
Calc. Var. (2024) 63:62
https://doi.org/10.1007/s00526-024-02664-1 Calculus of Variations

The Lavrentiev phenomenon in calculus of variations
with differential forms

Anna Kh. Balci1 ·Mikhail Surnachev2

Received: 16 May 2023 / Accepted: 9 January 2024 / Published online: 22 February 2024
© The Author(s) 2024

Abstract
In this article we study convex non-autonomous variational problems with differential forms
and corresponding function spaces.We introduce a general framework for constructing coun-
terexamples to the Lavrentiev gap, which we apply to several models, including the double
phase, borderline case of double phase potential, and variable exponent. The results for the
borderline case of double phase potential provide new insights even for the scalar case, i.e.,
variational problems with 0-forms.

Mathematics Subject Classification 35J60 · 46E35 · 35J20 · 35J60

1 Introduction

In this article we study variational problems and corresponding function spaces associated
with the integral functionals of the form

FΦ,b(ω) :=
∫

�

Φ(x, |dω|) dV +
∫

�

b ∧ dω (1.1)

where � is a bounded domain in R
N (later we will only consider the case of a cube or

ball) with Φ : � × R+ → R+ is a generalized Orlicz function, ω a differential k-form,
b ∈ LΦ∗(·)(�,�N−k−1), and dV = dx1 . . . dxN . For 0-forms the problem reduces to the
classical problem of calculus of variations with dω replaced by ∇ω. Further we refer to the
case of 0-forms (functions) as the scalar case.
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The classical results on differential forms are collected, for example, in the books by
Cartan [17], Spivak [54], Arnold [7], Flanders [33], Abraham et al. [6]. Iwaniec and Luto-
borski [39], Iwaniec and Martin [40], Scott [49], Iwaniec et al. [41], Schwarz [48], Mitrea et
al. [44] and Troyanov [57] studied Sobolev spaces of differential forms, Gaffney inequalities,
and related problems of Hodge theory. More recent results in the framework of Calculus of
Variations could be found in books by Csato et al. [18] and Agarwal et al. [1]. Recent con-
tributions in the direction of the transportation of closed differential forms were obtained by
Dacorogna and Gangbo [25, 26]; the optimal constant in Gaffney inequality was studied by
Csato et al. [19].

We study calculus of variations for the non-autonomous models with general “nonstan-
dard” growth and differential forms. To our knowledge no regularity results are known for
such classes. The focus of the present paper is on the conditions separating the case with
the energy gap from the regular case (density of smooth functions) for the integrands with
nonstandard growth, in particular, for the variable exponent and double phase models.

In the present paper we study variational problems for the integral functional (1.1) with
convex integrands Φ(x, t) that satisfy general “nonstandard” growth conditions of the type

− c0 + c1|t |p− ≤ Φ(x, t) ≤ c2|t |p+ + c0, (1.2)

where 1 < p− ≤ p+ < ∞, c0 ≥ 0, c1, c2 > 0.
The class of “non-standard” integrands satisfying (1.2) includes for example the p(x)-

integrand

Φ(x, t) = t p(x), 1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ �, (1.3)

studied for the scalar case in many papers and several books, see [20, 27, 42, 60–62]. For
the variable exponent model the Hölder regularity of solutions, a Harnack type inequality
for non-negative solutions, and boundary regularity results were obtained by Alkhutov [3,
4] and Alkhutov and Krasheninnikova [2] under some suitable assumptions on the variable
exponent of the log-Hölder type. Gradient regularity for Hölder exponent was obtained by
Coscia and Mingione [24] and for the log-Hölder exponents by Acerbi and Mingione [5].

Another classical example of non-standard growth conditions is given by double-phase
variational problems which correspond to the functional (1.1) with

Φ(x, t) = ϕ(t) + a(x)ψ(t), a ≥ 0, (1.4)

where ϕ and ψ are Orlicz functions with different growths rates at infinity. Two notable
examples are the “standard” double phase model with

ϕ(t) = t p, ψ(t) = tq , 1 < p < q < ∞, (1.5)

and the “borderline” double phase model

ϕ(t) = t p log−β(e + t), ψ(t) = t p logα(e + t). (1.6)

Colombo andMingione [23] obtained Hölder regularity results for double-phase potential
model Φ(x, t) = t p + a(x)tq if q ≤ p(d + α)/d and a ∈ Cα(�). Moreover, bounded
minimizers are automatically W 1,q(�) if a ∈ Cα(�) and q ≤ p + α, see the paper [10] by
Baroni et al. As it was shown in [11] those results in the scalar case are sharp in terms of the
counterexamples on the Lavrentiev gap.

The special case of the model (1.4) with ϕ(t) = t p and ψ(t) = t p log(e + t) was studied
by Baroni et al. [9]. In particular they obtained the Cγ

loc regularity result for the minimizers
provided that the weight a(x) is log-Hölder continuous (with some γ ) and more strong
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result (any γ ∈ (0, 1)) for the case of vanishing log-Hölder continuous weight. Skrypnik
and Voitovych recently proved continuity and Harnack inequality for solutions of a general
class of elliptic and parabolic equations with nonstandard growth conditions, see [56]. The
results on generalized Sobolev–Orlicz spaces are collected in the book by Harjulehto and
Hästö [37] and for anisotropic Musielak–Orlicz setting in the book by Chlebicka et al. [21].
In the general framework of problems with nonstandard growth and nonuniform ellipticity
recent results are due to Mingione and Rǎdulescu [46] and to De Filippis and Mingione, see
[28–30]. Recent contributions for such energies include new results on density of smooth
functions and absence of Lavrentiev gap by Bulíček et al. [12], Koch [43], and Borowski et
al. [8].

Anessential feature of the nonautonomousmodelswith nonstandardgrowth is the presence
of the Lavrentiev gap phenomenon. The energy FΦ,b defines the corresponding generalized
partial Sobolev–Orlicz spaces of differential formsWd,Φ(·)(�,�k) (the natural energy space
for FΦ,b) described in Sect. 2.5. The Lavrentiev gap in this case is the inequality

inf FΦ,b(W
d,Φ(·)
c (�,�k)) < inf FΦ,b(C

∞
0 (�,�k)). (1.7)

where Wd,Φ(·)
c (�,�k) is the set of Wd,Φ(·)(�,�k) forms compactly supported in �. A

similar phenomenon for boundary value problems can be expressed as the inequality

inf FΦ,0(ω0 + Wd,Φ(·)
c (�,�k)) < inf FΦ,0(ω0 + C∞

0 (�,�k)) (1.8)

for some ω0 ∈ C1(�,�k).
A closely related problem is density of smooth functions in the natural energy space of

the functional. Denote the closure of smooth forms from Wd,Φ(·)(�,�k) in this space by
Hd,Φ(·)(�,�k). If any function from the domain of FΦ,b can be approximated by smooth
functions with energy convergence (equivalently, if Hd,Φ(·)(�,�k) = Wd,Φ(·)(�,�k),
which is abbreviated to H = W ) then the Lavrentiev gap is obviously absent. In the
autonomous case, when the integrand Φ = Φ(t) is an Orlicz function independent of x ,
the Lavrentiev phenomenon is absent (H = W ).

In the scalar case (for functions = 0-forms) the study of such models goes back to
Zhikov [61, 62], who constructed the first examples on Lavrentiev phenomenon for variable
exponent model and double phase model in dimension N = 2. Esposito et al. [31] general-
ized this example to any dimension (for the standard double phase model); Fonseca et al. [34]
constructed examples of minimizers for the standard double phase model with large (fractal)
sets of discontinuity. All these examples required the dimensional restriction p− < N < p+.
This restriction was overcome by the authors of the present paper with Diening in [11] using
fractal contact sets for scalar variable exponent, double phase and weighted model. In [16]
the authors of the present paper studied the Lavrentiev gap property for the borderline double
phase model (1.4) with one saddle point (that is, an example constructed as in [31, 61, 62])
with p = N , α, β > 0.

In the present paper we study variational problems with differential forms. The study of
the ρ-harmonic forms goes back to Uhlenbeck [58], who obtained classical results on the
Hölder continuity (for the scalar equation this reads as Cα property of the gradient). These
results were extended by Hamburger [36]. Beck and Stroffolini [15] considered partial reg-
ularity for general quasilinear systems for differential forms. Sil [51–53] studied convexity
properties of integral functionals with forms and regularity estimates for inhomogeneous
quasilinear systems with forms. Let us mention, that results by Sil for nonautonomous inte-
grands are concerned with "standard growth" p− = p+, as opposed to the "nonstandard
growth" problems treated in this paper.
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In this paperwe extend the approach of [11] to variational problemswith differential forms
and refine the construction by using the generalized Cantor sets which have an additional
tweaking parameter. This allows for fine tuning of the singular set, while keeping the formal
Hausdorff dimension. We construct examples of the Lavrentiev gap for the p(x)-integrand
(1.3) and both “standard” double phase (1.4), (1.5) and “borderline” double phase (1.4), (1.6)
integrands (the last results are new even for the case of scalar functions 0-forms). For the
latter model the fine tuning of the Cantor set is crucial.

Now we state the main results of this paper. We work with three models: classical double
phase potential, borderline double phase potential, and variable exponent. For each of these
cases we construct examples for the Lavrentiev gap. However, the construction presented in
this paper is not limited to these models. For instance, it can be also used to treat the weighted
energy similar to [11, Section 4.3]. Let � be a ball in R

N and k ∈ {0, . . . , N − 2}. The
definitions of the functional spaces can be found in Sect. 2.5.

Theorem A Let p > 1, α ≥ 0, and q > p + αmax((k + 1)−1, (p − 1)(N − k − 1)−1)

Then there exists an integrand Φ(x, t) = t p + a(x)tq where nonnegative weight a = a(x)
is bounded, a ∈ Cα(�) if α > 0, such that Hd,Φ(·)(�,�k) 
= Wd,Φ(·)(�,�k). Moreover,
there exists b ∈ LΦ∗

(�,�N−k−1) such that (1.7) holds and ω0 ∈ C∞(�,�k) such that
(1.8) holds.

Theorem B Let p0 > 1, α, β ∈ R, κ ≥ 0 such that α + β > p0 + κ. Let ϕ and ψ be two
Orlicz functions such that ϕ(t) ∼ t p0 ln−β t and ψ(t) ∼ t p0 lnα t for large t. Then there
exists an integrand Φ(x, t) = ϕ(t) + a(x)ψ(t) where a = a(x) is a nonnegative function
with the modulus of continuity C ln−κ(1/t) such that Hd,Φ(·)(�,�k) 
= Wd,Φ(·)(�,�k).
Moreover, there exists b ∈ LΦ∗

(�,�k) such that (1.7) holds

Theorem C Let 1 < p− < p+. There exists a variable exponent p : � → [p−, p+] with
the modulus of continuity κ0(ln t−1)−1 ln ln t−1, κ0 = κ0(p−, p+, N , k) > 0, such that
for Φ(x, t) = t p(x) there holds Hd,Φ(·)(�,�k) 
= Wd,Φ(·)(�,�k). Moreover, there exists
b ∈ LΦ∗

(�,�N−k−1) such that (1.7) holds and ω0 ∈ C∞(�,�k) such that (1.8) holds.

Theorems A, B, C follow from Theorems 31, 33, 35, which are proved in Sect. 5. The weight
a = a(x) in Theorems A and B and the exponent p = p(x) in Theorem C (as well as the
forms providing the examples of non-density and competitors used to show the Lavrentiev
phenomenon) are regular outside of a singular set of Cantor type which lies on a proper
subspace of R

N . The dimension of this subspace is either k + 1 or N − k − 1 depending
on the parameters. Compare this to [11] where for the scalar case k = 0 the singular set
was either a Cantor set C on a line (“superdimensional” setup, which was used to construct
the examples with variable exponent taking values greater than the space dimension N ) or
a Cantor set CN−1 on a hyperplane (“subdimensional” setup, which was used to construct
the examples with variable exponent taking values less than the space dimension N ). For
k-forms in the variable exponent setting the value of exponent separating these two cases is
N/(k + 1) — for exponent taking values greater than N/(k + 1) the singular set will be of
the form Ck+1 × {0}N−k−1 and for exponent taking values less than N/(k + 1) the singular
set is of the form CN−k−1 × {0}k+1.

Our setting can be called “semivectorial”, or generalized Uhlenbeck structure, since the
integrand is isotropic. In this respect it has substantially more rigid structure than the fully
vectorial problems (say, of elasticity theory) with quasi-convex integrands. Note that in the
“fully” vectorial setting the situation is more delicate, and the Lavrentiev phenomenon is
possible even for “standard” growth conditions in the autonomous (but anisotropic!) case,
see Ball and Mizel [13] and Foss et al. [32] in the context of non-linear elasticity.
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The models with Lavrentiev phenomenon are also challenging to study numerically since
the standard numerical schemes fail to converge to the W -minimiser of the problem. For the
scalar case the problem could be solved using non-conforming methods, see Balci et al. [14].
The vectorial setting remains open.

Structure of the paper. In Sect. 2 we recall some basic definitions related to the theory of
differential forms and Sobolev–Orlicz spaces. In Sect. 3 we study the existence of minimizers
of the functional (1.1). In Sect. 4 we describe the general framework for construction of
examples using the fractal Cantor barriers. In Sect. 5 we apply this general construction to
different problems. We obtain the examples of Lavrentiev gap and non-density of smooth
functions for the classical double phase in Sect. 5.1, for the borderline double phase model
in Sect. 5.2, and for the variable exponent model in Sect. 5.3. The results for the borderline
double phase model are new even in the scalar case.

2 Differential forms and Sobolev–Orlicz spaces

Here we recall some basic facts and definitions from the theory of differential forms. In
general we follow definitions and notations from [18][Chapters 1.2;2.1;3.1−3.3], but the
Hodge codifferential is the formal adjoint of the exterior derivative d (as in [35, 39]).

2.1 Exterior algebra

The Grassman algebra of exterior k-forms (i.e. skew-symmetric k-linear functions) over R
N

is denoted by �k(RN ), or for brevity just by �k . The exterior product of f ∈ �k and g ∈ �l

is an element f ∧ g of �k+l defined by

( f ∧ g)(ξ1, . . . , ξk+l) =
∑

sign (i1, . . . , ik, j1, . . . , jl) f (ξi1 , . . . , ξik )g(ξ j1 , . . . , ξ jl )

where the summation is over permutations (i1, . . . , ik, j1, . . . , jl) of (1, 2, . . . , k + l) such
that i1 < · · · < ik , j1 < · · · < jl . This operation is linear in both arguments, associative,
and for f ∈ �k and g ∈ �l there holds f ∧ g = (−1)kl g ∧ f .

Let e j be an orthonormal basis {e j }Nj=1 in R
N and {e j }Nj=1 be its dual system in �1,

e j (el) = δ jl . The monomials ei1 ∧ . . . ∧ eik , i1 < i2 < · · · < ik form a basis in �k . Denote
fi1...ik = f (ei1 , . . . , eik ). Then the set of fi1...ik with i1 < i2 < · · · < ik gives the coordinates
of f :

f =
∑

1≤i1<···<ik≤N

fi1...ik e
i1 ∧ · · · ∧ eik .

The scalar product of f , g ∈ �k with coordinates fi1...ik and gi1...ik is given by

〈 f , g〉 =
∑

1≤i1<···<ik≤N

fi1···ik gi1,...ik .

The scalar product does not depend on the particular choice of the orthonormal basis {e j }Nj=1.

We denote | f | = 〈 f , f 〉1/2.
The Hodge star operator ∗ : �k → �N−k is defined by f ∧ g = 〈∗ f , g〉e1 ∧ · · · ∧ eN

for any g ∈ �N−k , or equivalently by f ∧ ∗g = 〈 f , g〉e1 ∧ · · · ∧ eN for all f , g ∈ �k . The
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Hodge star operator ∗ is an isometry between �k and �N−k and for f ∈ �k there holds

∗(∗ f ) = (−1)k(N−k) f , ∗−1 f = (−1)k(N−k) ∗ f .

For any f ∈ �k and shuffle j1, . . . , jN there holds (∗ f ) jk+1... jN = sign ( j1, . . . , jN ) f j1... jk .
The interior product (contraction) of f ∈ �k and g ∈ �l defined by

g� f = (−1)(N−k)(k−l) ∗ (g ∧ (∗ f ))

is the adjoint of the wedge product:

〈g ∧ α, f 〉 = 〈α, g� f 〉 for any α ∈ �k−l , f ∈ �k, g ∈ �l .

There holds ∗(g� f ) = (−1)(k−l)l g ∧ ∗ f and ∗(g ∧ f ) = (−1)kl g� ∗ f .
If l = 0 then g� f = g f . If l > k then g� f = 0, if l = k then g� f = f �g = 〈 f , g〉. If

l ≤ k then

(g� f ) j1... jk−l =
∑

1≤i1<···<il≤N

gi1...il fi1...il j1... jk−l .

There holds ∗ f = f �(e1 ∧ · · · ∧ eN ), which can be taken as the definition for the Hodge
dual.

For w, v ∈ �1 there holds

w�(v ∧ f ) + v ∧ (w� f ) = 〈w, v〉 f . (2.1)

For a vector X the operator ıX : �k → �k−1 is defined by (ıX f )(ξ1, . . . , ξk−1) =
f (X , ξ1, . . . , ξk−1). There holds ıv( f ∧ g) = (ıv f ) ∧ g + (−1)deg f f ∧ (ıvg), and
ıvıw = −ıwıv , ıvıv = 0. For a vector v ∈ R

N and the 1-form v� ∈ �1 with the same
coordinates there holds v�� f = ıv f .

2.2 Differential forms

Adifferential form is amapping from� ⊂ R
N to�k . Further�will be a bounded contractible

domainwith sufficiently regular boundary.Using the canonical basisdxi1∧. . .∧dxik a k-form
can be represented as

f =
∑

1≤i1<···<ik≤N

fi1...ik dx
i1 ∧ · · · ∧ dxik . (2.2)

Then | f |2(x) := ∑
1≤i1<···<ik≤N | fi1...ik |2(x).

For two differential forms f and g of order k their scalar product in the sense of L2(�,�k)

is

( f , g)� =
∫

�

f ∧ ∗g =
∫

�

〈 f , g〉 dV , dV = dx1 ∧ · · · ∧ dxN .

We shall also use this notation for a more general case when 〈 f , g〉 ∈ L1(�).
The operation of exterior differentiation d is a unique mapping from k-forms to (k + 1)-

forms such that d f coincides with the differential of f for 0-forms (functions), d ◦ d = 0,
d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ for any α ∈ C1(�,�k) and β ∈ C1(�,�l). For a
k-form f ,

d f (ξ1, . . . , ξk+1) =
k+1∑
j=1

(−1) j−1[ f ′(x)ξ j ](ξ1, . . . , ξ̂ j , . . . , ξk+1), ξ1, . . . , ξk+1 ∈ R
N .
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The interior derivative (Hodge codifferential) of a k-form f is

δ f = (−1)N (k−1)+1 ∗ d ∗ f = (−1)k ∗−1 d ∗ f .

There holds d2 = 0, δ2 = 0. On k-forms

∗ δ = (−1)kd ∗ and ∗ d = (−1)k+1δ ∗ . (2.3)

For a k-form f and l-form g there holds

d( f ∧ g) = d f ∧ g + (−1)k f ∧ dg, δ( f �g) = (−1)k+1d f �g + (−1)k f �δg.

Formally one can write d f = ∇ ∧ f , δ f = −∇� f , and in coordinates, for the form (2.2),
using the Einstein convention of summation over repeated indices we have

(d f )i1...ik+1 = (−1)l−1∂xil
fi1...ı̂l ...ik+1 , (δ f )i1...ik−1 = −∂x j f j i1...ik−1 . (2.4)

Let ν∗ = (ν1, . . . , νN ) be the unit outer normal to � and introduce the 1-form ν =
ν1dx1 + · · · + νNdxN . For a differential k-form f the standard Gauss theorem reads as (see
(2.4))∫

�

(d f )i1...ik+1dV =
∫

∂�

(ν ∧ f )i1...ik+1dσ,

∫

�

(δ f )i1...ik−1dV = −
∫

∂�

(ν� f )i1...ik−1dσ

for each 1 ≤ i1 < · · · < ik ≤ N , where dV = dx1 . . . dxN is the standard volume form and
dσ is the surface area element. The integration-by-parts formula is∫

�

〈d f , g〉 dV −
∫

�

〈 f , δg〉 dV =
∫

∂�

〈ν ∧ f , g〉 dσ =
∫

∂�

〈 f , ν�g〉 dσ. (2.5)

In the sense of forms, the surface element dσ is connected to the volume form dV by dσ =
ıνdV . The orientation of ∂� is chosen such that the integral of dσ over any “substantial”
boundary part is positive.

The operators d and δ are adjoint on compactly supported forms. By direct computation
(use (2.1) with v = ∇, w = −∇), dδ + δd = −�, where the Laplace operator is applied
componentwise.

A form f satisfying d f = 0 is closed. A form f satisfying δ f = 0 is coclosed. If f = dg
then f is exact, and if f = δg then f is coexact. If both d f = 0 and δ f = 0 the form is
called harmonic (or harmonic field).

The pullback of the form f under the mapping ϕ is defined by ϕ∗ f ,

(ϕ∗ f )(x; ξ1, . . . , ξk) = f (ϕ(x);ϕ′(x)ξ1, . . . , ϕ′(x)ξk).

This operation satisfies ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β and ϕ∗d = dϕ∗. In coordinates, for the
form (2.2),

(ϕ∗ f )(x) =
∑

1≤i1<···<ik≤N

fi1...ik (ϕ(x))dϕi1 ∧ . . . ∧ dϕik

=
∑

1≤ j1<···< jk≤N

(ϕ∗ f ) j1... jk (x)dx j1 . . . dx jk ,

where

(ϕ∗ f ) j1... jk (x) =
∑

1≤i1<···<ik≤N

∂(ϕi1 , . . . , ϕik )

∂(x j1 , . . . , x jk )
fi1...ik (ϕ(x)). (2.6)
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2.3 Tangential and normal part of a form

Recall that by ν∗ = (ν1, . . . , νN ) we denote the unit outer normal to ∂� and ν = ν1dx1 +
· · · + νNdxN . For a differential form ω define its tangential part

tω(ξ1, . . . , ξk) = ω(ξ1 − ν(ξ1)ν∗, . . . , ξk − ν(ξk)ν∗)

and its normal part nω = ω − tω. Then

t f = ν�(ν ∧ f ), n f = ν ∧ (ν� f ), f = t f + n f ,

ν ∧ t f = ν ∧ f , ν� t f = 0, t f = 0 ⇔ ν ∧ f = 0,

ν ∧ n f = 0, ν� n f = ν� f , n f = 0 ⇔ ν� f = 0.

That is, setting t f is equivalent to setting ν ∧ f and setting n f is equivalent to setting ν� f .
While integrating over ∂�, the tangential part of a form coincides with its pullback under

the inclusion j : ∂� → �, that is tω = j∗ω, and the normal part of the form vanishes.
The decomposition of a form into the tangential and normal parts can be also done using

coordinates in a “collar” neighbourhood of ∂�, by choosing (locally) an “admissible” coor-
dinate system (map) ϕ : U → V ,U , V ⊂ R

N , such that ∂�∩V ⊂ {ϕ(y′, 0) : (y′, 0) ⊂ U }
and (ϕyi (y

′, 0), ϕyN (y′, 0)) = δi N , 1 ≤ i ≤ N (see [45, Chapter 7, Lemma 7.5.1]). In this
coordinate system for

ω =
∑

1≤i1<···<ik≤N

ωi1...ik dy
i1 ∧ . . . ∧ dyik

we have ω = tω + nω, where

tω =
∑

1≤i1<···<ik<N

ωi1...ik dy
i1 ∧ . . . ∧ dyik ,

nω =
∑

1≤i1<···<ik−1<N

ωi1...ik dy
i1 ∧ . . . ∧ dyik−1 ∧ dyN .

If ω is a function (0-form) we set tω = ω and nω = 0. If ω is an N -form we set tω = 0,
nω = ω. The decomposition ω = tω + nω is invariant on ∂� and we have

t∗ = ∗n, n∗ = ∗t, td = dt, nδ = δn.

In particular, tω = 0 on ∂� implies tdω = 0 on ∂� and nω = 0 on ∂� implies nδω = 0 on
∂�.

In terms of the Stokes theorem, integration-by-parts formula (2.5) reads as follows: by
(2.3) for a k-form f and a (k + 1)-form g there holds d( f ∧ ∗g) = d f ∧ ∗g − f ∧ ∗δg,
therefore

(d f , g)� − ( f , δg)� =
∫

�

(
d f ∧ ∗g − f ∧ ∗δg

) =
∫

�

d( f ∧ ∗g)

=
∫

∂�

f ∧ ∗g =
∫

∂�

t f ∧ ∗ng. (2.7)
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2.4 Orlicz functions setup

We say that φ : [0,∞) → [0,∞] is an Orlicz function if φ is convex, left-continuous,
φ(0) = 0, lim

t→0
t−1φ(t) = 0 and lim

t→∞ t−1φ(t) = ∞. The conjugate Orlicz function φ∗ is

defined by

φ∗(s) := sup
t≥0

(
st − φ(t)

)
.

In particular, st ≤ φ(t) + φ∗(s).
In the following we assume that Φ : � × [0,∞) → [0,∞] is a generalized Orlicz

function, i.e. Φ(x, ·) is an Orlicz function for every x ∈ � and Φ(·, t) is measurable for
every t ≥ 0. We define the conjugate function Φ∗ point-wise, i.e. Φ∗(x, ·) := (Φ(x, ·))∗.

We assume that Φ satisfies the “nonstandard” growth condition

− c0 + c1|t |p− ≤ Φ(x, t) ≤ c2|t |p+ + c0, (2.8)

where 1 < p− ≤ p+ < ∞, c0 ≥ 0, c1, c2 > 0, and the following properties:

(a) Φ satisfies the �2-condition, i.e. there exists c ≥ 2 such that for all x ∈ � and all t ≥ 0

Φ(x, 2t) ≤ cΦ(x, t). (2.9)

(b) Φ satisfies the ∇2-condition, i.e. Φ∗ satisfies the �2-condition. As a consequence, there
exist s > 1 and c > 0 such that for all x ∈ �, t ≥ 0 and γ ∈ [0, 1] there holds

Φ(x, γ t) ≤ c γ s Φ(x, t). (2.10)

(c) Φ and Φ∗ are proper, i.e. for every t ≥ 0 there holds∫

�

Φ(x, t) dV < ∞ and
∫

�

Φ∗(x, t) dV < ∞.

2.5 Sobolev–Orlicz spaces of differential forms

Let � ⊂ R
N be a bounded domain in R

N . In our applications this will always be a ball or a
cube.

Different functional spaces like Lebesgue spaces L p(�) and Lebesgue–Orlicz spaces
Lϕ(·)(�), Sobolev spacesW 1,p(�) and Sobolev–Orlicz spacesW 1,Φ(·)(�), spaces of k times
continuosly differentiable functions Ck(�) are defined in the usual way (see, for example,
[37]).

The Lebesgue–Orlicz space LΦ(·)(�) is the set of all measurable functions in�with finite
Luxemburg norm

‖ f ‖LΦ(·)(�) = inf

{
λ > 0 :

∫

�

Φ(x, | f |λ−1) dV ≤ 1

}
.

The Sobolev–Orlicz space W 1,Φ(·)(�) is the set of functions f ∈ W 1,1(�) such that
|∇ f | ∈ LΦ(·)(�), endowed with the norm ‖ f ‖W 1,Φ(·)(�) = ‖ f ‖L1(�) + ‖∇ f ‖LΦ(·)(�).

For a generalized Orlicz function Φ(x, t) we define the Lebesgue–Orlicz space
LΦ(·)(�,�k) as the space of measurable differential k-form such that | f | ∈ LΦ(·)(�).
The norm in this space is the norm of | f | in LΦ(·)(�). For constant Φ ≡ p ≥ 1 we get the
standard Lebesgue space L p(�,�k).
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Let r ∈ N ∪ {0}. For E = � or E = � the space Cr (E,�k) is the space of all differ-
ential k-forms for which all partial derivatives Dα f I up to the order r are continuous in E .
By C∞

0 (�,�k) we denote the space of smooth k-forms with compact support in �.

Definition 1 (Full Sobolev–Orlicz Space) We say that a k-form f ∈ W 1,Φ(·)(�,�k)

if fi1···ik ∈ W 1,Φ(·)(�) for every 1 ≤ i1 < · · · < ik ≤ N . The norm is defined compo-
nentwise:

‖ f ‖W 1,Φ(·)(�,�k ) =
∑

1≤i1<···<ik≤N

‖ fi1...ik‖W 1,Φ (�).

If � is of class C2 then for f ∈ W 1,1(�,�k) the boundary trace of f exists, belongs to
L1(∂�), and the Stokes theorem holds (see [48], [47, Theorem 6.4]):∫

∂�

f =
∫

�

d f .

We say that u ∈ L1
loc(�,�k) has a weak differential du ∈ L1

loc(�,�k+1) if for any
ξ ∈ C∞

0 (�,�k+1) there holds∫

�

〈u, δξ〉 dV =
∫

�

〈du, ξ 〉 dV ,

or equivalently ∫

�

u ∧ dξ = (−1)k+1
∫

�

du ∧ ξ

for any ξ ∈ C∞
0 (�,�N−k−1).

We say that u ∈ L1
loc(�,�k) has a weak codifferential δu ∈ L1

loc(�,�k−1) if for any
ξ ∈ C∞

0 (�,�k−1) there holds∫

�

〈u, dξ 〉 dV =
∫

�

〈δu, ξ 〉 dV ,

or equivalently ∫

�

u ∧ δξ = (−1)k
∫

�

δu ∧ ξ

for any ξ ∈ C∞
0 (�,�N−k+1).

Both weak differential and codifferential are unique.

Definition 2 (Partial Sobolev–Orlicz Space) For 0 ≤ k ≤ N − 1 we define the partial
Sobolev–Orlicz space Wd,Φ(·)(�,�k) as the set of forms ω ∈ L1(�,�k) with weak differ-
ential dω ∈ LΦ(·)(�,�k), endowed with the norm

‖ω‖Wd,Φ(·)(�,�k ) := ‖ω‖L1(�,�k ) + ‖dω‖LΦ(·)(�,�k+1).

The space Hd,Φ(·)(�,�k) is the closure of smooth forms fromWd,Φ(·)(�,�k) in this space.
For 1 ≤ k ≤ N we define the space W δ,Φ(·)(�,�k) as the set of forms ω ∈ L1(�,�k)

with weak codifferential δω ∈ LΦ(·)(�,�k) endowed with the norm

‖ω‖W δ,Φ(·)(�,�k ) := ‖ω‖L1(�,�k ) + ‖δω‖LΦ(·)(�,�k−1).
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The space H δ,Φ(·)(�,�k) is the closure of smooth forms fromW δ,Φ(·)(�,�k) in this space.

If� is a boundedC2 domain (or a polyhedral domain), then the followingGreen’s formulas
hold [18, Theorem 3.28]. Let 0 ≤ k ≤ N − 1 and let p > 1. If f ∈ Wd,p(�,�k), g ∈
W 1,p′

(�,�k+1), then
∫

�

〈d f , g〉 dV −
∫

�

〈δg, f 〉 dV =
∫

∂�

〈ν ∧ f , g〉 dσ.

If f ∈ W 1,p(�,�k), g ∈ W δ,p′
(�,�k+1), then

∫

�

〈d f , g〉 dV −
∫

�

〈δg, f 〉 dV =
∫

∂�

〈 f , ν�g〉 dσ.

The boundary traces ν ∧ f and ν�g in these formulas are given by bounded lin-
ear mappings from Wd,p(�,�k) to W−1/p,p(∂�,�k+1) and from W δ,p′

(�,�k+1) to
W−1/p′,p′

(∂�,�k), respectively. These mappings are generated by these very integration-
by-parts formulas. If f belongs to the full Sobolev space W 1,p(�,�k), then both tangential
and normal components of its boundary trace t f and n f are from W 1−1/p,p(∂�,�k). An
extensive treatment of the boundary trace problem for spaces of differential forms can be
found in [44].

LetWd,Φ(·)
c (�,�k) be the set of forms fromWd,Φ(·)(�,�k) with compact support in �.

Definition 3 (Spaces with zero tangential component)
For 0 ≤ k ≤ N −1 we define the spaceWd,Φ(·)

T (�,�k) as the set ofω ∈ Wd,Φ(·)(�,�k)

such that ∫

�

〈dω, β〉 dV =
∫

�

〈ω, dβ〉 dV

for all β ∈ C1(�,�k+1), endowed with the norm of Wd,Φ(·)(�,�k).
The space W̃ d,Φ(·)

T (�,�k) is the closure of Wd,Φ(·)
c (�,�k) in Wd,Φ(·)(�,�k).

The space Hd,Φ(·)
T (�,�k) is the closure of C∞

0 (�,�k) in Wd,Φ(·)(�,�k).

Clearly, Hd,Φ(·)
T (�,�k) ⊂ W̃ d,Φ(·)

T (�,�k) ⊂ Wd,Φ(·)
T (�,�k). A smooth k-form ω

belongs to Hd,Φ(·)
T (�,�k) if and only if its tangential component tω is zero on ∂�.

LetW δ,Φ(·)
c (�,�k) be the set of forms fromW δ,Φ(·)(�,�k) with compact support in �.

Definition 4 (Spaces with zero normal component)
For 1 ≤ k ≤ N we define the space W δ,Φ(·)

N (�,�k) as the set of ω ∈ W δ,Φ(·)(�,�k)

such that ∫

�

〈dω, β〉 dV =
∫

�

〈ω, dβ〉 dV

for all β ∈ C1(�,�k−1), endowed with the norm of W δ,Φ(·)(�,�k).
The space W̃ δ,Φ(·)

N (�,�k) is the closure of W δ,Φ(·)
c (�,�k) in W δ,Φ(·)(�,�k).

The space H δ,Φ(·)
N (�,�k) is the closure of C∞

0 (�,�k) in W δ,Φ(·)(�,�k).
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Clearly, H δ,Φ(·)
N (�,�k) ⊂ W̃ δ,Φ(·)

N (�,�k) ⊂ W δ,Φ(·)
N (�,�k). A smooth k-form ω

belongs to H δ,Φ(·)
N (�,�k) if and only if its normal component component nω is zero on ∂�.

The following proposition is straightforward.

Proposition 5 All the spaces introduced in Definitions 2, 3 and 4 are Banach spaces.

For Φ(·) ≡ p ∈ [1,∞] we get the classical partial Sobolev spaces Wd,p
T (�,�k) and

W δ,p
N (�,�k) with vanishing tangential (correspondingly normal) component on the bound-

ary. The spaces Wd,p
T (�,�k) and W δ,p

N (�,�k) coincide with the closures of C∞
0 (�,�k)

inWd,p(�,�k) andW δ,p(�,�k), respectively (see [39]). In this case there is no difference
between between H and W spaces.

If � � �′, a form from Wd,Φ(·)(�,�k) or W δ,Φ(·)(�,�k) belongs to Wd,Φ(·)
T (�,�k)

orW δ,Φ(·)
N (�,�k), respectively, iff its extension by zero to �′ \� produces an element from

Wd,Φ(·)(�′,�k) or W δ,Φ(·)(�′,�k), respectively.

3 Minimization problem for non-autonomous functionals with
differential forms

3.1 Gauge fixing

Recall (for instance, [18, Theorem 6.5]) the following facts regarding the harmonic forms
with vanishing tangential or normal components at the boundary. Let HT (�,�k) be the
set of harmonic forms from W 1,2

T (�,�k) and HN (�,�k) be the set of harmonic forms

from W 1,2
N (�,�k). The spaces HT (�,�k) and HN (�,�k) are finite dimensional, closed

in L2(�,�k), for contractible domains HT (�,�k) = {0} for 0 ≤ k ≤ N − 1 and
HN (�,�k) = {0} for 1 ≤ k ≤ N . The space HT (�,�N ) is the span of dx1 ∧ . . . ∧ dxN

and the space HN (�,�0) is the span of 1.
We need the following result on the solvability of the Cauchy-Riemann type systems for

differential forms. This result is a particular case of theorems [18, Theorem 7.2] for p ≥ 2
and [50, Theorems 2.43] for any p > 1, and triviality of the set of harmonic forms with zero
tangential component at the boundary. See also [48, Chapter 3, Theorem 3.2.5].

Corollary 6 Let � be a bounded contractible C3 domain in R
N , 0 ≤ k ≤ N − 1, p > 1,

ω0 ∈ W 1,p(�,�k), and β ∈ ω0 + Wd,p
T (�,�k). The problem

dω = dβ, δω = 0 in �,

ν ∧ ω = ν ∧ ω0 on ∂�

has a unique solution ω ∈ W 1,p(�,�k) with

‖ω‖W 1,p(�,�k ) ≤ C
(‖ω0‖W 1,p(�,�k ) + ‖dβ‖L p(�,�k+1)

)
.

with C = C(N , p,�).

3.2 Existence of minimizers

In this section 0 ≤ k ≤ N − 1, � is a bounded contractible C3 domain in R
N ,

Φ : � × [0,+∞) → [0,+∞) is a generalized Orlicz function satisfying (2.8), b ∈
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LΦ∗(·)(�,�N−k−1). We study the existence of solutions to the following two variational
problems.

(W-minimization) Let ω0 ∈ W 1,Φ(·)(�,�k) and minimize FΦ,b over the set ω0 +
Wd,Φ(·)

T (�,�k):

FΦ,b(ω) =
∫

�

Φ(x, |dω|) dV +
∫

�

b ∧ dω → min, ω ∈ ω0 + Wd,Φ(·)
T (�,�k). (3.1)

(H-minimization) Let ω0 ∈ H1,Φ(·)(�,�k) and minimize FΦ,b over the set ω0 +
Hd,Φ(·)
T (�,�k):

FΦ,b(ω) → min, ω ∈ ω0 + H1,Φ(·)
T (�,�k). (3.2)

Theorem 7 The variational problem (3.1) has a minimizer ω ∈ ω0 + Wd,Φ(·)
T (�,�k) with

δω = 0.

Proof Let ωs be a minimizing sequence, clearly

‖dωs‖LΦ(·)(�,�k+1) ≤ c.

Due to the coercitivity condition (1.2) we have

‖dωs‖L p− (�,�k+1) ≤ c.

By Corollary 6 there exists αs ∈ ω0 + W 1,p−
T (�,�k) satisfying dαs = dωs and δαs = 0 in

� such that

‖αs‖W 1,p− (�,�k ) ≤ c.

Clearly αs ∈ Wd,Φ(·)(�,�k) and

‖αs‖Wd,Φ(·)(�,�k ) ≤ c.

The sequence αs is bounded in the space Wd,Φ(·)(�,�k) ∩ W 1,p−(�,�k) endowed with
the norm which is the sum of norms inWd,Φ(·)(�,�k) and W 1,p−(�,�k). Its dual space is
separable, therefore there exists

α ∈ ω0 + Wd,Φ(·)
T (�,�k) ∩ W 1,p−(�,�k)

such that δα = 0 and up to the subsequence,

αs → α in L p−(�,�k),

dαs⇀dα in LΦ(·)(�,�k+1).

From the convexity of Φ(x, ·) and Mazur’s lemma, we have the lower semicontinuity:

lim inf
s→∞

∫

�

Φ(x, |dαs |) dV ≥
∫

�

Φ(x, |dα|) dV .

Since in the linear part we have convergence, the proof is complete. ��
Theorem 8 Let ω0 in H1,Φ(·)(�,�k(RN )). Then the problem (3.2) has a minimizer ω ∈
ω0 + Hd,Φ(·)

T (�,�k) with δω = 0.
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Proof Wekeep the notation from the proof ofTheorem7.Letωs = ω0+γs ,γs ∈ C∞
0 (�,�k),

be a minimizing sequence, clearly

‖dωs‖LΦ(·)(�,�k+1), ‖dγs‖LΦ(·)(�,�k+1) ≤ c.

Due to the coercitivity condition (1.2) we have

‖dωs‖L p− (�,�k+1), ‖dγs‖L p− (�,�k+1) ≤ c.

By Corollary 6 there exists αs ∈ ω0 + W 1,p−
T (�,�k) satisfying dαs = dωs and δαs = 0 in

� such that

‖αs‖W 1,p− (�,�k ) ≤ c.

Writing αs = ω0 + βs , one gets βs ∈ W 1,p−
T (�,�k) satisfying dβs = dγs , δβs = −δω0.

Extend βs to R
N \ � by zero.

Clearly αs ∈ Wd,Φ(·)(�,�k) and

‖αs‖Wd,Φ(·)(�,�k ), ‖βs‖Wd,Φ(·)(�,�k ) ≤ c.

Let ϕ : � × (0, 1] → R
N be a C2 mapping such that ϕ(x, 1) = x for all x ∈ �, and set

ϕt (x) = ϕ(x, t). Let ϕ−1
t � � � for every t ∈ (0, 1]. If � is a ball centered at the origin, one

takes ϕt (x) = x/t . Consider the pullbacks ϕ∗
t βs . These forms have compact support in �,

with dϕ∗
t βs uniformly converging to dβs = dγs ∈ C∞

0 (�,�k+1) and δϕ∗
t βs converging to

−δω0 in L p−
loc (�,�k−1) as t → 1− 0. Moreover, ϕ∗

t βs converges to βs in W 1,p−
loc (�,�k−1)

as t → 1 − 0. This is easily seen using (2.6).
Mollifications (ϕ∗

t βs)ε(x) = ∫
χε(x − y)ϕ∗

t βs(y) dy, where χε(x) = ε−dχ(x/ε),
χ ∈ C∞

0 ({|x | < 1}) with
∫

χ dx = 1, converge to ϕ∗
t βs in L p−(�,�k), d(ϕ∗

t βs)ε con-

verges uniformly to dϕ∗
t βs , (ϕ∗

t βs)ε → ϕ∗
t βs in W 1,p−

loc (�,�k), and δ(ϕ∗
t βs)ε → δϕ∗

t βs in
L p−
loc (�,�k−1) as ε → 0. Clearly, (ϕ∗

t βs)ε ∈ C∞
0 (�,�k) for sufficiently small ε.

Therefore, keeping the same notation for βs while replacing it by (ϕ∗
t βs)ε for appropriate

t and ε, we can assume that the new minimizing sequence has the form αs = ω0 +βs , where
βs ∈ C∞

0 (�,�k), βs is uniformly bounded in Wd,Φ(·)(�,�k) and in W 1,p−(�′,�k) for
all �′ � �. Moreover δ(ω0 + βs) → 0 for s → ∞ in L p−

loc(�,�k).
Therefore there exists

β ∈ Wd,Φ(·)
T (�,�k) ∩ W 1,p−

loc (�,�k)

such that δ(ω0 + β) = 0 and up to the subsequence,

βs⇀β in W 1,p−
loc (�,�k), βs → β in L p−

loc(�,�k),

dβs⇀dβ in LΦ(·)(�,�k+1).

Due to the convexity of Φ(x, ·) and Mazur’s lemma, we have β ∈ Hd,Φ(·)
T (�,�k) and for

α = ω0 + β there holds

lim inf
s→∞

∫

�

Φ(x, |dαs |) dV ≥
∫

�

Φ(x, |dα|) dV .

Since in the linear part we have convergence, the proof is complete.
��
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Remark If one drops the Coulomb gauge condition δω = 0 in Theorem 8 then its proof
can be somewhat simplified. Instead of αs take α̃s ∈ W 1,p−

T (�,�k) satisfying dα̃s = dγs ,
δα̃s = 0. Extend α̃s by zero to R

N\�. For sufficiently small ε the mollifications of the
pullbacks (ϕ∗

t α̃s)ε are smooth formswith compact support in�, (ϕ∗
t α̃s)ε → α̃s inW

1,p−
loc (�),

and (dϕ∗
t α̃s)ε uniformly converge to dγs as t → 1 − 0 and ε → 0. Then taking appropriate

t and ε we pass to the minimizing sequence ω0 + (ϕ∗
t α̃s)ε. The rest goes as above.

Alternatively one could use [48, Chapter 3, Theorem 3.3.3] to establish the existence of
α̂s ∈ W 1,p−

0 (�,�k) with dα̂s = dγs and ‖α̂s‖W 1,p− (�) ≤ c‖dγs‖L p− (�,�k+1). Then the
above argument repeats, moreover the “loc” subscript can be dropped since the extension of
a W 1,p−

0 (�) function by zero produces a function from W 1,p−(D) for any bounded domain
D ⊂ R

N . Or use the Bogovskii type operator constructed in the paper by Costabel and
McIntosh [22].

4 Lavrentiev gap and non-density

In this section we design the general framework for the construction of the examples on
Lavrentiev gap.We introduce the set of assumptions for the examples in the Sect. 4.1 and show
how to obtain non-density of smooth functions and the special type of the non-uniqueness
of the minimisers under these assumptions. In Sect. 4.3 we introduce basic forms which will
be building blocks of our examples. These building blocks correspond to the one saddle-
point geometry of the classical checkerboard Zhikov example and are then used in Sects. 4.4
and 4.5 to construct more advanced examples using fractal Cantor barriers. The results are
summarised in the Sect. 4.6

4.1 Separating pairs of forms and separating functionals

Here we present some “conditional” statements. We shall use two assumptions. Let � be
a domain in R

N with sufficiently regular boundary, k ∈ {1, . . . , N − 1}, and S ⊂ � be a
closed set of zero Lebesgue N -measure. Our argument will be based upon defining a suitable
set S and (k − 1)-form u and (N − k − 1)-form A, which are smooth in � \ S and give
a “counterexample” to the Stokes theorem. The regularity of ∂� is assumed to be such that
the classical Stokes theorem holds. Further � will be either cube of ball in R

N .
Let Φ : � × [0,+∞) → [0,+∞) be a generalized Orlicz function.

Definition 9 We say that a pair of (k − 1)-form and (N − k − 1)-form (u, A) defined in � is
(Φ, k)- separating if there exists a closed setS ⊂ � of zero Lebesgue N -measure such that

(i) u and A are regular outside S;
(ii) u ∈ Wd,1(�,�k−1) and A ∈ Wd,1(�,�N−k−1);
(iii)

∫
∂�

A ∧ du = 1;

(iv) |du| · |d A| = 0 in � \ S;
(v)

∫
�

Φ(x, |du|) dV < ∞ and
∫
�

Φ∗(x, |d A|) dV < ∞.

When invoking a pair of (Φ, k)-separating forms we assume that the set S comes from this
definition and when necessary denote it by S(u, A).
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The essential property of (Φ, k)-separating forms is that A∧ du “contradicts” the Stokes
theorem. Indeed, disregarding the singular set � we would arrive at

0 =
∫

�

d A ∧ du =
∫

�

d(A ∧ du) =
∫

∂�

A ∧ du = 1.

Definition 10 Let u and A be a pair of (Φ, k)-separating forms and η ∈ C∞
0 (�) with η = 1

in a neighbourhood of S. Set

u◦ = ηu, u∂ = (1 − η)u,

A◦ = ηA, A∂ = (1 − η)A.

On Wd,Φ(·)(�,�k−1) we define the functionals S, S◦, and S∂ by

S(w) :=
∫

�

d A ∧ dw, S◦(w) :=
∫

�

d A◦ ∧ dw, S∂ (w) :=
∫

�

d A∂ ∧ dw.

Proposition 11 (Separating functional) The following holds

(a) S,S◦,S∂ define linear functionals on Wd,Φ(·)(�,�k−1).
(b) For all w ∈ Hd,Φ(·)(�,�k−1) we have S◦(w) = 0.
(c) For the functions u, u∂ , u◦ it holds:

S(u) = 0, S(u∂ ) = 1, S(u◦) = −1,

S∂ (u) = 1, S∂ (u∂ ) = 1, S∂ (u◦) = 0,

S◦(u) = −1, S◦(u∂ ) = 0, S◦(u◦) = −1.

Proof The first claim follows from d A ∈ LΦ∗
(�,�N−k). Due to the Stokes theorem and by

approximation for all ω ∈ Hd,Φ(·)(�,�k−1) it holds∫

�

d A◦ ∧ dω =
∫

∂�

A◦ ∧ dω = 0.

Now du ∧ d A = 0 almost everywhere, therefore S(u) = 0. Since u∂ ∈ C∞(�,�k−1)

and A∂ ∈ C∞(�,�N−k−1(RN )), we can use the Stokes theorem and the third property of
(Φ, k)-separating pair to obtain

S∂ (u∂ ) =
∫

�

d A∂ ∧ du∂ =
∫

∂�

A∂ ∧ du∂ =
∫

∂�

A ∧ du = 1.

Since A◦ ∧ du∂ belongs to C∞
0 (�,�N−1), and d(A◦ ∧ du∂ ) = d A◦ ∧ du∂ , again by the

Stokes theorem we get

S◦(u∂ ) =
∫

�

d A◦ ∧ du∂ = 0.

Analogously, we obtain S∂ (u◦) = 0. Now,

S◦(u◦) = S(u) − S∂ (u∂ ) − S◦(u∂ ) − S∂ (u◦) = 0 − 1 − 0 − 0 = −1.

This proves the claim. ��
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Corollary 12 If there exists a pair of (Φ, k)-separating forms then

Hd,Φ(·)(�,�k−1) 
= Wd,Φ(·)(�,�k−1).

Proof By Proposition 11, S◦ = 0 on Hd,Φ(·)(�,�k−1). On the other hand, u ∈
Wd,Φ(·)(�,�k−1) and S◦(u) = −1. ��
Corollary 13 If there exists a pair of (Φ, k)-separating forms then

Hd,Φ(·)
T (�,�k−1) 
= W̃ d,Φ(·)

T (�,�k−1).

Proof For any ϕ ∈ C∞
0 (�,�k−1) by the Stokes theorem we have

S(ϕ) =
∫

�

d A ∧ dϕ =
∫

∂�

A ∧ dϕ = 0.

On the other hand, u◦ ∈ W̃ d,Φ(·)
T (�,�k−1) and by Proposition 11 we have S(u◦) = −1. ��

Theorem 14 (Lavrentiev gap) If there exists a pair (u, A) of (Φ, k)-separating forms then
for b = d A◦ the functional

FΦ,b(w) =
∫

�

Φ(x, |dw|) dV + S◦(w) =
∫

�

Φ(x, |dw|) dV +
∫

�

b ∧ dw

satisfies

inf FΦ,b(W
d,Φ(·)
c (�,�k−1)) < inf FΦ,b(C

∞
0 (�,�k−1))

and as a corollary

inf FΦ,b(W
d,Φ(·)
T (�,�k−1)) < inf FΦ,b(H

d,Φ(·)
T (�,�k−1)). (4.1)

Proof ByProposition11 andnonnegativity ofΦ,FΦ,b(w) ≥ 0 for allw ∈ Hd,Φ(·)
T (�,�k−1).

On the other hand, for t > 0, using Propositions 11 and (2.10), we have

FΦ,b(tu
◦) =

∫

�

Φ(x, t |du◦|) dV − t ≤ cts − t

with some s > 1. This implies FΦ,b(tu◦) < 0 for sufficiently small t . ��

4.2 Separating pairs and BVPs

Closely related to theLavrentiev phenomenon is a special type of nonuniqueness for boundary
value problems. In the simplest form this can be expressed as (1.8) and for minimization
problems this reads as

wt 
= ht and FΦ,0(wt ) < FΦ,0(ht ) where

wt = argminFΦ,0
(
ω0 + Wd,Φ(·)

T (�,�k−1)
)
,

ht = argminFΦ,0
(
ω0 + Hd,Φ(·)

T (�,�k−1)
) (4.2)

for some boundary data ω0 ∈ H1,Φ(·)(�,�k−1).
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First, we repeat a certain result from [11]. Let

F(ω) = FΦ,0(ω) =
∫

�

Φ(x, |dω|) dV , F∗(g) = FΦ∗,0(ω) =
∫

�

Φ∗(x, |g(x)|) dV .

Let (u, A) be a (Φ, k)-separating pair. Denote b = d A.

Assumption 15 There exist s, t > 0 such that F(tu) + F∗(sb) < ts.

Theorem 16 (H-harmonic 
= W-harmonic)
Under Assumption 15, for ω0 = tu∂ there holds (1.8) and (4.2).

Proof Set b = d A. We have tu = tu∂ + tu◦ ∈ tu∂ + Wd,Φ(·)
c (�,�k−1). Thus,

F(wt ) ≤ F(tu). (4.3)

By the properties of the Hodge dual and the Young inequality,

sb ∧ dht = s(∗b, dht ) ≤ s| ∗ b| · |dht | = s|b| · |dht | ≤ Φ(x, |dht |) + Φ∗(x, s|b|).
Hence

F(ht ) =
∫

�

Φ(x, |dht |) dx ≥ s
∫

�

b ∧ dht −
∫

�

Φ∗(x, s|b|) dx = s S(ht ) − F∗(sb).

See [38] for estimates of exterior product submultiplication constant.
Since ht − tu∂ ∈ Hd,Φ(·)

T (�), we have S(ht − tu∂ ) = 0 by Proposition 11. This and
S(u∂ ) = 1 by the same Proposition imply

F(ht ) = s S(tu∂ ) − F∗(sb) = ts − F∗(sb). (4.4)

Combining (4.3) and (4.4) we get

F(ht ) − F(wt ) ≥ ts − F(tu) − F∗(sb)

for all t, s > 0. By Assumption 15 the right hand-side of last inequality is positive, and thus
F(ht ) > F(wt ). This proves the claim. ��

4.3 Basic forms

In this section we introduce differential forms which will be building blocks of our exam-
ples. We do necessary calculations in the cubic setting, where the boundary orientation is
straightforward.

Let k ∈ {1, . . . , N − 1}. Define two groups of variables x̄ = (x1, . . . , xk) and x̂ =
(xk+1, . . . , xN ). Let �l(x), x ∈ R

l , denote the fundamental solution of the Laplace equation
in R

l with pole at the origin:

�l(x) =

⎧⎪⎨
⎪⎩

1
2 |x |, l = 1,

− 1
2π ln 1

|x | , l = 2,

− 1
(l−2)σl

|x |2−l , l > 2.

Here and below σl denotes the surface area ((l − 1)-volume) of the unit sphere in R
l , and |x |

denotes the standard Euclidian norm of x .
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Let θ : R → R be a smooth increasing function such that

θ(t) = 1 for t ≥ 1

2
, θ(t) = 0 for t ≤ 1

4
, |θ ′| ≤ 4.

Let η : R → R be a smooth increasing function such that

η(t) = t for t ≤ 1

4
, η(t) = 1

2
for t ≥ 3

4
, η′′(t) ≤ 0.

Our basic forms are

u = θ

(√
N

|x̂ |
η(|x̄ |)

)
∗x̂ d�N−k(x̂), (4.5)

A = θ

(√
N

|x̄ |
η(|x̂ |)

)
∗x̄ d�k(x̄), (4.6)

Here ∗x̂ and ∗x̄ are applied only within respective variables, that is

∗x̂ d�N−k(x̂) = 1

σN−k

N∑
j=k+1

(−1) j−k−1 x j
|x̂ |N−k

dxk+1 ∧ . . . ∧ d̂x j ∧ . . . ∧ dxN ,

∗x̄ d�k(x̄) = 1

σk

k∑
j=1

(−1) j−1 x j
|x̄ |k dx1 ∧ . . . ∧ d̂x j ∧ . . . ∧ dxk .

Further for (N − k − 1)-form u from (4.5) and (k − 1)-form A from (4.6)we use the
notation u = P1(k, N − k, 0, 0) and A = P2(k, N − k, 0, 0). Also, in this case we denote
C = {0}k ⊂ R

k , S = {0}k × {0}N−k ⊂ R
N , and this pair of forms is denoted by uS, AS.

The following facts are straightforward.

Proposition 17 Both ∗x̂ d�N−k(x̂) and ∗x̄ d�k(x̄) are harmonic

d(∗x̂ d�N−k(x̂)) = 0, δ(∗x̂ d�N−k(x̂)) = 0,

d(∗x̄ d�k(x̄)) = 0, δ(∗x̄ d�k(x̄)) = 0

outside x̂ = 0 and x̄ = 0 correspondingly. For cubes (−ε, ε)N−k ⊂ R
N−k and (−ε, ε)k ⊂

R
k , ε > 0, there holds∫

∂(−ε,ε)N−k

∗x̂ d�N−k(x̂) = 1,
∫

∂(−ε,ε)k

∗x̄ d�k(x̄) = 1,

where the natural induced orientations of the boundary are assumed.

Proposition 18 For the forms u and A given by (4.5) and (4.6)

(a) There holds

{u 
= 0} ⊂ {|x̂ | > η(|x̄ |)/(4√N )}, {A 
= 0} ⊂ {|x̄ | > η(|x̂ |)/(4√N )}.
(b) The forms u and A are smooth outside the origin,

|∇u| � |x̂ |k−N , |∇A| � |x̄ |−k,

{|∇u| 
= 0} ⊂ {|x̂ | > η(|x̄ |)/(4√N )},
{|∇A| 
= 0} ⊂ {|x̄ | > η(|x̂ |)/(4√N )}.

(4.7)
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For any bounded domain � ⊂ R
N there holds u ∈ W 1,1(�,�N−k−1), A ∈

W 1,1(�,�k−1), and

du = dθ

(√
N

|x̂ |
η(|x̄ |)

)
∧ ∗x̂ d�N−k(x̂), d A = dθ

(√
N

|x̄ |
η(|x̂ |)

)
∧ ∗x̄ d�k(x̄).

|du| � |x̂ |k−N , |d A| � |x̄ |−k,

{|du| 
= 0} ⊂ {η(|x̄ |)/(2√N ) > |x̂ | > η(|x̄ |)/(4√N )},
{|d A| 
= 0} ⊂ {η(|x̂ |)/(2√N ) > |x̄ | > η(|x̂ |)/(4√N )}. (4.8)

(c) There holds |du| · |d A| = 0 in R
N\{0}.

(d) For a nonnegative function F = F(·, ·) with nonnegative arguments, satisfying �2–
condition in the second argument and F(·, 0) = 0,

∫

[−1,1]N
F(|x̂ |, |du|) dV �

√
N∫

0

F
(
t, tk−N

)
t N−1 dt . (4.9)

(e) For a nonnegative function G = G(·, ·) with nonnegative arguments, satisfying �2–
condition in the second variable and G(·, 0) = 0

∫

[−1,1]N
G(|x̂ |, |d A|) dV �

√
N∫

0

G
(
t, t−k) t N−1 dt . (4.10)

Proof The first two statements follow from the definition of u and A. Assume that � ⊂
{|x | < R}. Using polar coordinates and estimates (4.7), we evaluate

∫

�

|∇u| dV �
R∫

0

tk−N t N−k−1tk dt =
R∫

0

tk−1 dt < ∞,

∫

�

|∇A| dV �
R∫

0

t−k tk−1t N−k dt =
R∫

0

t N−k−1 dt < ∞.

Thus the coefficients of the forms u and A belong to the Sobolev space W 1,1(�). Since
the coefficients of the exterior derivative are linear combinations of derivatives of form
coefficients, this implies u ∈ Wd,1(�,�N−k−1), A ∈ Wd,1(�,�k−1) and their exterior
derivatives are as above together with estimates (4.8).

To prove that |du| · |d A| = 0 in R
N\{0}, we note that |d A| 
= 0 implies |x̄ | < |x̂ |/(2√N )

and du 
= 0 implies |x̂ | < |x̄ |/(2√N ) (recall that η(t) ≤ t).
The last two statements immediately follows from the above estimates for |∇u| and |∇A|

and using polar coordinates. ��
Let Q = [−1, 1]d . For x = (x1, . . . , xl) ∈ R

l the norm |x |∞ = max{|x1|, . . . , |x |l},
while the standard Euclidian norm is denoted by |x | =

√
x21 + · · · + x2l . Recall that for

x ∈ R
l there holds |x |∞ ≤ |x | ≤ √

l|x |∞.

Proposition 19 For the form A given by (4.6) on ∂Q∩{|x̂ |∞ < 1} there holds d A = 0. Thus

{d A 
= 0} ∩ ∂Q ⊂ {|x̂ |∞ = 1}, u = ∗x̂ d�N−k(x̂) on {d A 
= 0} ∩ ∂Q,

d A = dθ(2
√
N |x̄ |) ∧ ∗x̄ d�k(x̄) on {d A 
= 0} ∩ ∂Q.

(4.11)
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Proof Note that

{d A 
= 0} ⊂ {|x̄ | < η(|x̂ |)/(2√N )} ⊂ {|x̄ | < |x̂ |/(2√N )} ⊂ {|x̂ |∞ > 2|x̄ |∞}.
Then for x ∈ {d A 
= 0} ∩ {|x̄ |∞ = 1} there holds |x̂ |∞ > 2, which implies the first claim.
Thus,

{d A 
= 0} ∩ ∂Q ⊂ {|x̂ |∞ = 1} ∩ {1/(8√N ) ≤ |x̄ | ≤ 1/(4
√
N )}.

On the set {d A 
= 0} ∩ ∂Q we have |x̂ |∞ = 1, |x̂ | ≥ 1 and |x̄ | ≤ 1/4, η(|x̄ |) ≤ 1/4, so
θ(

√
N |x̂ |/η(|x̄ |)) = 1, η(|x̂ |) = 1, dη(|x̂ |) = 0, and we get (4.11) by Definitions (4.5) and

(4.6) of u and A. ��
The following statement is central in our considerations. Let ∂[−1, 1]N be the boundary

of the cube Q = [−1, 1]N with the natural induced orientation.

Lemma 20 For the forms u and A given by (4.5) and (4.6) there holds∫

∂[−1,1]N
u ∧ d A = (−1)k(N−k),

∫

∂[−1,1]N
A ∧ du = 1. (4.12)

Proof Below we use the notation of integration on cubic chains see [54, Chapter 4]. Let

Ql : [−1, 1]l → R
l , Ql(x) = x,

be the standard l-cube and ∂Ql its boundary with the natural induced orientation.
Denote the boundary faces of QN as

I±
j : [−1, 1]N−1 → R

N ,

I±
j (x1, . . . , x j−1, x j+1, . . . , xN ) = (x1, . . . , x j−1,±1, x j+1, . . . , xN ).

Then ∂QN = ∑N
j=1(−1) j−1(I (+)

j − I (−)
j ).

By QN−k[x̄] we denote the (N − k)-dimensional cubes with centers at (x̄, 0),

QN−k[x̄] : [−1, 1]N−k → R
N , QN−k[x̄](xk+1, . . . , xN ) = (x̄, xk+1, . . . , xN ).

The faces Ĩ (±)
j [x̄] of these cubes are

Ĩ (±)
j [x̄] : [−1, 1]N−k−1 → R

N , Ĩ (±)
j [x̄](xk+1, . . . , x j−1, x j+1, . . . , xN )

= (x̄, xk+1 . . . , x j−1,±1, x j+1, . . . , xN ),

and the boundary of QN−k[x̄] is ∂QN−k[x̄] = ∑N
j=k+1(−1) j−k−1( Ĩ (+)

j [x̄] − Ĩ (−)
j [x̄]).

By (4.11) we have
∫

∂QN

u ∧ d A =
∫

∂QN

∗x̂ d�N−k(x̂) ∧ d A

=
N∑

j=k+1

(−1) j−1
( ∫

I (+)
j

−
∫

I (−)
j

)
∗x̂ d�N−k(x̂) ∧ dθ

(
2
√
N |x̄ |) ∧ ∗x̄ d�k(x̄)

= (−1)(N−k)k
N∑

j=k+1

(−1) j−k−1
( ∫

I (+)
j

−
∫

I (−)
j

)
dθ
(
2
√
N |x̄ |) ∧ ∗x̄ d�k(x̄) ∧ ∗x̂ d�N−k(x̂)
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= (−1)(N−k)k
∫

Qk

d(θ(2
√
N |x̄ |) ∗x̄ d�k(x̄))

N∑
j=k+1

(−1) j−k−1
( ∫

Ĩ (+)
j [x̄]

−
∫

Ĩ (−)
j [x̄]

)
∗x̂ d�N−k(x̂)

= (−1)(N−k)k
∫

Qk

d(θ(2
√
N |x̄ |) ∗x̄ d�k(x̄)) = (−1)(N−k)k

∫

∂Qk

θ(2
√
N |x̄ |) ∗x̄ d�k(x̄)

= (−1)(N−k)k
∫

∂Qk

∗x̄ d�k(x̄) = (−1)(N−k)k .

Thus we get the first relation in (4.12). Since

A ∧ du − (−1)k(N−k)u ∧ d A = dω, ω = (−1)(k−1)(N−k)u ∧ A,

we have ∫

∂[−1,1]N

(
A ∧ du − (−1)k(N−k)u ∧ d A

)
= 0.

This yields the second relation in (4.12). The proof of Lemma 20 is complete. ��
To summarize the results of this section, we have shown that the pair of forms u and A

given by (4.5) and (4.6) is (Φ, N − k)-separating in � = [−1, 1]N provided that the integral
(4.9) converges for F ≥ Φ and the integral (4.10) converges for G ≥ Φ∗.

4.4 Generalized Cantor sets and their properties

In this section we construct (generalized) Cantor sets.
Let l j , j = 0, 1, 2, . . . be a decreasing sequence of positive numbers starting from l0 = 1:

1 = l0 > l1 > l2 > · · ·
such that l j−1 > 2l j for all j ∈ N. We start from I0,1 = [−1/2, 1/2]. On each m-th step we
we remove the openmiddle third of length l j −2l j+1 from the interval Im, j , j = 1, . . . , 2m to
obtain the next generation set of closed intervals Im+1, j , j = 1, . . . , 2m+1. The union of the
closed intervals Im, j = [am, j , bm, j ], j = 1, . . . , 2m of length lm from the same generation

forms the pre-Cantor set Cm = ⋃2m
j=1 Im, j . The Cantor set C = ∩∞

m=0Cm is the intersection
of all pre-Cantor sets Cm .

On each mth step we define the pre-Cantor measure as μm = |Cm |−11Cm , where |Cm | =
2mlm is the standard Lebesgue measure of Cm , and the weak limit of the measures μm is the
Cantor measure corresponding to C.

We require further that

lm−1 − 2lm > lm − 2lm+1 ⇔ lm+1 >
3lm − lm−1

2
,

at least for all sufficiently large m.
If the sequence l j satisfies the conditions above only for sufficiently large j ≥ j0, then

we modify it by taking the sequence l̃ j = l j+ j0(l j0)
−1, j = 0, 1, 2, . . .

For k ∈ N by Ck and μk we denote the Cartesian powers of k copies of C and its
corresponding Cantor measure, respectively.
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Definition (Generalized Cantor sets). Let l j = λ j jγ , λ ∈ (0, 1/2), γ ∈ R. We denote the
corresponding Cantor set by Cλ,γ , the Cartesian product of its k copies is Ck

λ,γ . For C
k
λ,γ we

denote D = −k ln 2/ ln λ, so that λD = 2−k . We denote the Cantor measure corresponding
to Cλ,γ by μλ,γ and its k-th Cartesian power by μk

λ,γ .

Definition (Meager Cantor sets). Let l j = exp(−2 j/γ ), γ > 0. Denote the corresponding
Cantor set by C0,γ , and its Cartesian products by Ck

0,γ . For these sets we denoteD = 0. We

denote the corresponding Cantor measures by μk
0,γ .

Denote Ct = {dist(x̄,C) < t}, where C is one of Ck
λ,γ or Ck

0,γ defined above. Denote by
d∞(x̄,C) the distance from x̄ to C in the maximum norm and let C∗,t = {d∞(x̄,C) < t}. It
is clear that Ct ⊂ C∗,t . Let |F |k denote the standard Lebesgue k-measure of F ⊂ R

k . In the
following lemma Bx̄

t is the open ball in R
k with center at x̄ and radius t .

Lemma 21 We have

|(Ck
λ,γ )t |k � tk−D(ln t−1)γD, μλ,γ (Bx̄

t ) � tD(ln t−1)−γD, (4.13)

and

|(Ck
0,γ )t |k � tk(ln t−1)γ k, μ0,γ (Bx̄

t ) � (ln t−1)−γ k . (4.14)

Proof Let l j be the sequence of interval lengthes defining the corresponding Cantor set. Let
t ∈ (l j/2 − l j+1, l j−1/2 − l j ). The set C∗,t consists of 2k j identical cubes of the form

|x̄ − x̄ j,s |∞ <
l j
2

+ t .

So

|C∗,t |k ≤ 2k( j−1)(l j + 2t)k .

First consider the case C = Ck
λ,γ with λ > 0. Then l j + 2t ≤ l j−1 − l j ≤ ct with some

constant c independent of j , so

|Ct |k ≤ |C∗,t |k � 2k j tk .

Recalling that D = −k ln 2/ ln λ and λD = 2−k , we get

2k j = λ− jD = l−D
j jγD � l−D

j (ln(1/l j ))
γD

� t−D(ln t−1)γD.

Thus we arrive at the first inequality in (4.13).
Now consider the case C = Ck

0,γ (ultrathin Cantor sets). Then we get

2k j =
(
ln

1

l j

)γ k

≈
(
ln

1

t

)γ k

and this yields the second inequality from (4.13).
Now let us estimate μ(Bx̄

r ). Any interval of length 2t with t ∈ (l j/2− l j+1, l j−1/2− l j )
can intersect at most one interval forming the j-th iteration of the pre-Cantor set. Since Bx̄

t
lies within a cube with edge 2t , then μk

λ,γ (Bx̄
t ) ≤ 2− jk . Using the above estimates for 2 jk

we arrive at (4.14). The proof of Lemma 21 is complete.
��
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4.5 From one singular point to fractal sets

Let k ∈ {1, . . . , N }, λ ∈ (0, 1/2) and γ ∈ R, or λ = 0 and γ > 0 be given. Let � be the ball
of radius

√
N in R

N centered at the origin.
Now let C = Ck

λ,γ be the generalized Cantor set with the given parameters and μ = μk
λ,γ

be the Cantor measure corresponding to Ck
λ,γ . Our construction will be based on the singular

(or fractal contact/ barrier) set S = Ck
λ,γ × {0}N−k . Recall that for generalized Canter sets

Ck
λ,γ we set D = −k ln 2/ ln λ (equivalently, λ = 2−k/D) and for meager Cantor sets Ck

0,γ
we set D = 0.

Let d(x̄,C) be the generalized distance, see [55, Chapter VI, §2] from x̄ to C. In particular,
d(x̄,C) ∈ C∞(Rk\C),

1

C
dist(x̄,C) ≤ d(x̄,C) ≤ Cdist(x̄,C), |∇ j d(x̄,C)| ≤ C j (dist(x̄,C))1− j , j ∈ N, (4.15)

where C,C j > 1 and dist(x̄,C) is the standard Euclidian distance from x̄ to C. Without
loss, we assume that C ≥ 4.

Let θ : R → R be a smooth nondecreasing function such that θ(t) = 1 for t ≥ 1/2,
θ(t) = 0 for t ≤ 1/4, |θ ′| ≤ 4. Let η : R → R be a smooth nondecreasing concave function
such that η(t) = t for t ≤ 1/4 and η(t) = 1/2 for t ≥ 3/4.

For S = C × {0}N−k , C = Ck
λ,γ , we define the (N − k − 1)-form uS, the (k − 1)-form

AS, and the function ρS by

uS = θ

(√
NC

|x̂ |
η(d(x̄,C))

)
∗x̂ d�N−k(x̂), (4.16)

AS(x̄, x̂) =
∫

A♦(x̄ − ȳ, x̂)dμ(ȳ), A♦ = θ

(√
N

|x̄ |
η(|x̂ |)

)
∗x̄ d�k(x̄), (4.17)

ρS = θ

(
C

|x̂ |
3η(d(x̄,C))

)
. (4.18)

Here the constant C is from (4.15). The integral is understood as integrating the coefficients
of the form.In � there holds |∇ jρS(x)| ≤ C( j)|x̂ |− j , j ∈ N.

Further the (N − k − 1)-form uS defined by (4.16) and (k − 1)-form AS defined by
(4.17) corresponding to the space dimension N and the Cantor set Cλ,γ will be denoted
by P1(k, N − k,D, γ ) and P2(k, N − k,D, γ ). That is, uS = P1(k, N − k,D, γ ) and
AS = P2(k, N − k,D, γ ). The function ρS defined in (4.18) will be also denoted by
P0(k, N − k,D, γ ).

Lemma 22 There holds u ∈ W 1,1(�,�N−k−1) ∩ C∞(�\S,�N−k−1) and

|∇u|(x̄, x̂) � 1{|x̂ |>dist (x̄,C)/(8C2
√
N )}|x̂ |k−N ,

|du|(x̄, x̂), |δu|(x̄, x̂) � 1{dist (x̄,C)/(8C2
√
N )<|x̂ |<dist (x̄,C)/(2

√
N )}|x̂ |k−N .

(4.19)

For a nonnegative function F = F(·, ·)with nonnegative arguments, satisfying�2-condition
in the second argument and F(·, 0) = 0,

∫

�

F(|x̂ |, |∇u|) dV �

√
N∫

0

F
(
t, tk−N

)
t N−k−1|Ct |k dt . (4.20)
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Proof Clearly, u is smooth in � \ S, and in particular its coefficients have ACL property.
Immediately from the definition of u, (4.15) and Proposition 17 we obtain (4.19). Then using
polar coordinates in R

N−k we obtain (4.20). In particular, for F(s, τ ) = τ by Lemma 21
we get |∇u| ∈ L1(�). By [63, Theorem 2.1.4] we conclude that the coefficients of u are in
W 1,1(�). ��
Lemma 23 There holds A ∈ Wd,1(�,�k−1) ∩ C∞(�\S,�k−1),

d A(x̄, x̂) =
∫

b♦(x̄ − ȳ, x̂)dμ(ȳ), where b♦ = d A♦,

and

|d A|(x̄, x̂) � |x̂ |−kμ(Bx̄
|x̂ |)1{dist (x̄,C)<|x̂ |/(2√N )}(x̄, x̂). (4.21)

For a nonnegative function G = G(·, ·)with nonnegative arguments, satisfying�2–condition
in the second variable and G(·, 0) = 0,

∫

�

G(|x̂ |, |d A|) dV �

√
N∫

0

G
(
t, t−k sup

x̄
μ(Bx̄

t

)|Ct |k t N−k−1 dt . (4.22)

Proof Clearly, A is smooth outside the contact setS. Denote

b(x̄, x̂) =
∫

b♦(x̄ − ȳ, x̂)dμ(ȳ).

Then

|b|(x̄, x̂) ≤
∫

|b♦|(x̄ − ȳ, x̂)dμ(ȳ) �
∫

|x̂ |−k1{|x̂ |/(8√N )<|x̄ |<|x̂ |/(2√N )}(x̄ − ȳ, x̄)dμ(ȳ)

� |x̂ |−k
∫

1{|x̄ |<|x̂ |/(2√N )}(x̄− ȳ, x̄)dμ(ȳ)≤|x̂ |−kμ(Bx̄
|x̂ |/(2√N )

)1{dist (x̄,C)<|x̂ |/(2√N )}(x̄, x̂).

Using polar coordinates in R
N−k we evaluate∫

�

G(|x̂ |, |b|) dV �
∫

�

G
(|x̂ |, |x̂ |−kμ(Bx̄

|x̂ |)
)
1{dist (x̄,C)<|x̂ |}(x̂, x̄)dx̄d x̂

�
∫

{|x̂ |≤√
N }

G
(|x̂ |, |x̂ |−k sup

x̄
μ(Bx̄

|x̂ |)
)|{dist (x̄,C) < |x̂ |}|k d x̂

=
√
N∫

0

G
(
t, t−k sup

x̄
μ(Bx̄

t

)|Ct |k t N−k−1 dt .

In particular, using G(s, t) = t and Lemma 21 we get b ∈ L1(�).
For any ϕ ∈ C∞

0 (�,�k) using A♦ ∈ W 1,1(�,�k) we have

(A, δϕ) =
∫

�

(∫
A♦(x̄ − ȳ, x̂)dμ(ȳ)

)
∧ ∗δϕ

=
∫

dμ(y)
∫

�

A♦(x̄ − ȳ, x̂) ∧ ∗δϕ =
∫

dμ(y)
∫

�

b♦(x̄ − ȳ, x̂) ∧ ∗ϕ
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=
∫

�

b ∧ ∗ϕ = (b, ϕ).

By definition, this implies d A = b, and as a consequence (4.21) and (4.22). The proof of
Lemma 23 is complete. ��
Proposition 24 There holds |du| · |d A| = 0 a.e. in �.

Proof By Lemmas 22 and 23,

{|du| > 0} ⊂ {|x̂ | ≤ dist (x̄,C)/(2
√
N )}, {|d A| > 0} ⊂ {|x̂ | ≥ 2

√
N dist (x̄,C)}.

Thus |du| · |d A| = 0 in �\S. The claim follows since S has N -dimensional Lebesgue
measure zero. ��
Proposition 25 The function ρS ∈ C∞(RN\S), 0 ≤ ρS ≤ 1, ρS = 1 on the support of d A
and ρS = 0 on the support of du.

Proof The first two properties are immediate from the definition of ρS. From the definition
of u,

supp du ⊂ {|x̂ | ≤ η(d(x̄,C))/(
√
NC)}.

On this set, ρS = 0 (recall that θ(t) = 0 if t ≤ 1/4). On the other hand,

supp d A ⊂ {|x̂ | ≥ 2
√
Ndist(x̄,C)} ⊂ {|x̂ | ≥ 2

√
NC−1η(d(x̄,C))}.

On this set, ρS = 1 (recall that θ(t) = 1 if t ≥ 1/2). ��
Proposition 26 On the boundary of Q = [−1, 1]N there holds

(a) u ∧ d A = 0 on ∂[−1, 1]N ∩ {|x̂ |∞ < 1};
(b) On ∂Q ∩ {|x̂ |∞ = 1} there holds

u = ∗x̂ d�N−k, d A =
∫

d(θ(2
√
N |x̄ − ȳ|)) ∧ ∗x̄ d�k(x̄ − ȳ) dμ(ȳ).

Proof By construction,

{|d A| 
= 0} ⊂ {dist(x̄,C) < |x̂ |/(2√N )} ⊂ {dist(x̄,C) < |x̂ |∞/2}.
If |x̄ |∞ = 1, then dist(x̄,C) ≥ 1/2 (recall that C ⊂ [−1/2, 1/2]k ), so d A(x̄, x̂) 
= 0 implies
|x̂ |∞ > 1. Thus

{|d A| 
= 0} ∩ ∂Q ⊂ {|x̂ |∞ = 1} ∩ ∂Q.

Then in the definition of u for the argument of θ for |x̂ |∞ ≤ 1, |x̄ |∞ = 1 we have

√
NC

|x̂ |
η(d(x̄,C))

≥ √
N

|x̂ |
dist (x̄,C)

≥ 2.

This implies θ
(√

NC |x̂ |
η(d(x̄,C))

)
= 1, and therefore u = ∗x̂ d�N−k on ∂[−1, 1]N ∩ {|x̂ |∞ =

1}.
The formula for d A follows then fromη(|x̂ |) = 1/2 for x in a neighbourhood of [−1, 1]N∩

{|x̂ |∞ = 1} and smoothness of the integrand in the definition of A for |x̂ | > 0. ��
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Lemma 27 For the forms u and A given by (4.16) and (4.17) there holds

∫

∂[−1,1]N
u ∧ d A = (−1)k(N−k),

∫

∂[−1,1]N
A ∧ du = 1. (4.23)

Proof Using Proposition 26 and the notation of integration on cubic chains similar to
Lemma 20 we obtain

∫

∂QN

u ∧ d A =
N∑

j=k+1

(−1) j−1

⎛
⎜⎜⎝
∫

I+
j

−
∫

I−
j

⎞
⎟⎟⎠ ∗x̂ d�N−k(x̂) ∧

∫
d(θ(2

√
N |x̄ − ȳ|)) ∗x̄ d�k(x̄ − ȳ))dμ(ȳ)

= (−1)k(N−k)
N∑

j=k+1

(−1) j−k−1

⎛
⎜⎜⎝
∫

I+
j

−
∫

I−
j

⎞
⎟⎟⎠

×
(
d
∫

θ(2
√
N |x̄ − ȳ|) ∗x̄ d�k(x̄ − ȳ)dμ(ȳ)

)
∧ ∗x̂ d�N−k(x̂)

= (−1)k(N−k)
∫ ⎡
⎢⎣
∫

Qk

d(θ(2
√
N |x̄ − ȳ|) ∗x̄ d�k(x̄ − ȳ))

N∑
j=k+1

(−1) j−k−1

⎛
⎜⎜⎝
∫

Ĩ+
j (x̄)

−
∫

Ĩ−
j (x̄)

⎞
⎟⎟⎠ ∗x̂ d�N−k(x̂)

⎤
⎥⎥⎦ dμ(ȳ)

= (−1)k(N−k)
∫

dμ(ȳ) = (−1)k(N−k).

Here we used that

∫

Qk

d(θ(2
√
N |x̄ − ȳ|) ∗x̄ d�k(x̄ − ȳ))

N∑
j=k+1

(−1) j−k−1

⎛
⎜⎜⎝
∫

Ĩ+
j (x̄)

−
∫

Ĩ−
j (x̄)

⎞
⎟⎟⎠ ∗x̂ d�N−k(x̂)

=
∫

Qk

d
(
θ(2

√
N |x̄ − ȳ|) ∗x̄ d�k(x̄ − ȳ)

) =
∫

∂Qk

θ(2
√
N |x̄ − ȳ|) ∗x̄ d�k(x̄ − ȳ)

=
∫

∂Qk

∗x̄ d�k(x̄ − ȳ) = 1

for all y ∈ [−1/2, 1/2]k ⊂ R
k .

To calculate the second integral we use the same argument as in Lemma 20: the form
A ∧ du − (−1)k(N−k)u ∧ d A is exact, therefore its integral over ∂[−1, 1]N is zero. ��
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4.6 Work-tool

Here we gather the results of Sect. 4.5, namely of Lemmas 22, 23, 27 and Propostion 24.
Recall that a pair of (k−1)-form u and (N−k−1)-form A is (Φ, k)-separating if u and A are
regular outside a closed set S ⊂ � of zero Lebesgue N -measure, u ∈ Wd,Φ(·)(�,�k−1),
A ∈ Wd,Φ∗(·)(�,�N−k−1), |du| · |d A| = 0 a.e. in �, and

∫
�
A ∧ du = 1. The form of the

following statement represents the duality between u and A. The function Φ = Φ(x, t) is a
generalized Orlicz function, as in Sect. 2.4. The following lemma gives the general work-tool
to construct a (Φ, k)-separating pair. Let � = [−1, 1]N or � = {|x | <

√
N }.

Lemma 28 (i) Let u = P1(N − k, k,D, γ ) and A = P2(N − k, k,D, γ ). Let Φ be such that
Φ(x, t) ≤ F1(|x̂ |, t) on the support of du and Φ(x, t) ≥ F2(|x̂ |, t) on the support of d A. If

I1 :=
√
N∫

0

F1(t, t
−k)|Ct |N−k t

k−1 dt < ∞,

I2 :=
√
N∫

0

F∗
2

(
t, tk−N sup

x̄
μ
(
Bx̄
t

))
|Ct |N−k t

k−1 dt < ∞,

(4.24)

then the pair (u, A) is (Φ, k)-separating.
(ii) Let u = P2(k, N − k,D, γ ) and A = (−1)k(N−k)P1(k, N − k,D, γ ). Let Φ be such
that Φ(x, t) ≤ F1(|x̂ |, t) on the support of du and Φ(x, t) ≥ F2(|x̂ |, t) on the support of
d A. If

I1 :=
√
N∫

0

F1

(
t, t−k sup

x̄
μ
(
Bx̄
t

))
|Ct |k t N−k−1 dt < ∞,

I2 :=
√
N∫

0

F∗
2

(
t, tk−N )|Ct |k t N−k−1 dt < ∞,

(4.25)

then the pair (u, A) is (Φ, k)-separating.
Moreover, in both cases there holds∫

�

Φ(x, |du|) dV ≤ C(N , k)I1,
∫

�

Φ∗(x, |d A|) dV ≤ C(N , k)I2. (4.26)

Proof The forms u and A are regular outsideS by construction. By Lemmas 22,23 we have
u ∈ Wd,1(�,�k−1) and A ∈ Wd,1(�,�N−k−1). By Proposition 24, |du| · |d A| = 0 outside
S. Since d(A ∧ du) = d A ∧ du = 0 outside S, Lemma 27 implies∫

∂�

A ∧ du =
∫

∂[−1,1]N
A ∧ du = 1.

From estimates (4.20) and (4.22) by the assumptions of the lemma we get (4.26), which
completes the proof of the lemma. ��

In view of Sect. 4, to construct an example for the Lavrentiev gap, it is sufficient to check
the conditions of Lemma 28. In the following section we do this for the “standard” and
“borderline” double phase models and for the variable exponent.
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4.7 Example setups

Two cases of Lemma 28 and different choices of the fractal contact set give us several variants
of example setup. Further p0 > 1 will be the threshold parameter. Depending on the value
of the threshold parameter p0, we design 5 different setups:

(a) critical or one saddle point setup corresponds to the classical Zhikov checkerboard exam-
ple [61] (N = 2, k = 1) and its development by [31] ( N > 1, k = 1);

(b) supercritical setup corresponds to the case p0 > N/k, in the scalar settting (k = 1) of
[11] this corresponds to the superdimensional case p0 > N with singular set on a line;

(c) subcritical case corresponds to the case 1 < p0 < N/k, in the scalar settting (k = 1)
of [11] this corresponds to the subdimensional case 1 < p0 < N with singular set on a
hyperplane;

(d) right limiting critical case corresponds to the situation when p0 = N/k + 0 (that is, for
the critical value p0 = N/k we use the supercritical construction);

(e) left limiting critical case corresponds to the situation when p0 = N/k − 0 (that is, for
the critical value p0 = N/k we use the subcritical construction).

Each of these setups includes the fractal set C (see Sect. 4.4, in the “critical” case it is just
one point), the barrier fractal setS, the pair of the forms u and A, and the function ρ̃ which
separates the supports of du and d A: it is equal to 0 on the support of du and 1 on the support
of d A. The construction of the forms u, A and the function ρ̃ is described in 4.3 (for one
singular point case) and in 4.5 (for the rest of cases).

One can easily verify (this is done in Sect. 5.1, take there α = 0) that du ∈ L p(�,�k)

for any p < p0 and d A ∈ Lq ′
(�,�N−k) for any q > p0 which explains why we call this

parameter “threshold”. The function ρ̃ is then used to construct the function Φ for which the
pair (u, A) is (Φ, k)-separating.

The second free parameter of the construction — the shrinking fractal parameter γ —
plays an important role later in refining our examples to the limiting case and in treating the
borderline double phase and the log-log-Hölder exponents.

Setup 1 (Critical or one saddle point) Let p0 = N/k and set

C = {0}N−k, S = {0}N , ρ̃ = ρS = P0(N − k, k, 0, 0),

u = uS = P1(N − k, k, 0, 0), A = AS = P2(N − k, k, 0, 0).

Setup 2 (Supercritical) Let p0 > N/k. Define D = (p0k − N )/(p0 − 1) from p0 =
(N − D)/(k − D) and set λ = 2−k/D,

C = Ck
λ,γ , S = C × {0}N−k , ρ̃ = 1 − ρS = 1 − P0(k, N − k,D, γ ),

u = AS = P2(k, N − k,D, γ ), A = (−1)k(N−k)uS = (−1)k(N−k)P1(k, N − k,D, γ ).

Setup 3 (Subcritical) Let 1 < p0 < N/k. DefineD = N − p0k from p0 = (N −D)/k and
set λ = 2−(N−k)/D,

C = CN−k
λ,γ , S = C × {0}k, ρ̃ = ρS = P0(N − k, k,D, γ ),

u = uS = P1(N − k, k,D, γ ), A = AS = P2(N − k, k,D, γ ).

Setup 4 (Right limiting (critical+0)) Let p0 = N/k and set

C = Ck
0,γ , S = Ck

0,γ × {0}N−k , ρ̃ = 1 − ρS = 1 − P0(k, N − k, 0, γ ),

u = AS = P2(k, N − k, 0, γ ), A = (−1)k(N−k)uS = (−1)k(N−k)P1(k, N − k, 0, γ ).
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Setup 5 (Left limiting (critical-0)) Let p0 = N/k and set

C = CN−k
0,γ , S = C × {0}k, ρ̃ = ρS = P0(N − k, k, 0, γ ),

u = uS = P1(N − k, k, 0, γ ), A = AS = P2(N − k, k, 0, γ ).

Setup 1, Setup 3, Setup 5 correspond to Lemma 28 (ii). Setup 2 and Setup 4 correspond
to Lemma 28 (i).

5 Applications

In this section we show the presence of the Lavrentiev gap for the following models

(a) double phase;
(b) borderline double phase;
(c) variable exponent.

To this end we use the framework defined in Sect. 4 and the Cantor set-based construction
from Sect. 4.5. That is, we have to show that the pair of forms u and A build as in Sect. 4.5
is (Φ, k)-separating and satisfies the conditions of Assumption 15 (the latter one for the
Dirichlet problem) for the generalized Orlicz functions

(a) Φ(x, t) = t p + a(x)tq ;
(b) Φ(x, t) = t p log−β(e + t) + a(x)t p logα(e + t);
(c) Φ(x, t) = t p(x).

Further in this section � = {|x | <
√
N } ⊂ R

N , k ∈ {1, . . . , N − 1}, C = Clλ,γ is a

generalized Cantor set as in Sect. 4.4, andS = C× {0}N−l is the singular contact set, where
l = k or l = N − k. As above, by Ct we denote the t-neighbourhood of the set C.

Recall that the parameter λ of the fractal set Cm
λ,γ is connected to its “fractal dimension”D

byD = −m ln 2/ ln λ ifD > 0 and λ = 0 ifD = 0, and the forms u and A defined in (4.16)
and (4.17), based on the contact set Cm

λ,γ (or (4.5) and (4.6) for D = γ = 0) are denoted
by P1(m, N −m,D, γ ) and P2(m, N −m,D, γ ). That is, the forms P j (m, N −m,D, γ ),
j = 1, 2, together with the function P0(m, N −m,D, γ ) are constructed using the singular
set Cm

λ,γ × {0}N−m with λ = 2−m/D if D > 0 and λ = 0 if D = 0.
Before passing on to the examples we make the following observation.

Lemma 29 Let ρ be a function on � such that ρ ≤ C and |∇ρ(x)| ≤ C |x̂ |−1 with C > 1.
Then the function a0(|x̂ |)ρ(x) has the modulus of continuity 5Ca0(·).
Proof For x = (x̄, x̂) and y = (ȳ, ŷ) we evaluate

r(x, y) : = |a0(|x̂ |)ρ(x) − a0(ŷ)ρ(y)| ≤ |a0(|x̂ |) − a0(|ŷ|)|ρ(x) + a0(|ŷ|)|ρ(x) − ρ(y)|
≤ a0(|x̂ − ŷ|) + a0(|ŷ|)|ρ(x) − ρ(y)|.

If |x − y| ≥ |ŷ|/2 we evaluate a0(|ŷ|) ≤ 2a0(|x − y|) using the concavity of a0, and
|ρ(x) − ρ(y)| ≤ 2C , therefore r(x, y) ≤ 5Ca0(|x − y|).

If |x − y| ≤ |ŷ|/2 then |ŷ|/2 ≤ |x̂ | ≤ 3|ŷ|/2, therefore |ρ(x)−ρ(y)| ≤ 2C |ŷ|−1|x − y|.
Now,

a0(|ŷ|)|ρ(x) − ρ(y)| ≤ 2C
a0(|ŷ|)

|ŷ| a0(|x − y|) |x − y|
a0(|x − y|) ≤ 2Ca0(|x − y|)
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since the concavity of a0 implies that a(s)s−1 ≤ a(t)t−1 for s ≥ t . Therefore, for |x − y| ≤
|ŷ|/2 we get r(x, y) ≤ (2C + 1)a0(|x − y|).

Thus in both cases we have r(x, y) ≤ 5Ca0(|x − y|).

5.1 Standard double phasemodel

Let 1 < p < q < +∞ and α ≥ 0,

ϕ(t) = t p, ψ(t) = tq . (5.1)

Denote

a0(t) = tα, a(x) = ρ̃(x)a0(|x̂ |) = ρ̃(x)|x̂ |α, Φ(x, t) = ϕ(t) + a(x)ψ(t)

= t p + a(x)tq . (5.2)

where ρ̃ is a nonnegative function which will be described in Lemma 30 (it comes from the
Setup used in Lemma 30, along with the pair of forms (u, A)).

Lemma 30 (a) Let p0 = N/k and p < N/k < q − αk−1. Use one saddle point Setup 1.
(b) Let p0 > N/k and p ≤ p0 ≤ q−α

p0−1
N−k . Take γ > (p0k−N )−1 if p = p0, γ <

1−p0
p0k−N

if q = p0 + α
p0−1
p0k−N , and any γ otherwise. Use supercritical Setup 2.

(c) Let 1 < p0 < N/k and p ≤ p0 ≤ q − αk−1. Take γ < (p0k − N )−1 if p = p0,
γ > (q − 1)/(N − p0k) if q = p0 + αk−1, and any γ otherwise. Use subcritical Setup
3.

(d) Let p0 = N/k and p ≤ p0 < q −αk−1. Take γ > (N − k)−1 if p = p0, and any γ > 0
otherwise. Use right limiting critical Setup 4.

(e) Let p0 = N/k and p < p0 ≤ q − αk−1. Take γ > (q − 1)(N − k)−1 if q = p0 + αk−1

and any γ > 0 otherwise. Use left limiting critical Setup 5.
Then for Φ given by (5.2), the pair of forms u and A is a (Φ, k)-separating pair.

Proof We use Lemma 28 with

F1(s, τ ) = ϕ(τ) = τ p, F2(s, τ ) = a0(s)ψ(τ) = sατ q

and the estimates provided by Lemma 21. Clearly,

F∗
2 (s, τ ) = a0(s)ψ

∗
(

τ

a0(s)

)
= cqs

α(τ s−α)q
′
.

We treat the five cases according to Definition 30.

(a) Case p0 = N/k, p < N/k < q − αk−1. We estimate

∫

�

ϕ(|du|) dV �

√
N∫

0

t−pk+N−1 dt < ∞

provided that p < N/k. Also,

∫

�

a0(|x̂ |)ψ∗(|d A|/a0(t)) dV �

√
N∫

0

tq
′(k−N−α)+α+N−1 dt < ∞

provided that q > N+α
k .
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(b) Case p0 > N/k. In this case

p0 = N − D

k − D
, D = p0k − N

p0 − 1
, k − D = N − k

p0 − 1
.

We use case (ii) of Lemma 28. For the first integral in (4.25), we get
√
N∫

0

ϕ

(
supx̄ μ(Bx̄

t )

tk

)
|Ct |k t N−k−1 dt �

√
N∫

0

t p(D−k)(ln t−1)−pγDtk−D(ln t−1)γDt N−k−1 dt

= c

√
N∫

0

t (p0−p)(k−D)(ln t−1)γD(1−p) dt

t
< ∞.

For the second integral in (4.25) we have
√
N∫

0

a0(t)ψ
∗
(
tk−N

a0(t)

)
|Ct |k t N−k−1 dt �

√
N∫

0

tq
′(k−N−α)+α tk−D(ln t−1)γDt N−k−1 dt

= c

√
N∫

0

tq
′(k−N−α)+N−D+α(ln t−1)γD

dt

t
< ∞.

Here one notes that

q ′(k−N−α)+N−D+α>0 ⇔ q ′ < N − D + α

N − k + α
⇔ q>

N − D + α

k − D
= p0 + α

k − D
.

Then by Lemma 28 (ii) the pair of forms (u, A) is (Φ, k)-separating.

(c) Case p0 < N/k. In this case D = N − p0k. We use case (i) of Lemma 28. For the first
integral in (4.24), we have

√
N∫

0

ϕ(t−k)|Ct |N−k t
k−1 dt �

√
N∫

0

t−pk t N−k−D(ln t−1)γDtk−1 dt

= c

√
N∫

0

t (p0−p)k(ln t−1)γD
dt

t
< ∞.

For the second integral in (4.24) we get
√
N∫

0

a0(t)ψ
∗
(
supx̄ μ(Bx̄

t )

t N−ka0(t)

)
|Ct |N−k t

k−1 dt

�

√
N∫

0

tq
′(D+k−N−α)+α(ln t−1)−q ′γDt N−k−D(ln t−1)γDtk−1 dt

= c

√
N∫

0

tq
′(D+k−N−α)+N−D+α(ln t−1)γD/(1−q) dt

t
< ∞.
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Here one notes that

q ′(D + k − N − α) + N − D + α > 0 ⇔ q ′ < N−D+α
N+α−D−k ⇔ q

> N+α−D
k = p0 + α

k .

By Lemma 28 i), the pair (u, A) is (Φ, k)-separating.

(d) Case p0 = N/k + 0. We use case (ii) of Lemma 28. For the first integral in (4.25), we
get

√
N∫

0

ϕ

(
supx̄ μ(Bx̄

t )

tk

)
|Ct |k t N−k−1 dt �

√
N∫

0

t−pk(ln t−1)−pγ k tk(ln t−1)γ k t N−k−1 dt

= c

√
N∫

0

t (p0−p)k(ln t−1)γ k(1−p) dt

t
< ∞.

For the second integral in (4.25) we have
√
N∫

0

a0(t)ψ
∗
(
tk−N

a0(t)

)
|Ct |k t N−k−1 dt �

√
N∫

0

tq
′(k−N−α)+α tk(ln t−1)γ k t N−k−1 dt

= c

√
N∫

0

tq
′(k−N−α)+N+α(ln t−1)γ k

dt

t
< ∞.

Here one notes that

q ′(k − N − α) + N + α > 0 ⇔ q ′ <
N + α

N + α − k
⇔ q >

N + α

k
= p0 + α

k
.

By Lemma 28 (ii), the pair (u, A) is (Φ, k)-separating.

(e) Case p0 = N/k−0. We use case (i) of Lemma 28 For the first integral in (4.24), we have
√
N∫

0

ϕ(t−k)|Ct |N−k t
k−1 dt �

√
N∫

0

t−pk t N−k(ln t−1)γ (N−k)tk−1 dt

= c

√
N∫

0

t (p0−p)k(ln t−1)γ (N−k) dt

t
< ∞.

For the second integral in (4.25), we get
√
N∫

0

a0(t)ψ
∗
(
supx̄ μ(Bx̄

t )

t N−ka0(t)

)
|Ct |N−k t

k−1 dt

�

√
N∫

0

t (k−N−α)q ′+α(ln t−1)−q ′γ t N−k(ln t−1)γ (N−k)tk−1 dt
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= c

√
N∫

0

tq
′(k−N−α)+N+α(ln t−1)γ (N−k)/(1−q) dt

t
< ∞.

By Lemma 28 (i), the pair of forms (u, A) is (Φ, k)-separating.
��

Theorem 31 Let p < N/k and q > p + αk−1. Then there exists p0 ∈ (1, N/k) such that
p < p0 < q−αk−1 (one can also take p = p0 and choose γ < (p0k−N )−1) and therefore
a (Φ, k)-separating pair of forms (u, A) for Φ defined by (5.2), and ρ̃ from Lemma 30.

Let q > p + α(p − 1)/(N − k) and q > N+α
k . Then there exists p0 > N/k satisfying

p < p0 < q−α(p0 −1)/(N −k) (one can also take p = p0 and choose γ > (p0k−N )−1)
and therefore a (Φ, k)-separating pair of forms (u, A) for Φ defined by (5.2), and ρ̃ from
Lemma 30.

In these cases Hd,Φ(·)(�,�k−1) 
= Wd,Φ(·)(�,�k−1). Let η ∈ C∞
0 (�) be such that

η = 1 in a neighbourhood ofS = S(u, A), A◦ = ηA, and b = d A◦. Then for the functional
FΦ,b there is Lavrentiev gap (4.1). For sufficiently large t > 0 andω0 = tu∂ ∈ C∞(�,�k−1)

there holds (1.8) and (4.2).

Proof We have only to check Assumption 15. Indeed, since ρ̃ = 0 on the support of du and
ρ̃ = 1 on the support of b = d A,

FΦ,0(tu) = t pFΦ,0(u), F∗
Φ,0(sb) ≤ sq

′F∗
Φ,0(b).

Take s = t p/q
′
Then for sufficiently large t there holds

FΦ,0(tu) + F∗
Φ,0(sb) ≤ t p(FΦ,0(u) + F∗

Φ,0(b)) < ts = t
1+ p

q′

since p < 1 + p
q ′ if p < q . ��

Note that here Φ(x, t) = t p + a(x)tq where a ∈ Cα(�) (by Lemma 29). This proves
Theorem A.

5.2 Borderline double phase

Let p0 > 1, α, β ∈ R, κ ≥ 0 such that

α + β > p0 + κ. (5.3)

Let ϕ and ψ be two Orlicz functions such that

ϕ � ψ, ϕ(t) � t p0 ln−β(e + t), ψ∗(t) � t p
′
0 lnα/(1−p0)(e + t) (5.4)

for large t . Denote

a0(t) = ln−κ(1/t), a(x) = ρ̃(x)a0(|x̂ |), Φ(x, t) = ϕ(t) + a(x)ψ(t), (5.5)

where ρ̃ is a nonnegative function to be defined later (it is generated by the corresponding
Setup in Lemma 32 together with the forms u and A).

Lemma 32 (a) Let p0 = N/k and assume that β > 1 and α + 1 > κ + p0. Use one saddle
point Setup 1.
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(b) If p0 > N/k, defineD from p0 = (N −D)/(k−D) and take γ satisfying (1−β)/(p0 −
1) < γD < (α − κ − p0 + 1)/(p0 − 1). Use supercritical Setup 2.

(c) If 1 < p0 < N/k, defineD from p0 = (N −D)/k and take γ satisfying p+κ−α−1 <

γD < β − 1. Use subcritical Setup 3.
(d) If p0 = N/k and additionally α > p0−1+κ, take γ > 0 satisfying (1−β)/(p0−1) <

γ k < (α − κ − p0 + 1)/(p0 − 1). Use right limiting critical Setup 4.
(e) If p0 = N/k and additionally β > 1, take γ > 0 satisfying p0 + κ − α − 1 < γ >

0(N − k) < β − 1. Use left limiting critical Setup 5.
Then for Φ given by (5.5), the pair of forms u and A is a (Φ, k)-separating pair.

Proof To shorten notation we write here p instead of p0. We use Lemma 28 with

F1(s, τ ) = τ p ln−β(e + τ), F2(s, τ ) = a0(s)ψ(τ)

and the estimates provided by Lemma 21. We have

F∗
2 (s, τ ) = a0(s)ψ

∗
(

τ

a0(s)

)
.

We treat the five cases according to Definition 32.

(a) Case p = N/k. We estimate

∫

�

Φ(x, |du|) dV =
∫

�

ϕ(|du|) dV �

√
N∫

0

t−pk+N−1 ln−β(e + t−1) dt

=
√
N∫

0

ln−β(e + t−1)
dt

t
< ∞,

∫

�

Φ∗(x, |d A|) dV ≤
∫

�

a0(|x̂ |)ψ∗(|d A|/a0(t)) dV �

√
N∫

0

ln(κ−α)/(p−1)(e + t−1)
dt

t
< ∞.

Therefore the pair of forms (u, A) is (Φ, k)-separating.
(b) Case p > N/k. We use case (ii) of Lemma 28. For the first integral in (4.25), we get

√
N∫

0

ϕ

(
supx̄ μ(Bx̄

t )

tk

)
|Ct |k t N−k−1 dt < ∞

�

√
N∫

0

t p(D−k)(ln t−1)−pγD−β tk−D(ln t−1)γDt N−k−1 dt

= c

√
N∫

0

t−1(ln t−1)γD(1−p)−β dt < ∞.

For the second integral in (4.25), using p′ = (N − D)/(N − k) we have

√
N∫

0

a0(t)ψ
∗
(
tk−N

a0(t)

)
|Ct |k t N−k−1 dt
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�

√
N∫

0

t p
′(k−N )(ln t−1)κ p′−α/(p−1)tk−D(ln t−1)γD−κ t N−k−1 dt

= c

√
N∫

0

t−1(ln t−1)γD−(α−κ)/(p−1) dt < ∞.

Then by Lemma 28 (ii) the pair of forms (u, A) is (Φ, k)-separating.
(c) Case p < N/k. We use case (i) of Lemma 28 for the first integral in (4.24), we have

√
N∫

0

ϕ(t−k)|Ct |N−k t
k−1 dt �

√
N∫

0

t−pk(ln t−1)−β t N−k−D(ln t−1)γDtk−1 dt

= c

√
N∫

0

t−1(ln t−1)γD−β dt < ∞.

For the second integral in (4.24), using p′ = (N − D)/(N − k − D) we get

√
N∫

0

a0(t)ψ
∗
(
supx̄ μ(Bx̄

t )

t N−ka0(t)

)
|Ct |N−k t

k−1 dt

�

√
N∫

0

t p
′(D+k−N )(ln t−1)p

′
κ−p′γD+α/(1−p)t N−k−D(ln t−1)γD−κ tk−1 dt

= c

√
N∫

0

t−1(ln t−1)(γD+α−κ)/(1−p) dt < ∞.

By Lemma 28 (i), the pair (u, A) is (Φ, k)-separating.

(d) Case p = N/k, α > p−1. We use case (ii) of Lemma 28. For the first integral in (4.25),
we get

√
N∫

0

ϕ

(
supx̄ μ(Bx̄

t )

tk

)
|Ct |k t N−k−1 dt �

√
N∫

0

t−pk(ln t−1)−pγ k−β tk(ln t−1)γ k t N−k−1 dt

= c

√
N∫

0

t−1(ln t−1)γ k(1−p)−β dt < ∞.

For the second integral in (4.25), using p′ = N/(N − k) we have

√
N∫

0

a0(t)ψ
∗
(
tk−N

a0(t)

)
|Ct |k t N−k−1 dt
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�

√
N∫

0

t p
′(k−N )(ln t−1)p

′
κ−α/(p−1)tk(ln t−1)γ k−κ t N−k−1 dt

= c

√
N∫

0

t−1(ln t−1)γ k−(α−κ)/(p−1) dt < ∞.

By Lemma 28 (ii), the pair (u, A) is (Φ, k)-separating.
(e) Case p = N/k, β > 1. We use case (i) of Lemma 28 For the first integral in (4.24), we
have

√
N∫

0

ϕ(t−k)|Ct |N−k t
k−1 dt �

√
N∫

0

t−pk(ln t−1)−β t N−k(ln t−1)γ (N−k)tk−1 dt

= c

√
N∫

0

t−1(ln t−1)γ (N−k)−β dt < ∞.

For the second integral in (4.25), we get

√
N∫

0

a0(t)ψ
∗
(
supx̄ μ(Bx̄

t )

t N−ka0(t)

)
|Ct |N−k t

k−1 dt

�

√
N∫

0

t−(N−k)p′
(ln t−1)p

′
κ−p′γ (N−k)+α/(1−p)t N−k(ln t−1)γ (N−k)−κ tk−1 dt

= c

√
N∫

0

t−1(ln t−1)(γ (N−k)+α−κ)/(1−p) dt < ∞.

By Lemma 28 (i), the pair of forms (u, A) is (Φ, k)-separating. ��

Theorem 33 Under condition (5.3), for any k = 1, . . . , N − 1 and any p > 1 there exists ρ̃

and a (Φ, k)-separating pair of forms (u, A) for Φ defined by (5.4) and (5.5). Therefore in
these cases Hd,Φ(·)(�,�k−1) 
= Wd,Φ(·)(�,�k−1). Let η ∈ C∞

0 (�) be such that η = 1 in
a neighbourhood of S = S(u, A), A◦ = ηA, and b = d A◦. For the functional FΦ,b there
is Lavrentiev gap (4.1).

Note that here we have Φ given by Φ(x, t) = ϕ(t) + a(x)ψ(t), with a ∈ Cω(·)(�),
ω(t) ≤ C ln−κ (1/t) for some C > 1 (see Lemma 29). This proves Theorem B.

5.3 Variable exponent model

A classical example of an integrand from the class (1.2) is the variable exponent model

Φ(x, t) = t p(x), (5.6)

123



62 Page 38 of 44 A. Kh. Balci, M. Surnachev

where p : � → [p−, p+] is a variable exponent. Let p0 ∈ (p−, p+),

σ(t) = κ
ln ln 1

t

ln 1
t

, (5.7)

with κ > 0 and ρ̃ be a function to be defined later (see Lemma 34). Let ξ ∈ C∞(R) be
a positive nondecreasing function such that ξ(t) = t if t ∈ [(p− + p0)/2, (p+ + p0)/2],
ξ(t) = ξ(p−) = (3p− + p0)/4 if t ≤ p−, ξ(t) = ξ(p+) = (3p+ + p0)/4 if t ≥ p+. Set

p(x) = ξ
(
p0 + σ(|x̂ |)(2ρ̃ − 1)

)
, (5.8)

and let Φ be defined by (5.6).
Recall that due to the well-know result from [59] if the exponent p has the modulus of

continuity (5.7) with sufficiently small κ then smooth functions are dense in corresponding
Sobolev–Orlicz space and the Lavrentiev phenomenon is absent. On the other hand, the
example with one saddle point provided in [59] (k = 0, N = 2, p− < 2 < p+) shows
that for sufficiently large κ the Lavrentiev gap occurs, while for the scalar case (k = 0) the
smallness of κ gives H = W . We construct examples of the Lavrentiev phenomenon for
p(x)-integrand in arbitrary dimension and for any 1 < p− < p+ < ∞.

Lemma 34 (a) Let p0 = N/k and κ > k−2 max(k, N − k). Use one saddle point Setup 1.
(b) Let p0 > N/k,

κ >
p0(p0 − 1)

2(N − k)
, and 1 − κ

N − k

p0 − 1
< γ (kp0 − N ) < κ

N − k

p0 − 1
− (p0 − 1).(5.9)

Use supercritical Setup 2.
(c) Let 1 < p0 < N/k,

κ >
p0
2k

and p0 − 1 − κk < γ (N − p0k) < κk − 1. (5.10)

Use subcritical Setup 3.
(d) Let p0 = N/k,

κ > max

(
N

2k2
,
N − k

k2

)
and max

(
k − κk2

N − k
, 0

)
< γ k <

k − N + κk2

N − k
. (5.11)

Use right limiting critical Setup 4.
(e) Let p0 = N/k,

κ > max

(
N

2k2
,
k

k2

)
, and max

(
N − k − κk2

k
, 0

)
< γ k < κk − 1. (5.12)

Use left limiting critical Setup 5.
Then for Φ given by (5.6) and (5.8), the pair of forms u and A is a (Φ, k)-separating pair.

Proof We use Lemma 28 with F1(s, τ ) = τ p0−σ(s) and F2(s, τ ) = τ p0+σ(s). Clearly,
F∗
2 (s, τ ) ≤ c(p−, p+)τ (p0+σ(s))′ . Note that tσ(t) = (ln t−1)−κ .

(a) Case p0 = N/k. We evaluate

∫

�

Φ(x, |du|) dV �
∫

�

|du|p0−σ(|x̂ |) dV �

√
N∫

0

t N−1−k(p0−σ(t)) dt
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�

√
N∫

0

(ln t−1)−kκ t−1 dt < ∞

provided that kκ > 1. Also
∫

�

Φ∗(x, |d A|) dV �
∫

�

|d A|(p0+σ(x̂))′ dV

�

√
N∫

0

t (k−N )(p0+σ(t))/(p0+σ(t)−1)t N−1 dt =
√
N∫

0

(ln t−1)r(t)t−1 dt,

where r(t) = −κk2/(N − k + kσ(t)). Since lim
t→+0

r(t) < −1, the last integral converges.

(b) Case p0 > N/k. We haveD = p0k−N
p0−1 , p0 = N−D

k−D , and the conditions (5.9) on κ and γ

can be rewritten as

κ >
N − D

2(k − D)2
and

k − D

N − k
− κ

(k − D)2

N − k
< γD < κ

(k − D)2

N − k
− 1. (5.13)

We use case (ii) of Lemma 28. For the first integral in (4.25), we get
√
N∫

0

F1
(
t, t−k sup

x̄
μ(Bx̄

t )
)|Ct |k t N−k−1dt

=
√
N∫

0

(t−k sup
x̄

μ(Bx̄
t ))p0−σ(t)|Ct |k t N−k−1 dt

�

√
N∫

0

(t−k tD(ln(t−1)−γD))
N−D
k−D −σ(t)tk−D(ln(t−1))γDt N−k dt

t

=
√
N∫

0

t (k−D)σ (t)(ln(t−1))(
k−N
k−D+σ(t))γD dt

t

=
√
N∫

0

(ln(t−1))r(t)
dt

t
, r(t) =

(
k − N

k − D
+ σ(t)

)
γD − κ(k − D).

Since (5.13) implies that lim
t→+0

r(t) < −1, the last integral converges.

For the second integral in (4.25), we get
√
N∫

0

F∗
2

(
t, tk−N )|Ct |k t N−k−1 dt

=
√
N∫

0

(tk−N )(
N−D
k−D +σ(t))′ tk−D(ln(t−1))γDt N−k−1 dt
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=
√
N∫

0

(ln t−1)r(t)
dt

t
, r(t) = γD − κ

(k − D)2

N − k + (k − D)σ (t)
.

Since (5.13) implies that lim
t→+0

r(t) < −1, the last integral converges.

By Lemma 28 (ii) the pair (u, A) is (Φ, k)-separating.
(c) Case p0 < N/k. We have D = N − p0k and the conditions (5.10) on κ and γ can be
rewritten as

κ >
N − D

2k2
and

N − D − k

k
− κk < γD < κk − 1. (5.14)

We use case (i) of Lemma 28 for the first integral in (4.24), we have√
N∫

0

F1(t, t
−k)|Ct |N−k t

k−1 dt =
√
N∫

0

(t−k)p0−σ(t)t N−k−D(ln t−1)γDtk−1 dt

=
√
N∫

0

(ln t−1)γD−κk dt

t
< ∞

since (5.14) implies γD − κk < −1.
For the second integral in (4.24), using p′ = (N − D)/(N − k − D) we get√
N∫

0

F∗
2

(
t, tk−N sup

x̄
μ
(
Bx̄
t

))
|Ct |N−k t

k−1 dt

=
√
N∫

0

(
tk−N sup

x̄
μ
(
Bx̄
t

))(p0+σ(t))′

|Ct |N−k t
k−1 dt

≤
√
N∫

0

(tk−N tD(ln t−1)−γD))(p0+σ(t))′ t N−k−D(ln t−1)γDtk−1 dt =
√
N∫

0

(ln t−1)r(t)
dt

t
,

where r(t) = −κk2 − kγD

N − D − k + kσ(t)
.

Since (5.14) implies that lim
t→+0

r(t) < −1, the last integral converges.

By Lemma 28 (i), the pair (u, A) is a (Φ, k)-separating.

(d) Case p0 = N/k + 0. For the first integral in (4.25), we get
√
N∫

0

F1

(
t, t−k sup

x̄
μ
(
Bx̄
t

))
|Ct |k t N−k−1dt

=
√
N∫

0

(
t−k sup

x̄
μ
(
Bx̄
t

))p0−σ(t)

|Ct |k t N−k−1 dt

�

√
N∫

0

(t−k(ln(t−1)−γ k))
N
k −σ(t)tk(ln(t−1))γ k t N−k dt

t

123



The Lavrentiev phenomenon in calculus of variations with … Page 41 of 44 62

=
√
N∫

0

(ln(t−1))γ (k−N+kσ(t))−κk dt

t
< ∞

since (5.11) implies γ (k − N ) − κk < −1.
For the second integral in (4.25) we have√

N∫

0

F∗
2

(
t, tk−N )|Ct |k t N−k−1 dt =

√
N∫

0

(tk−N )(
N
k +σ(t))′ tk(ln(t−1))γ k t N−k−1 dt

=
√
N∫

0

(ln t−1)r(t)
dt

t
,

r(t) = γ k − κk2

N − k + kσ(t)
.

Since (5.11) implies that lim
t→+0

r(t) < −1, the last integral converges.

(e) Case p0 = N/k − 0. We use case (i) of Lemma 28 for the first integral in (4.24), we have
√
N∫

0

F1(t, t
−k)|Ct |N−k t

k−1 dt =
√
N∫

0

(t−k)p0−σ(t)t N−k−D(ln t−1)γ k tk−1 dt

=
√
N∫

0

(ln t−1)γ k−κk dt

t
< ∞

since (5.12) implies γ k − κk < −1.
For the second integral in (4.24), using p′

0 = N/(N − k) we get
√
N∫

0

F∗
2

(
t, tk−N sup

x̄
μ
(
Bx̄
t

))
|Ct |N−k t

k−1dt

=
√
N∫

0

(
tk−N sup

x̄
μ
(
Bx̄
t

))(p0+σ(t))′

|Ct |N−k t
k−1 dt

≤
√
N∫

0

(tk−N (ln t−1)−γ k))(p0+σ(t))′ t N−k(ln t−1)γ k tk−1 dt

=
√
N∫

0

(ln t−1)r(t)
dt

t
, r(t) = −κk2 − γ k2

N − k + kσ(t)
.

Since (5.12) implies that lim
t→+0

r(t) < −1, the last integral converges. ��

Theorem 35 Let 1 < p− < p+ < ∞. Then there exists a variable exponent p : � →
[p−, p+] (defined by (5.8) and (5.7)) and (Φ, k)-separating pair (u, A) for Φ(x, t) = t p(x).
Moreover, p ∈ C∞(�\S)∩C(�), whereS = S(u, A) is a closed set of Lebesgue measure
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zero. For thisΦ there holds Hd,Φ(·)(�,�k−1) 
= Wd,Φ(·)(�,�k−1). Letη ∈ C∞
0 (�) be such

that η = 1 in a neighbourhood ofS = S(u, A), A◦ = ηA, b = d A◦. Then for the functional
FΦ,b there is Lavrentiev gap (4.1). For sufficiently large t > 0 andω0 = tu∂ ∈ C∞(�,�k−1)

there holds (1.8) and (4.2).

Proof We have to check only the last statement (different solutions of the Dirichlet problem).
By Theorem 16, it remains to show that for our (Φ, k)-separating pair (u, A) there holds

FΦ,0(tu) + F∗
Φ,0(s d A) ≤ 1

2 st

for suitable large s, t . The argument repeats that given in the proof of Theorem 32 in [11]
and we omit it. ��

In this construction by Lemma 29 the variable exponent p(·) has themodulus of continuity
C
(
ln t−1

)−1 ln ln t−1. This proves Theorem C.
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