH◦

2 \BH◦
1/2. Moreover, from Ascoli-Arzela’s Theorem, we

deduce that wn → w∞ in the norm ‖ · ‖C1,α(K ), for any compact set K ⊂ BH◦
2 \BH◦

1/2. By
(4.18), we have

w∞ ≤ c1
[H◦(x)]μ2

and by (4.19), there exist a point x ∈ ∂BH◦
1 such thatw∞(x) = c1. By the strong comparison

principle [11], that holds under our assumption on H (see Sect. 2), we have

w∞ ≡ c1
[H◦(x)]μ2

in BH◦
2 \ BH◦

1/2. (4.21)

Now we set

v̂ := c1
[H◦(x)]μ2

(4.22)

and we note that it solves (4.11). Fix R > 0 sufficiently large and let ϕR ∈ C∞
c (B2R) be a

standard cut-off function such that
⎧
⎪⎨

⎪⎩

0 ≤ ϕR ≤ 1

ϕR ≡ 1 on BR

|∇ϕR | ≤ 2
R on B2R \ BR .

(4.23)
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Let us define

ϕ1 := ϕR
min{(v p − v̂ p)+,m}

v p−1 and ϕ2 := ϕR
min{(v p − v̂ p)+,m}

v̂ p−1 , (4.24)

where m > 1.
We remark that ϕ1 and ϕ2 are good test function in any domain 0 /∈ �. Testing

(4.24) in (4.11) on the domain R
N\BH◦

Rn
, and, since the stress field H(∇u)p−1∇H(∇u) ∈

W 1,2
loc (RN\BH◦

Rn
) (see [19]), exploiting the divergence theorem, we have

ˆ
RN \BH◦

Rn

H p−1(∇v)〈∇H(∇v),∇ϕ1〉dx −
ˆ
RN \BH◦

Rn

H p−1(∇v̂)〈∇H(∇v̂),∇ϕ2〉dx

−
ˆ
RN \BH◦

Rn

γ

H◦(x)p
(
v p−1ϕ1 − v p−1ϕ2

)
dx

=
ˆ

∂BH◦
Rn

H p−1(∇v)〈∇H(∇v), ηn〉ϕ1 − H p−1(∇v̂)〈∇H(∇v̂), ηn〉ϕ2dx,

(4.25)

where ηn is the inner unite normal vector at ∂BH◦
Rn

. Now we set A := {0 ≤ v p − v̂ p ≤ m}
and B := {v p − v̂ p ≥ m}. Then (4.25) becomes:

ˆ
∂BH◦

Rn

−H p−1(∇v)〈∇H(∇v), ηn〉ϕ1 + H p−1(∇v̂)〈∇H(∇v̂), ηn〉ϕ2 dx

=
ˆ

(RN \BH◦
Rn

)∩A
H p−1(∇v)〈∇H(∇v),∇

(

v − v̂ p

v p
v

)

〉ϕR dx

+
ˆ

(RN \BH◦
Rn

)∩A
H p−1(∇v̂)〈∇H(∇v̂),∇

(

v̂ − v p

v̂ p
v̂

)

〉ϕR dx

+
ˆ

(RN \BH◦
Rn

)∩A

(

v − v̂ p

v p
v

)

H p−1(∇v)〈∇H(∇v),∇ϕR〉 dx

+
ˆ

(RN \BH◦
Rn

)∩A

(

v̂ − v p

v̂ p
v̂

)

H p−1(∇v̂)〈∇H(∇v̂),∇ϕR〉 dx

+
ˆ

(RN \BH◦
Rn

)∩B
H p−1(∇v)〈∇H(∇v),∇ (

v1−p)〉mϕR

+ H p−1(∇v)〈∇H(∇v),∇ϕR〉mv1−p dx

−
ˆ

(RN \BH◦
Rn

)∩B
(
H p−1(∇v̂)〈∇H(∇v̂),∇ (

v̂1−p)〉mϕR

+H p−1(∇v̂)〈∇H(∇v̂),∇ϕR〉mv̂1−p) dx

=: I1 + I2 + I3 + I4 + I5 + I6.

(4.26)

Now we set�1 := (RN\BH◦
Rn

)∩A and�2 := (RN\BH◦
Rn

)∩B. By Proposition 3.5, it follows
that there exits a positive constant depending only on p such that

I1 + I2 ≥ Cp

ˆ
�1∩B2R

(v p + v̂ p)H p(∇(ln v − ln v̂))ϕR dx . (4.27)
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Now we estimate I3 + I4. Using (2.6) and the Hölder inequality with conjugate exponent
(N , p/(p − 1), p∗) we have

|I3 + I4| ≤ M
ˆ

�1

∣
∣
∣
∣v − v̂ p

v p
v

∣
∣
∣
∣ H

p−1(∇v)|∇ϕR | dx

+ M
ˆ

�1

∣
∣
∣
∣v̂ − v p

v̂ p
v̂

∣
∣
∣
∣ H

p−1(∇v̂)|∇ϕR | dx

≤ M
ˆ

�1

(
2vH p−1(∇v) + v̂H p−1(∇v̂)

) |∇ϕR | dx

+ M
ˆ

�1

v pH p−1(∇ ln v̂)|∇ϕR | dx

≤ 2M

R

ˆ
B2R\BR

vH p−1(∇v) dx + 2M

R

ˆ
B2R\BR

v̂H p−1(∇v̂) dx

+ 2M

R

ˆ
B2R\BR

v pH p−1(∇ ln v̂) dx

≤ 2M

(ˆ
B2R\BR

H p(∇v) dx

) p−1
p

(ˆ
B2R\BR

v p∗
dx

) 1
p∗

+ 2M

(ˆ
B2R\BR

H p(∇v̂) dx

) p−1
p

(ˆ
B2R\BR

v̂ p∗
dx

) 1
p∗

+ 2M

R

ˆ
B2R\BR

v pH p−1(∇ ln v̂) dx .

(4.28)

By (4.22) we have H(∇ ln v̂(x)) ≤ C[H◦(x)]−1, where C = μ2, we have that

1

R

ˆ
B2R\BR

v pH p−1(∇ ln v̂) ≤ C

Rp

ˆ
B2R\BR

|v|p

≤ C

(ˆ
B2R\BR

|v|p∗
) p

p∗
,

(4.29)

where we used the Hölder inequality. Since v has the right summability at the infinity, for R
that goes to infinity in the right hand side of (4.28), we obtain that I3 + I4 goes to zero.

Now we proceed with the estimate of the term I5. Recalling that v p ≥ m in �2, we get

|I5| ≤ mM
ˆ

�2

H p−1(∇v)|∇ϕR |v1−p dx + m(p − 1)
ˆ

�2

H p(∇v)ϕRv−p dx,

Using the properties of ϕR we obtain that

|I5| ≤ M

R

ˆ
B2R\BR

vH p−1(∇v) dx + (p − 1)
ˆ

�2

H p(∇v) dx

≤ M

(ˆ
B2R\BR

H p(∇v) dx

) p−1
p

(ˆ
B2R\BR

v p∗
dx

) 1
p∗ + (p − 1)

ˆ
�2

H p(∇v) dx,

(4.30)

Passing to the limit for m, R that go to +∞, we deduce that I5 goes to zero since the set �2

vanishes as m → +∞.
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For the last term I6 we obtain

I6 = m(p − 1)
ˆ

�2

H p(∇v̂)ϕR v̂−p dx −
ˆ

�2

mH p−1(∇v̂)〈∇H(∇v̂),∇ϕR〉v̂1−p dx

≥ −M
ˆ

�2

mH p−1(∇ ln v̂)|∇ϕR | dx

≥ −2M

R

ˆ
B2R\BR

v pH p−1(∇ ln v̂) dx

(4.31)

Hence, passing to the limit in the right hand side of (4.31) and using (4.29) we have that the
right hand of (4.31) tends to zero when R tends to the infinity.

Now we estimate the left hand of (4.26). By (4.24) and Proposition 2.1 (in particular see
(2.11)), we get

ˆ
∂BH◦

Rn

−H p−1(∇v̂)〈∇H(∇v̂), ηn〉ϕ2 + H p−1(∇v)〈∇H(∇v), ηn〉ϕ1 dx

= −
ˆ

∂BH◦
Rn

ϕ1
(
H p−1(∇v̂)〈∇H(∇v̂), ηn〉 − H p−1(∇v)〈∇H(∇v), ηn〉

)
dx

−
ˆ

∂BH◦
Rn

(ϕ2 − ϕ1)H
p−1(∇v̂)〈∇H(∇v̂), ηn〉 dx

≤
ˆ

∂BH◦
Rn

m

v p−1 C̃ p(|∇v̂|p−2 + |∇v|p−2)|∇v̂ − ∇v| + 2m

v̂ p−1 Mα2|∇v̂|p−1 dx,

:= J1 + J2.

(4.32)

where, in the last line, we used (2.4) and (2.6).
We set x = Rn y, with y ∈ ∂BH◦

1 . Using this change of variables and recalling (4.12),
(4.20) and (4.21), J1 can be estimated as

J1 ≤ C̃1

ˆ
∂BH◦

1

mRN−1+μ2(p−1)−(μ2+1)(p−1)
n | − μ2c1∇H◦(y) − ∇wn(y)| dy

= C̃1R
N−p−ε
n

(4.33)

where we choose m = R−ε
n , for ε > 0 fixed sufficiently small, and C̃1 is a positive constant.

In a similar way J2 is estimated as

J2 ≤ C̃2R
N−p−ε
n , (4.34)

where C̃2 is a positive constant.
Finally, if we combine all the estimates (4.27), (4.28), (4.30), (4.31), (4.33), (4.34) and

passing to the limit for Rn → 0, and then, exploiting the Fatou’s lemma, for R → +∞, we
deduce that ˆ

{v≥v̂}
(v p + v̂ p)H p(∇(ln v − ln v̂)) dx = 0,

which implies v ≤ v̂ as we concluded in the proof of Proposition 3.6.
To prove that v̂ ≤ v, let us consider

ϕ1 := ϕR
min{(v̂ p − v p)+,m}

v̂ p−1 and ϕ2 := ϕR
min{(v̂ p − v p)+,m}

v p−1 , (4.35)
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where m > 1 and ϕR is the standard cutoff function defined in (4.23). Using (4.35) in the
weak formulation of (4.11), proceeding in a similar way as above we obtain (4.14). The only
thing to check is that

1

R

ˆ
B2R\BR

v̂ pH p−1(∇ ln v) dx → 0. (4.36)

Assumption (4.13) ensures (4.36), and therefore we are done.
Now, assume that (4.15) holds and suppose that p ≥ 2, the other case is similar. The proof

is similar to the previous one and, for this reason, we omit some details. From definition of
c2, there exist r (sufficiently large) such that

v(x) ≤ c2 + an
[H◦(x)]μ1

in R
N \ Br (0), (4.37)

given an → 0.
On the other hand, there exist sequences of radii Rn and points xn with Rn tending to

infinity and H◦(xn) = Rn , such that

v(xn) ≥ c2 − an
[H◦(xn)]μ1

. (4.38)

Now we set

wn(x) := R−μ1
n v

(
x

Rn

)

∀x ∈ BH◦
2 \ BH◦

1/2. (4.39)

As in the previous case we obtain

w∞ ≡ c2
[H◦(x)]μ1

in BH◦
2 \ BH◦

1/2. (4.40)

Now we set

v̂ := c2
[H◦(x)]μ1

and we remark that it solves (4.11). We show that v = v̂ in R
N . To this aim, fix ε > 0

sufficiently small and let ϕε ∈ C∞(RN ) be a function such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ ϕε ≤ 1

ϕε ≡ 0 on Bε

ϕε ≡ 1 on (B2ε)
c

|∇ϕε| ≤ 2
ε

on B2ε \ Bε.

(4.41)

Let us define

ϕ1 := ϕε

min{(v p − v̂ p)+,m}
v p−1 and ϕ2 := ϕε

min{(v p − v̂ p)+,m}
v̂ p−1 , (4.42)

where m > 1.
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We note that ϕ1 and ϕ2 are good test function in any bounded domain 0 ∈ �. Testing
(4.42) in (4.11) on the domain BH◦

Rn
we get

ˆ
BH◦

Rn

H p−1(∇v)〈∇H(∇v),∇ϕ1〉dx −
ˆ
BH◦

Rn

H p−1(∇v̂)〈∇H(∇v̂),∇ϕ2〉dx

−
ˆ
BH◦

Rn

γ

H◦(x)p
(
v p−1ϕ1 − v p−1ϕ2

)
dx

=
ˆ

∂BH◦
Rn

H p−1(∇v)〈∇H(∇v), ηn〉ϕ1 − H p−1(∇v̂)〈∇H(∇v̂), ηn〉ϕ2 dx,

(4.43)

where ηn is the outward unite normal vector at ∂BH◦
Rn

. By (4.42) and Proposition 2.1, the
right hand of (4.43) becomesˆ

∂BH◦
Rn

−H p−1(∇v̂)〈∇H(∇v̂), ηn〉ϕ2 + H p−1(∇v)〈∇H(∇v), ηn〉ϕ1 dx

=
ˆ

∂BH◦
Rn

−ϕ1
(
H p−1(∇v̂)〈∇H(∇v̂), ηn〉 − H p−1(∇v)〈∇H(∇v), ηn〉

)
dx

−
ˆ

∂BH◦
Rn

(ϕ2 − ϕ1)H
p−1(∇v̂)〈∇H(∇v̂), ηn〉 dx

≤
ˆ

∂BH◦
Rn

C̃ pv(|∇v̂|p−2 + |∇v|p−2)(∇v̂ − ∇v) + v p

v̂ p−1 Mα2|∇v̂|p−1 dx,

:= J̃1 + J̃2.

(4.44)

where, in the last line, we used (2.4) and (2.6).
We consider the following change of variables x = y/Rn , with y ∈ ∂BH◦

1 . Using this
fact, by (4.39) and (4.40), we have

J̃1 ≤ C1

ˆ
∂BH◦

1

R1−N−μ1+(μ1+1)(p−1)
n | − μ1c2y − ∇wn(y)| dy

= C1R
−N+μ1 p+p
n

(4.45)

where C1 is a positive constant.
In a similar way J̃2 is estimated as

J̃2 ≤ C2R
−N+μ1 p+p
n , (4.46)

whereC2 is a positive constant.We note that−N+μ1 p+ p < 0 since 0 ≤ μ1 < (N− p)/p.
Proceeding as in the case (4.12), we prove thatˆ

{v≥v̂}
(v p + v̂ p)H p(∇(ln v − ln v̂)) dx = 0, (4.47)

which implies v ≤ v̂ in � as we concluded in the proof of Proposition 3.6.
To prove that v̂ ≤ v, let us consider

ϕ1 := ϕε

min{(v̂ p − v p)+,m}
v̂ p−1 and ϕ2 := ϕε

min{(v̂ p − v p)+,m}
v p−1 , (4.48)

wherem > 1 and ϕε is defined as (4.41). Testing (4.48) in (4.11), using the assumption (4.16)
and proceeding in a similar way as above we get (4.17). ��
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At this point we are ready to prove

Proof of Theorem 1.4 We prove (1.12), the other case is similar and it can be proved in a
similar way. We start by showing the estimate from above. For Rn tending to infinity, let us
consider

wn(x) := Rμ2
n u(Rnx) ∀x ∈ BH◦

2 \ BH◦
1/2. (4.49)

We remark that wn is uniformly bounded in L∞(BH◦
2 \BH◦

1/2) and it weakly solves

− �H
p wn − γ

H◦(x)p
w

p−1
n = Rμ2(p−1)+p−μ2(p∗−1)

n w
p∗−1
n in R

N . (4.50)

Since μ2(p − 1) + p − μ2(p∗ − 1) < 0, by [2, 17, 18], wn is also uniformly bounded in
C1,α(K ), for 0 < α < 1 and for any compact set K ⊂ BH◦

2 \BH◦
1/2. For Rn sufficiently large

we get the estimate from above in (1.12).
Now we prove the estimate from below. Suppose by contradiction that there exist

sequences of points xn such that

[H◦(xn)]μ2+1|∇u(xn)| → 0 for |xn | → ∞. (4.51)

For 0 < a < A fixed, let us consider

wn(x) := Rμ2
n u(Rnx).

For n sufficiently large, from Theorem 1.1, relabeling the constants, we have

c

Aμ2
≤ wn(x) ≤ C

aμ2
in BH◦

A \ BH◦
a .

Furthermore, recalling the estimate from above of the gradients of theweak solution u, proved
previously, we get

|∇wn(x)| ≤ C̃

aμ2+1 in BH◦
A \ BH◦

a . (4.52)

For a, A fixed, by [2, 17, 18], wn is also uniformly bounded in C1,α(K ), for 0 < α < 1 and
for any compact set K ⊂ BH◦

A \BH◦
a . Moreover

wn(x) → wa,A in BA \ Ba,

in the norm C1,α′
, for 0 < α′ < α. Moreover, since wn weakly solves

− �H
p wn − γ

H◦(x)p
w

p−1
n = Rμ2(p−1)+p−μ2(p∗−1)

n w
p∗−1
n in BH◦

A \ BH◦
a , (4.53)

we deduce that

− �H
p wa,A − γ

H◦(x)p
w

p−1
a,A = 0 in BH◦

A \ BH◦
a . (4.54)

Now we take a j = 1/ j and A j = j , for j ∈ N and we construct wa j ,A j as above. For j goes
to infinity, using a standard diagonal process, we construct a limiting profile w∞ so that

− �H
p w∞ − γ

H◦(x)p
w

p−1∞ = 0 in R
N \ {0}, (4.55)

with w∞ ≡ wa j ,A j in BH◦
A j

\ BH◦
a j

.
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Since w∞ satisfies the assumptions (4.12), (4.13) of the Theorem 4.1, we get

w∞(x) = c2
[H◦(x)]μ2

, (4.56)

where we set c2 := lim sup|x |→0[H◦(x)]μ2w∞(x).
Now we set yn = xn/Rn , and by (4.51), we deduce that |∇wn(yn)| tends to zero as Rn

tends to infinity. This fact and the uniform convergence of the gradients imply that there exist
y ∈ ∂BH◦

1 such that

|∇w∞(y)| = 0.

This is an absurd since the solution w∞ has no critical points. ��
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Appendix A

In this section we prove the existence of a weak solution to problem (PH ) by means of a
minimization problem. For this reason we define the following minimization problem: Let
S(γ ) defined as

S(γ ) := inf
u∈D1,p(RN )\{0}

L(u)
(ˆ

RN
|u|p∗

dx

) p
p∗

, (A.1)

where

L(u) =
ˆ
RN

H p(∇u) − γ
|u|p

H◦(x)p
dx . (A.2)

Thanks to the Hardy inequality (2.24) we deduce that S(γ ) ≥ 0.

Theorem 5.1 Let 0 ≤ γ < CH . The problem (PH ) has a positive weak solution that it
minimizes the quotient (A.1).

Proof Let {un} be a minimizing sequence to (A.1). Without loss of generality, because of the
homogeneity of the quotient in (A.1), we assume that

L(un) = 1. (A.3)

By Hardy inequality (observe that H is a norm equivalent to the euclidean one), L(·)1/p is
an equivalent norm to the standard one ‖ · ‖D1,p(RN ), we have that

‖un‖D1,p(RN ) ≤ C,
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withC that does not depend on n. Hence up to a subsequence un⇀u0 inD1,p(RN ). Moreover
let us also assume that (we will prove it later)

u0 �≡ 0. (A.4)

Recalling (A.1), using the weak lower semicontinuity of the norm and (A.3), we deduce

S(γ ) ≤ L(u0)
(ˆ

RN
u p∗
0 dx

) p
p∗

≤ lim inf
n

L(un)
(ˆ

RN
u p∗
0 dx

) p
p∗

= 1
(ˆ

RN
u p∗
0 dx

) p
p∗

(A.5)

Using Sobolev inequalitywe have that un → u0 a.e. inRN . Therefore by theBreis-Lieb result
[4], it follows thatˆ

RN
u p∗
0 dx =

ˆ
RN

u p∗
n dx −

ˆ
RN

(un − u0)
p∗
dx + o(1).

Then from (A.5) we obtain

S(γ ) ≤ 1
(ˆ

RN
u p∗
n dx −

ˆ
RN

(un − u0)
p∗
dx + o(1)

) p
p∗

(A.6)

From (A.1), we deduce

L(un) = S(γ )

(ˆ
RN

u p∗
n dx

) p
p∗ + o(1)

and

L(u0 − un) ≥ S(γ )

(ˆ
RN

|u0 − un |p∗
dx

) p
p∗

.

Using these last inequalities in (A.6) we get

S(γ ) ≤ S(γ )
1

(

L
p∗
p (un) − L

p∗
p (u0 − un) + o(1)

) p
p∗

≤ S(γ )
1

(

1 − L
p∗
p (u0 − un) + o(1)

) p
p∗

,

(A.7)

where in the last line we used (A.3). Taking the limit superior of (A.7) we get a contradicition,
i.e. S(γ ) < S(γ ) unless the sequenceL(u0−un) → 0. Hence, sinceL(·)1/p is an equivalent
norm to ‖ · ‖D1,p(RN ), we finally get that un → u0 in D1,p(RN ). Therefore passing to the
limit in (A.1), we obtain

S(γ ) = L(u0)
(´

RN |u0|p∗ dx
) p
p∗

,
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namely u0 (eventually redefining it as Cu0, for some positive constant) is a weak solution to
(PH ).

Now we prove that actually (A.4) holds, concluding indeed the proof. Let {un} the min-
imizing sequence such that (A.3) holds. For every n let us take a sequence of radii Rn such
that ˆ

BRn

H p(∇un) − γ
|un |p
H◦(x)p

dx =
ˆ
RN \BRn

H p(∇un) − γ
|un |p
H◦(x)p

dx = L(un)

2
(A.8)

and let us define the rescaled sequence

wn = R
p−N
p

n un

(
x

Rn

)

. (A.9)

Using assumptions (hH ), (A.8) and (A.9) we deduce that
ˆ
B1

H p(∇wn) − γ
|wn |p
H◦(x)p

dx =
ˆ
RN \B1

H p(∇wn) − γ
|wn |p
H◦(x)p

dx = L(un)

2
(A.10)

Now we prove the following

Lemma 5.2 Let {un} be a minimizing sequence, weakly converging to zero. Then, for every
ball Br and for every ε ∈ (−r , r) there exists ρ ∈ (0, ε)∪ (ε, 0) such that for a subsequence

either
ˆ
Br+ρ

H p(∇un) dx → 0, or
ˆ
RN \Br+ρ

H p(∇un) dx → 0. (A.11)

Proof By the homogeneity of the quotient in (A.1) we can assume that the minimizing
sequence {un} is such that ‖un‖L p∗ (RN ) = 1, so that L(un) → S(γ ). By Ekeland’s
ε−principle, we can suppose that the minimizing sequence has the Palais-Smale property,
that is ˆ

RN
H p−1(∇un)〈∇H(∇un),∇ϕ〉 − γ

H◦(x)p
u p−1
n ϕ dx

= S(γ )

ˆ
RN

u p∗−1
n ϕ dx + o(1)‖ϕ‖D1,p(RN ), (A.12)

for all ϕ ∈ D1,p(RN ) We have that
ˆ r+ε

r
dρ

ˆ
ρSN−1

H p(∇un) =
ˆ
Br+ε\Br

H p(∇un)

is bounded. Then we can find ρ ∈ (0, ε) such that for infinitely many n’s it holdsˆ
(r+ρ)SN−1

H p(∇un) ≤ C
ˆ
Br+ε\Br

H p(∇un),

for some positive constant C and hence up to redefining the constantˆ
(r+ρ)SN−1

|∇un |p ≤ C
ˆ
Br+ε\Br

H p(∇un).

Therefore (see [25, Theorem A.8]) since

W 1,p((r + ρ)SN−1) ↪→ W 1− 1
p ,p

((r + ρ)SN−1) ↪→ L p((r + ρ)SN−1) (A.13)
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with both embedding compact, we can assume that a subsequence converges strongly to some

limit, say u in the trace space W 1− 1
p ,p

((r + ρ)SN−1). Using the fact that the trace operator

has a continuous embedding from W 1,p(Br+ρ) into W 1− 1
p ,p

((r + ρ)SN−1), by the weak
convergence to zero of {un}, we deduce that indeed u ≡ 0.

Now we show the following
Claim: Let � ⊂ R

N a generic smooth bounded domain. The inverse operator

(−�H
p )−1 : W 1− 1

p ,p
(∂�) → W 1,p(�),

is continuous. Indeed we consider a succession gn → g in W 1− 1
p ,p

(�), and let un, u ∈
W 1,p(�) be the solutions to

{
−�H

p u = 0 in �

u = g on ∂�,

{
−�H

p un = 0 in �

un = gn on ∂�.
(A.14)

The solution to (A.14) can be obtained minimizing the functional

J (u) = 1

p

ˆ
�

H p(∇u) dx

on the set
{
{g} + W 1,p

0 (�)
}
,
{
{gn} + W 1,p

0 (�)
}
respectively. Since (u − g), (un − gn) ∈

W 1,p
0 (�), integrating by parts (A.14) and subtracting the equations, we obtain

0 =
ˆ

�

H p−1(∇u)〈∇H(∇u),∇(u − g)〉 dx

−
ˆ

�

H p−1(∇un)〈∇H(∇un),∇(un − gn)〉 dx

=
ˆ

�

〈H p−1(∇u)∇H(∇u) − H p−1(∇un)∇H(∇un),∇u − ∇un〉 dx

−
ˆ

�

〈H p−1(∇u)∇H(∇u) − H p−1(∇un)∇H(∇un),∇g − ∇gn〉 dx .

We recall (see [6, Lemma 4.1]) that for x ∈ R
N\{0}, y ∈ R

N there exist a constant C > 0
such that

〈H p−1(x)∇H(x) − H p−1(y)∇H(y), x − y〉 ≥ C(|x | + |y|)p−2|x − y|2, (A.15)

Therefore, by (A.15) and (2.9) we get

C
ˆ

�

(|∇u| + |∇un |)p−2 (|∇u − ∇un |)2
)
dx

≤ C̃ p

ˆ
�

(|∇u| + |∇un |)p−2|∇u − ∇un ||∇g − ∇gn | dx

≤ C̃ p

(ˆ
�

(|∇u| + |∇un |)p dx
) p−1

p
(ˆ

�

|∇g − ∇gn |p dx
) 1

p

,

(A.16)

where in the last inequality we have used the Hölder inequality.
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We recall that by W 1− 1
p ,p

(∂�) we denote the space of traces u|∂�, namely the set (of

equivalence classes)
{
{u} + W 1,p

0 (�), u ∈ W 1,p(�)
}
, endowed with the trace norm

‖u|∂�‖
W

1− 1
p ,p

(∂�)
= inf{‖v‖W 1,p(�) : u − v ∈ W 1,p

0 (�)}. (A.17)

Hence using (A.16) letting the boundary data gn → g in the sense of (A.17) we obtain the
claim.

Let us define the two auxiliary sequences of D1,p(RN ) as follows:

u1,n(x) =

⎧
⎪⎨

⎪⎩

un(x) if x ∈ Br+ρ

w1,n(x) if x ∈ Br+ε \ Br+ρ

0 elsewhere;
and

u2,n(x) =

⎧
⎪⎨

⎪⎩

0 if x ∈ Br−ε

w2,n(x) if x ∈ Br+ρ \ Br−ε

un(x) elsewhere,

(A.18)

where w1,n respectively w2,n denote the solutions to
⎧
⎪⎨

⎪⎩

−�H
p w1,n = 0 in Br+ε \ Br+ρ

w1,n = 0 on ∂Br+ε

w1,n = un on ∂Br+ρ

(A.19)

respectively
⎧
⎪⎨

⎪⎩

−�H
p w2,n = 0 in Br+ρ \ Br−ε

w2,n = un on ∂Br+ρ

w2,n = 0 on ∂Br−ε.

(A.20)

Since un → 0 on ∂Br+ρ in theW
1− 1

p ,p norm, see (A.13), by the above claimwe immediately
get that both

w1,n
W 1,p−→ 0 in Br+ε \ Br+ρ and w2,n

W 1,p−→ 0 in Br+ρ \ Br−ε. (A.21)

Using u1,n as test function in (A.12) we obtainˆ
RN

H p−1(∇un)〈∇H(∇un),∇u1,n〉 − γ

H◦(x)p
u p−1
n u1,n dx

= S(γ )

ˆ
RN

u p∗−1
n u1,n dx + o(1)‖u1,n‖D1,p(RN )

and recalling the definition of u1,n and by (A.21), we obtainˆ
Br+ρ

H p(∇un) − γ

H◦(x)p
u p
n dx = S(γ )

ˆ
Br+ρ

u p∗
n dx + o(1) = S(γ )

ˆ
Br+ρ

u p∗
1,n dx + o(1)

In the same way, using u2,n as test function in (A.12) we obtainˆ
RN \Br+ρ

H p(∇un) − γ

H◦(x)p
u p
n dx = S(γ )

ˆ
RN \Br+ρ

u p∗
n dx + o(1)
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= S(γ )

ˆ
RN \Br+ρ

u p∗
2,n dx + o(1).

Moreover, by definition (A.2), using the two sequences {u1,n} and {u2,n}we infer that actually

L(u1,n) =
ˆ
Br+ρ

H p(∇un) − γ

H◦(x)p
u p
n dx + o(1)

and

L(u2,n) =
ˆ
RN \Br+ρ

H p(∇un) − γ

H◦(x)p
u p
n dx + o(1)

so that

L(un) = L(u1,n) + L(u2,n) + o(1) (A.22)

and ‖un‖p∗
p∗ = ‖u1,n‖p∗

p∗ + ‖u2,n‖p∗
p∗ + o(1). Let us assume for example, that {u1,n} does not

converges to zero. Since {un} is a minimizing sequence we have that (see (A.1))

L(un) = S(γ )‖un‖p
p∗ + o(1)

and also that L(u2,n) ≥ S(γ )‖u2,n‖p
p∗ and

L(u1,n)

‖u1,n‖p
p∗

= L(un) − L(u2,n) + o(1)

(‖un‖p∗
p∗ − ‖u2,n‖p∗

p∗ + o(1))
p
p∗

≤ S(γ )
L(un) − L(u2,n) + o(1)

(L(un)
p∗
p − L(u2,n)

p∗
p + o(1))

p
p∗

.

By (A.22) we deduce that

lim sup
n

L(u2,n) = lim sup
n

(L(un) − L(u1,n) + o(1)) < lim sup
n

L(un),

by some computations we deduce that actually

lim sup
n

L(u1,n)

‖u1,n‖p
p∗

< S(γ ),

a contradiction with (A.1) unless L(u2,n) tends to zero. Using Hardy inequality in (A.2),
recalling (A.18), we obtain

0 ←
ˆ
RN

H p(∇u2,n) dx =
ˆ
RN \Br+ρ

H p(∇un) dx +
ˆ
Br+ρ\Br−ε

H p(∇w2,n) dx

=
ˆ
RN \Br+ρ

H p(∇un) dx + o(1).

The other case of (A.11) can be proved arguing in the same as we have done above, assuming
that {u2,n} does not converge to zero. This concludes the proof of the lemma. ��

Using the invariance of the problem under the scaling R(p−N )/p
n u(x/Rn), the sequence {wn}

(see (A.9) and (A.10)) is still a minimizing sequence bounded in D1,p(RN ): hence it admits
(up to a subsequence) a weakly convergence sequence. We want to show that the weak limit
cannot be zero. We argue by contradiction and we apply Lemma 5.2 twice choosing r = 1
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and ε = ±1/4 respectively. We find the existence of ρ+ ∈ (0, 1/4) and ρ− ∈ (−1/4, 0)
such that (A.11) holds. Using the alternative (A.11) together with (A.10), we obtain thatˆ

B1+ρ−
H p(∇wn) dx → 0 and

ˆ
RN \B1+ρ+

H p(∇wn) dx → 0. (A.23)

Since wn⇀0 using the strong convergence on compacts K of wn → 0 in L p(K ) we deduce
that ˆ

B(0) 3
2
\B(0) 1

2

|wn |p
H◦(x)p

dx → 0. (A.24)

Let us take a smooth cut-off function η, with 0 ≤ η ≤ 1, such that η ≡ 1 in B(0)5/4\B(0)3/4
and η ≡ 0 inRN\(B(0)3/2\B(0)1/2). Take in to account Hardy inequality, (A.23) and (A.24)
we deduce that ˆ

RN
|H p(η∇wn) − H p(∇wn)| dx → 0,

for n → +∞ and therefore we infer thatˆ
RN

H p(η∇wn) dx =
ˆ
RN

H p(∇wn) dx + o(1).

Then, recalling also (A.1) we get

S(0) ≤

ˆ
RN

H p(η∇wn) dx

(ˆ
RN

|ηwn |p∗
dx

) p
p∗

≤ L(wn) + o(1)
(ˆ

RN
|wn |p∗

dx

) p
p∗ + o(1)

.

Passing to the limit we obtain

S(0) ≤ S(γ ). (A.25)

We claim that (A.25) is not possible. Indeed let u0 be a minimizer of (A.1) for γ = 0 ( [9]).
Therefore we clearly deduce the following

S(γ ) ≤

ˆ
RN

H p(∇u0) − γ
|u0|p
H◦(x)p

dx

(ˆ
RN

|u0|p∗
dx

) p
p∗

<

ˆ
RN

H p(∇u0) dx

(ˆ
RN

|u0|p∗
dx

) p
p∗

= S(0). (A.26)

Inequality (A.26) gives the desired contradiction, concluding the proof. ��
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