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Abstract
We investigate the logarithmic and power-type convexity of the length of the level curves for
a-harmonic functions on smooth surfaces and related isoperimetric inequalities. In particular,
our analysis covers the p-harmonic and the minimal surface equations. As an auxiliary result,
we obtain higher Sobolev regularity properties of the solutions, including theW 2,2 regularity.
The results are complemented by a number of estimates for the derivatives L ′ and L ′′ of the
length of the level curve function L , as well as by examples illustrating the presentation. Our
work generalizes results due to Alessandrini, Longinetti, Talenti and Lewis in the Euclidean
setting, as well as a recent article of ours devoted to the harmonic case on surfaces.

Mathematics Subject Classification Primary 35R01; Secondary 58E20 · 31C12 · 53C21

1 Introduction

Themain goal of this work is to continue studies of the geometry of level curves for functions
on smooth surfaces initiated in [1] in the setting of harmonic functions. Namely, we expand
the scope of the studied PDEs to include a-harmonic equations on surfaces under relatively
mild assumptions on the operator a, see the presentation in this section below. Our results
apply in particular to the p-harmonic equation. However, we do not impose the assumption
of the homogeneity of degree p of the operator, i.e. a in (1) is homogeneous, typically
required in the p-harmonic setting. This equation is one of the key nonlinear counterparts
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of the harmonic one (p = 2), and is sometimes called "a mascot of nonlinear analysis" (P.
Drabek). The p-harmonic equation appears, for instance, in non-newtonian fluid dynamics,
the description of the Hele–Shaw flow, the image processing and stochastic games, see [34,
Chapter 2] and references therein. The p-harmonic equation plays a key role in potential
analysis [25] and in geometric analysis [26, 40], especially in the two-dimensional setting
[7, 8, 35]. Our results extend a work by Alessandrini [5] for the flat case, who investigated the
convexity of the logarithm (or powers) of the length of level sets fora-harmonic type functions
on planar annuli with constant boundary data, see also Laurence [28] and Longinetti [32]
for harmonic and p-harmonic functions in R

2. Furthermore, our a-harmonic variant of the
no-critical points lemma presented in Lemma 3.5 extends Lewis’s result [29] for p-harmonic
functions on R2 to the setting of surfaces.

Another important equation investigated in this note is the minimal surface one. Such
equation is one of themost fundamental geometric PDEswith connections to thePlateau prob-
lem, harmonic mappings theory and the geometry and topology of manifolds, see e.g. [18].
Moreover, the minimal surface equation has also been vividly studied on Riemannian sur-
faces, including the case of surfaces of nonpositive curvature we are more interested in. A
nonexhaustive list of studied topics in this direction includes, for instance, the isoperimetric
estimates on minimal graphs [11] (in any dimension), the existence and properties of entire
minimal graphs [15, 22, 27] and of special minimal surfaces [38], as well as the special
cases of minimal graphs over the hyperbolic plane, see e.g. [19, 24, 27, 42]. Our results for
minimal graphs extend previous ones by Longinetti [31], also in the Euclidean setting. Let
us also mention that other well-known equations studied in the literature are covered by our
work, for example the subsonic gas equation and the maximal graph equation in Lorentzian
spacetime; see below.

We will now discuss the setting of a-harmonic equations and present the main results
together with the organization of the paper. Consider a function a ∈ C1(0,∞)with a(s) > 0
for all s > 0 and such that, for some constants 0 < α ≤ β, it holds that

0 < α ≤ 1 + a′(s)s
a(s)

≤ β, for all s > 0. (A)

Moreover, additionally we require that

sa(s) → 0 for s → 0. (A’)

The latter assumption corresponds to the second part of condition (A2) in [41], one of
the general assumptions imposed on the a-harmonic operators there. Observe that its first
part, i.e. that function sa(s) is strictly increasing, follows from (A) by differentiation, as
(sa(s))′ ≥ αa(s) > 0 for s > 0. Condition (A’) is used in several results below, for instance
in the proof of the key result, Theorem 1.1, where we appeal to the strongmaximum principle
for equation (2), see [41, Theorem 8.5.1]. Furthermore, we need (A’) in the higher regularity
result stated as Proposition 3.1, which in turn enters in the study of critical points in Sect. 3.1.

Let (Mn, g) be a Riemannian manifold and� ⊂ Mn be an open set. In this paper, we will
focusmainly (but not only) on surfaces, i.e. n = 2. In what followswe denote the Riemannian
norm of the gradient of a function u by |∇u|g and use also |∇u| if the metric g is fixed or
clearly understood from the context of presentation. We also denote by |∇u|0 the Euclidean
norm of the Euclidean gradient u. Namely, in a given coordinate chart |∇u|2g := gi j∂i u∂ j u

and |∇u|20 := δi j∂i u∂ j u = ∑
i (∂i u)2.

Following the approach in [41, Chapter 3.1], we say that a weakly differentiable function
u ∈ L1

loc(�,R) is a-harmonic in �, if a(|∇u(·)|g)∇u(·) ∈ L1
loc(�) and if u is a weak
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solution of the equation
div(a(|∇u|g)∇u) = 0 in �, (1)

meaning that ∫

�

a(|∇u|g)〈∇u,∇φ〉gdM = 0 (2)

holds for all compactly supported test functions φ ∈ C1
0(�). In what follows, we will call

the divergence-type operator in (1) the a-harmonic operator.
Before stating our main results, let us present some examples of operators a satisfying the

assumptions (A) and (A’).

Example 1 (The p-harmonic equation) The most important example of an a-harmonic func-
tion is the p-harmonic one for a(s) := s p−2. Condition (A) is satisfied with α = β := p−1,
and since sa(s) = s p−1, condition (A’) holds as well. For a bounded domain �, a function
u ∈ W 1,p

loc (�,R) satisfying (2) with this choice of a is called p-harmonic. For this choice
of a, it is enough to require (2) for all compactly supported test functions φ ∈ W 1,p(�).

Example 2 (The minimal surface equation) By choosing a(s) := 1/
√
1 + s2 we retrieve

the minimal surface equation, see [5, 31]. In this case condition (A’) holds by a direct
computation. Moreover, we have

0 ≤ 1 + a′(s)s
a(s)

= (1 + s2)−1 ≤ 1 = β, for all s > 0.

If one disposes of an upper bound |∇u| < C on the gradient of a solution, then a satisfies
(A) with α = inf 1

1+C2 . In particular, this is the case if a C1 solution is a priori given, as in
the statement of Theorem 1.2.

Example 3 (The subsonic gas equation) Basing on the discussion on pg. 262 in [23] we may
point to yet another quasilinear equation covered by our theory, here in R

2. Namely, the
potential gas flow equation div(a(|∇u|)∇u) = 0, where u stands for the velocity potential
of the flow and a(|∇u|) expresses the fluid density-speed relation. Here,

a(s) :=
(

1 − γ − 1

2
s2

) 1
γ−1

,

where γ > 1 is constant and the equation is elliptic if the flow is subsonic, which means
that |∇u|2 < 2

γ+1 . Indeed, under this assumption a > 2
γ+1 and a ∈ C1(0,∞). Let us verify

assumptions (A) and (A’) on a. By direct computations we check that

1 + a′(s)s
a(s)

= 1 − s2

1 − γ−1
2 s2

= 1 − γ+1
2 s2

1 − γ−1
2 s2

.

The latter expression takes value 1 at s = 0, and value γ 2−1
γ 2+3

when s → 2
γ+1 , hence by taking

α := γ 2−1
γ 2+3

and β := 1 we obtain that condition (A) holds for this a-harmonic equation.

Moreover, by the direct argument, sa(s) → 0, as s → 0+, giving us (A’).

Example 4 (The maximal graph equation in Lorentzian spacetime) The maximal graph equa-
tion corresponds to the choice a(s) := 1/

√
1 − s2. Maximal surfaces in a Lorentzian

manifold are spacelike surfaces with zero mean curvature. In the Lorentz-Minkowski space
L
3 they arise as local maxima for the area functional associated to variations of the surface
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by spacelike surfaces; see e.g. [33] for the physical motivations, [14, 16] for some celebrated
results on maximal graphs, and [3, 4] for some more recent works on surfaces. Moreover,
the maximal graph equation is closely related to the Born-Infeld equation, see [13]. In the
case of strictly spacelike solutions, u ∈ C1 and |∇u| < 1, see [9]. In particular, given a
strictly spacelike solution on a compact set, it holds that |∇u| ≤ C for some constant C < 1,
so that a(s) satisfies condition (A) with α = 1 and β = sup 1

1−C2 . Furthermore, the direct
computations give us (A’).

Let us remark that our definition of a-harmonic equation is a special case of a slightly
more general class of PDEs, the so called A-harmonic PDEs, where A := A(z,∇u)∇u, and

div(A(z,∇u)∇u) = 0,

see the dedicated monograph [25]. In particular, we retrieve (2) in [25] by setting A :=
a(|∇u|)∇u.

In all themain examples of a-harmonic functions wementioned above, log a(s) is trivially
either lower or upper bounded in a neighborhood of 0. However, in all generality this property
is not trivially implied by (A) and (A’); see Example 5 in Sect. 3 below. Therefore, in order to
obtain the regularity estimates in Proposition 3.1 we need to impose an additional technical
assumption on operators a, requiring that

log a(s) is either upper or lower bounded (or both) on (0, 1]. (A”)

The key boundary value problem studied in this work is as follows. Let t1, t2 ∈ R be
such that t1 < t2 and let us consider a continuous up to the boundary solution of the fol-
lowing Dirichlet problem in an annulus � for the a-harmonic operator on a two dimensional
Riemannian manifold M2:

{
div(a(|∇u|g)∇u) = 0 in �,

u|	1 = t1, u|	2 = t2.
(DP)

From here on, by (topological) annulus we mean a domain � � M2 homeomorphic to
the flat concentric annulus {x ∈ R

2 : 1 < ‖x‖ < R} ⊂ R
2 for some R > 1. Note that,

up to possibly modifying the value of R, a non-degenerate topological annulus is actually
conformal to a flat annulus by a version of the uniformization theorem, see [1, Lemma 3.6]
specialized to smooth surfaces. Then, 	1 and 	2 stand for the C1,α connected boundary
components of �. The main class of examples is obtained for � := �1 \ �2 with �2 � �1

two domains of M2 homeomorphic to a ball. However, in general the topology of �2, and
hence of �1, could be nontrivial. Since now on, we will denote by K the Gaussian curvature
of M2. It is worthy recalling that on smooth surfaces Ric(∇u,∇u) ≡ K |∇u|2, where Ric is
the Ricci curvature tensor. Let us also add that the Dirichlet problem analogous to (DP) can
be considered on n-dimensional manifolds. It is our future project to extend results of this
work beyond the setting of surfaces.

We are now in a position to present the main results of the paper, proven in Sect. 2.
The following theorem gives a counterpart of Alessandrini’s result [5, Theorem 1.1] for
a-harmonic functions on non-positively curved Riemannian 2-manifolds and extends our
previouswork in [1, Theorems2.7] devoted to the harmonic case.Recall thatwedonot assume
that the curvature is constant, i.e. we present the argument for K = K (x) for x ∈ M2. Notice
that, following [5, 28, 32], the second part of the assertion motivates the name isoperimetric
inequality.
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In what follows by L(t) we denote the length (i.e. the 1-dimensional Hausdorff measure)
of the level set {u = t}, cf. (15) below. Moreover, by L ′ and L ′′ we denote, respectively, the
first and the second derivative of L with respect to parameter t .

Theorem 1.1 (Isoperimetric inequality for a-harmonic equations) Let � be a C1,α-
topological annular domain in a2-dimensionalRiemannianmanifold (M2, g)of non-positive
curvature K |� ≤ 0. Let t1, t2 ∈ R be such that t1 < t2 and let us consider a continuous
up to the boundary a-harmonic solution u of the Dirichlet problem (DP) in � satisfying
conditions (A), (A’) and (A”). Then

(ln L(t))′′ ≥ 0 for all t ∈ (t1, t2), ifβ = 1 (3)
(
1

m
Lm(t)

)′′
≥ 0 for all t ∈ (t1, t2), ifβ �= 1 andm = β − 1

β
, (4)

where β is as in (A). Moreover, the equality in the assertion holds on (t1, t2) if and only if u is
(β + 1)-harmonic and K ≡ 0, in which case � is locally isometric to the regular (circular)
annulus in the plane and all the level curves of u are locally concentric circles.

We present now our second main result. As observed above, a special case of the a-
harmonic equation is the minimal surface equation

div

(
1

√
1 + |∇u|2 ∇u

)

= 0, (5)

for which a(s) = 1/
√
1 + s2 and α < 1/(1+ sup� |∇u|2) and β = 1. Theorem 1.1 applied

to (5) is not sharp, since 1 + a′(s)s/a(s) < 1. However, in the setting of convex planar
annuli, using the support functions of a convex set, Longinetti in [31, Theorem 2.2] showed
the following sharp isoperimetric inequality

LL ′′ − (L ′)2 ≥ 4π2.

It turns out that our approach allows to extendLonginetti’s result to non-necessarily convex
annuli in non-positively curved smooth surfaces, thus weakening the assumptions also in the
Euclidean case.

More precisely, let us consider a class of functions a ∈ C1(0,∞) which satisfy the
following growth condition

0 ≤ α ≤ 1 + a′(s)s
a(s)

≤ 1

1 + s2
. (6)

On one hand this condition restricts assumption (A) by imposing the sharper upper growth,
but on the other hand we allow now α to be zero, as implied by the case of unbounded
gradient, i.e. s → ∞.

Notice that in the case of the minimal surfaces equation the equality holds in the right
hand side of (6).

Theorem 1.2 (Isoperimetric inequality for minimal surfaces equation) Let � = �1 \ �2 be
a C1,α-topological annular domain in a 2-dimensional Riemannian manifold (M2, g) with
�1 and �2 homeomorphic to balls, and suppose that K |�1 ≤ 0. Let further t1, t2 ∈ R be
such that t1 < t2 and let us consider a continuous up to the boundary a-harmonic C2(�)

solution u of the following Dirichlet problem:
{
div

(
a(|∇u|g)∇u

) = 0 in �,

u|	1 = t1, u|	2 = t2,
(7)

123



48 Page 6 of 31 T. Adamowicz, G. Veronelli

with a satisfying assumptions (6), (A’) and (A”).
Then

L(t)L ′′(t) − (L ′(t))2 ≥ 4π2, for all t ∈ (t1, t2). (8)

Moreover, the equality in the assertion holds on (t1, t2) if and only if K ≡ 0 and u
is the solution to the Dirichlet problem (7) for the minimal surface equation with a(s) =
1/

√
1 + s2. In such a case � is locally isometric to the regular (circular) annulus in the

plane and all the level curves of u are locally concentric circles.

Remark 1.3 Our assumption that in the definition of� = �2\�1 both components�1 and�2

are homeomorphic to balls, is crucial to obtain the constant 4π2 above. Indeed, otherwise this
constant changes according to the topology of component �1, as the Gauss-Bonnet theorem
is invoked in the proof. For example, if � is the topologically non-trivial annulus [0, 1] × S

1

in R × S
1, then u(t, θ) = t solves the minimal graph equation, but LL ′′ − (L ′)2 ≡ 0 in this

case.

Unlike Theorem 1.1, in the above result we a priori require solutions to be C2-regular.
This is due to the fact that in Theorem 1.2 the assumption (A) is replaced by (6). In the
proof of Theorem 1.1, condition (A) is used to prove the W 1,2

loc regularity of a1/2(|∇u|g)∇u
(see computations in Sect. 3.1) and, hence, to prove in Lemma 3.5 that there are no critical
points of solutions (see also the discussion in the beginning of the proof of Theorem 1.2).
On the other hand, the C2-regularity assumption is not much restrictive, as it is satisfied in
several caseswhere the solution exists. Indeed, let us comment on existence of solutions to the
Dirichlet problem (7). Thewell-known phenomenon, discussed e.g. in [43, 45], shows that for
the minimal surface equation operator a(s) = 1/

√
1 + s2, the C2-solution to the Dirichlet

problem exists under a smallness assumption of the boundary data, see [43, Theorem 2],
which in our case imposes the bound on |t2 − t1| < c. Otherwise, the solution may fail
to exist, see e.g. Section IV in [43]. Moreover, examples in [43] and [44], provide us with
wide classes of a-harmonic equations and boundary values t1, t2 with solvable (7), see [43,
Theorem 3] and Sections 4 and 5 in [44].

Remark 1.4 An isoperimetric inequality similar to (8) can be obtained as well for maximal
surfaces in Lorentzian spacetime, cf. Example 4. Namely, it holds

(

L ′(t) +
∫

{x∈� : u(x)=t}
k

)2

≤ L(t)L ′′(t), (9)

where k is the curvature of the level curve with respect to the outward normal direction. In
particular, if M2 = R

2 then
∫
{x∈�: u(x)=t} k = 2π , so that we have the following relation

(
L ′(t) + 2π

)2 ≤ L(t)L ′′(t).

See the comment after the proof of Theorem 1.2 for the derivation of (9).

Section 3 contains some key auxiliary results about the regularity of solutions to our
Dirichlet problem (DP) and the no-critical points lemma. Such results, although known in
the flat case, are new in the setting of surfaces. In particular, Proposition 3.1 shows the
W 2,2-regularity of a-harmonic functions on open sets on surfaces (no curvature bounds are
assumed here) and the W 1,1-Sobolev regularity of the differential expression aδ(|∇u|)∇u
for δ ∈ (0, 1]. The novelties here are the following. First, on the contrary to the difference
quotient method used for obtaining such result in the plane or for p-harmonic functions,
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see e.g. [8, Section 16] and [46], we use a perturbation method which does not require the
function a to be homogeneous. Furthermore, Proposition 3.1 corresponds to [17, Theorem
2.1] and our equation (1) is slightly different than [17, (2.1)], while conditions (2.2)–(2.3)
in [17] correspond to our condition (A). Additionally, in order to show Proposition 3.1, we
extend the stream function method to the setting of surfaces. Moreover, in Theorem 3.6
we adapt Talenti’s general result [47] to the Riemannian setting writing a simple and short
proof of theW 2,2-regularity of a-harmonic functions on surfaces. Such a result is to our best
knowledge not stated explicitly in the literature.

The regularity proven in Proposition 3.1 is employed in Sect. 3.1, where we discuss a
complex elliptic system of equations satisfied by the complex gradient of the a-harmonic
solution on a surface, see (48) and (49). In that context, such systems have been so far
studied only for the p-harmonic equation. The key consequence is the complex representation
formula (52) which allows us to infer information about the structure of critical points of
the a-harmonic solution. As a byproduct we observe the unique continuation property for
a-harmonic functions on smooth surfaces, which was not stated explicitly in the literature
even for the p-harmonic equation, see Proposition 3.4. Both Proposition 3.1 and the complex
representation of solutions on surfaces serve in proving Lemma 3.5. This latter generalizes
the harmonic result in [1, Lemma 2.9] to the a-harmonic setting and, moreover, Lewis’s
p-harmonic result [29] to the setting of surfaces.

Let us emphasize that the presence of the curvature, which may vary from point to point,
leads to the form of equation (1) with conformal factor depending on the point, cf. (32). This
in turn causes additional difficulties and justifies the necessity of computations in Sect. 3, as
we are not allowed to straightforwardly mimic the existing results and methods.

To conclude this introduction let us comment on the higher dimensional counterparts of
our studies. The strategy we adopt in this work is specific to the case of surfaces, with respect
to both the complexification of the gradient used to prove the absence of critical points and
the estimates for L ′, L ′′ computed in Sect. 2. However, the main problem we consider, that is
estimating the measure of level sets of (a-)harmonic functions, makes sense also on higher
dimensional manifolds. In this direction, some related results with a different approach were
obtained in [2, 10, 21].

2 Isoperimetric inequality

In this section we show counterparts of Alessandrini’s isoperimetric inequality result [5,
Theorem 1.1] for a-harmonic functions, as well as for the minimal surface equation, on two-
dimensional Riemannian manifolds. However, we will formulate the main problem for all
dimensions n ≥ 2, as some of our results below can be applied in the general case of smooth
Riemannian n-manifolds.

Let (Mn, g) be an n-dimensional Riemannian manifold with Ricci curvature bounded
from below: Ric ≥ c for some fixed c ∈ R.

The following auxiliary result is a counterpart of the well-known subharmonicity property
for harmonic functions in the Euclidean setting. Furthermore, this observation is an important
tool in the proof of Lemma 2.3.

Lemma 2.1 Let � be a domain in a 2-dimensional Riemannian manifold with Gaussian
curvature K = K (x) and u be a C3-function in �. Then,

�(log |∇u|) = div

(
�u

|∇u|2 ∇u

)

+ K . (10)
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at points, where |∇u| �= 0.

In particular, if u is harmonic, then we retrieve [1, Lemma 2.1].
Similar to the case of harmonic functions on surfaces, Lemma 2.1 follows from two well-

known tools in geometric analysis. The first one is the Bochner formula for C2 functions on
n-dimensional Riemannian manifolds:

�
|∇u|2
2

= 〈∇�u,∇u〉 + |∇2u|2 + Ric(∇u,∇u). (11)

Secondly, we use the technique similar to the one in the proof of the refined Kato (in)equality,
a standard formula in geometric analysis (see for instance [30, p. 520] or [39, Proposition
1.3] and references therein). In dimension 2, the refined Kato’s inequality turns out to be an
equality; see (13) and also [1, Lemma 2.2] for a complete proof.

Lemma 2.2 Let� be a domain in an n-dimensional Riemannian manifold and u be harmonic
in �. Then, at points where |∇u| �= 0, it holds that

|∇2u|2 ≥ n

n − 1
|∇|∇u||2 , n ≥ 2. (12)

Moreover, if n = 2 then one has indeed

|∇2u|2 = 2 |∇|∇u||2 . (13)

Proof of Lemma 2.1 We generalize the proof of [1, Lemma 2.2] and use the same notation as
therein. First, we directly compute that

div

(
�u

|∇u|2 ∇u

)

= 〈∇�u,∇u〉
|∇u|2 + (�u)2

|∇u|2 − 2
Hess(∇u,∇u)�u

|∇u|4 .

On the other hand, from the Bochner formula (11) we obtain

�(log(|∇u|)) = div

(∇|∇u|
|∇u|

)

= �|∇u|
|∇u| − |∇|∇u||2

|∇u|2

= |∇2u|2 − 2 |∇|∇u||2
|∇u|2 + K + 〈∇�u,∇u〉

|∇u|2 .

Therefore,

div

(
�u

|∇u|2 ∇u

)

− �(log(|∇u|)) = (�u)2

|∇u|2 − 2
Hess(∇u,∇u)�u

|∇u|4 − |∇2u|2 − 2 |∇|∇u||2
|∇u|2 − K .

(14)

In the case of harmonic functions, i.e.�u = 0, on the 2-dimensional manifold, an application
of the Kato equality (13) implies that all terms above containing�u vanish one by one, and so
we retrieve the assertion of [1, Lemma2.2]. In general this is not the case, except for dimension
2, where the appropriate terms vanish when coupled together. Indeed, choose an orthonormal
system diagonalizing the Hessian of u at a fixed point, so that Hess u = diag(λ1, λ2)I d2.
Then we have

|∇u|2(�u)2 − 2Hess(u)(∇u,∇u)�u = (u21 + u22)(λ1 + λ2)
2 − 2(λ1u

2
1 + λ2u

2
2)(λ1 + λ2)

= (u21 + u22)(λ
2
1 + λ22) − 2(λ21u

2
1 + λ22u

2
2).
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Furthermore, since ∇|∇u|2 = 2∇∇u∇u, it holds that

(|∇2u|2 − 2 |∇|∇u||2) |∇u|2 = |∇u|2|∇2u|2 − 1

2
|∇|∇u|2|2

= |∇u|2|∇2u|2 − 2|∇∇u∇u|2
= (u21 + u22)(λ

2
1 + λ22) − 2(λ21u

2
1 + λ22u

2
2).

In a consequence, only the term −K remains on the right hand side of (14), and the assertion
of the lemma follows. ��

Suppose now that � � Mn is a topological annulus, i.e. a relatively compact domain
homeomorphic to the Euclidean annulus {x ∈ R

n : 1 < ‖x‖ < 2} ⊂ R
n , also called in

the literature a ring domain, or a 2-connected domain when n = 2. In what follows, we will
assume that the two connected boundary components 	1 and 	2 are C1,α , see the discussion
before the proof of Theorem1.1. Recall that themeasure of a level set of a function v : � → R

is given by

L(t) =
∫

{x∈� : v(x)=t}
1 dHn−1, (15)

where dHn−1 stands for the (n − 1)-Hausdorff measure.
In the next lemma we recall formulas allowing us to compute the first and the second

derivatives of L with respect to the height of the level curve of C3-functions in a topological
annulus � ⊂ Mn . The lemma generalizes Lemma 2.1 in [5] for the planar A-harmonic case
and Lemma 2.6 in [1] for the harmonic functions on smooth surfaces.

Lemma 2.3 Suppose that u : � → R is a C3- function satisfying |∇u| > 0 in a topological
annulus � ⊂ Mn and that u attains constant boundary values, respectively, u|	1 = t1 and
u|	2 = t2. Then, the following holds for all t1 < t < t2:

L ′(t) =
∫

{x∈� : u(x)=t}
div

( ∇u

|∇u|
)
dHn−1

|∇u| =
∫

{x∈� : u(x)=t}
�u

|∇u|2 − 〈∇u,∇|∇u|〉
|∇u|3 dHn−1.

(16)

Moreover, if � is an annulus in a 2-dimensional manifold with Gauss curvature K = K (x),
then it holds that

L ′′(t) =
∫

{x∈� : u(x)=t}
1

|∇u|
〈

∇
(

1

|∇u|
)

,
�u

|∇u|2 ∇u − ∇|∇u|
|∇u|

〉

− K

|∇u|2 dH
1. (17)

Remark 2.4 Notice that C3-regularity assumption is not too much restrictive, since the a-
harmonic functions (in particular p-harmonic ones) are smooth outside the set of critical
points {|∇u| = 0}; see e.g. the discussion on pg. 208 in [29] for the p-harmonic equation in
R
n , which in view of Proposition 3.1 below, can be extended to the setting of a-harmonic

equations on surfaces.

Proof We follow the lines of the proof of [1, Lemma 2.6], but for the readers convenience
we recall its key steps, referring to [1] for further details.

Since |∇u| > 0 by assumption, then ν = ∇u
|∇u| is a unit vector normal to the level sets of

u. Therefore, by the definition of the function L in (15), the Stokes theorem and the coarea
formula, we have that

L ′(t) = lim
ε→0

1

ε

(∫

{u=t+ε}

〈

ν,
∇u

|∇u|
〉

−
∫

{u=t}

〈

ν,
∇u

|∇u|
〉)
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= lim
ε→0

1

ε

∫

{t<u<t+ε}
div

( ∇u

|∇u|
)

=
∫

{u=t}
1

|∇u|div
( ∇u

|∇u|
)

=
∫

{u=t}
1

|∇u|3 (�u|∇u| − 〈∇u,∇|∇u|〉),

where the latter equality is obtained by direct computations, thus giving assertion (16).
In order to show assertion (17) we first notice that

�u

|∇u|2 =
〈
�u∇u

|∇u|3 ,
∇u

|∇u|
〉

.

This observation together with computations involving (16), the Stokes theorem and the
coarea formula imply that:

L ′′(t) = lim
ε→0

L ′(t + ε) − L ′(t)
ε

= lim
ε→0

1

ε

∫

{t<u<t+ε}
−div

(∇|∇u|
|∇u|2 − �u∇u

|∇u|3
)

= lim
ε→0

1

ε

∫

{t<u<t+ε}
div

(

∇
(

1

|∇u|
)

+ �u∇u

|∇u|3
)

= lim
ε→0

1

ε

∫

{t<u<t+ε}
�

(
1

|∇u|
)

+ div

(
�u∇u

|∇u|3
)

=
∫

{u=t}

(

�

(
1

|∇u|
)

+ div

(
�u∇u

|∇u|3
))

dHn−1

|∇u| . (18)

In order to handle the last integral, we employ Lemma 2.1 and compute

div

(
�u

|∇u|3∇u

)

= 1

|∇u|div
(

�u

|∇u|2 ∇u

)

+
〈

∇
(

1

|∇u|
)

,∇u

〉
�u

|∇u|2

= 1

|∇u|� log |∇u| − K

|∇u| +
〈

∇
(

1

|∇u|
)

,∇u

〉
�u

|∇u|2

= 1

|∇u|
(

�|∇u|
|∇u| − |∇|∇u||2

|∇u|2
)

− K

|∇u| +
〈

∇
(

1

|∇u|
)

,∇u

〉
�u

|∇u|2 .

(19)

Since

�

(
1

|∇u|
)

= div

(

−∇|∇u|
|∇u|2

)

= −�|∇u|
|∇u|2 + 2

|∇|∇u||2
|∇u|3 , (20)

then upon combining (19) and (20) we obtain the following identity

div

(
�u

|∇u|3 ∇u

)

+ �

(
1

|∇u|
)

= |∇|∇u||2
|∇u|3 − K

|∇u| +
〈

∇
(

1

|∇u|
)

, ∇u

〉
�u

|∇u|2

= −
〈

∇
(

1

|∇u|
)

,
∇|∇u|
|∇u|

〉

− K

|∇u| +
〈

∇
(

1

|∇u|
)

,
�u

|∇u|2 ∇u

〉

=
〈

∇
(

1

|∇u|
)

,
�u

|∇u|2 ∇u − ∇|∇u|
|∇u|

〉

− K

|∇u| . (21)

We substitute (21) into (18) to obtain assertion (17). ��
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We are now in a position to present the proofs of Theorems 1.1 and 1.2, the main results
of this section and of the whole paper.

Some comments about the statement of Theorem 1.1 are in order. Recall that the rigidity
obtained in case of equality in (3) or (4) holds only locally. We remark that the same under-
standing applies to the harmonic case, cf. [1, Theorem 2.7]. Namely, in the flat case K ≡ 0,
the level curves and � have the geometry of planar circles and circular annulus, respectively,
only in the local sense. The locality in the assertion can not be avoided. Indeed, examples of
topological annuli which verify the equality in (3) and (4) but are not proper global subsets of
R
2 can be obtained for instance as finite coverings of a regular circular annulus in the plane

(where the solution of the Dirichlet problem is obtained by lifting the solution on the regular
circular annulus).

In [1, Theorem 2.10], we showed that the nonpositivity of the curvature is also a necessary
condition for the log-convexity of the length of the level curves of harmonic solutions. In the
more general case of a-harmonic functions, this opposite direction has not been investigated
yet. Namely, we conjecture that if the curvature is strictly positive at some point (hence, in
some open set) of M , then one can find an annular domain for which the solution to (DP)
does not satisfy (4). In the attempt of mimicking the harmonic proof, the main additional
difficulties is that a-harmonic functions are not conformally invariant, so that one would
need very precise asymptotic estimates for the Green kernel of the operator. Even for the
p-harmonic operator, the sharper estimates in the literature we are aware of (see e.g. [37,
2.4]) are not precise enough to our purpose.

The C1,α-regularity assumption on the boundaries of topological annuli in subject is a
consequence of the interior ball condition assumed in the no-critical points lemma and, hence,
required in the proof of Theorem 1.1, cf. the discussion in [23, Chapter 3.2]. It is known that
the C1,α-regularity characterizes domains with both interior- and exterior- ball conditions.
Notice further that [5] assumes the C2,α-regularity.

Proof of Theorem 1.1 Let us notice that by the maximum and minimum principles for the
a-harmonic function u, see [41, Theorem 8.5.1], we have that max� u = t2 and min� u = t1.
Since ∇u �= 0 due to Lemma 3.5, the function u is C∞ smooth and (2) reads:

�u = −〈∇u,∇(a(|∇u|g)
a(|∇u|g) = −a′(|∇u|g)

a(|∇u|g) 〈∇u,∇|∇u|g〉. (22)

Next, we observe that the Hopf lemma holds for solution of (22) in �. Indeed, it follows
from Theorem 2.8.3 in [41] which requires the coefficient matrix of the operator in (22) to
be uniformly positive definite. This leads to analogous estimate for the ratio of eigenvalues
�2/�1 as for aε in the proof of Lemma 3.2 with the same lower and upper bounds as in (35).
Thus, the Hopf lemma holds in our setting and we get that |∇u| ≥ const > 0 on ∂�. Since
∇u �= 0 in � as noted above, by the smoothness of u (in fact the C1-regularity is enough),
we have that there exists a positive constant c such that min� |∇u| ≥ c > 0.

By applying (22) in formulas (16)-(17) for L ′ and L ′′, we find the following equation and
estimate, respectively:

L ′(t) =
∫

{x∈� : u(x)=t}
�u

|∇u|2 − 〈∇u, ∇|∇u|〉
|∇u|3 = −

∫

{x∈� : u(x)=t}
〈∇u, ∇|∇u|〉

|∇u|3
(

1 + a′(|∇u|)
a(|∇u|) |∇u|

)

.

(23)

L ′′(t) =
∫

{x∈� : u(x)=t}
1

|∇u|
〈

−∇|∇u|
|∇u|2 , −a′(|∇u|)|

a(|∇u|)
〈

∇|∇u|, ∇u

|∇u|
〉 ∇u

|∇u| − ∇|∇u|
|∇u|

〉

− K

|∇u|2

123



48 Page 12 of 31 T. Adamowicz, G. Veronelli

=
∫

{x∈� : u(x)=t}
1

|∇u|4
{

|∇|∇u||2 + a′(|∇u|)|
a(|∇u|)

〈

∇|∇u|, ∇u

|∇u|
〉2

|∇u|
}

− K

|∇u|2

≥
∫

{x∈� : u(x)=t}
1

|∇u|4
〈

∇|∇u|, ∇u

|∇u|
〉2 {

1 + a′(|∇u|)|
a(|∇u|) |∇u|

}

(K ≤ 0 and |∇|∇u||2 ≥ 〈∇|∇u|, ∇u

|∇u| 〉
2)

≥ 1

β

∫

{x∈� : u(x)=t}
1

|∇u|4
〈

∇|∇u|, ∇u

|∇u|
〉2 {

1 + a′(|∇u|)|
a(|∇u|) |∇u|

}2

. (24)

Therefore, by the above estimates and the Cauchy–Schwarz inequality we have that

(L ′(t))2 =
(∫

{x∈� : u(x)=t}
〈∇u,∇|∇u|〉

|∇u|3
(

1 + a′(|∇u|)
a(|∇u|) |∇u|

))2

≤ L(t)
∫

{x∈� : u(x)=t}
〈∇u,∇|∇u|〉2

|∇u|6
(

1 + a′(|∇u|)
a(|∇u|) |∇u|

)2

≤ βL(t)L ′′(t).

From this, assertions (3) and (4) of the theorem follow immediately.
In order to show the second part of the assertion, suppose that (Lm(t))′′ = 0. This is

equivalent to βLL ′′ = (L ′)2 which then by (24) (with the K -term remaining), implies

(L ′(t))2 ≤ L(t)
∫

{x∈� : u(x)=t}
〈∇u, ∇|∇u|〉2

|∇u|6
(

1 + a′(|∇u|)
a(|∇u|) |∇u|

)2

≤ βL(t)
∫

{x∈� : u(x)=t}

(
1

|∇u|4
{

|∇|∇u||2 + a′(|∇u|)|
a(|∇u|)

〈

∇|∇u|, ∇u

|∇u|
〉2

|∇u|
}

− K

|∇u|2
)

= (L ′(t))2.

Since K ≤ 0, this chain of inequalities may hold only when K ≡ 0 in which case we reduce
the discussion to the planar case and so Theorem 3.1 in [32] gives the second assertion of
the theorem (see also [5, Theorem 1.1] and [1, Theorems 2.7]). ��

It turns out that, at least in the p-harmonic case, the inequality in Theorem 1.1 can be
quantified in the setting of surfaces with pinched curvature, provided that the solution defined
on the annular domain can be extended to a positive p-harmonic function on a large enough
ball containing the given annulus.

Proposition 2.5 Let (M2, g) be a complete surface and suppose that its Gauss curvature
satisfies

− κ1 ≤ K ≤ −κ2 ≤ 0 in B2R (25)

for some κ1 ≥ κ2 ≥ 0 and some ball B2R ⊂ M2 of radius 2R > 0. Let 1 < p < ∞ and
let u > 0 be p-harmonic on B2R. Suppose that u takes constant values 0 < t1 < t2 on the
boundary components of a topological annulus with C1,α-boundary � ⊂ BR ⊂ B2R ⊂ M2.
Then it holds that

(ln L(t))′′ ≥ κ2

κ1

1

t2
, for t ∈ (t1, t2), if p = 2, (26)

(
p − 1

p − 2
L

p−2
p−1 (t)

)′′
≥ R2

1 + R

κ2

1 + Rκ1

1

t2
L− 1

p−1 (t) for t ∈ (t1, t2), if p �= 2. (27)
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Proof Let u > 0 be p-harmonic in � satisfying (25) and � ⊂ BR � M2 be an annulus such
that u takes constant values, respectively t1 and t2, on the boundary components of �. By
the formula (24) and the inequality following it in the proof of Theorem 1.1, we have that

(L ′(t))2 ≤ (p − 1)L(t)

(

L ′′(t) +
∫

u=t

K

|∇u|2 dH
1
)

.

Hence, we obtain that if p �= 2, then

− L
p

p−1

(
p − 1

p − 2
L

p−2
p−1 (t)

)′′
≤

∫

u=t

K

|∇u|2 dH
1. (28)

Then, Theorem 1.1 in [48] applied on ball B2R ⊂ M2 and κ := κ1 asserts that |∇u| ≤
C(p)

1+√
κ1R

R |u| for all points in BR . Therefore,

−κ2

∫

u=t

1

|∇u|2 dH
1 ≤ − 1

C(p)

R2κ2

(1 + R
√

κ1)2

∫

u=t

1

|u|2 dH
1 ≤ − R2κ2

(1 + R)(1 + Rκ1)

1

t2
L(t).

In the latter inequality we use an elementary estimate:

(1 + R
√

κ1)
2 ≤ R2κ1 + 1 + R + Rκ1 = (R + 1)(1 + Rκ1).

These combined with inequality (28) give the assertion in the case p �= 2. The harmonic
case follows from Proposition 2.13 in [1]. ��

We conclude this section with the proof of Theorem 1.2, which improves Theorem 1.1 in
the special case ofminimal surface type equations, i.e., with the assumption (6) replacing (A).

Proof of Theorem 1.2 First, let us observe that ∇u �= 0 as Lemma 3.5 applies even if the
assumption (A) is replaced by (6), so that in particular α may vanish. Indeed, Proposition 3.1
is trivially verified in this setting, as u is assumed to be C2, while the discussion in Sect. 3.1
holds also if α = 0.

Recall the formula for the curvature of the level curve k := −div
( ∇u

|∇u|
)
with respect to

the outward normal vector (the sign depends on the assumption t1 < t2). Moreover, observe
that as in (22) we may compute the laplacian of u. In a consequence we get

∫

{x∈�: u(x)=t}
k =

∫

{x∈�: u(x)=t}
−div

( ∇u

|∇u|
)

=
∫

{x∈�: u(x)=t}
〈∇u,∇|∇u|〉

|∇u|3
(

1 + a′(|∇u|)
a(|∇u|) |∇u|

)

|∇u|.

Then, by (23) and by the Cauchy–Schwarz inequality we obtain that

(L ′(t))2 +
(∫

{x∈� : u(x)=t}
k

)2

≤ L(t)

(∫

{x∈� : u(x)=t}
〈∇u,∇|∇u|〉2

|∇u|6
(

1 + a′(|∇u|)
a(|∇u|) |∇u|

)2

(1 + |∇u|2)
)

.

(29)

Hence, by the growth assumption (6) and estimates (29) and (24) we arrive at the following
inequality

(L ′(t))2 +
(∫

{x∈� : u(x)=t}
k

)2

≤ L(t)

(∫

{x∈� : u(x)=t}
〈∇u,∇|∇u|〉2

|∇u|6
(

1 + a′(|∇u|)
a(|∇u|) |∇u|

))
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≤ L(t)L ′′(t). (30)

To complete the argument note that since � is an annular domain whose components �1

and �2 are homeomorphic to balls and K ≤ 0, the Gauss–Bonnet theorem can be applied as
follows

∫

{x∈�: u(x)=t}
k = 2π −

∫

Int{x∈�:u(x)=t}
k ≥ 2π.

Here, we abuse notation and by Int{x ∈ � : u(x) = t} we denote the interior of the subset
of �1 bounded by the level curve {x ∈ � : u(x) = t}. Then, upon applying this inequality
at (30) we arrive at assertion (8). By the discussion analogous to the one in the end of the
proof of Theorem 1.1, we obtain that inequality in (8) holds only if K ≡ 0 and if the function
a(s) = 1/

√
1 + s2 for which in (6) the equality holds. Moreover, equality has to hold in

the Cauchy-Schwarz inequalities in (29), so that |∇u| and 〈∇u,∇|∇u|〉 have to be constant
on {u = t} for every t ∈ (t1, t2). In particular, k has to be constant and the level sets are
concentric circles. Accordingly, � is locally isometric to a standard concentric annulus and
by an explicit computation it turns out that u must be locally the graph of a slice of catenoid.
��

We remark that in the special case of the minimal surface equation, defined by a(s) =
1/

√
1 + s2, in order to deduce that the solution has no critical points we do not need the

whole machinery we introduced in Sect. 3. Indeed, the solution is a harmonic function with
respect to the graph metric du ⊗ du. Since the critical points of a function do not depend on
the underlying metric, the easier techniques for harmonic functions apply, see [1].

A similar technique as in the proof ofTheorem1.2 could also be applied to strictly spacelike
solutions to the equation for maximal surfaces in the Lorentzian space, see Example 4. In
that case, one has that 1 + a′(s)

a(s) s = (1 − s2)−1, and

(

L ′(t) +
∫

{x∈� : u(x)=t}
k

)2

=
(∫

{x∈� : u(x)=t}
〈∇u,∇|∇u|〉

|∇u|3
|∇u| − 1

1 − |∇u|2
)2

.

As |∇u| < 1, it holds (1 − |∇u|)2 ≤ 1 − |∇u|2, so that
(

L ′(t) +
∫

{x∈� : u(x)=t}
k

)2

≤ L(t)

(∫

{x∈� : u(x)=t}
〈∇u,∇|∇u|〉2

|∇u|6
1

1 − |∇u|2
)

≤ L(t)L ′′(t).

In particular, if M2 = R
2 then

∫
{x∈� : u(x)=t} k = 2π so that we have the relation

(
L ′(t) + 2π

)2 ≤ L(t)L ′′(t).

3 Critical points of a-harmonic functions on smooth surfaces

In this sectionwe show that a-harmonic functions have isolated critical points on Riemannian
surfaces, a property similar to the corresponding one for the a-harmonic (in particular p-
harmonic) functions in the plane. The proof relies on the complex representation of the
a-harmonic equation and on the associated regularity lemma which allows to reformulate
the equation as a complex first order system of PDEs. Unlike the flat case of R2 the complex
gradient need not be a quasiregular mapping, see pg. 6 in [46]. Nevertheless, the theory of
complex first order systems permits us to conclude that the zeros of the gradient are isolated
and form a discrete set of points, see [12].
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For the readers convenience we now recall some information stated in the preceding
sections.

Let (M2, g) be a Riemannian surface and� ⊂ M2 be an open set. Moreover, we consider
function a ∈ C1(0,∞) such that it satisfies the following assumptions:

(A) 0 < α ≤ 1 + a′(s)s
a(s)

≤ β, for all s > 0; (A’) sa(s) → 0 for s → 0,

(A”) log a(s)is either upper or lower bounded (or both) on (0, 1].
Recall that in the setting of Riemannian surfaces we may locally introduce the isothermal

coordinates, denoted z = (x, y), in which the metric g takes the diagonal form with the
conformal factor λ > 0 a smooth, bounded and strictly positive function. Namely, g(X , Y ) =
λ2(x)〈X , Y 〉 for any pair of vectors X , Y at x ∈ M2.

We denote local bounds of λ as follows: 0 < cg ≤ λ < Cg < ∞. Therefore, in the
isothermal coordinates, we have that

|∇u|g = λ−1|∇u|0 (31)

and equation (1) in coordinates reads:

∂

∂x

(
a(λ−1(z)|∇u(z)|0)ux

) + ∂

∂ y

(
a(λ−1(z)|∇u(z)|0)uy

) = 0, (32)

interpreted in the distributional sense.
Our next goal is to find the complex representation of (32), following [6, 46], and for

this we need the auxiliary regularity observation, well known for p-harmonic functions in
the plane and on smooth surfaces, as well as for planar A-harmonic equations with the
δ-monotonicity condition, see [8, Chapter 16] and also [20, Section 3].

Proposition 3.1 Let u be an a-harmonic function, i.e. satisfying (32) in an open set � ⊂ M,
under assumptions (A), (A’) and (A”). Then it holds that u ∈ W 2,2

loc (�) and that

aδ(|∇u|g)∇u ∈ W 1,2
loc (�) (33)

for any δ ∈ [0, 1].
In particular, when δ = 1/2, for the p-harmonic equation in M we retrieve the assertion

in [46], namely that |∇u|
p−2
2

g ∇u ∈ W 1,2
loc (M) for p ≥ 2. However, as explained later, our

method allows to handle the p-harmonic functions for the whole range of 1 < p < ∞.

Example 5 Even if the assumption (A”) is verified in all the significant examples, it is not
automatically implied by (A) and (A’), so that we need to require it. Indeed, the following
example, suggested to us by D. Valtorta, shows that one can find a positive function a on
(0,∞) satisfying (A) and (A’), but which is neither upper bounded nor bounded away from
0. To this end, one can implement the changes of variables t = − log s and f (t) = log a(s).
Then, (A) and (A’) become

1 − β < ∂t f (t) < 1 − α < 1, and lim
t→∞ f (t) − t = −∞.

A (two-side) unbounded function f with this properties can be quite easily constructed, for
instance, by smoothing out a piece-wise linear function f̃ which oscillates between −t and√
t , with the slope ∂t f̃ (t) equal to either 1

2 or −2 outside corners.
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The following result is similar to Proposition 2.1 in [6], proved therein in the Euclidean
setting, where λ is constant.

Lemma 3.2 Let � ⊂ M be a bounded connected open set and assume that ∂� satisfies the
interior and exterior ball condition. Let further φ ∈ C2(�). If (A) holds, then there exists a
unique u ∈ C1,γ

loc ∩ C(�) solving weakly the following Dirichlet problem:
{
div(a(|∇u|g)∇u) = 0 in �,

u|∂� = φ|∂�.

Proof The proof follows strictly the one in [6, Proposition 2.1] and therefore we will restrict
our discussion only to the key differences in the surface setting.

Reasoning as in [1, Lemma 3.6], we can introduce a global isothermal coordinates chart
φ : � → R

2. Accordingly, the problem (DP) can be reduced to the equation (32) subject to
a C2 data, again denoted by φ, in the plane.

Suppose that we know that a solution exists and is at leastC1
loc(�) as proven in the further

part of the discussion. Then the uniqueness follows from the comparison principle, see
e.g. Theorem 2.4.1 and Proposition 2.4.3 in [41] once we have checked that our a-harmonic
equation satisfies the assumptions of that proposition. To this end, let A(x, ξ) : �×R

n → R
n

be defined as follows A(x, ξ) := a(λ−1(x)|ξ |0)ξ . Then A is continuous, since λ > 0 and
a ∈ C1(0,∞). Next, we find the Jacobi matrix of A with respect to ξ -variable:

Dξ A(x, ξ) =
[

δi j a(λ−1(x)|ξ |0) + a′(λ−1(x)|ξ |0)1
λ

ξiξ j

|ξ |0
]

i j
, i, j = 1, 2.

This together with the smoothness of λ imply that A ∈ C1(� × (Rn\{0})). Finally, we
compute that

det Dξ A(x, ξ)=a2(λ−1(x)|ξ |0)
(

1 + a′(λ−1(x)|ξ |0)λ−1(x)|ξ |0
a(λ−1(x)|ξ |0)

)

≥ αa2(λ−1(x)|ξ |0) > 0.

Moreover, it holds that

(Dξ A(x, ξ))11 = a(λ−1|ξ |0)
[(

a′(λ−1|ξ |0)λ−1|ξ |0
a(λ−1|ξ |0) + 1

)
ξ21

|ξ |20
+ ξ22

|ξ |20

]

> a(λ−1|ξ |0)
[

αξ21 + ξ22

|ξ |20

]

> 0, ξ �= 0,

and the similar estimate implies that (Dξ A(x, ξ))22 > 0. All together, we conclude that
matrices Dξ A(x, ξ) are positive definite on �× (Rn \ {0}). Therefore, Proposition 2.4.3 and
Theorem 2.4.1 in [41] can be applied to our a-harmonic operator.

The existence and asserted regularity are proven by approximation of a by regular func-
tions aε for ε > 0 which satisfy a condition similar to (A) with slightly different bounds
independent of ε, i.e,

0 < min{α; 1} ≤ 1 + a′
ε(s)s

aε(s)
≤ max{β; 1}, for all s > 0, (Aε)

and such that inf aε > c(ε) > 0; see pg. 197 in [6] for details, in particular (2.2) and
(2.3) therein. In a consequence we obtain a family of elliptic nondegenerate operators of
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corresponding Dirichlet problems
{
div(aε(|∇uε |g)∇uε) = 0 in �,

uε |∂� = φ,
(DPε)

and of associated solutions uε ∈ C2,γ (�) ∩C0(�̄), see [23, Theorem 12.5]. Instead of the
family of equations (2.4a)’ in [6] we have

�uε + λ−2 a′
ε(λ

−1|∇uε |0)
aε(λ−1|∇uε |0)λ−1|∇uε |0 ∇uε∇2uε(∇uε)

T

−a′
ε(λ

−1|∇uε |0) λ−1 |∇uε |0
aε(λ−1|∇uε |0)

〈∇λ

λ
,∇uε

〉

0
= 0. (34)

In our setting the resulting aε depend additionally on z ∈ � through the presence of conformal
factorλ−1, cf. (32).However, sinceλ > 0 is assumed to bebounded and smooth the discussion
in [6] stands true in our case as well. In order to apply [23, Theorem 12.5] we verify by direct
computations that coefficients in (34) are defined and Hölder continuous. Moreover, the
ratios of the eigenvalues of the coefficients matrix are uniformly bounded giving the uniform
ellipticity. Indeed, upon denoting these eigenvalues by �1 ≤ �2, we find by (Aε) that

1 ≤ �2

�1
=

2 + a′
ε (λ

−1|∇uε |0)λ−1|∇uε |0
aε (λ−1|∇uε |0) +

∣
∣
∣
a′
ε (λ

−1|∇uε |0)λ−1|∇uε |0
aε (λ−1|∇uε |0)

∣
∣
∣

2 + a′
ε (λ

−1|∇uε |0)λ−1|∇uε |0
aε (λ−1|∇uε |0) −

∣
∣
∣
a′
ε (λ

−1|∇uε |0)λ−1|∇uε |0
aε (λ−1|∇uε |0)

∣
∣
∣

≤ max{β, α−1}. (35)

Finally, the growth condition (iii) in [23, Theorem 12.5] on the first order term expression
for us reads

| f |
�1

≤
∣
∣
∣
a′
ε (λ

−1|∇uε |0)λ−1|∇uε |0
aε (λ−1|∇uε |0)

∣
∣
∣ |∇λ|λ−1|∇uε |0

�1
≤ c(|λ|C1(�),min{α; 1},max{β; 1})|∇uε |0.

(36)
Therefore, [23, Theorem 12.5] gives us the existence and desired regularity of uε . As in the
proof of [6, Proposition 2.1] we may now apply [23, Theorems 14.15 and 14.1] to get the
uniform C0(�) and C1,γ

loc estimates for uε . In particular [23, Theorems 14.15] gives us the
equicontinuity of {uε}ε>0. Hence, the Ascoli–Arzelà theorem can be applied and we may
conclude the assertion of the lemma.

Applying [23, Theorems 14.15 and 14.1] reduces to checking that structure condition
(14.9) in [23, Chapter 14.1] holds in our case. Namely, we need to verify that

|p|�2 + | f (x)| ≤ μE(x, p) for all (x, p) ∈ � × R
n, (37)

with |p| ≥ μ. Here E(x, p) := ∑
i, j=1,2 aε i j (x, p)pi p j is the quadratic form defined by the

coefficients matrix of aε . By direct computations we find that

E(x, p) =
(

1 + λ−1 a
′
ε(λ

−1|p|)
aε(λ−1|p|)

p21
|p|

)

p21 + 2λ−1
(
a′
ε(λ

−1|p|)
aε(λ−1|p|)

p1 p2
|p|

)

p1 p2

+ λ−1

(

1 + a′
ε(λ

−1|p|)
aε(λ−1|p|)

p22
|p|

)

p22

= |p|2 + λ−1 a
′
ε(λ

−1|p|)
aε(λ−1|p|) |p|

3 ≥ min{α, 1}|p|2.
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On the other hand, by the estimate of | f | in (36) we have that |p|�2 + | f | ≤ |p|(�2 +
c(|λ|C1(�), α, β)) (here c denotes a possibly different constant which also includes �1).

Therefore, by setting μ :=
√

�2+c(|λ|C1(�)
,α,β)

min{α,1} , we get that for |p| ≥ μ condition (37) holds

true, justifying the use of [23, Theorems 14.15]. Hence the proof is completed. ��
Proof of Proposition 3.1 First, suppose that a is upper bounded. By the discussion in the proof
of Lemma 3.2 we have that the solution of the Dirichlet problem (DP) for (32), and hence
for (2), is continuous in �. Let now U � V � � be smooth domains and consider the same
ε-regularization aε of a as in the proof of the previous lemma. For such a family of operators
we solve the Dirichlet problems (DPε) in V subject to continuous boundary data u|∂V . Then,
by the discussion on pg. 198 in [6] the sequence (uε) is uniformly bounded in C1,α

loc (V ) and
converges, up to a subsequence, in C1(V ) ∩ C0(V̄ ) to the unique solution u to the Dirichlet
problem on V . To each one of the uε we apply Theorem 3.6 to deduce that ‖uε‖W 2,2(U ) is
bounded, independently of ε. Hence, a subsequence of (uε) converges in W 2,2(U ) to a limit
function u0 ∈ W 2,2(U ), and necessarily u0 = u. In particular u ∈ W 2,2

loc .
In order to prove the second assertion of the proposition, we first compute

∂x
(
aδ
ε (λ

−1|∇uε |0)ux
) = aδ

ε (λ
−1|∇uε |0)

([

δAε

uε
2
x

|∇uε |20
+ 1

]

uε xx + δAε

uε xuε y

|∇uε |20
uε xy − δ

λx

λ
Aεuε x

)

,

∂x
(
aδ
ε (λ

−1|∇uε |0)uy
) = aδ

ε (λ
−1|∇uε |0)

([

δAε

uε
2
y

|∇uε |0 + 1

]

uε xy + δAε

uε xuε y

|∇uε |20
uε xx − δ

λx

λ
Aεuε y

)

,

where Aε = a′
ε (λ

−1|∇uε |0)λ−1|∇uε |0
aε (λ−1|∇uε |0) . Similar expressions hold for ∂y . Now, |Aε | is bounded

independently of ε, and for every ε small enough there exists a constantCa such that 0 < aε ≤
Ca on (0, u∗], with u∗ := supε ‖∇uε‖L∞(V ). Hence, the aδ

ε (λ
−1|∇uε |0)∇uε are uniformly

bounded in W 1,2(U ,R2) and thus one of its subsequences converges in W 1,2(U ,R2) to a
vector field X ∈ W 1,2(U ,R2).

In order to conclude the first part of the proof of (33), we claim that aδ
ε (λ

−1|∇uε |0)∇uε

converges to aδ(λ−1|∇u|0)∇u point-wisely, so that X = aδ(λ−1|∇u|0)∇u. Indeed
∣
∣aδ

ε (λ
−1|∇uε |0)∇uε − aδ(λ−1|∇u|0)∇u

∣
∣ ≤ ∣

∣aδ
ε (λ

−1|∇uε |0) − aδ(λ−1|∇uε |0)
∣
∣ |∇uε |

+ ∣
∣aδ(λ−1|∇uε |0)∇uε − aδ(λ−1|∇u|0)∇u

∣
∣ .

The second term on the right-hand side converges to 0 since ∇uε → ∇u uniformly on U
and aδ(s)s = (a(s)s)δs1−δ is continuous on [0,∞) by assumption (A’). The first term on
the right-hand side converges to 0 since aδ

ε → aε in C1
loc(0,+∞) by the construction in [6],

while [aδ
ε (s) − aδ(s)] s ≤ 2Cδ

at on (0, t].
Suppose now that a is not upper bounded in a neighborhood of 0. Then 1/a is. By

mimicking the stream function method for p-harmonic equation in the plane we will show
that in such a case assertion of the lemma holds as well, see [8, Chapter 16.1, Theorem 16.3.1]
and [7].

Let U � � be simply-connected. We define a function v : U → R as a solution of the
equation

∇v = �(a(|∇u|g)∇u).
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Such a solution exists, as the vector field �(a(|∇u|g)∇u) is irrotational in the simply con-
nected set U , hence conservative. In local coordinates this corresponds to the following
system of PDEs:

{
vx = −a(λ−1(z)|∇u(z)|0)uy

vy = a(λ−1(z)|∇u(z)|0)ux .
From this, we get |∇v|0 = a(λ−1(z)|∇u(z)|0)|∇u|0 and hence

|∇v|g = a(|∇u|g)|∇u|g. (38)

Define function F : (0,∞) → R+ as follows F(t) := a(t)t . Since,

F ′(t) = a

(

1 + a′(t)t
a

)

,

we have that, by assumption (A), 0 < αa(t) ≤ F ′(t) ≤ βa(t) for all t > 0. Therefore, the
inverse of F exists and |∇u|g = F−1(|∇v|g). Moreover, observe that by (38) we have that
|∇u|g = 0 if and only if |∇v|g = 0, and so the sets of critical points for u and v are the same.
We directly check that v satisfies the following equation:

div

(
1

a(F−1(|∇v|g))∇v

)

= 0. (39)

Define function b as follows b(t) := 1
a(F−1(t))

. It holds that b(t) > 0 for t > 0 and, moreover,
b satisfies assumption (A). Indeed, it holds that

b′(t) = − a′(F−1(t))

a(F−1(t))2
d

ds

(
1

F(s)

) ∣
∣
∣
∣
s=F−1(t)

= − a′(F−1(t))

a(F−1(t))3
1

1 + a′(s)s
a(s)

∣
∣
∣
∣
s=F−1(t)

.

Henceforth,

1 + b′(t)t
b(t)

= 1 − a′(s)s
a(s)

1

1 + a′(s)s
a(s)

= 1

1 + a′(s)s
a(s)

.

Therefore, b satisfies (A) with α′ = α−1 and β ′ = β−1. Moreover, since by assumption 1/a
is bounded in a neighborhood of 0, function a > 0 and satisfies (A’), we have that tb(t) → 0,
as t → 0, giving that b satisfies (A’). Furthermore, since a is unbounded in the neighborhood
of 0, then b is bounded and Lemma 3.2 can be applied to b. In a consequence we get that
b1−δ(|∇v|g)∇v ∈ W 1,2

loc (�) for v solving (39). However, in the local coordinates we have
that

b1−δ(|∇v|g)∇v = 1

a1−δ(F−1(|∇v|g))�(a(|∇u|g)∇u)

= (−aδ(λ−1(z)|∇u(z)|0)uy, a
δ(λ−1(z)|∇u(z)|0)ux

)
.

This implies that also aδ(|∇u|g)∇u ∈ W 1,2
loc (�) even in case a is lower bounded away from

0 in a neighborhood of 0, but not necessarily upper bounded. ��

Example 6 Let a(s) = s p−2 for 1 < p < ∞, then F−1(t) = t
1

p−1 and a(F−1(|∇v|g)) =
|∇v|

p−2
p−1
g . Therefore, the conjugate equation of the p-harmonic one is q-harmonic for q =
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p
p−1 , as

div(|∇v|
2−p
p−1
g ∇v) = div(|∇v|

p
p−1−2
g ∇v) = div(|∇v|q−2

g ∇v) = 0.

Similarly, let a(s) = (1+ s2)−1/2, which corresponds to the minimal surface equation. Then

F−1(t) =
√

t2

1−t2
and

div(b(|∇v|g)∇v) = div

(
1

a(F−1(|∇v|g))∇v

)

= div

⎛

⎝ 1
√
1 − |∇v|2g

⎞

⎠ ,

i.e., the maximal graph equation in Lorentzian spacetime.

3.1 Complex representation of a-harmonic equation on surfaces

Let us now pass to finding the complex system of equations corresponding to (2). In order
to complete this goal we will follow the standard approach, see e.g. [46] for the setting of
p-harmonic functions on surfaces and [6, Section 3] for the setting of planar a-harmonic
functions.

Recall that the complex gradient of u can be defined in local coordinates as f := ux − iuy

and the associated operator is

F(z) := a
1
2

(
λ(z)−1| f (z)|

)
f (z). (40)

Since, in the distributional sense, it holds that uxy = uyx and F ∈ W 1,2
loc by Proposition

3.1, we have that
∂

∂ y

(
F + F

a
1
2 (λ−1| f |)

)

= i
∂

∂x

(
F − F

a
1
2 (λ−1| f |)

)

, (41)

in the sense of distributions. Recall that ∂
∂z := 1

2 (
∂
∂x − i ∂

∂ y ) and
∂
∂z := 1

2 (
∂
∂x + i ∂

∂ y ). Using
this notation we rewrite (41) so that the following holds in the distributional sense:

∂

∂z

(
F

a
1
2 (λ−1| f |)

)

= ∂

∂z

(
F

a
1
2 (λ−1| f |)

)

.

Equivalently this reads

Fz − Fz = (a1/2)z
a1/2

F − (a1/2)z
a1/2

F . (42)

Next, we express the above equation in terms of F and related expressions. Note that

λ−1|F | = a
1
2 (λ−1| f (z)|)λ−1| f (z)|. (43)

As above we find that the inverse function of A(t) = a
1
2 (t)t exists due to a satisfying

assumption (A), and thus λ−1| f (z)| = A−1(λ−1|F |). This implies that

a(λ−1| f (z)|) = a(A−1(λ−1|F |)).
Therefore, we may rewrite (42) as follows:

Fz − Fz = (a
1
2 (A−1(λ−1|F |))z

a
1
2

F − (a
1
2 (A−1(λ−1|F |))z

a
1
2

F
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= 1

2a

(
a′(A−1)

[
A−1]′)

∣
∣
∣
λ−1|F |

{(
(λ(z)−1|F(z)|))z F − (

(λ(z)−1|F(z)|))z F
}

= 1

4a

(
a′(A−1)

[
A−1]′)

∣
∣
∣
λ−1|F |λ

−1|F |
{

Fz − Fz + F

F̄
Fz − F̄

F
Fz − 2

F

λ
λz + 2

F̄

λ
λz

}

.

(44)

Upon denoting by B := 1
4a

(
a′(A−1)

[
A−1

]′) ∣
∣
λ−1|F |λ

−1|F |, we solve the equation for

Fz − Fz to get

Fz − Fz = B

1 − B

{
F

F̄
Fz − F̄

F
Fz − F

λ
λz + F̄

λ
λz

}

. (45)

Example 7 If a(s) = s p−2, then A(s) = a
1
2 (s)s = s

p
2 and by the direct calculations we find

that B
1−B = p−2

p+2 . Therefore, we retrieve the p-harmonic case in [46, Formula (2.6)].

On the other hand the a-harmonic equation can be written as follows:

∂

∂x

(
(F + F)a

1
2 (λ−1| f |)

)
+ i

∂

∂ y

(
(F − F)a

1
2 (λ−1| f |)

)
= 0,

which, using the complex derivative, reads:

∂

∂z

(
Fa

1
2 (λ−1| f |)

)
+ ∂

∂z

(
Fa

1
2 (λ−1| f |)

)
= 0.

By (43) and the discussion following it, we arrive at the equation

∂

∂z

(

F
λ−1|F |

A−1(λ−1|F |)
)

+ ∂

∂z

(

F
λ−1|F |

A−1(λ−1|F |)
)

= 0. (46)

Upon direct differentiation equation (46) becomes

0 = (Fz + Fz)A
−1(λ−1|F |)λ−1|F |

+ A−1(λ−1|F |)
[(

(λ(z)−1|F(z)|))z F + (
(λ(z)−1|F(z)|))z F

]

− (A−1)′(λ−1|F |)λ−1|F |
[(

(λ(z)−1|F(z)|))z F + (
(λ(z)−1|F(z)|))z F

]

= (Fz + Fz)A
−1(λ−1|F |)λ−1|F |

+ 1

2

[
A−1(λ−1|F |) − (A−1)′(λ−1|F |)λ−1|F |] λ−1|F |

{

Fz + Fz + F

F̄
Fz + F̄

F
Fz − 2

F

λ
λz − 2

F̄

λ
λz

}

.

Similarly to (45), we solve the last equation for Fz + Fz and arrive at the following one

Fz + Fz = C

{
F

F̄
Fz + F̄

F
Fz − 2

F

λ
λz − 2

F̄

λ
λz

}

, (47)

where

C := (A−1)′(λ− 1
2 |F |)λ− 1

2 |F | − A−1(λ− 1
2 |F |)

3A−1(λ− 1
2 |F |) − (A−1)′(λ− 1

2 |F |)λ− 1
2 |F |

.
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We add up (45) and (47) to obtain the following equation:

Fz − a1Fz − a2Fz = −2a1F
λz

λ
− 2a2F

λz

λ
, (48)

with a1 := 1
2 (C − B

1−B ) FF and a2 := 1
2 (C + B

1−B ) F
F
. It remains to prove that

‖a1‖L∞(�) + ‖a2‖L∞(�) < 1, (49)

which implies the uniform ellipticity of (48).

First, let A(s) = a
1
2 (s)s and notice that (A−1(t))′ = 1

A(s)′ at s = A−1(t), which gives
that

(A−1(t))′ = 1

a
1
2 (s)

1
1
2
a′(s)s
a(s) + 1

.

Hence (s = A−1(t))

(A−1(t))′t
A−1(t)

= 1

a
1
2 (s)

1
1
2
a′(s)s
a(s) + 1

A(s)

s
= 1

1
2
a′(s)s
a(s) + 1

. (50)

Setting D = D(s) = a′(s)s
a(s) , we have

(A−1(t))′t
A−1(t)

= 1
1
2 D+1

, from which

B = 1

4

a′(A−1)

a(A−1)
A−1 1

1
2
a′(s)s
a(s) + 1

= 1

4
D

1
1
2D + 1

= 1

2

D

D + 2
.

Moreover, from (50),

C =
(A−1(t))′t
A−1(t)

− 1

3 − (A−1(t))′t
A−1(t)

=
1

1
2 D+1

− 1

3 − 1
1
2 D+1

= −D

3D + 4
.

Hence,

B

1 − B
= D

D + 4
, C + B

1 − B
= 2D2

(3D + 4)(D + 4)
,

C − B

1 − B
= −4D

D + 2

(3D + 4)(D + 4)
.

Note that C + B/(1 − B) > 0 as, by assumption (A), −1 < α − 1 ≤ D ≤ β − 1, while
C − B/(1 − B) > 0 if and only if D < 0. In particular

∣
∣
∣
∣C + B

1 − B

∣
∣
∣
∣ +

∣
∣
∣
∣C − B

1 − B

∣
∣
∣
∣ = 2D2

(3D + 4)(D + 4)
− 4D

D + 2

(3D + 4)(D + 4)

= −8D − 2D2

(3D + 4)(D + 4)
< 2

if −1 < D < 0, while
∣
∣
∣
∣C + B

1 − B

∣
∣
∣
∣ +

∣
∣
∣
∣C − B

1 − B

∣
∣
∣
∣ = 2D2

(3D + 4)(D + 4)
+ 4D

D + 2

(3D + 4)(D + 4)

= 6D2 + 8D

(3D + 4)(D + 4)
< 2
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if D ≥ 0. Thus, under the growth condition (A), the inequality (49) is proved and the uniform
ellipticity of (48) follows.

Remark 3.3 Since aδ(λ(z)−1| f (z)|) f is in W 1,2
loc for any δ ∈ [0, 1], we can repeat the

argument above for different values of the exponent. For instance, take δ = 1 and define
G(z) := a

(
λ(z)−1| f (z)|) f (z). Then (42) reads

Gz − Gz = az
a
G − az

a
G. (51)

We define A(t) := a(t)t and repeat computations as in (44). The equation corresponding
to (45) takes the following form:

Gz − Gz = B ′

1 − B ′

{
G

Ḡ
Gz − Ḡ

G
Gz − G

λ
λz + Ḡ

λ
λz

}

,

where

B ′ := 1

2a(A−1(w))

(
a′(A−1)

[
A−1]′) ∣

∣
w
w, w := λ−1|G|.

Furthermore, we find that

(A−1(w))′ = 1

(a(s)s)′
= 1

a(s)

1

1 + a′(s)s
a(s)

,
(A−1(w))′w
(A−1(w))

= 1

1 + a′(s)s
a(s)

.

From this B ′ = 1
2D

1
D+1 , where D as above. Hence
∣
∣
∣
∣

B ′

1 − B ′

∣
∣
∣
∣ =

∣
∣
∣
∣

D

D + 2

∣
∣
∣
∣ ≤ min{|α − 1|, |β − 1|}

α + 1
.

This is all that we need, because now (47) reads Gz + Gz = 0 and C = 0. Therefore, the
counterpart of (48) reads:

Gz − a1Gz − a2Fz = −a1G
λz

λ
− a2G

λz

λ
.

witha1 = − B′
2(1−B′) anda2 = −a1.One directly checks that the ellipticity condition | B′

1−B′ | <

1 for a = s p−2 reads | B′
1−B′ | = |p−2|

p < 1 which is exactly the formula after (2.9) on pg. 6
in [46] for a = p − 2.

Notice, that on the contrary to the planar case (i.e. λ = const), we now cannot conclude
that F is a quasiregular map. Nevertheless, by the representation theorem on pg. 259 in [12]
we may write

F(z) = φ(w(z)) expψ, (52)

where φ is holomorphic, w is a Hölder continuous homeomorphism in W 1,2+ε
loc for some

ε > 0 and ψ is Hölder continuous. The Sobolev regularity of w follows from the Gehring’s
lemmaonhigher integrability of quasiconformalmappings, see the proof of the representation
formula on pg. 260 in [12]. In particular, zeros of F are governed by zeros of φ, and hence by
complex analysis critical points of a-harmonic functions u are isolated and form a discrete
set.

Moreover, by the discussion in [12, Chapter 6.4], the representation formula (52) implies
the unique continuation property on smooth surfaces for a-harmonic equations in subject,
in particular for the p-harmonic equation. This result is well known in the plane. In the
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p-harmonic case, the Riemannian counterpart is a direct consequence of [46]. However,
according to our best knowledge, the general Riemannian result has not been observed in the
literature so far, and therefore, we formulate it here below.

Proposition 3.4 Let � ⊂ M be a bounded connected open set and assume that ∂� satisfies
the interior and exterior ball condition. Let further φ ∈ C2(�) and u be the unique weak
solution of the following Dirichlet problem:

{
div(a(|∇u|g)∇u) = 0 in �,

u|∂� = φ.

Then, u satisfies the unique continuation property, provided that function a satisfies condi-
tions (A), (A’) and (A”).

Notice that if u in the above proposition is a priori C2, then we only need condition (A)
to hold.

Finally, we are in a position to formulate and prove a key observation allowing us to
study the isoperimetric inequality, namely that the gradient of an a-harmonic function in
subject does not vanish. Therefore, we formulate this observation as a separate result, see
Lemma 3.5 below. This lemma generalizes similar observation for harmonic functions on
surfaces, see [1, Lemma 2.9], for a-harmonic functions in the plane, see [5, Theorem 2.1]
and also [1, Section 2] for further references. The proof of Lemma 3.5 is strictly following
its harmonic counterpart in [1, Lemma 2.9]. Nevertheless, for the convenience of readers we
recall the full proof, addressing the a-harmonic modifications.

Lemma 3.5 Let � be a C1,α-topological annular domain in a 2-dimensional Riemannian
manifold (M2, g). Let t1, t2 ∈ R be such that t1 < t2 and let us consider a continuous up to the
boundary a-harmonic solution u of the Dirichlet problem (DP) in � under assumptions (A),
(A’) and (A”). Then, it holds that ∇u �= 0 on �.

Proof In order to show the assertion of the lemma let us suppose on the contrary that there
exists x0 ∈ � such that ∇u(x0) = 0. Consider the corresponding level curve γ = {x ∈ � :
u(x) = u(x0)}.

Claim: There exists at least two simple closed curves γ ′
i ⊂ γ , i = 1, 2.

Proof of the claim: We introduce isothermal coordinates (x, y) induced by a conformal
chart φ : � → R

2. The existence of such global isothermal coordinate systems on annular
domain can be justified as in [1, Lemma 3.6]. Since the a-harmonic equation (2) in such
coordinates has the form (32) we associate with it the first order complex equation (48)
satisfied by the complex function F defined in (40). Under assumptions (A), (A’) and (A”),
F is in W 1,2

loc due to Proposition 3.1, while (48) turns out to be uniformly elliptic under
condition (A). Since φ(x0) remains a critical point for u ◦ φ−1, we see by the form of
solution (52) and by the theory of planar holomorphic functions that the level curve in the
neighborhood of φ(x0) forms a finite family consisting of at least two arcs intersecting at
φ(x0). Thus, for points on the level curve γ we obtain, via φ−1, that there are at least two
curves passing through x0 contained in γ . If any of those branches would intersect ∂�, then
by the assumption of continuity of u up to the boundary, it would hold that u(x0) = t1 (or
u(x0) = t2), hence themaximumofu (or, respectively,minimumofu)wouldbe attained in the
interior of �, forcing u = const by the strong maximum (respectively, minimum) principle,
see [41, Theorem 8.5.1], whose assumption (A2) is implied by our assumptions (A) and (A’)
(cf. the paragraph in Introduction following formulations of those two assumptions). This is
impossible, since t1 �= t2.
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Next, we rule out the possibility that the level curve γ terminates at a point inside �.
Indeed, suppose that there exists y0 ∈ γ ∩ �, where γ terminates, and consider two cases.

If ∇u(y0) �= 0, then the implicit function theorem implies that γ can not terminate inside
�, since it must be at least C1 in a neighborhood of y0.

If∇u(y0) = 0, then by the discussion above, γ would branch at y0, contradicting assump-
tion that it terminates there.

To summarize, since γ does not intersect ∂� and does not terminate in �, it must contain
at least two simple closed curves, denoted γ ′

i , i = 1, 2, obtained by gluing regular curves
(contained in γ ). This ends the proof of the claim.

Since none of the curves γ ′
1 and γ ′

2 touch the boundary of �, two different cases may
occur. One of the two curves may bound a region completely contained in �. If not, both
curves are homotopic to 	1, i.e. homotopically non-trivial in �. In this case there is (at least)
one connected region contained in � bounded by (pieces of) γ ′

1 and γ ′
2. In both cases, we

have found a domain�′ � � such that u is constant on its boundary. Therefore, u is constant
in �′ by the maximum principle. Namely, since critical points are isolated and u is smooth
away from critical points, if u were not constant in �′ we could apply Lemma 3.2 to a small
neighborhood with smooth boundary of an isolated local minimum or maximum. Finally, by
the unique continuation property, cf. Proposition 3.4, u is constant in �, contradicting that
t1 < t2. Hence, we conclude that ∇u �= 0 in �. ��

Example 8 We present a class of Riccati-type equations which are covered by the above
discussion and, hence, have their sets of critical points isolated and discrete.

Let us consider the solution on the surface M of the following equation with function a
as above and a real-valued function b defined on a domain � ⊂ M such that b ∈ L∞(�):

div(a(|∇u|g)∇u) = b(x)|∇u|qg, 1 ≤ q < ∞.

Observe that (45) holds for this equation as well, since it corresponds to equality of mixed
second order derivatives of u in the distributional sense. Furthermore, by direct computations
we obtain that (47) holds with additional expression

γ = 2b(z)[A−1(λ− 1
2 |F |]q)

3A−1(λ− 1
2 |F |)λ− 1

2 |F | − (A−1)′(λ− 1
2 |F |)λ−1|F |2

.

In a consequence (48) takes the following modified form

Fz − a1Fz − a2Fz = −a1F
λz

λ
− a2F

λz

λ
+ γ

2
.

In order to apply the representation theorem on pg. 259 in [12] we need to have bounded
γ = γ (z), that is independent of F , cf. formulas (8) and (9) on pg. 257 in [12]. If a(s) = s p−2,

then by computations similar to the one in Example 3 above, we have that for A(s) = a
1
2 (s)s

the following holds

γ = 2b(z)
[A−1(λ− 1

2 |F |]q−1)

λ− 1
2 |F |

(

3 − (A−1)′(λ− 1
2 |F |)λ− 1

2 |F |
A−1(λ

− 1
2 |F |)

) = 2b(z)
sq−1

a
1
2 (λ− 1

2 | f |)λ− 1
2 | f |

(

3 − 1
1
2
a′(s)s
a(s) +1

)

= 2p

3p − 2
b(z)sq−1− p

2 = 2p

3p − 2
b(z),
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provided that q = 1 + p
2 . Since b is bounded, then so is γ and we can apply the above

discussion also to equations

div(|∇u|p−2
g ∇u) = b(x)|∇u|1+

p
2

g .

The above computations open possibility to establish the no-critical points lemma in the
setting of Riccati-type equations on surfaces. Moreover, the isoperimetric inequalities for
such equations can also be investigated upon establishing formulas for L ′ and L ′′. However,
we leave this task to the future projects.
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Appendix A

In this Appendix we adapt to our setting the regularity theory due to Talenti [47], see also
[36]. Unlike the original approach, we restrict to the two dimensional case, which permits us
to write a quite short and almost self-contained proof.

Theorem 3.6 Let v ∈ C2(�) be a solution to

div(a(|∇v|g)∇u) = 0

in a domain� ⊂ M2, where a ∈ C1(0,∞) is a positive function satisfying (A) and inf a(s) >

0. Then, for all C0-smooth domains U � V � � it holds

‖v‖W 2,2(U ) ≤ C,

for some constant C > 0which depends onU , V , ‖v‖W 1,2(V ), constantsα, β in condition (A)
and ‖λ‖C1(V ), the norm of the conformal factor given by the isothermal coordinates on M2.

We remark that condition ensuring inf a(s) > 0 states that the equation in subject is
nondegenerate elliptic.
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Set A(s) = a′(s)s
a(s) and introduce the operator L acting on C2 functions defined by

Lv = �v + A(λ−1|∇v|0)∇v∇2v(∇v)T

|∇v|20
=

2∑

i, j=1

ai j (v)vi j ,

where ai j (v) = δi j + A(λ−1|∇v|0) viv j

v21+v22
. Then, v satisfies

Lv = A(λ−1|∇v|0)〈∇λ

λ
,∇v〉0.

We need the following result (see [47, Theorem 2]).

Proposition 3.7 Let w ∈ C2(V ) be a function such that supp(w) � V . Then

∫

V

2∑

i, j=1

w2
i j ≤ c

∫

V

⎛

⎝
2∑

i, j=1

ai j (v)wi j

⎞

⎠

2

,

for a constant c > 0 which depends on α, β.

Proof Without loss of generality, by approximation we can assume that w ∈ C3(V ). Fix
x ∈ V . Consider the real symmetric 2 × 2 matrix a = (ai j (v)) at x . Note that tr a = 2 + A
and tr a2 = ∑2

i, j=1 a
2
i j = 2 + 2A + A2. As x and w are fixed, in what follows we omit the

argument of A = A(λ−1(x)|∇w|0). Choose constants c1, c2 such that

c1 >
1 + β2

2α
≥ (A + 1)2 + 1

2(1 + A)
= 2 + 2A + A2

2 + 2A = tr a2

(tr a)2 − tr a2

c2 = c21 − 1

2c1α − 1 − β2 ≥ c21 − 1

c1((tr a)2 − tr a2) − tr a2
. (53)

The last inequality is due to the fact that denumerator of the right-hand side can be written
as 2c1(1+ A) − 1− (1+ A)2 and it is thus positive when 1+ A ∈ [α, β] due to the choice
of c1. We observe that the first inequality (53) corresponds to what is known in the literature
as Cordes’ condition, cf. formula (1.7) in [36]. Indeed, in our notation and for n = 2 the
Cordes’ condition reads:

tr a2 ≤ (1 + δ)−1(tr a)2

for some δ ∈ (0, 1], that is,
1

δ
≥ tr a2

(tr a)2 − tr a2
.

This latter is verified by the choice δ = c−1
1 < 2α

1+β2 .
Next, we need the following algebraic observation.

Claim:
2∑

i, j=1

w2
i j + 2c1 det Hessw ≤ c2(

2∑

i, j=1

ai j (v)wi j )
2. (54)
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Proof Since p := Hessw is a real symmetric matrix, it holds that p = m−1km for some

orthogonal matrixm and some diagonal matrix k =
(
k1 0
0 k2

)

. Define b = m−1am. We have
∑2

i, j=1 w2
i j = tr p2 = tr k2, det Hessw = det p = det k and

2∑

i, j=1

ai j (v)wi j = tr(ap) = tr(bk) = b11k1 + b22k2.

Hence (54) is implied by

k21 + k22 + 2c1k1k2 ≤ c2(b11k1 + b22k2)
2, for all k1, k2 ∈ R.

Up to rescaling (k1, k2) it is enough to prove that

k21 + k22 + 2c1k1k2 ≤ c2, for all k1, k2 ∈ R b11k1 + b22k2 = 1.

Note that k21 + k22 + 2c1k1k2 = c2 is a hyperbola whose symmetry axis is the line k1 = k2.
Accordingly, it is enough to prove that this hyperbola does not intersect the line b11k1 +
b22k2 = 1, i.e. that the system

{
k21 + k22 + 2c1k1k2 = c2
b11k1 + b22k2 = 1

admits no solutions. Upon computing k1 from the second equation and substituting it in the
first one, yields the following second order equation in k2

(b222 + b211 − 2c1b11b22)k
2
2 + 2(c1b11 − b22)k2 + (1 − c2b

2
11) = 0

whose discriminant � satisfies

�

4b211
= b−2

11

[
(c1b11 − b22)

2 − (b222 + b211 − 2c1b11b22)(1 − c2b
2
11)

]

= c21 − 1 − c2(2c1b11b22 − b211 − b222)

= c21 − 1 − c2
[
c1((b11 + b22)

2 − (b211 + b222)) − (b211 + b222)
]

< c21 − 1 − c2[c1((tr a)2 − tr a2) − tr a2] < 0,

as tr a = tr b and tr a2 = tr b2 = ∑2
i, j=1 b

2
i j ≥ b211 + b222. Thus, the proof of the claim is

complete.
An explicit computation shows that for any C3 function w,

det Hessw = 1

2
div(�w∇w) − 1

4
�|∇w|2.

By the assumptions of Proposition 3.7, w is zero in a neighborhood of ∂V , and so the Stokes
theorem implies

∫
V det Hessw = 0. Therefore, we conclude the proof of Proposition 3.7 by

integrating (54) over V . ��

Once we have Proposition 3.7, the proof ot Theorem 3.6 can be done by mimicking the
proof of Theorem 9.11 in [23].
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Proof of Theorem 3.6 Let ϕ ∈ C∞
c (�) such that ϕ ≡ 1 on U and suppϕ � V . Furthermore,

let |∇φ| ≤ c
dist(∂U ,∂V )

and let similar growth condition hold for |∇2φ|. By Proposition 3.7
applied to ϕv, we obtain that

∫

U

2∑

i, j=1

v2i j ≤
∫

V

2∑

i, j=1

(ϕv)2i j ≤ c
∫

V

⎛

⎝
2∑

i, j=1

ai j (v)(ϕv)i j

⎞

⎠

2

. (55)

We compute

⎛

⎝
2∑

i, j=1

ai j (v)(ϕv)i j

⎞

⎠

2

=
⎛

⎝
2∑

i, j=1

ai j (v)ϕi jv + 2
2∑

i, j=1

ai j (v)ϕiv j + ϕLv

⎞

⎠

2

≤ 3
∑

i j

(
‖ai j (v)‖2L∞(V )‖ϕi j‖2L∞(V )v

2 + ‖ai j (v)‖2L∞(V )‖ϕi‖2L∞(V )v
2
j

)

+ 3

4
‖ϕ‖2L∞(V )‖A(λ− 1

2 |∇v|0)‖2L∞(V )‖∇ log λ‖L∞(V )|∇v|2. (56)

Since ‖ai j (v)‖L∞(V ) and ‖A(λ− 1
2 |∇v|0)‖L∞(V ) can be upper bounded in terms of α and β

and ‖ϕ‖C2(V ) can be estimated in terms of U and V , inserting (56) into (55) concludes the
proof. ��
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