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Abstract
We consider scalar-valued variational models for pattern formation in helimagnetic com-
pounds and in shape memory alloys. Precisely, we consider a non-convex multi-well bulk
energy term on the unit square, which favors four gradients (± α,± β), regularized by a sin-
gular perturbation in terms of the total variation of the second derivative. We derive scaling
laws for the minimal energy in the case of incompatible affine boundary conditions in terms
of the singular perturbation parameter as well as the ratio α/β and the incompatibility of
the boundary condition. We discuss howwell-studied models for martensitic microstructures
in shape-memory alloys arise as a limiting case, and relations between the different mod-
els in terms of scaling laws. In particular, we show that scaling regimes arise in which an
interpolation between the rather different branching-type constructions in the spirit of Kohn
and Müller (Commun Pure Appl Math 47(4):405–435, 1994) and Ginster and Zwicknagl (J
Nonlinear Sci 33:20, 2023), respectively, occurs. A particular technical difficulty in the lower
bounds arises from the fact that the energy scalings involve various logarithmic terms that
we capture in matching upper and lower scaling bounds.

Mathematics Subject Classification 49J40 · 74N15 · 74G65 · 82B21 · 82B24

1 Introduction

We explore relations between certain scalar-valued variational models for microstructures
in shape-memory alloys and in helimagnetic compounds, respectively. In these models, the
formation of microstructures is induced by a lack of convexity. More precisely, the energy
functionals favor functions whose gradients lie in discrete sets consisting of two (for marten-
sites) or four (for helimagnets) vectors, respectively. To introduce a length scale to the
problem, these non-convex terms are typically complemented by a higher-order regular-
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ization term which is interpreted as a surface energy term and in particular penalizes changes
between regions of preferred gradients (see e.g. [1] and the discussion in [2]). There are
only very few special cases in which minimizers for the resulting variational problems are
known (see [3] and the references given there), or qualitative properties of them are proven
(see [4, 5] and the references given there). Therefore, starting with the work by Kohn and
Müller on martensitic microstructures (see [6, 7] and also below for a more detailed descrip-
tion), it has often proven useful to understand the scaling behaviour of the minimal energy
in terms of the problem parameters in order to explain pattern formation in materials. More
precisely, such results often indicate that in certain parameter regimes, optimal configurations
are rather uniform while in other regimes, complex branching patterns are predicted. Similar
results have been obtained for a variety of models for very different phenomena, including
among many others, various models for the classes of materials considered here, that is,
martensitic microstructures (see e.g. [6–18] and the references therein) and microstructures
in micromagnetics (see e.g. [19–27] and the references therein).

1.1 Themodel and related results

Throughout the text, we consider a generic square domain (0, 1)2. For recent related results
addressing the domain dependence we refer to [28]. Pattern formation in helimagnets is
often described in terms of (discrete) frustrated spin systems (see e.g. [29]). We continue
here a study of two-dimensional J1 − J3-type models on a square lattices. It has been found
(see [30–32]) that zooming into the helimagnetic/ferromagnetic transition point and simul-
taneously taking the continuum limit as the lattice spacing vanishes, such discrete models
from statistical mechanics (if properly rescaled) converge in the sense of �−convergence to
singularly perturbed continuum functionals. More precisely, the latter are closely related to
functionals of the form

J (u) :=
∫

�

dist2(∇u,Pα,β) dx dy + σ | D2u | (�), (1)

see [30–32] for precise results and [27] for a discussion of the simplifications we make here.
In (1), �= (0, 1)2 ⊂ R

2 denotes the domain occupied by the magnetic body, and the set
of preferred gradients Pα,β ⊂ R

2 contains four vectors. The latter can be seen as order
parameters and correspond to chiralities of the discrete spin fields. More precisely, it has
been found that in the parameter regime we consider here, optimal spin field configurations
correspond to helical spins field, where the spin vectors rotate between nearest neighbors by
a fixed angle (clockwise or counterclockwise) horizontally and by a fixed angle vertically.
The preferred gradients Pα,β = {(±α,±β)} with α, β > 0 correspond to appropriately
rescaled versions of these optimal rotation angles, horizontally (α) and vertically (β). The
actual angles are determined by the parameters of the J1 − J3−model (see [30, 31]). We note
that in [27, 31] the case α = β = 1 has been considered. The more general case considered
here corresponds to the additional freedom in the discrete spin systems that the ratio between
nearest neighbor and next to nearest neighbor interactions may be different (details will be
discussed in [32]).

We consider the case of incompatible affine Dirichlet boundary conditions, i.e.,

u(0, y) = (1 − 2θ)β y (2)

with a parameter θ ∈ (0, 1/2) that measures the incompatibility between the rigid field on
the boundary and the preferred gradients inside the sample: If θ = 0, the boundary condition
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is compatible with the preferred gradients in � and the minimal energy vanishes, but the
larger θ ∈ (0, 1/2) gets, the more incompatible are the boundary conditions, and we expect
a larger minimal energy.

Let us briefly explain the relation to variational problems from the literature: The case
α = β = 1 has been studied in [27]. The main result there is a scaling law for the minimal
energy which takes the form

min J (u) ∼ min

{
θ2, σ

( | log σ |
| log θ | + 1

)}
. (3)

Here and in the following, we use the notation G ∼ H for functions G, H depending on the
problem parameters, to indicate that there are constants c,C > 0 such that for all admissible
choices of the problem parameters there holds cH ≤ G ≤ CH . The first scaling in (3) is
achieved by an affine function, while the second scaling corresponds to a branching-type
construction, which (up to an interpolation layer close to the interface {x = 0}) uses only the
preferred gradients in Pα,β .

On the other hand, if we set α = 0 and β = 1, then the functional given in (1) reduces
to a variant of the Kohn-Müller model for martensitic microstructures. It is well-known that
the scaling law for the minimal energy in this case reads (see e.g. [33, 34])

min J (u) ∼ min
{
θ2, σ 2/3θ2/3

}
. (4)

Again, the first regime corresponds to an affine function, while minimizers in the second
regime are expected to show almost self-similar behaviour (see [4, 5] for rigorous results for
a simplified model). However, in contrast to the situation above, (almost) minimizers in this
regime only satisfy (up to an interpolation layer) ∂2u ∈ {±β} but not ∂1u ∈ {±α}.

1.2 Main results

We shall prove scaling laws for the minimal energies (1) under the boundary conditions
(2). As discussed above, this can be seen as generalizations of results on Kohn-Müller-type
models (see e.g. [2, 7, 33, 34]) and of the analysis in [27]. In particular, we show how
this "transition" from two-gradient models to four-gradient models takes place in terms of
"interpolating" scaling regimes of the minimal energy. A particular technical difficulty in
the analysis lies in the fact that the scaling law contains various logarithmic terms that we
capture precisely in the upper and lower bounds.

We restrict ourselves to a generic domain (0, 1)2 to keep notation simple, but we expect
that more general rectangles can be treated along the lines of [27, Section 4.4]. We treat the
cases α ≤ β and α ≥ β separately in Sects. 2 and 3, respectively. As the absolute values α

and β can be adjusted by the rescaling chosen for the spin model (see [31, 32]), we set the
larger of the two values to one and call the smaller one γ ∈ (0, 1], see Remarks 2 und 3
for details. Our main results concern the complete characterization of the scaling laws of the
minimal energies, which we will outline in the sequel. We treat the cases of small preferred
y- und small preferred x-derivatives separately.

1.2.1 The case of small y-derivative

For σ > 0, θ ∈ (0, 1/2], and γ ∈ (0, 1] we set
Aθ,γ := {

u ∈ W 1,2((0, 1)2) : ∇u ∈ BV ((0, 1)2), u(0, y) = (1 − 2θ)γ y
}
.
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We note that any function in Aθ,γ has a continuous representative up to the boundary (see
e.g. [35, Lemma 9]). In the following, we always refer to this representative without further
mentioning. We consider the functional Eσ,γ,θ : Aθ,γ → [0,∞) defined by

Eσ,γ,θ (u) :=
∫

(0,1)2

dist2(∇u,Kγ ) dx dy + σ | D2u | (�)

where

Kγ := {(±1,±γ )} .

While for γ → 1, we end up with the four-gradient problem studied in [27], we shall also
exploit the above-mentioned relation to two-gradient problems formartensitic microstructure
formation. Precisely, we make use of the following relation.

Remark 1 For u ∈ Aθ,γ consider v(x, y) := u(x,y)−x
γ

. Then

Eσ,γ,θ (u)

≤
∫

(0,1)2

|∂1u − 1|2 + min {|∂2u − γ |, |∂2u + γ |}2 dx dy + σ |D2u|((0, 1)2)

= γ 2

⎛
⎜⎝

∫

(0,1)2

|∂1v|2 + min {|∂2v − 1|, |∂2v + 1|}2 dx dy + σγ −1|D2v|((0, 1)2)
⎞
⎟⎠ .

In this way, the upper bound for the Kohn-Müller-type functional (see (4)) immediately yield
bounds for our problem which in some parameter regimes turn out to be sharp, in others not.
This will be explored more specifically in the proof of Proposition 3.

It turns out that the scaling law for the minimal energy Eσ,γ,θ shows a transition between
the scaling behaviour of the Kohn-Müller-type two-gradient energies and the ones derived
in [27] for the four preferred gradients (±1,±1). Precisely, compared to the setting of [27],
besides uniform phases and branching-type structures involving all four preferred gradients,
also a Kohn-Müller type branching construction is relevant for the scaling behaviour of
the minimal energy. We note that in the Kohn-Müller model there are only two preferred
gradients, and the construction uses (up to a boundary layer) only the preferred values for the
y−derivative. However, in contrast to the branching-type construction using four gradients,
the refinement is done in an anisotropic way so that the x-derivatives become very large (and
therefore get far away from the preferred value) after only a few refinement steps. Our main
result is the following scaling law of the minimal energy. Note that we prove matching upper
and lower bounds.

Theorem 1 There are constants c,C > 0 such that for all θ ∈ (0, 1/2], all γ ∈ (0, 1], and
all σ > 0, there holds

c s(γ, θ, σ ) ≤ min
Aθ,γ

Eσ,γ,θ ≤ C s(γ, θ, σ ),

where s(γ, θ, σ ) = min
{
γ 2θ2, σ 2/3γ 4/3θ2/3, σ

( | log σ |
| log(γ 2θ)| + 1

)}
.

Proof The upper bound is proven in Proposition 3, the lower bound in Proposition 4. 
�
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Remark 2 The case of arbitrary preferred gradients (±α,±β)with 0 < β ≤ α can be reduced
to the setting considered here by rescaling. Precisely, for a function u ∈ Aθ,β/α , the function
uα := αu satisfies uα(0, y) = α(1 − 2θ)y, and

∫

(0,1)2

dist2
(∇uα,Pα,β

)
dx dy + σ

∣∣D2uα

∣∣ ((0, 1)2) = α2Eσ/α,β/α,θ (u).

1.2.2 The case of small x-derivative

For σ > 0, θ ∈ (0, 1/2], and γ ∈ (0, 1] we also consider on

Bθ := {
u ∈ W 1,2((0, 1)2) : ∇u ∈ BV ((0, 1)2), u(0, y) = (1 − 2θ)y

}

the functional

Fσ,γ,θ (u) =
∫

(0,1)2

dist2(∇u,Mγ ) dx dy + σ | D2u | (�)

where

Mγ := {(±γ,±1)} .

Also in this case, we consider for any function inBθ always its continuous representative (see
e.g. [35, Lemma 9]). Again, for γ → 1, the problem turns into the four-gradient problem
studied in [27], while for γ → 0, this problem turns into a Kohn-Müller-type model. Our
main result is the following scaling law for theminimal energy. Note that we a provematching
upper and lower bound in all parameter regimes.

Theorem 2 There are constants ci ,Ci > 0, i = 1, 2, 3 such that for all θ ∈ (0, 1/2], all
γ ∈ (0, 1], and all σ > 0, the following statements hold:

1. If 0 < γ ≤ θ/8 then

c1 s1(γ, θ, σ ) ≤ min
Bθ

Fσ,γ,θ ≤ C1 s1(γ, θ, σ ),

where s1(γ, θ, σ ) = min
{
θ2, σ 2/3θ2/3, σθ

γ

(∣∣∣log σθ
γ 3

∣∣∣ + 1
)}

.

2. If 0 < γ 2/2 ≤ θ/8 < γ then

c2 s2(γ, θ, σ ) ≤ min
Bθ

Fσ,γ,θ ≤ C2 s2(γ, θ, σ ),

where s2(γ, θ, σ ) = min
{
θ2, σγ + θ3

γ
, σθ

γ

(∣∣∣log σ
θ2

∣∣∣ + 1
)}

.

3. If 0 < θ/8 < γ 2/2 then

c3 s3(γ, θ, σ ) ≤ min
Bθ

Fσ,γ,θ ≤ C3 s3(γ, θ, σ ),

where s3(γ, θ, σ ) = min
{
θ2, σγ + θ3

γ
, σγ

( | log σγ 2/θ3|
| log γ 2/θ | + 1

)}
.

Proof The upper bounds follow from Corollary 1, the lower bounds from Proposition 6. 
�
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Remark 3 By rescaling, one can obtain similar results also for the case of general preferred
gradients of the form (±α,±β) with 0 < α ≤ β. For a function u ∈ Bθ consider uβ := βu.
Then uβ(0, y) = β(1 − 2θ)y and

∫

(0,1)2

dist2(∇uβ,Pα,β) dx dy + σ
∣∣D2uβ

∣∣ ((0, 1)2) = β2Fσ/β,θ,α/β(u).

Let us briefly discuss how the above mentioned relations to the well-known scaling laws are
reflected in this result.

Remark 4 Suppose that σ > 0 and θ ∈ (0, 1/2] are fixed.
1. If γ → 0 for θ > 0 fixed, we are in case (1) and we recover the well-known scaling law

for Kohn-Müller type models (see (4)).
2. Consider now the case γ → 1. Note that then we are necessarily in case (3) since for (2)

there holds γ 2/2 ≤ θ/8 ≤ 1/16. If we are in case (3) then we have

min
Bθ

Fσ,γ,θ ∼ min

{
θ2, σ + θ3, σ

( | log σ/θ3|
| log θ | + 1

)}

∼ min

{
θ2, σ + θ3, σ

( | log σ |
| log θ | + 1

)}

∼ min

{
θ2, σ

( | log σ |
| log θ | + 1

)}
,

which is the scaling law from [27, Theorem 1] (see (3)).

Throughout the text, we denote by c and C generic constants that may change from
expression to expression and do not depend on the problem parameters. In the absence of
ambiguities, we will not distinguish between row and column vectors. For B ⊆ R

2 open and
u ∈ W 1,2(B) with ∇u ∈ BV (B), we use the notation Eσ,γ,θ (u; B) and Fσ,γ,θ (u; B) for the
energy on B, i.e.,

Eσ,γ,θ (u; B) :=
∫

B

dist2(∇u,Kγ ) dx dy + σ |D2u|(B)

and Fσ,γ,θ (u; B) :=
∫

B

dist2(∇u,Mγ ) dx dy + σ |D2u|(B). (5)

In addition for x ∈ (0, 1) and I ⊆ (0, 1) Lebesgue-measurable, we write for u ∈ Aθ,γ

Eσ,γ,θ (u; {x} × I ) :=
∫

I

dist2(∇u(x, y),Kγ ) dy + |∂1∇u(x, ·)|(I ).

Note that since ∇u ∈ BV ((0, 1)2) this formula makes sense for almost every x ∈ (0, 1)
in the sense of slicing of BV -functions, see [36]. Similarly, we write for y ∈ (0, 1) and
u ∈ Aθ,γ

Eσ,γ,θ (u; I × {y}) :=
∫

I

dist2(∇u(x, y),Kγ ) dx + |∂2∇u(·, y)|(I ).

We use analogous notation for Fσ,γ,θ .
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2 Proof of Theorem 1

2.1 Upper bound

We start with the proof of the upper bound in Theorem 1. Before we present the precise
constructions, let us start with a brief heuristic explanation. Essentially, the boundary con-
ditions can be met in two ways, namely the y-derivative being approximately (1 − 2θ)γ

and fast oscillations close to x = 0 between y-derivatives +γ and −γ with volume fraction
1 − θ and θ , respectively. The first case is penalized by the first term in Eσ,γ,θ , whereas
the second case introduces a certain energy through the second term of Eσ,γ,θ . If σ > 0 is
large, uniform structures should be energetically favorable. For small σ > 0, we present two
constructions in which oscillations in the y-derivative refine in a self-similar way towards
x = 0. If γ > 0 is rather small then the set Kγ = {(1,±γ )} ∪ {(−1,±γ )} is the disjoint
union of two rather far apart sets of two preferred gradients with a small distance. Hence,
it is energetically favorable to use only two of the four vectors in Kγ , i.e. we restrict our-
selves to the setting of only two preferred gradients. By a simple change of variables, in
this scenario the construction from [7] can be invoked. The second construction uses all four
preferred gradients and isotropically rescaled building blocks, cf. Fig. 4 and [27]. Assuming
that ∇u ∈ Kγ , we find that |u(x, y)− (1− 2θ)γ y| ≤ x . It then follows, again assuming that
∇u ∈ Kγ , that the number of jumps of the y-derivative is of order θγ

x . The presented con-
struction realizes this as the number of jumps of the y-derivatives grows from approximately
(θγ 2)−i to approximately (θγ 2)−i−1 between xi ≈ θγ (θγ 2)i and xi+1 ≈ θγ (θγ 2)i+1.
Moreover, |∂2∂2u|((xi+1, xi ) × (0, 1)) ≈ γ (xi − xi+1)(θγ 2)−i ≈ 1 which balances the
energy contributions from |∂1∂1u| per refinement step. The lower bound indicates that this is
necessary. Eventually, we note that instead of the described refinement step (purely creating
surface energy), we could alternatively interpolate to the boundary conditions using gradients
that are not in Kγ , see Fig. 4 (middle). This creates an energy contribution through the first
part of the energy. By scaling this contribution becomes smaller as the number of refinement
steps taken before increases. The use of refinement steps in the construction then terminates
once this interpolation is energetically favorable.

Precisely, we have the following result.

Proposition 3 There is a constant C > 0 such that for all θ ∈ (0, 1/2], all γ ∈ (0, 1] and
all σ > 0, there is a function u ∈ Aθ,γ with

Eσ,γ,θ (u) ≤ C min

{
γ 2θ2, σ 2/3γ 4/3θ2/3, σ

( | log σ |
| log(γ 2θ)| + 1

)}
.

Proof Weuse the labels from Fig. 1 to indicate in which parameter regimewhich test function
is used. The first two scaling regimes arise from the scaling regimes of the Kohn-Müller-type
models (see Remark 1, with constructions along the lines of [2, 7, 33, 34]) (Fig. 2).
1.Uniform configuration (UC). The first scaling, γ 2θ2, corresponds to a uniform test function
uUC(x, y) = (1 − 2θ)γ y + x , which has energy E(uUC) = 4γ 2θ2.
2.Kohn-Müller-type two-gradient branching (TG). The second energy scaling,σ 2/3γ 4/3θ2/3,
can be achieved by a Kohn-Müller type branching construction, which involves only two of
the four preferred gradients, see Fig. 3. A similar construction is also given in detail in
Proposition 5 (b) below, cf. also the upper bound constructions in [34, 37]. Precisely, it is
shown in [34] that there is a constant C > 0 such that for all ε ∈ (0,∞) and all θ ∈ (0, 1/2]
with ε ≤ θ2, there is a function v := vε,θ : (0, 1)2 → R with v(0, y) = 0 for all y ∈ (0, 1)

123



8 Page 8 of 40 J. Ginster, B. Zwicknagl

Fig. 1 Left: Sketch of the set of preferred gradients with small y-derivativeKγ . Right: Sketch of the appearing
regimes for small y-derivatives in Theorem 1 for fixed θ in the σ -γ -plane: the uniform configuration (UC),
the Kohn-Müller type branching using two gradients (TG), and the isotropically rescaled branching using all
four preferred gradients (FG). For the corresponding upper bound constructions see Sect. 2.1

Fig. 2 Left: Sketch of the set of preferred gradients with small x-derivativeMγ . Right: Sketch of the appear-
ing regimes for small x-derivatives in Theorem 2 for fixed θ in the σ -γ -plane: the uniform configuration (UC),
the Kohn-Müller type branching using two gradients (TG), the interpolation between the Kohn-Müller type
branching and the isotropically rescaled branching using four gradients (IB), the isotropically rescaled branch-
ing using all four preferred gradients (FG), and the rotated interphase configuration (RI). For the corresponding
upper bound constructions see Sect. 3.1

such that

∫

(0,1)2

( (∂1v)2 + min
{
(∂2v + 1 − θ)2 , (∂2v − θ)2

}
) dx dy + ε|D2v|((0, 1)2) ≤ Cε2/3θ2/3.

Suppose now σ ≤ γ θ2 (otherwise γ 2θ2 ≤ σ 2/3γ 4/3θ2/3, and the second energy scaling is
not relevant). We then set ε := σγ −1 ≤ θ2, and define uTG : (0, 1)2 → R by

uTG(x, y) := γ (2v(x, y) + (1 − 2θ)y) + x .

123
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Fig. 3 Sketch of the Kohn-Müller-type branching construction. The areas of ∂2u = 1 and ∂2u = −1 are
colored in green and red, respectively. The parameter α can be chosen in the interval (1/4, 1/2)

This yields uTG ∈ Aθ,γ , and by (4)

Eσ,γ,θ (uTG)

≤
∫

(0,1)2

|∂1uTG − 1|2 + min{|∂2uTG − γ |, |∂2uTG + γ |}2 dx dy + σ |D2uTG|((0, 1)2)

= γ 2

⎛
⎜⎝

∫

(0,1)2

4|∂1v|2 + 4min{|∂2v − θ |, |∂2v + 1 − θ |}2 dx dy + 2σγ −1|D2v|((0, 1)2)
⎞
⎟⎠

≤ 4Cγ 2ε2/3θ2/3 = 4Cσ 2/3γ 4/3θ2/3.

3. Four-gradient branching (FG). We now turn to the third and last scaling regime,

σ
( | log σ |

| log(γ 2θ)| + 1
)
. We may assume that σ ≤ γ 4θ2 (otherwise σ ≥ σ 2/3γ 4/3θ2/3, and the

last energy scaling is not relevant). Here, we use a branching-type construction (see Fig. 4),
which is a variant of the construction that has been introduced in [27] for the special case
γ = 1. We introduce some auxiliary notation and set

m :=
⌈
1

θ

⌈
1

γ 2

⌉⌉
. δ := 1

m
, and n :=

⌊
θ

δ

⌋
,

where �x� := max{� ∈ N : � ≤ x} and �x� := min{� ∈ N : � ≥ x}. Then

m <
1

θ

⌈
1

γ 2

⌉
+ 1,

θ

θ +
⌈

1
γ 2

⌉ < δ ≤ γ 2θ ≤ 1

2
, n ≥ 1, and

m

n
≥ mδ

θ
≥ 2.

Step 1: Construction of the building block.
The building block is sketched in Fig. 4, left panel. We define V : [γ θ2, γ θ ] × R → R

2 as
the function which is 1-periodic in y-direction and satisfies the following:

123



8 Page 10 of 40 J. Ginster, B. Zwicknagl

(i) If (x, y) ∈ [γ θ2, γ θ ] × [1 − lδ, 1 − (l − 1)δ) for 1 ≤ l ≤ n then

V (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1,−γ ) if x ≤ γ θ − δγ (1 − θ)(n − l + 1) and

y ≥ 1 − (l − 1)δ − θδ,

(1, γ ) if x ≤ γ θ − δγ (1 − θ)(n − l),

y ≤ 1 − (l − 1)δ − θδ, and

y ≤ 1 − lδ − γ −1(x − γ θ − γ δ(1 − θ)(n − l)),

(−1,−γ ) else.

(ii) If (x, y) ∈ [γ θ2, γ θ ] × [1 − (n + 1)δ, 1 − nδ) then

V (x, y) =

⎧⎪⎨
⎪⎩

(1,−γ ) if y ≥ max{1 − (n + θ)δ, 1 − θ + γ −1(x − γ θ)},
(1, γ ) if y ≤ 1 − (n + θ)δ and x ≤ 2γ θ − (n + θ)γ δ,

(−1, γ ) else.

(iii) If (x, y) ∈ [γ 2θ, γ θ ] × [1 − �δ, 1 − (� − 1)δ) for n + 1 < � ≤ m then

V (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1,−γ ) if y ≥ 1 − �δ + (1 − θ)δ and

y ≥ 1 − (� − 1)δ + γ −1(x − 2γ θ + (n + θ)γ δ + (� − n − 2)θγ δ),

(1, γ ) if y ≤ 1 − �δ + (1 − θ)δ and

x ≤ 2γ θ − (n + θ)γ δ − (� − n − 3)γ θδ,

(−1, γ ) else,

It can be seen that V is curl-free as it is piecewise constant and ν ‖ (V− − V+) on its jump
set JV , where ν is the measure-theoretic normal to JV . Consequently, V is a gradient field
on (γ 2θ, γ θ) × R, and additionally, V (x, y) ∈ K for almost all (x, y), and

| DV | ((γ 2θ, γ θ) × (0, 1)) ≤ C(δγ (1 − γ )γm + 1) ≤ C .

We will use in the next step that for the second component V2 of V , we have

V2(θγ, y) = V2(θ
2γ, δy) for all y ∈ R. (6)

Additionally, consider the function Vbd : (0, γ θ(1 − θ)) × R → R
2 which is 1-periodic in

the y-component and for (x, y) ∈ (0, γ θ(1 − θ)) × (0, 1) defined as (see Fig. 4)

Vbd(x, y) =

⎧⎪⎨
⎪⎩

(−1,−γ ) if y ≥ 1 − 1
γ (1−θ)

x,

(−1, γ ) if y ≤ x
γ θ

(1, γ (1 − 2θ)) else.

Again, we note that also Vbd is curl-free and |D2Vbd |((0, θγ (1 − θ)) × (0, 1)) ≤ C .
Step 2: Branching construction.

The branching-type construction is sketched in Fig. 4, right panel.
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Fig. 4 Left: Sketch of the building block. Middle: Sketch of the function Vbd . Right: Sketch of the branching
construction for small y-derivatives

We now set VN : (0, 1)2 → R
2 for fixed N ∈ N as

VN (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1,−γ ) if x ≥ γ θ 1−θ
1−δ

and y ≥ 1 − θ,

(1, γ ) if x ≥ γ θ 1−θ
1−δ

and y ≤ 1 − θ,

V (δ−k+1x + θ−δ
1−δ

, δ−k+1y) if x ∈ [δkγ θ 1−θ
1−δ

, δk−1γ θ 1−θ
1−δ

)

with 1 ≤ k ≤ N ,

Vbd(δ−N (x − δN+1γ θ 1−θ
1−δ

), δ−N y) if x ∈ (δN+1γ θ 1−θ
1−δ

, δNγ θ 1−θ
1−δ

),

(1, (1 − 2θ)γ ) if x ∈ (0, δN+1γ θ 1−θ
1−δ

).

Wenote thatVN is curl-free as ν ‖ (V−
N −V+

N )on JVN , where ν is themeasure theoretic normal

to JVN , see also (6).Moreover, VN (x, y) ∈ Kγ for almost all (x, y) ∈ (
γ θ(1−θ)

1−δ
δN , 1)×(0, 1),

and

| DVN | ((0, 1)2) ≤ CN + 2γ ≤ CN . (7)

Let uN : (
γ θ(1−θ)

1−δ
δN , 1) × (0, 1) → R be a corresponding primitive, i.e., ∇uN = VN , such

that uN (0, 0) = 0.
Step 3: Estimate for the energy.

We have ∫

(0,1)2

dist(∇uN ,Kγ )2 dx dy ≤ 4γ 2θ2γ θ
1 − θ

1 − δ
δN ≤ C(γ 2θ)N . (8)

Moreover, by (7)

| D2uN | ((0, 1)2) ≤ CN . (9)

Now fix

N0 :=
⌈

log σ

log(γ 2θ)

⌉
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8 Page 12 of 40 J. Ginster, B. Zwicknagl

and set uFG := uN0 . Then combining (8) and (9), we obtain

Eσ,γ,θ (uFG) ≤ C(γ 2θ)N0 + CσN0 ≤ Cσ

(
1 + log σ

log(γ 2θ)

)
= Cσ

( | log σ |
| log(γ 2θ)| + 1

)
.


�

2.2 Lower bound

We now turn to the proof of the lower bound in Theorem 1. Precisely, we show the following
result.

Proposition 4 There is a constant c > 0 such that for all θ ∈ (0, 1/2], all γ ∈ (0, 1], and
all σ > 0, there holds

min
Aθ,γ

Eσ,γ,θ ≥ cmin

{
γ 2θ2, σ 2/3γ 4/3θ2/3, σ

( | log σ |
| log(γ 2θ)| + 1

)}
.

Proof The proof is structured in a similar way as the proof of [27, Theorem 1] and is split in
several parts that we prove as separate lemmas below. We briefly outline the main steps and
how they yield the claimed lower bound.
First, in Lemma 1, we prove a (weaker) lower bound without the logarithmic term in the third
regime, i.e.,

min
Aθ,γ

Eσ,γ,θ ≥ cmin{γ 2θ2, σ 2/3γ 4/3θ2/3, σ }.

This concludes the proof of the lower bound in the first two regimes, in particular if σ ≥ γ 4θ2

(since in this case, γ 4/3σ 2/3θ2/3 ≤ σ , and the last regime is not relevant).
Let us now consider the remaining case σ ≤ γ 4θ2.

• If (γ 2θ)34 ≤ σ ≤ (γ 2θ)2 then | log σ |/| log(γ 2θ)| ∼ 1, and the lower bound is also
concluded by Lemma 1 described above.

• Ifσ ≤ (γ 2θ)34 andα0 ≤ γ 2θ with somefixed constantα ∈ (0, 1), we have | log(γ 2θ)| ∼
1 (recall that always γ 2θ ≤ 1/2), and we prove in Lemma 3 below that

min
Aθ,γ

Eσ,γ,θ ≥ cσ(| log σ | + 1),

which concludes the proof of the lower bound in this case.
• Finally, consider the case σ < (γ 2θ)34 and γ 2θ ≤ α0 with some fixed constant α0 ∈

(0, 1). Then there exists some k ≥ 32 such that γ 4θ2(γ 2θ)k+1 ≤ σ < γ 4θ2(γ 2θ)k , and
we prove in Lemma 2 below that

min
Aθ,γ

Eσ,γ,θ ≥ ckσ ≥ cσ
| log σ |

| log(γ 2θ)| ≥ cσ

( | log σ |
| log(γ 2θ)| + 1

)

where in the last estimate we used that σ < (γ 2θ)2. This concludes the proof of the
lower bound in this parameter regime.


�
We first prove a weaker lower bound without the logarithmic term.

Lemma 1 There exists c > 0 such that for all u ∈ Aθ,γ there holds

Eσ,γ,θ (u) ≥ cmin{γ 2θ2, σ 2/3γ 4/3θ2/3, σ }.
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Proof Assume that there existsu ∈ Aθ,γ such that Eσ,γ,θ (u) ≤ 1
322

min{γ 2θ2, σ 1/2γ 3/2θ, σ }.
We define

N := 8

⎧⎪⎨
⎪⎩
1 if γ 2θ2 = min{γ 2θ2, σ 2/3γ 4/3θ2/3, σ },
σ−1/3γ 1/3θ2/3 if σ 2/3γ 4/3θ2/3 = min{γ 2θ2, σ 2/3γ 4/3θ2/3, σ },
γ −1 if σ = min{γ 2θ2, σ 2/3γ 4/3θ2/3, σ }.

Note that N ≥ 8. First find ȳ ∈ (0, 1 − 2
N ) such that

Eσ,γ,θ

(
u; (0, 1) × (ȳ, ȳ + 2

N
)

)
≤ 4

N
Eσ,γ,θ (u).

Then by a Fubini-type argument find x̄ ∈ (0, 1) such that

Eσ,γ,θ

(
u; {x̄} × (ȳ, ȳ + 2

N
)

)
≤ 4

N
Eσ,γ,θ (u).

Lastly, again by a Fubini-type argument, we find y1, y2 ∈ (ȳ, ȳ + 2
N ) such that y2 − y1 = 1

N
and

Eσ,γ,θ (u; (0, 1) × {y1}) + Eσ,γ,θ (u; (0, 1) × {y2}) ≤ 4Eσ,γ,θ (u).

First note that
1∫
0
min{|∂1u(x, y1)− 1|, |∂1u(x, y1)+ 1|}2 dx ≤ 4

322
γ 2θ2. Hence, there exists

t ∈ (0, 1) such that min{|∂1u(t, y1) − 1|, |∂1u(t, y1) + 1|} ≤ 1
16γ θ < 1

2 . Without loss of
generality we assume that |∂1u(t, y1) − 1| < 1

2 , i.e. ∂1u(t, y1) ≥ 1
2 . Moreover, it holds that

|∂1∇u(·, y1)|((0, 1)) + |∂1∇u(·, y2)|((0, 1)) + |∂2∇u|({x̄} × (y1, y2)) ≤ σ−18Eσ,γ,θ (u)

≤ 8

322
<

1

2
.

Hence, ∂1u(s, yi ) ≥ 0 for i = 1, 2 and almost all s ∈ (0, 1), i.e.,

|∂1u(s, yi ) − 1| = min {|∂1u(s, yi ) − 1|, |∂1u(s, yi ) + 1|} .

Then we estimate

|u(x̄, y2) − u(x̄, y1) − (1 − 2θ)γ (y2 − y1)|

=
∣∣∣∣∣∣

x̄∫

0

∂1u(t, y2) − 1 − ∂1u(t, y1) + 1 dt

∣∣∣∣∣∣
≤ x̄

1
2
(
E(u; (0, 1) × {y1})1/2) + Eσ,γ,θ (u; (0, 1) × {y2})1/2

)

≤ 1

8
min{γ θ, σ 1/3γ 2/3θ1/3, σ 1/2}

≤ γ θ
1

N
= γ θ(y2 − y1). (10)

Here, we used that σ ≤ γ 4θ2 if σ = min{γ 2θ2, σ 2/3γ 4/3θ2/3, σ }. Next, we note that
|∂2∂2u(x̄, ·)|((y1, y2)) ≤ σ−1 4

322N
min{γ 2θ2, γ 4/3σ 2/3θ2/3, σ } ≤ 1

2 · 322 γ < γ/2.
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8 Page 14 of 40 J. Ginster, B. Zwicknagl

By a similar argument as before, we may assume that it holds for almost all y ∈ (y1, y2) that
|∂2u(x̄, y) − γ | = min{|∂2u(x̄, y) − γ |, |∂2u(x̄, y) − γ |}. Then we estimate∣∣∣∣∣∣

y2∫

y1

(∂2u(x̄, y) − γ ) dy

∣∣∣∣∣∣
2

≤ (y2 − y1)

y2∫

y1

|∂2u(x̄, y) − γ |2 dy

≤ (y2 − y1) Eσ,γ,θ (u; {x̄} × (y1, y2)) ≤ 4

N 2 Eσ,γ,θ (u). (11)

On the other hand, we have by (10)∣∣∣∣∣∣
y2∫

y1

(∂2u(x̄, y) − γ ) dy

∣∣∣∣∣∣
2

= |u(x̄, y2) − u(x̄, y1) − γ (y2 − y1)|2

≥ ∣∣2θγ (y2 − y1) − |u(x̄, y2) − u(x̄, y1) − (1 − 2θ)γ (y2 − y1)|
∣∣2

≥ γ 2θ2(y2 − y1)
2 = γ 2θ2

1

N 2 . (12)

Combining (11) and (12) yields

Eσ,γ,θ (u) ≥ 1

4
γ 2θ2 ≥ 1

4
min{γ 2θ2, σ 2/3γ 4/3θ2/3, σ }.

This concludes the proof. 
�
The next lemma is along the lines of [27, Lemma 6] and its proof, with the necessary

careful amendments to deal with the additional parameter γ .

Lemma 2 There exist α0 > 0 and c > 0 such that for all k ≥ k0 = 32, all γ ∈ (0, 1], all
θ ∈ (0, α0/γ

2], and all
σ ∈

[
γ 4θ2(γ 2θ)k+1, γ 4θ2(γ 2θ)k

)

there holds
Eσ,γ,θ (u) ≥ ckσ. (13)

Proof Set k0 := 32 and 0 < α0 < 1/(63)2 such that 2 · 64 · 212kαk/4
0 ≤ 1 for all k ≥ k0. Let

k ≥ k0, γ , θ and σ be as in the lemma and assume that Eσ,γ,θ (u) ≤ kσ .
For i = 1, . . . , k, there are by a Fubini-type argument xi ∈ (

γ θ(γ 2θ)i , 3
2γ θ(γ 2θ)i

)
such

that (cf. Fig. 5)

Eσ,γ,θ (u; {xi }×(0, 1)) ≤ 2(γ θ)−1(γ 2θ)−i Eσ,γ,θ

(
u;

(
γ θ(γ 2θ)i ,

3

2
γ θ(γ 2θ)i

)
× (0, 1)

)
.

Claim: There exists a constant c > 0 such that for all i ≤ k/2 it holds
γ θ(γ 2θ)i Eσ,γ,θ (u, {xi } × (0, 1)) + Eσ,γ,θ (u; (xi+1, xi ) × (0, 1)) ≥ cσ.

Note that once we prove the claim, the lower bound (13) follows via

2Eσ,γ,θ (u)

≥
�k/2�∑
i=1

[
Eσ,γ,θ

(
u;

(
γ θ(γ 2θ)i ,

3

2
γ θ(γ 2θ)i

)
×(0, 1)

)
+Eσ,γ,θ (u; (xi+1, xi )×(0, 1))

]

≥ 1

2

�k/2�∑
i=1

[
γ θ(γ 2θ)i Eσ,γ,θ (u; {xi } × (0, 1)) + Eσ,γ,θ (u; (xi+1, xi ) × (0, 1))

]

≥ �k/2� cσ ≥ ck

4
σ.
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Fig. 5 Sketch of the important quantities in the proof of Lemma 2

Hence, it remains to prove the claim. From now on fix i ≤ k/2. We define the set

Ni = {s ∈ (0, 1) : |∂2u(xi , s) + γ | ≤ 3 |∂2u(xi , s) − γ |}
and claim that L1(Ni ) ≤ 2/3, where we denote by L1 the 1-dimensional Lebesgue-measure.
For a contradiction, assume thatL1(Ni ) > 2/3. There are y1, y2 ∈ (0, 1) such that y2− y1 ≥
1 − 1

12 and

1∫

0

min{| ∂1u(x, y j ) − 1 |, | ∂1u(x, y j ) + 1 |}2 dx ≤ 24Eσ,γ,θ (u) for j = 1, 2.

This yields for j = 1, 2

|u(xi , y j ) − (1 − 2θ)γ y j | ≤ xi + x1/2i

(
24Eσ,γ,θ (u)

)1/2 ≤ 2xi ,

and hence

u(xi , y2) − u(xi , y1) ≥ (1 − 2θ)γ (y2 − y1) − 4xi .

This leads to
∫

(y1,y2)∩{∂2u(xi ,·)≥γ /2}
∂2u(xi , s) ds

= u(xi , y2) − u(xi , y1) −
∫

(y1,y2)∩{∂2u(xi ,·)<γ/2}
∂2u(xi , s) + γ − γ ds

≥ (1 − 2θ)γ (1 − 1

12
) − 4xi + (2/3 − 1/12)γ − 3Eσ,γ,θ (u; {xi } × (0, 1))1/2

≥ 1

2
γ, (14)
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wherewe used that 4xi ≤ 6γ θ(γ 2θ) ≤ 1
24γ and Eσ,γ,θ (u; {xi }×(0, 1)) ≤ 2γ −1θ−1(γ 2θ)−i

kσ ≤ γ 2

9·242 .
On the other hand, we estimate∫

(y1,y2)∩{∂2u(xi ,·)≥γ /2}
∂2u(xi , s) ds ≤ 1

3
γ + Eσ,γ,θ ({xi } × (0, 1))1/2 <

1

2
γ.

This contradicts (14). Hence, it holds L1(Ni ) ≤ 2/3.
Now, let t := 120(θγ 2)i+1. Then there is a point y ∈ (0, 1) such that the interval

(y, y + t) ⊆ (0, 1) is not completely contained in Ni ,

Eσ,γ,θ (u; (0, 1) × (y, y + t)) ≤ 48t Eσ,γ,θ (u),

Eσ,γ,θ (u : (xi+1, xi ) × (y, y + t)) ≤ 48t Eσ,γ,θ (u; (xi+1, xi ) × (0, 1)),

Eσ,γ,θ (u; {xi } × (y, y + t)) ≤ 48t Eσ,γ,θ (u; {xi } × (0, 1)), and

Eσ,γ,θ (u; {xi+1} × (y, y + t)) ≤ 48t Eσ,γ,θ (u; {xi+1} × (0, 1)).

Then one of the following statements (1), (2), or (3) holds in {xi } × (y, y + t), where

1. |∂2∂2u(xi , ·)|((y, y + t)) ≥ 1
2γ ,

2. |∂2u(xi , ·) − γ | ≤ 3|∂2u(xi , ·) + γ |, or
3. |∂2u(xi , ·) + γ | ≤ 3|∂2u(xi , ·) − γ |.
As the interval (y, y + t) is not a subset of Ni , assertion (3) cannot be true. Hence, it suffices
to consider the cases (1) and (2).
Suppose that estimate (1) holds : Then
σ

2
= σγ

2γ
≤ γ −1Eσ,γ,θ (u; {xi } × (y, y + t)) ≤ 48tγ −1Eσ,γ,θ (u; {xi } × (0, 1))

= 48 · 120(γ 2θ)iγ θEσ,γ,θ (u; {xi } × (0, 1))

and thus the claim follows.
Suppose that estimate (2) holds : Note that by the triangle inequality

1

2
γ θ t2 ≤ ‖u(xi , s + t/2) − u(xi , s) − γ t/2‖L1(y,y+t/2)

+ ‖u(xi , s + t/2) − u(xi , s) − (1 − 2θ)γ t/2‖L1(y,y+t/2).

Next, we use that Eσ,γ,θ (u; {xi }×(0, 1)) ≤ 2γ −1θ−1(γ 2θ)−i kσ ≤ 1
212·64γ

2θ2 and estimate

∣∣∣∣∣∣
y+t/2∫

y

u(xi , s + t/2) − u(xi , s) − γ t/2 ds

∣∣∣∣∣∣

≤
y+t/2∫

y

s+t/2∫

s

|∂2u(xi , r) − γ | dr ds

≤ t1/2
y+t/2∫

y

⎛
⎝

y+t∫

y

|∂2u(xi , r) − γ |2 dr
⎞
⎠

1/2

ds

≤ 21t2Eσ,γ,θ (u; {xi } × (0, 1))1/2 ≤ 1

8
t2γ θ.
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Then, by (2) and Poincaré ’s inequality we have using the notation a := 2
t

y+t/2∫
y

(u(xi , s+t/2)

− u(xi , s) − γ t/2) ds

‖u(xi , s + t/2) − u(xi , s) − γ t/2 − a‖L1(y,y+t/2)

≤ t‖∂2u(xi , s + t/2) − ∂2u(xi , s)‖L1(y,y+t/2)

≤ t‖∂2u(xi , s) − γ ‖L1(y,y+t)

≤ 3t3/2Eσ,γ,θ (u; {xi } × (y, y + t))1/2

≤ 21t2Eσ,γ,θ (u; {xi } × (0, 1))1/2.

Consequently, if ‖u(xi + t/2, s) − u(xi , s) − γ t/2‖L1(y,y+t/2) ≥ 1
4γ θ t2 it follows that

212t4Eσ,γ,θ (u; {xi } × (0, 1)) ≥
(
1

4
θγ t2 − t

2
|a|

)2

≥ t4

64
γ 2θ2 ≥ t4

64
γ 3θ(γ 2θ)k−i

≥ t4

64

σ

γ θ(γ 2θ)i
, (15)

which yields the claim.
Hence, fromnowonwewill assume that‖u(xi , s)−u(xi , s+t/2)−(1−2θ)γ t/2‖L1(y,y+t/2) ≥

1
4γ θ t2. First, observe that it holds for all s ∈ (y, y + t/2)

|u(xi , s + t/2) − u(xi , s) − (1− 2θ)γ t/2| ≤ γ θ t + 21t Eσ,γ,θ (u; {xi } × (0, 1))1/2 ≤ 2γ θ t .
(16)

Moreover, define

Ai =
{
s ∈ (y, y + t) : Eσ,γ,θ (u; (0, 1) × {s}) ≤ 80

θ t
Eσ,γ,θ (u; (0, 1) × (y, y + t))

}
,

and note that L1(Ai ) ≥ (
1 − θ

80

)
t . For s ∈ Ai we estimate

|u(xi+1, s) − (1 − 2θ)γ s| ≤ xi+1 + x1/2i+1Eσ,γ,θ (u; (0, 1) × {s})1/2

≤ xi+1 + x1/2i+1

(
80

θ t
Eσ,γ,θ (u; (0, 1) × (y, y + t))

)1/2

≤ xi+1 + 63 · x1/2i+1θ
−1/2Eσ,γ,θ (u)1/2

≤ 2xi+1

≤ 1

40
γ θ t,

where for the second to last inequality we used that for i small enough versus k (recall that
i ≤ k/2) we have kσ ≤ kγ 4θ2(γ 2θ)k ≤ γ θ(γ 2θ)i+3 ≤ 1

632
θxi+1. For s ∈ (y, y + t) we

find s̄ ∈ Ai such that |s − s̄| ≤ θ
80 t . Then we obtain

|u(xi+1, s) − (1 − 2θ)γ s|
≤ |u(xi+1, s) − u(xi+1, s̄)| + |u(xi+1, s̄) − (1 − 2θ)γ s̄| + γ |s − s̄|
≤ 2γ |s − s̄| + |s − s̄|1/2Eσ,γ,θ (u; {xi+1} × (y, y + t))1/2 + 1

40
γ θ t

≤ 1

16
γ θ t,
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where we used similarly to above that for i ≤ k/2 it holds Eσ,γ,θ (u; {xi+1} × (y, y + t)} ≤
1
80γ

2θ t . In particular, using (16) we obtain for almost all s ∈ (y, y + t/2) that

|u(xi , s) − u(xi , s + t/2) − u(xi+1, s) + u(xi+1, s + t/2)|
≤ |u(xi , s) − u(xi , s + t/2) − (1 − 2θ)γ t/2| + |u(xi+1, s) − (1 − 2θ)γ s|

+ |u(xi+1, s + t/2) − (1 − 2θ)γ (s + t/2)|
≤ 3γ θ t . (17)

On the other hand, it holds by our assumption that

‖u(xi , s) − u(xi , s + t/2) − u(xi+1, s) + u(xi+1, s + t/2)‖L1(y,y+t/2)

≥ ‖u(xi , s) − u(xi , s + t/2) − (1 − 2θ)γ t/2‖L1(y,y+t/2)

− ‖u(xi+1, s) − (1 − 2θ)γ s‖L1(y,y+t/2) − ‖u(xi+1, s + t/2) − (1 − 2θ)γ ‖L1(y,y+t/2)

≥ 1

4
γ θ t2 − 1

8
γ θ t2

= 1

8
γ θ t2. (18)

Now, consider the set

S :=
{
s ∈ (y, y + t/2) : 1

8
γ θ t ≤ v(s) ≤ 3γ θ t

}
,

where v(s) = |u(xi , s) − u(xi , s + t/2) − u(xi+1, s) + u(xi+1, s + t/2)|. We denote by
L1(S) its 1− dimensional Lebesgue measure, and find with (17) and (18)

1

8
γ θ t2 ≤ L1(S) · 3γ θ t + L1((y, y + t/2) \ S) · 1

8
γ θ t ≤ L1(S) · 3γ θ t + t

2
· 1
8
γ θ t,

which implies

L1 (S) ≥ t

48
.

Using that 1
4γ θ(γ 2θ)i ≤ xi − xi+1 ≤ 3

2γ θ(γ 2θ)i this means that for a subset (y, y + t/2)
of size at least t

48 it holds

10 γ 2θ ≤
∣∣∣∣u(xi , s) − u(xi+1, s)

xi − xi+1
− u(xi , s + t/2) − u(xi+1, s + t/2)

xi − xi+1

∣∣∣∣ ≤ 12 · 120 γ 2θ.

Therefore there exists a universal constant c > 0 such that it holds for all s from a subset of
(y, y + t) whose measure is at least t

48 that
∣∣∣∣
∣∣∣∣u(xi , s) − u(xi+1, s)

xi − xi+1

∣∣∣∣ − 1

∣∣∣∣ ≥ cγ 2θ.

Now one can argue as in Step 4 of the proof of [27, Lemma 6] to conclude. We recall the
argument in our setting for the convenience of the reader. We assume that for a point s as
above there holds |∂11u(·, s)|((xi+1, xi )) < 1

2 . Without loss of generality, this implies for
almost all t ∈ (xi+1, xi ),

|∂1u(t, s) − 1| ≤ 3min {|∂1u(t, s) − 1|, |∂1u(t, s) + 1|} .
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Then
xi∫

xi+1

min {|∂1u(t, s) − 1|, |∂1u(t, s) + 1|}2 dt

≥ 1

9

xi∫

xi+1

|∂1u(t, s) − 1|2 dt

≥ 1

9(xi − xi+1)

⎛
⎝

xi∫

xi+1

(∂1u(t, s) − 1)dt

⎞
⎠

2

= 1

9
(xi − xi+1)

(
u(xi , s) − u(xi+1, s)

xi − xi+1
− 1

)2

≥ 1

9
· 1
4
γ θ(γ 2θ)i · c2γ 4θ2 ≥ c2

36
(γ 2θ)i+3 ≥ c2

36
σ

since i + 3 < k and σ < γ 4θ2(γ 2θ)k .
Hence, it follows Eσ,γ,θ (u; (xi+1, xi ) × (y, y + t)) ≥ t

48 min{ c236 , 1
2 }σ , which implies the

claim. This concludes the proof of Lemma 2. 
�
Finally, we consider the parameter regime, in which branching is expected but | log(γ 2θ)|

is of order 1 and does therefore not appear in the energy scaling, c.f. [27, Lemma 4].

Lemma 3 Let α0 ∈ (0, 1). Then there exists c > 0 such that for all γ 2θ ≥ α0 and σ ≤
(γ 2θ)14 it holds

Eσ,γ,θ (u) ≥ cσ (| log σ | + 1) .

Proof Assume that Eσ,γ,θ (u) ≤ 1
2σ (| log σ | + 1) (otherwise there is nothing to show). Let

x ∈ (0, γ θ/4) and t := 4x
γ θ

≤ 1. Let It ⊆ (0, 1) be an interval of length t such that
Eσ,γ,θ (u; {x} × It ) ≤ CtEσ,γ,θ (u; {x} × (0, 1)) and Eσ,γ,θ (u; (0, 1) × It ) ≤ CtEσ,γ,θ (u).
Then one of the following statements is true on It :

(a) |∂2∇u(x, ·)|(It ) ≥ γ /2,
(b) min{|∂2u(x, y) − γ |2, |∂2u(x, y) + γ |2} ≥ γ 2/4 for almost every y ∈ It ,
(c) |∂2u(x, y) − γ | ≤ |∂2u(x, y) + γ | for almost every y ∈ It , or
(d) |∂2u(x, y) + γ | ≤ |∂2u(x, y) − γ | for almost every y ∈ It .

If (a) or (b) is true then Eσ,γ,θ (u; {x} × (0, 1)) ≥ cmin{σγ/t, γ 2θ2}. Assume now that (c)
is true. Then it follows from the triangle inequality that

1

2
γ θ t2 ≤ min

a∈R ‖u(x, y) − γ y − a‖L1(It ) + ‖u(x, y) − (1 − 2θ)γ y‖L1(It )

≤ t‖∂2u(x, ·) − γ ‖L1(It ) + ‖u(x, ·) − u(0, ·)‖L1(It )

≤ t3/2Eσ,γ,θ (u; {x} × It )
1/2 + t x + ‖min{|∂1u − 1|, |∂1u + 1|}‖L1((0,x)×It )

≤ Ct2Eσ,γ,θ (u; {x} × (0, 1))1/2 + t x + t x1/2Eσ,γ,θ (u)1/2.

Hence,

1

4
γ θ t2 = 1

2
γ θ t2 − t x ≤ Ct2Eσ,γ,θ (u; {x} × (0, 1))1/2 + t x1/2Eσ,γ,θ (u)1/2.
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If 1
4γ θ t2 ≤ 2Ct2Eσ,γ,θ (u; {x} × (0, 1))1/2 then Eσ,γ,θ (u; {x} × (0, 1)) ≥ cγ 2θ2. On the

other hand, if 1
4γ θ t2 ≤ 2t x1/2Eσ,γ,θ (u)1/2 then x ≤ 4Eσ,γ,θ (u) ≤ 2σ(| log σ | + 1).

Hence, we have for all x ∈ (2σ(| log σ | + 1), γ θ
4 ) that Eσ,γ,θ (u; {x} × (0, 1)) ≥

cmin{σγ 2θ/(4x), γ 2θ2}. Next, we note that σγ 2θ/(4x) ≤ γ 2θ2 if and only if x ≥ σ/(4θ).
Moreover, observe that 2σ (| log σ | + 1) ≤ σ

θ
(| log σ | + 1). Thus,

Eσ,γ,θ (u) ≥ c

γ θ/4∫
σ
θ (| log σ |+1)

σγ 2θ

4x
dx

≥ c

γ θ/4∫
σ
θ (| log σ |+1)

σ

x
dx

≥ cσ

(
− log(

4σ

γ θ2
(| log σ | + 1)

)
.

Note that by assumption we have θ ≤ 1/2 and σ ≤ σ 1/2(γ 2θ)7 ≤ σ 1/2(γ θ)2 1
32 . Thus,

4σ

γ θ2
(| log σ | + 1) ≤ σ 1/2

8
(4| log σ 1/4| + 1) ≤ σ 1/2

8
(4σ−1/4 + 1) ≤ σ 1/4.

Consequently,

Eσ,γ,θ (u) ≥ c

4
σ | log σ | ≥ c

8
σ(| log σ | + 1),

since | log σ | ≥ 14 · | log θ | ≥ 14 · log 2 ≥ 1. This concludes the proof of Lemma 3. 
�

3 Proof of Theorem 2

We now turn to the case of small x-derivatives and prove the scaling laws in Theorem 2.

3.1 Upper bound

To prove the upper bound, we first present all constructions used in the proof and show
afterwards in Remark 1 how this result implies the upper bound stated in Theorem 2. Some
test functions show similarities in structure with those used in [7, 16, 27, 34].

Before we present the precise statement, let us briefly discuss the heuristics for the upper
bound constructions. As in the heuristics in the setting of a small y-derivative, the main ways
tomeet the boundary conditions are y-derivative (1−2θ) or quick oscillations of y-derivative
+1 and −1 with volume fractions 1 − θ and θ , respectively, close to x = 0. Again, the first
option is penalized by the first term of the energy Fσ,γ,θ , whereas the second term penalizes
oscillations of the y-derivative. Hence, again for σ > 0 relatively large uniform structures
such as u(x, y) = γ x + (1 − 2θ)y are energetically favorable, see construction (a) below.
Moreover, if θ is much smaller than γ the gradient (γ, 1 − 2θ) is rank-1 connected to the
gradient (−γ, 1) ∈ Mγ over an almost vertical interface, see Fig. 9 and construction (d)
below, giving rise to another competitor with y-derivative 1− 2θ close to x = 0 which turns
out to be energetically favorable for moderate values of σ > 0. The remaining constructions
will exploit oscillations close to x = 0 and yield low energies for small values of σ > 0.
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Formally, as γ approaches 0, the set Mγ of four preferred gradients collapses to a set with
only two preferred gradients. Consequently, it is to be expected that a version of the optimal
(in the sense of scaling) constructions for two preferred gradients from [7, 34] play a role in a
regime where γ > 0 is small, see Fig. 6. This construction uses anisotropic rescalings of the
building block sketched in Fig. 7 to increase the number of oscillations of the y-derivative
towards x = 0. In this construction it does not hold ∇u ∈ Mγ , essentially balancing the two
terms in Fσ,γ,θ . On the other hand, isotropic rescalings of the building block lead to∇u ∈ Mγ

and hence lower the energy contribution from the first term in Fσ,γ,θ while increasing the
contribution from the second term of Fσ,γ,θ per refinement step. The construction (c) below
exploits that in the way that it starts with refinements through isotropic rescaling of the
building block and switches to the anisotropic rescaling of the building block when this is
energetically preferable, cf. the energy estimates (22) and (23) and the comment below. A
sketch of this construction can be found in Fig. 8. In particular, depending on the parameters
this construction transitions either into the Kohn-Müller like construction in (b) or into a
construction which mainly uses ∇u ∈ Mγ , which is closer to the construction from [27].
In parameter regimes where γ > 0 is larger than θ > 0 it turns out that the anisotropic
rescaling of the building block will not play a role leading to branching constructions which
essentially satisfy ∇u ∈ Mγ . Similarly to the heuristics for a small y-derivative it follows
that the number of jumps of the y-derivative should be of order θ

γ x . This will be satisfied at
the end of the construction steps in constructions (e) and (f). The main difference between
the remaining constructions (e) and (f) is the following: Glueing different construction steps
leads to a contribution from the term |∂1∂1u| of order γ , cf. Fig. 10 (left). On the other hand,
the energy contribution of |∂2∂2u| is of order θ

γ
, cf. Fig. 7. Hence, as long as θ ≥ γ 2 the

energy contribution from |∂2∂2u| necessarily dominates. This leads to construction (e). If
θ ≤ γ 2, we modify the building block in order to balance the energy contributions from
|∂1∂1u| and |∂2∂2u| to obtain construction (f), see Fig. 10 (right). Again, the proof of the
lower bound suggests that this is necessary.

The following proposition collects the test functions used to prove the upper bound. We
label the test functions according to the scaling regimes in Fig. 2. Even if they have the same
names, the functions are different from the ones in Proposition 5.

Proposition 5 Let c0 > 0. Then there is a constant C > 0 with the following property: For
all θ ∈ (0, 1/2], γ ∈ (0, 1], and σ > 0 the following holds:

(a) There is a function uUC ∈ Bθ such that Fσ,γ,θ (uUC) ≤ Cθ2.
(b) If σ ≤ θ2 and γ ≤ c0(σθ)1/3 then there is a function uTG ∈ Bθ such that Fσ,γ,θ (uTG) ≤

Cσ 2/3θ2/3.
(c) If σθ ≤ γ 3 ≤ θ3 then there is a function uIB ∈ Bθ such that Fσ,γ,θ (uIB) ≤

C σθ
γ

(
log γ 3

σθ
+ 1

)
.

(d) If θ ≤ γ then there is a function uRI ∈ Bθ such that Fσ,γ,θ (uRI) ≤ C
(
σγ + θ3

γ

)
.

(e) If σ ≤ θ2 and γ ≤ θ
γ
then there is a function uFG1 ∈ Bθ such that Fσ,γ,θ (uFG1) ≤

C σθ
γ

(
log θ2

σ
+ 1

)
.

(f) If θ ≤ γ 2/2 andσ ≤ 2θ3/γ 2 then there is a function uFG2 ∈ Bθ such that Fσ,γ,θ (uFG2) ≤
Cσγ

( | log(σγ 2/θ3)|
| log(γ 2/θ)| + 1

)
.
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Fig. 6 Sketch of the Kohn–Müller like branching construction used in (b)

Proof (a) Uniform configuration (UC). Define uUC : (0, 1)2 → R as uUC(x, y) = (1 −
2θ)y + γ x . Then uUC ∈ Bθ and

Fσ,γ,θ (uUC) ≤ 4θ2.

(b) Kohn-Müller-type two-gradient branching (TG).

We assume σ ≤ θ2. Let δ = σ 1/3θ−2/3, α = 2−3/2 and N =
⌈
log(θ1/3σ−2/3)

log 2

⌉
≥ 1. Note

that 2θ1/3σ−2/3 ≥ 2N ≥ θ1/3σ−2/3 since θ1/3σ−2/3 ≥ θ−1 ≥ 2. Consider the function
W := (W1,W2)

T : (α, 1] × R → R
2 defined as

W (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− δθ

2(1−α)

1

)
if 0 ≤ y ≤ δ

2 + (x − 1) δθ
2(1−α)(

δθ
2(1−α)

−1

)
if δ

2 + (x − 1) δθ
2(1−α)

≤ y ≤ δ
2(

δθ
2(1−α)

1

)
if δ

2 ≤ y ≤ δ(1 − θ) − (x − 1) δθ
2(1−α)(

− δθ
2(1−α)

−1

)
if δ(1 − θ) − (x − 1) δθ

2(1−α)
≤ y ≤ δ,

and extended periodically to R in the y-component. Then W2(α, y) = W2(1, 2y) for all
y ∈ R. We define U : (αN , 1) × (0, 1) → R

2 as

U (x, y) =
(
2−kα−kW1(α

−k x, 2k y)
W2(α

−k x, 2k y)

)
if x ∈ (αk+1, αk].

ThenU is a gradient field, and we and denote by ũ : (αN , 1)×(0, 1) → R the corresponding
primitive with ũ(αN , 0) = 0. Eventually define uTG : (0, 1)2 → R as

uTG(x, y) =
{
ũ(x, y) if x ≥ αN ,(
x − αN

)
α−N (1 − 2θ)y − xα−N ũ

(
αN , y

)
else.
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We remark that it holds |ũ(αN , y)−(1−2θ)y| ≤ θδ2−N . Consequently, we find for x ≤ αN

|∂1uTG(x, y)| ≤ θδ

2NαN
≤ 2N/2θδ ≤ 2θ1/6σ−1/3θδ = 2θ1/2. (19)

Additionally, we estimate for 1 ≤ k ≤ N , using (2α)k = 2−k/2 and γ ≤ c0(σθ)1/3

αk−1∫

αk

1∫

0

dist2(∇uTG,Mγ ) dx dy + σ |D2uTG|([αk, αk−1] × (0, 1))

≤
αk−1∫

αk

1∫

0

dist2(∇uTG,Mγ ) dx dy

+ Cσ (|∂12uTG| + |∂11uTG| + |∂22uTG|) ([αk, αk−1] × (0, 1))

≤
αk−1∫

αk

1∫

0

|U1(x, y)±γ |2 dx dy + Cσ
(
θ + 2k/2δθ + (1 − α)αk−12kδ−1

)

≤ (1 − α)αk−1γ 2
(
2k/2

δθ

2γ
(1 − α) − 1

)2

+ Cσ
(
θ + 2k/2σ 1/3θ1/3 + 2−k/2σ−1/3θ2/3

)

≤ C
(
2−k/2σ 2/3θ2/3 + 2k/2σ 4/3θ1/3 + σθ

)

≤ C2−k/2σ 2/3θ2/3,

where we used in the last step that by the definition of N , we have 2k/2 ≤ 2−k/22N ≤
2 · 2−k/2θ1/3σ−2/3, and 2−k/2σ 2/3θ2/3 ≥ 2−N/2σ 2/3θ2/3 ≥ σθ1/2/2 ≥ σθ/2. Hence, we
obtain, using the definitions of N , α and δ, as well as the estimates γ ≤ c0(σθ)1/3 ≤ c0θ ≤
c0θ1/2 and σ ≤ θ2, and (19)

Eσ,γ,θ (uTG)

≤ C
N∑

k=1

2−k/2σ 2/3θ2/3 +
1∫

0

αN∫

0

dist(∇uTG,Mγ )2 dx dy

+ σ |D2uTG|((0, αN ] × (0, 1))

≤ C
N∑

k=1

2−k/2σ 2/3θ2/3 + 2

1∫

0

αN∫

0

|∂1uTG|2 + γ 2 + min
{|∂2uTG±1|2} dx dy

+ σ |D2uTG|((0, αN ] × (0, 1))

≤ Cσ 2/3θ2/3 + CαN θ + CαNγ 2 + CαN θ2 + CαN θ

+ Cσ
(
1 + 2N/2δθ + αN2N + CαN θ1/2

)

≤ Cσ 2/3θ2/3 + Cθ(2N )−3/2 + Cσ

≤ Cσ 2/3θ2/3.

(c) Intermediate Branching (IB).
We assume now that σθ ≤ γ 3 ≤ θ3, and define a branching construction as follows.
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Fig. 7 Sketch of the building block in construction (c) an (e)

Fig. 8 Left: Sketch of the branching construction in the intermediate regime: The regions of the four preferred
gradients in the isotropically rescaled building blocks are colored in blue, pink, yellow and beige. In the
anisotropically rescaled building blocks, ∂1u �= ±γ but ∂2u = 1 (dark red) or ∂2u = −1 (light green). Right:
Same construction: ∂2u = 1 (dark red) and ∂2u = −1 (light green)

Step 1: Definition of the building block
Consider the function V : [ θ

2γ , θ
γ
] × R → R

2 defined for (x, y) ∈ [ θ
2γ , θ

γ
] × (0, 1) as

(see Fig. 7)

V (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−γ

−1

)
if y ≥ 1 − θ/2 − γ (x − θ

2γ ),

(
γ

1

)
if 1 − θ/2 − γ (x − θ

2γ ) ≥ y ≥ 1/2,
(

γ

−1

)
if 1/2 ≥ y ≥ 1/2 − θ/2 + γ (x − θ

2γ ),

(
−γ

1

)
if y ≤ 1/2 − θ/2 + γ (x − θ

2γ ).

(20)

and extended periodically in the y-component. Then V is a gradient field and it holds for the
second component V2 that V2(θ/(2γ ), y) = V2(θ/γ, 2y) for all y ∈ R.
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Step 2: Definition branching gradient Let N0 =
⎡
⎢⎢⎢

log

(
γ 3

σθ

)

log 2

⎤
⎥⎥⎥ ≥ 1 and N1 =

⌈(
log( θ

γ 2

)
log 2

⌉
+

N0 ≥ N0 + 1. Note that γ 3

σθ
≤ 2N0 ≤ 2 γ 3

σθ
and θ

γ 2 ≤ 2N1−N0 ≤ 2 θ
γ 2 . In addition, set

α = 2−3/2 as in (b). Then we define the function U : (
αN1−N02−N0 , 1

) × R → R
2 as

follows, see Fig. 8. If x ∈ (2−N0 , 1) we set

U (x, y) = V (2N θγ −1x, 2N θγ −1y) if x ∈ (2−N−1, 2−N ].
Moreover, for N1 > N ≥ N0 we define for x ∈ (

2−N0αN−N0+1, 2−N0αN−N0
)

U (x, y) =
⎛
⎝α−N+N02−N+N0V1

(
α−N+N02N0 θ

γ
x, 2N−N0 θ

γ
y
)

V2
(
αN−N02N0 θ

γ
x, 2N−N0 θ

γ
y
)

⎞
⎠ .

Note that for 2−N0αN−N0+1 ≤ x ≤ 2−N0αN−N0 we have

U1(x, y) = ±2
N−N0

2 γ. (21)

In addition we always have that U2(x, y) ∈ {±1}. Moreover, note that U is a gradient.
Step 3: Definition of the branching:
Let ũ : (

2−N0αN1−N0 , 1
) × (0, 1) → R be a corresponding primitive such that

ũ(2−N0αN1−N0 , 0) = 0. Note that 2−N0αN1−N0 � σ/(25/2θ1/2) ≥ σ/8. Eventually, we
define uIB : (0, 1)2 → R as

uIB(x, y) =
{
ũ(x, y) if x ≥ 2−N0αN1−N0 ,

(x − σ) 1
σ
(1 − 2θ)y − x

σ
ũ
(
2−N0αN1−N0 , y

)
if x ≤ 2−N0αN1−N0 .

Step 4: Energy estimates:
For N0 ≥ N , we note that ∇uIB ∈ Kγ a.e. in [2−N , 2−N+1] × (0, 1), and thus

2−N+1∫

2−N

1∫

0

dist(∇uIB,Mγ )2 dy dx + σ |D2uIB|([2−N , 2−N+1] × (0, 1))

≤ C (|∂11uIB| + |∂12uIB| + |∂22uIB|) ([2−N , 2−N+1] × (0, 1))

≤ Cσ

(
γ + θ + θ

γ

)

≤ C
σθ

γ
. (22)

For N0 < N ≤ N1 we compute using (21) and γ ≤ θ

2−N0αN−N0−1∫

2−N0αN−N0

1∫

0

dist(∇uIB,Mγ )2 dy dx

+ σ |D2uIB|
([

2−N0αN−N0 , 2−N0αN−N0−1
]

× (0, 1)
)
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≤ 2−N0αN−N0(1 − α)2N−N0γ 2 + Cσ

(
(2α)−N+N0γ + θ + 2−N0αN−N0(1 − α)2N

θ

γ

)

≤ C(2α)N−N0
σθ

γ
+ Cσθ, (23)

where we used that (2α)−N+N0γ ≤ (2α)−N1+N0γ ≤ C γ 2

θ1/2
≤ θ . Comparing (22) and (23)

we note that for N > N0 the anisotropic rescaling of the building block yields a smaller
energy per refinement step than the isotropic rescaling.

Next, note that |uIB(2−N0αN1−N0 , y)− (1−2θ)y| ≤ 2 ·2−N1 γ
θ
θ . Consequently, we have

for x ∈ (0, 2−N0αN1−N0) the bounds

|∂1uIB(x, y)| ≤ 2 · 2−N1γ

2−N0αN1−N0
= 2 · (2α)N0−N1γ.

Hence, since 2 · (2α)N0−N1γ ≥ γ ,

2−N0αN1−N0∫

0

1∫

0

dist(∇uIB,Mγ )2 dy dx + σ |D2uIB|((0, 2−N0αN1−N0))

≤
(
(2 · (2α)N0−N1γ )2 + 4θ2(1 − θ) + 2θ

)
(2−N0αN1−N0)

+ Cσ

(
θ + 2−N0αN1−N02N1

θ

γ

)

≤ Cσθ1/2 ≤ C
σθ

γ
.

Combining the various estimates we obtain

Fσ,γ,θ (uIB) ≤ C

⎛
⎝N0

σθ

γ
+ σθ

γ

N1∑
N=N0+1

2(−N+N0)/2 + (N1 − N0)σθ

⎞
⎠

≤ C
σθ

γ

(
log

γ 3

σθ
+ 1

)
,

where we used that N1 − N0 ≤ C2(N1−N0)/2 ≤ C θ1/2

γ
≤ C/γ.

(d): Rotated interface (RI).We assume θ ≤ γ , and use the construction sketched in Fig. 9.
Precisely, we set

uRI(x, y) =
{

γ x + (1 − 2θ)y if θ y ≥ γ x,

−γ x + y if θ y ≤ γ x .

Then

Fσ,γ,θ (uRI) ≤ 2
θ3

γ
+ Cσ

(
γ + θ + θ2

γ

)
≤ C

(
θ3

γ
+ σγ

)
,

where we used that θ ≤ γ .
(e): Four-gradient branching without linear interpolation (FG1). We assume that σ ≤

θ2. We use a branching construction and a variant of the construction in (d) instead of
interpolation, see Fig. 10. Precisely, we consider the functions V : ( θ

2γ , θ
γ
) × R → R

2 as
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Fig. 9 Sketch of the construction with a rotated interface used in (d)

Fig. 10 Sketch of the branching construction as described in (e) and sketch of the building block as described
in (f)

defined in (20). Additionally, consider W : (0, θ
γ
) × R → R

2 defined as

W (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−γ

−1

)
if y ≥ 1 − γ x,

(
−γ

1

)
if y ≤ (1 − θ)

γ x
θ

,

(
(1 − 2θ)γ

1 − 2θ

)
else,

(24)

and extend W periodically to R in the y-variable. Note that W is a gradient field.
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For N ∈ N define UN : (0, 1)2 → R
2 as

UN (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (2N x, 2N y) if x ≤ 2−N θ
γ

V (2k x, 2k y) if x ∈
(
2−k−1 θ

γ
, 2−k θ

γ

)
, 0 ≤ k ≤ N − 1(

γ

−1

)
if x ≥ θ

γ
, y ≥ 1 − θ + γ

(
x − θ

γ

)
,

(
−γ

1

)
if x ≥ θ

γ
, y ≤ 1 − θ + γ

(
x − θ

γ

)
.

Note that also UN is a gradient field. Let uFG1 : (0, 1)2 → R be a corresponding primitive
such that uFG1(0, 0) = 0. Then uFG1 ∈ Bθ and, using γ ≤ θ ,

Fσ,γ,θ (uFG1) ≤ C2−N
(

θ3

γ
+ γ 2θ3

γ

)
+ CσN

(
γ + θ + θ

γ

)
≤ C

(
2−N θ3

γ
+ σθ

γ
N

)
.

Choosing N =
⌈
log θ2

σ

log 2

⌉
leads to Fσ,γ,θ (uFG1) ≤ C σθ

γ

(
log θ2

σ
+ 1

)
.

(f) Variant of four-gradient branching (FG2). We assume that θ ≤ γ 2/2 and σ ≤
θ3/(2γ 2). Let δ = (� γ 2

θ
�)−1. Similarly to the branching construction in Proposition 3,

one can construct a function V : (θ2/γ, θ/γ ) × R → R
2 such that (see Fig. 10)

1. V is 1-periodic in the second variable,
2. V is a gradient field,
3. V (x, y) ∈ Kγ for a.e. (x, y) ∈ (θ2/γ, θ/γ ) × R,
4. |D2V |((θ2/γ, θ/γ ) × (0, 1)) ≤ Cγ ,
5. V ( θ

γ
, y) = χ{0≤y≤1−θ}(y) − χ{1−θ≤y≤1}(y) for y ∈ (0, 1), and

1. V2(θ2/γ, y) = V2(θ/γ, δ−1y) for all y ∈ R.

Then we define for N ∈ N the function VN : (0, 1)2 → R
2 as

VN (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(1 − 2θ)γ

1 − 2θ

)
if x ∈ (0, δN θ

γ
δ−θ
1−δ

),

W (δ−N x − θ
γ

δ−θ
1−δ

, δ−N y) if x ∈
(
δN θ

γ
δ−θ
1−δ

, δN
θ(1−θ)
γ (1−δ))

)
,

V (δ−k+1x − θ
γ

δ−θ
1−δ

, δ−k+1y) if x ∈
(
δk

θ(1−θ)
γ (1−δ)

, δk−1 θ(1−θ)
γ (1−δ)

)
for 1 ≤ k ≤ N ,(

γ

−1

)
if x ≥ θ(1−θ)

γ (1−δ)
and y ≥ 1 − θ,

(
γ

1

)
if x ≥ θ(1−θ)

γ (1−δ)
and y ≤ 1 − θ,

where the function W is defined in (24). As before note that VN is a gradient field. Then let
uFG2 : (0, 1)2 → R be a corresponding primitive with uFG2(0, 0) = 0. Note that uN ∈ Bθ .
Moreover, we estimate the corresponding energy

Fσ,γ,θ (uFG2) ≤ Cθ2δN
θ(1 − θ)

γ (1 − δ)
+ Cσ

(
γ N + θ

γ
+ θ

)
≤ C

(
θ3

γ
δN + γ σN

)
.
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Choosing N = � | log σγ 2/θ3|
| log γ 2/θ | � yields the estimate

Fσ,γ,θ (uFG2) ≤ Cγ σ

( | log σγ 2/θ3|
| log γ 2/θ | + 1

)
.


�
We are now in the position to prove the upper bound in Theorem 2.

Corollary 1 There is a constant C > 0 such that the following assertions hold:

1. If γ ≤ θ/8 then

min
Bθ

Fσ,γ,θ ≤ C min

{
θ2, σ 2/3θ2/3,

σθ

γ

(∣∣∣∣log σθ

γ 3

∣∣∣∣ + 1

)}
.

2. If 0 < γ 2/2 ≤ θ/8 ≤ γ then

min
Bθ

Fσ,γ,θ ≤ C min

{
θ2, σγ + θ3

γ
,
σθ

γ

(∣∣∣log σ

θ2

∣∣∣ + 1
)}

.

3. If 0 < θ/8 ≤ γ 2/2 then

min
Bθ

Fσ,γ,θ ≤ C min

{
θ2, σγ + θ3

γ
, σγ

( | log σγ 2/θ3|
| log γ 2/θ | + 1

)}
.

Proof

1. Consider γ ≤ θ/8.

• If min
{
θ2, σ 2/3θ2/3, σθ

γ

(∣∣∣log σθ
γ 3

∣∣∣ + 1
)}

= θ2, then the assertion follows from

Proposition 5(a).

• Ifmin
{
θ2, σ 2/3θ2/3, σθ

γ

(∣∣∣log σθ
γ 3

∣∣∣ + 1
)}

= σ 2/3θ2/3 thenσ ≤ θ2 (sinceσ 2/3θ2/3 ≤
θ2) andγ 3 ≤ σθ (sinceσ 2/3θ2/3 ≤ σθ

γ

(
| log σθ

γ 3 | + 1
)
implies that σθ

γ 3

(
| log σθ

γ 3 | + 1
)3 ≥

1). Hence, the assertion follows from Proposition 5(b).

• If min
{
θ2, σ 2/3θ2/3, σθ

γ

(∣∣∣log σθ
γ 3

∣∣∣ + 1
)}

= σθ
γ

(
| log σθ

γ 3 | + 1
)
then σθ ≤ γ 3 (since

σθ
γ

(
| log σθ

γ 3 | + 1
)

≤ σ 2/3θ2/3) and γ ≤ θ/8 ≤ θ , and hence the assertion follows

from Proposition 5(c).

2. Consider γ 2/2 < θ/8 ≤ γ .

• If min
{
θ2, σγ + θ3

γ
, σθ

γ

(∣∣∣log σ
θ2

∣∣∣ + 1
)}

= θ2, the assertion follows from Proposi-

tion 5(a).

• If min
{
θ2, σγ + θ3

γ
, σθ

γ

(∣∣∣log σ
θ2

∣∣∣ + 1
)}

= σγ + θ3/γ then θ ≤ γ (since θ3/γ ≤
θ2), and the assertion follows from Proposition 5(d).

• If min
{
θ2, σγ + θ3

γ
, σθ

γ

(∣∣∣log σ
θ2

∣∣∣ + 1
)}

= σθ
γ

(∣∣∣log σ
θ2

∣∣∣ + 1
)
then σ ≤ 2θ2 (since

σθ
γ

(∣∣∣log σ
θ2

∣∣∣ + 1
)

≤ σγ + θ3/γ implies that 1
2

σθ
γ

≤ θ3/γ ). If σ ≤ θ2 then the

assertion follows fromProposition 5(e). If θ2 ≤ σ ≤ 2θ2 and θ ≤ γ then the assertion

follows from Proposition 5(d) since σγ + θ3

γ
≤ 2 σθ

γ
. Eventually, if θ2 ≤ σ ≤ 2θ2

and γ ≤ θ then the assertion follows from 5(a) since θ2 ≤ σθ
γ
.
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3. Consider θ/8 < γ 2/2.

• If min
{
θ2, σγ + θ3

γ
, σγ

( | log σγ 2/θ3|
| log γ 2/θ | + 1

)}
= θ2 then the assertion follows from

Proposition 5(a).

• If min
{
θ2, σγ + θ3

γ
, σγ

( | log σγ 2/θ3|
| log γ 2/θ | + 1

)}
= σγ + θ3

γ
then θ ≤ γ (since θ3/γ ≤

θ2) and the assertion follows from Proposition 5(d).

• If min
{
θ2, σγ + θ3

γ
, σγ

( | log σγ 2/θ3|
| log γ 2/θ | + 1

)}
= σγ

( | log σγ 2/θ3|
| log γ 2/θ | + 1

)
then σ ≤

θ3/γ 2 (since σγ ≤ θ3/γ ). If σ ≤ θ3/(2γ 2) and θ ≤ γ 2/2 then the assertion
follows from Proposition 5(f). Note that the assumption θ ≤ 4γ 2 always implies that
θ ≤ γ (if 4γ 2 ≥ γ then γ ≥ 1/2 ≥ θ ). Therefore, if θ3/(2γ 2) ≤ σ ≤ θ3/γ 2 then
the assertion follows from Proposition 5(d).


�

3.2 Lower bound

The proof of the lower bound is again split in several steps. In the following proposition, we
outline how they imply the assertion in all parameter regimes.

Proposition 6 There is a constant c > 0 such that for all σ ∈ (0,∞), all γ ∈ (0, 1), and
θ ∈ (0, 1/2], the following statements hold:

1. If γ ≤ θ/8, then

min
Bθ

Fσ,γ,θ ≥ cmin

{
θ2, σ 2/3θ2/3,

σθ

γ

(∣∣∣∣log σθ

γ 3

∣∣∣∣ + 1

)}
.

2. If γ 2/2 ≤ θ/8 < γ , then

min
Bθ

Fσ,γ,θ ≥ cmin

{
θ2, σγ + θ3

γ
,

σθ

γ

(∣∣∣log σ

θ2

∣∣∣ + 1
)}

.

3. If θ/8 < γ 2/2, then

min
Bθ

Fσ,γ,θ ≥ cmin

{
θ2, σγ + θ3

γ
, σγ

(∣∣log(σγ 2/θ3)
∣∣∣∣log(γ 2/θ)

∣∣ + 1

)}
.

Proof

1. The first statement is proven in Lemma 5(1).
2. For the second statement, we consider the cases σ ≤ θ2/γ and σ > θ2/γ separately. If

σ ≤ θ2/γ then σγ + θ3/γ ≤ 9θ2, and the assertion follows from the estimate proven in
Lemma 5(2), namely

min
Bθ

Fσ,γ,θ ≥ cmin

{
σγ + θ3

γ
,

σθ

γ

(∣∣∣log σ

θ2

∣∣∣ + 1
)}

.

If σ ≥ θ2/γ , then θ2 ≤ σγ ≤ σγ + θ3/γ , and σθ/γ ≥ θ2

γ
θ
γ

≥ (γ θ) θ
γ

= θ2. Hence,
the assertion follows from the lower bound in Lemma 4, namely

min
Bθ

Fσ,γ,θ ≥ cmin
{
θ2, σγ

} = cθ2.
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3. For the third statement, we consider three cases separately, depending on the size of σ .

• If σ < (θ3/γ 2)(θ/γ 2)32 then there exists k ∈ N, k ≥ k0 = 32 such that

σ ∈
[

θ3

γ 2

(
θ

γ 2

)k+1

,
θ3

γ 2

(
θ

γ 2

)k
)

.

By Lemma 6, we obtain the lower bound minBθ Fσ,γ,θ ≥ ckσγ , which yields the
claimed lower bound, observing that 2k > k + 2 ≥ log(σγ 2/θ3)/ log(θ/γ 2) + 1.

• If (θ3/γ 2)(θ/γ 2)32 ≤ σ < θ3/γ 2 then we have by Lemma 4 the lower bound
minBθ Fσ,γ,θ ≥ cmin

{
θ2, σγ

} = cσγ . This concludes the proof in this case since

min

{
θ2, σγ + θ3

γ
, σγ

(∣∣log(σγ 2/θ3)
∣∣∣∣log(γ 2/θ)

∣∣ + 1

)}
≤ σγ

(∣∣log(σγ 2/θ3)
∣∣∣∣log(γ 2/θ)

∣∣ + 1

)

≤ σγ

(
32| log(γ 2/θ)|)

| log(γ 2/θ)| + 1

)
≤ 33σγ.

• Consider finally the case θ3/γ 2 ≤ σ . If σγ ≥ θ2 then the assertion follows from 4,
using that minBθ ≥ cmin{θ2, σγ } = cθ2. On the other hand, if σγ < θ2 then we
obtain by Lemma 4 that minBθ Fσ,γ,θ ≥ cmin{σγ, θ2} = cσγ which concludes the
proof since

min

{
θ2, σγ + θ3

γ
, σγ

(∣∣log(σγ 2/θ3)
∣∣∣∣log(γ 2/θ)

∣∣ + 1

)}
≤ σγ + θ3/γ ≤ 2σγ.


�

Similarly to Sect. 2, we start with a rough lower bound without the logarithmic terms. The
following can be seen as an analogue to Lemma 1.

Lemma 4 There exists a constant c > 0 such that for all γ ≥ θ/8 it holds

min Fσ,γ,θ (u) ≥ cmin{θ2, σγ }.

Proof Let u ∈ Bθ and assume that Fσ,γ,θ (u) ≤ 1
256 min{θ2, σγ }. Then there exist y1, y2 ∈

(0, 1) such that y2 − y1 ≥ 1
2 and Fσ,γ,θ (u; (0, 1) × {yi }) ≤ 4Fσ,γ,θ (u). Additionally, there

exists x̄ ∈ (0, 1) such that Fσ,γ,θ (u; {x̄} × (0, 1)) ≤ Fσ,γ,θ (u). Then there exists ȳ ∈
(0, 1) such that dist2(∇u(x̄, ȳ),Mγ ) ≤ 1

256θ
2. In particular, there exists M ∈ Mγ with

|∇u(x̄, ȳ) − M |2 ≤ 1
256θ

2. Then we obtain for almost every y ∈ (0, 1)

|∇u(x̄, y) − M | ≤ |∇u(x̄, ȳ) − M | + |∇u(x̄, ȳ) − ∇u(x̄, y)|
≤ 1

16
θ + |∂2∇u(x̄, ·)|((0, 1))

≤ 1

16
θ + 1

256
γ ≤ γ

2
+ 1

64
γ
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for almost all y ∈ (0, 1), and hence |∇u(x, yi ) − M | ≤ 1
2γ + 1

256γ + 4
256γ ≤ γ for almost

all x ∈ (0, 1) and i = 1, 2. Since the points in Mγ have a distance of at least 2γ , we obtain

|u(x̄, y2) − u(x̄, y1) − M2(y2 − y1)|2 ≤
y2∫

y1

|∂2u(x̄, y) − M2|2 dy

≤
y2∫

y1

dist(∇u(x̄, y),Mγ )2 dy

≤Fσ,γ,θ (u; {x̄} × (0, 1)) ≤ Fσ,γ,θ (u).

On the other hand, we estimate

|u(x̄, y2) − u(x̄, y1) − M2(y2 − y1)|
≥ |(1 − 2θ − M2)(y2 − y1)| − |u(x̄, y2) − u(x̄, y1) − (1 − 2θ)(y2 − y1)|

≥ θ −
2∑

i=1

x̄∫

0

|∂1u(x, yi ) − M1| dx

= θ −
2∑

i=1

x̄∫

0

dist(∇u(x, yi ),Mγ ) dx

≥ θ −
2∑

i=1

⎛
⎝

x̄∫

0

dist(∇u(x, yi ),Mγ )2 dx

⎞
⎠

1/2

≥ θ − 4Fσ,γ,θ (u)1/2 ≥ 1

2
θ.

Hence, combining the two estimates, we obtain

Fσ,γ,θ (u) ≥ 1

4
θ2.


�
We now turn to the treatment of the remaining logarithmic terms.

Lemma 5 There exists c > 0 such that the following lower bounds hold:

1. If γ ≤ θ/8 then

min Fσ,γ,θ ≥ cmin

{
θ2, σ 2/3θ2/3,

σθ

γ

(
| log σθ

γ 3 | + 1

)}
.

2. If γ ≥ θ/8 and θ2/γ ≥ σ then

min Fσ,γ,θ ≥ cmin

{
σγ + θ3

γ
,
σθ

γ

(
| log σ

θ2
| + 1

)}
.

Proof We first introduce a slicing argument that is close to the argument in the proof of
Lemma 3 which is needed for both statements.
Step 1. Preparations.
Let x̄ ∈ (0, 1). Let t ∈ (0, 1) and consider the intervals Il = (lt, (l+1)t) for l = 0, . . . , �1/t�.
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Choose an interval Il such that

Fσ,γ,θ (u; (0, 1) × Il) ≤ 4|Il |Fσ,γ,θ (u) and Fσ,γ,θ (u; {x̄} × Il) ≤ 4|Il |Fσ,γ,θ (u; {x̄} × (0, 1)).

Then one of the following statements is true on Il :

(a) |∂2∂2u(x̄, ·)|(Il) ≥ 1
2 ,

(b) min{|∂2u(x̄, y) + 1|, |∂2u(x̄, y) − 1|}2 ≥ 1
4 for almost all y ∈ Il ,

(c) |∂2u(x̄, y) − 1| ≤ |∂2u(x̄, y) + 1| for almost all y ∈ Il ,
(d) |∂2u(x̄, y) + 1| ≤ |∂2u(x̄, y) − 1| for almost all y ∈ Il .

We consider the cases separately.
If (a) is true then Fσ,γ,θ (u; {x̄} × (0, 1)) ≥ 1

8t σ .
If (b) is true then Fσ,γ,θ (u; {x̄} × (0, 1)) ≥ 1

16 .
If (c) is true then by the triangle inequality

1

2
θ t2 ≤ min

a∈R ‖u(x̄, y) − y − a‖L1(Il ) + ‖u(x̄, y) − (1 − 2θ)y‖L1(Il )

≤ t‖∂2u(x̄, ·) − 1‖L1(Il ) + ‖u(x̄, ·) − u(0, ·)‖L1(Il )

≤ t3/2Fσ,γ,θ (u; {x̄} × Il) + γ x̄ t + t1/2 x̄1/2Fσ,γ,θ (u; (0, 1) × Il)
1/2

≤ 2t2Fσ,γ,θ (u; {x̄} × (0, 1))1/2 + γ x̄ t + 2t x̄
1
2 Fσ,γ,θ (u)1/2

Hence, it follows 64Fσ,γ,θ (u; {x̄} × (0, 1)) ≥ θ2 or 1
4 tθ − γ x̄ ≤ 2x̄1/2Fσ,γ,θ (u)1/2.

If (d) is true the same conclusion follows from the stronger estimate

1

2
t2 ≤ min

a∈R ‖u(x̄, y) + y − a‖L1(Il ) + ‖u(x̄, y) − (1 − 2θ)y‖L1(Il ).

Consequently, we obtain from (a) - (d) that

Fσ,γ,θ (u; {x̄} × (0, 1)) ≥ cmin{σ/t, θ2} or
1

4
tθ − γ x̄ ≤ 2x̄1/2Fσ,γ,θ (u)1/2. (25)

Step 2. Proof of (1): The regime: γ ≤ 1
8θ.

Kohn-Müller regime: Let us first assume that γ ≤ θ
8 and γ ≤ 1

8σ
1/3θ1/3. Then σθ/γ ≥

8σ 2/3θ2/3. In this case we choose t := min{1, σ−1/3θ2/3}. If t = 1 then 1
4 tθ − γ ≥ 1

8 tθ . If
t = θ2/3σ−1/3 then σ ≤ θ2. It follows that

1

4
tθ − γ x̄ ≥ 1

4
σ−1/3θ5/3 − 1

8
σ 1/3θ1/3 ≥ 1

8
σ−1/3θ5/3 = 1

8
tθ.

Hence, we conclude from (25) that

Fσ,γ,θ (u) ≥ c

1∫

1/2

min{σ/t, θ2} dx = c

2
min{σ/t, θ2} or

t2

64
θ2 ≤ 4Fσ,γ,θ (u).

In the first case, we obtain Fσ,γ,θ (u) ≥ c
2 min{σ 2/3θ2/3, θ2}. In the latter case, there are two

possibilities: If t = 1 then Fσ,γ,θ (u) ≥ cθ2, and if t = σ−1/3θ2/3 (i.e., if σ ≤ θ2) then
Fσ,γ,θ (u) ≥ cσ−2/3θ10/3 ≥ cσ 2/3θ2/3. Putting things together, we obtain

min Fσ,γ,θ ≥ cmin
{
θ2, σ 2/3θ2/3

}
,

which concludes the proof in this case.
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Intermediate regime : Let us now assume that γ ≤ θ
8 and γ ≥ 1

8σ
1/3θ1/3. In addition, we

may assume that Fσ,γ,θ (u) ≤ c1
σθ
γ

(
| log σθ

γ 3 | + 1
)
for c1 > 0 to be chosen later. Choose

x̄ ∈ (0, 1/16) and t := 8γ x̄
θ
. Then

1

4
tθ − γ x̄ = 2γ x̄ − γ x̄ = γ x̄ .

Hence, we obtain from (25) that

Fσ,γ,θ (u; {x̄}×(0, 1)) ≥ cmin

{
σθ

γ x̄
, θ2

}
or x̄ ≤ 4

γ 2 Fσ,γ,θ (u) ≤ 4c1
σθ

γ 3

(∣∣∣∣log σθ

γ 3

∣∣∣∣ + 1

)
.

In particular, we have

Fσ,γ,θ (u) ≥ c

1/16∫

c1
σθ

γ 3

(
| log σθ

γ 3
|+1

)
min

{
σθ

γ x
, θ2

}
dx .

Note that c1 σθ
γ x ≤ θ2 if x ≥ c1

σ
θγ

. Sinceγ ≤ θ it holds c1 σ
θγ

≤ c1
σθ
γ 3 ≤ c1

σθ
γ 3

(∣∣∣log σθ
γ 3

∣∣∣ + 1
)
.

Hence,

Fσ,γ,θ (u) ≥ cc1

1/16∫

c1
σθ

γ 3

(
| log σθ

γ 3
|+1

)
σθ

γ x
dx

= cc1
σθ

γ

(
log 1/16 − log

σθ

γ 3 − log

(∣∣∣∣log σθ

γ 3

∣∣∣∣ + 1

)
− log c1

)

≥ cc1
σθ

γ

(∣∣∣∣log σθ

γ 3

∣∣∣∣ + 1

)

if the universal constant c1 > 0 is chosen small enough. This concludes the proof of the
lower bound in this case, and hence the proof of (1).
Step 3. Proof of (2): The regime : γ > 1

8θ and σ ≤ θ2/γ. Let x̄ ∈ (0, θ
16γ ) and t := 4 γ x̄

θ
.

Then
1

2
tθ − γ x̄ = γ x̄ = 1

4
tθ.

Hence we obtain again from (25) that

Fσ,γ,θ (u; {x̄} × (0, 1)) ≥ cmin

{
σθ

γ x̄
, θ2

}
or x̄ ≤ 4

γ 2 Fσ,γ,θ (u).

In particular,

Fσ,γ,θ (u) ≥ c
∫ θ/(16γ )

4
γ 2

Fσ,γ,θ (u)

min

{
σθ

γ x
, θ2

}
dx .

We consider the two possibilities σ ≤ θ2 and σ > θ2 separately.

• Consider first the case σ ≤ θ2. We assume that Fσ,γ,θ (u) ≤ c2
σθ
γ

(
| log σ

θ2
| + 1

)
for

some c2 > 0fixedbelow (otherwiseweare done.).Weobserve that c2 σ
θγ

(| log σ/θ2| + 1
) ≥
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c2
σθ
64γ 3

(| log σ/θ2| + 1
)
. Additionally, we note that c2 σθ

γ x̄ ≤ θ2 if and only if x̄ ≥ c2
σ
θγ

and c2 σ
θγ

(| log σ/θ2| + 1
) ≤ c2

θ
γ

≤ θ/(16γ ) if c2 ≤ 1/16. Consequently,

Fσ,γ,θ (u) ≥ cc2

∫ θ/(16γ )

c2
σ
θγ (| log σ/θ2|+1)

σθ

γ x
dx

= cc2
σθ

γ

(
log θ/γ − log 16 − log σ/(γ θ) − log c2 − log

(| log σ/θ2| + 1
))

= cc2
σθ

γ

(
log θ2/σ − log 16c2 − log

(| log σ/θ2| + 1
))

≥ cc2
σθ

γ

(| log σ/θ2| + 1
)

for c2 > 0 small enough. This shows the lower bound in this case.

• Consider now the case σ > θ2. We assume that Fσ,γ,θ (u) ≤ c3
(

θ3

γ
+ γ σ

)
for c3 =

1/256 (otherwise we are done.). Note that by Lemma 4we already know that Fσ,γ,θ (u) ≥
cmin{θ2, σγ } = cσγ . In particular, if σ ≤ θ3/γ 2 then Fσ,γ,θ (u) ≥ c

2 (σγ + θ3

γ
), and

we are done. Hence, we may assume σ ≤ θ3

γ 2 . Since we consider the regime σ < θ2, we

have σ
θγ

≥ θ
γ
, which implies that min

{
σθ
γ x , θ2

}
= θ2 for all x ≤ θ

16γ . Consequently, we

obtain

Fσ,γ,θ (u) ≥ c

θ/(16γ )∫

c3(γ σ+θ3/γ )

θ2 dx

= cθ3/(16γ ) − c3c(θ
5/γ 3 + σθ2/γ ) ≥ c

16

(
θ3

γ
− θ3

4γ
− 1

4
σγ

)

≥ cθ3

32γ
≥ c

64

(
θ3

γ
+ σγ

)
.

This concludes the proof in the regime γ ≥ θ/8 and σ ≤ θ2/γ . 
�

We finally turn to the parameter regime in which the logarithmic terms in the third regime
occur. We proceed similarly to Lemma 2.

Lemma 6 There exist α0 > 0 and c > 0 such that for all k ≥ k0 = 32, all γ ∈ (0, 1), all
θ ∈ (0, α0γ

2] and all

σ ∈
[

θ3

γ 2

(
θ

γ 2

)k+1

,
θ3

γ 2

(
θ

γ 2

)k
)

there holds

Fσ,γ,θ (u) ≥ ckσγ.

Proof Similarly to the proof of Lemma 2 we set k0 := 32, 0 < α0 < 1/(63)2 such that
2 · 64 · 212kαk/4

0 ≤ 1 for all k ≥ k0. We assume Fσ,γ,θ (u) ≤ kσ and that k ≥ k0.
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Let σ ∈
(

θ3

γ 2

(
θ
γ 2

)k+1
, θ3

γ 2

(
θ
γ 2

)k)
. Then find xi ∈

(
1
2

θ
γ

(
θ
γ 2

)i
, 3
2

θ
γ

(
θ
γ 2

)i)
such that

Fσ,γ,θ (u; {xi } × (0, 1)) ≤ γ

θ

(
γ 2

θ

)i

Fσ,γ,θ

(
u;

(
1

2

θ

γ

(
θ

γ 2

)i

,
3

2

θ

γ

(
θ

γ 2

)i
)

× (0, 1)

)
.

for i = 1, . . . , k.
Claim: There exists a constant c > 0 such that for all i = 1, . . . , �k/2� it holds

θ

γ

(
θ

γ 2

)i

Fσ,γ,θ (u, {xi } × (0, 1)) + Fσ,γ,θ (u; (xi+1, xi ) × (0, 1)) ≥ cσγ.

We first show how to derive the lower bound from the claim. We have

2Fσ,γ,θ (u)

≥
�k/2�∑
i=1

Fσ,γ,θ

(
u;

(
1

2

θ

γ

(
θ

γ 2

)i

,
3

2

θ

γ

(
θ

γ 2

)i
)

×(0, 1)

)
+Fσ,γ,θ (u; (xi+1, xi )×(0, 1))

≥
�k/2�∑
i=1

θ

γ

(
θ

γ 2

)i

Fσ,γ,θ (u; {xi }×(0, 1))+Fσ,γ,θ (u; (xi+1, xi )×(0, 1))

≥ c
k

4
γ σ.

Proof of claim: The claim can be obtained following the arguments in the proof of Proposition
2. We sketch it here for the sake of completeness.

First, define Ni := {s ∈ (0, 1) : |∂2u(xi , s) + 1| ≤ 3|∂2u(xi , s) − 1|} and assume for a
contradiction that L1(Ni ) > 2/3. Then one can show with the analogous definitions of
y1, y2 ∈ (0, 1) along the lines of the proof of Lemma 2 that∫

(y1,y2)∩{∂2u≥1/2}
∂2u(xi , s) ds ≤ 1

3
+ Fσ,γ,θ (u; {xi } × (0, 1))1/2 < 1/2

and ∫

(y1,y2)∩{∂2u≥1/2}
∂2u(xi , s) ds

≥ (1 − 2θ)(y2 − y1) − 4γ xi − 3Fσ,γ,θ (u; {xi } × (0, 1))1/2 + 2

3
− 1

12
≥ 1

2
.

This shows that L1(Ni ) ≤ 2/3.

Next, let t = 120
(

θ
γ 2

)i+1
. Again, we find (y, y+t) ⊆ (0, 1) such that (y, y+t)∩Nc

i �= ∅
and

Fσ,γ,θ (u; (0, 1) × (y, y + t)) ≤ 48t Fσ,γ,θ (u),

Fσ,γ,θ (u; (xi+1, xi ) × (y, y + t)) ≤ 48t Fσ,γ,θ (u; (xi+1, xi ) × (0, 1)),

Fσ,γ,θ (u; {xi } × (y, y + t)) ≤ 48t Fσ,γ,θ (u; {xi } × (0, 1)),

Fσ,γ,θ (u; {xi+1} × (y, y + t)) ≤ 48t Fσ,γ,θ (u; {xi+1} × (0, 1)).

Moreover, we observe that on (y, y + t) one of the following three assertions has to hold

1. |∂2∂2u(xi , ·)|(y, y + t) ≥ 1/2,
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2. |∂2u(xi , s) − 1| ≤ |∂2u(xi , s) + 1| for almost all s ∈ (y, y + t),
3. |∂2u(xi , s) + 1| ≤ 3|∂2u(xi , s) − 1| for almost all s ∈ (y, y + t).

If (1) is true then the estimate follows immediately.Moreover, (3) cannot be true by our choice
of (y, y + t). Hence, from now on, we assume that (2) is true. By the triangle inequality, it
holds

1

2
θ t2 ≤ ‖u(xi , · + t/2) − u(xi , ·) − t/2‖L1(y,y+t/2)

+ ‖u(xi , · + t/2) − u(xi , ·) − (1 − 2θ)t/2‖L1(y,y+t/2).

First we assume that 1
4θ t

2 ≤ ‖u(xi , · + t/2) − u(xi , ·) − t/2‖L1(y,y+t/2) and define a =
y+t/2∫
y

(u(xi , s + t/s) − u(xi , s) − t/2) ds. Then one shows as in the proof of Lemma 2 that

|a| ≤ 21t2Fσ,γ,θ (u; {xi } × (0, 1))1/2 ≤ 1

8
t2θ,

where we used that θ
γ

(
γ 2

θ

)i
kσ ≤ θ2k

(
θ
γ 2

)k−i ≤ 1
212·64θ

2. Then it follows similarly to

(15)

21t4Fσ,γ,θ (u; {xi } × (0, 1)) ≥
(
1

4
θ t2 − t

2
|a|

)2

≥ t4

64
θ2 ≥ t4

64
γ

θ3

γ 2

(
θ

γ 2

)k
γ

θ

(
γ 2

θ

)i

≥ t4

64
σγ

γ

θ

(
γ 2

θ

)i

,

which yields the claim.
Next, assume that 1

4θ t
2 ≤ ‖u(xi , ·+ t/2)−u(xi , ·)− (1−2θ)t/2‖L1(y,y+t). Along the lines

of the proof of Lemma 2 one shows for

S :=
{
s ∈ (y, y + t/2) : 1

8
θ t ≤ w(s) ≤ 3θ t

}
,

where w(s) = |u(xi , s) − u(xi , s + t/2) − u(xi+1, s) + u(xi+1, s + t/2)|, that L1(S) ≥ t
48 .

Since 1
4

θ
γ

(
θ
γ 2

)i ≤ xi − xi+1 ≤ 3
2

θ
γ

(
θ
γ 2

)i
, we find for s ∈ S

10
θ

γ
≤

∣∣∣∣u(xi , s) − u(xi , s + t/2) − u(xi+1, s) + u(xi+1, s + t/2)

xi − xi + 1

∣∣∣∣ ≤ 12 · 120 θ

γ
,

which implies since θ
γ

≤ α0γ ≤ (12 · 120)−1γ that there exists a subset of (y, y + t) whose

measure is at least t
48 such that

∣∣∣∣
∣∣∣∣u(xi , s) − u(xi+1, s)

xi − xi+1

∣∣∣∣ − γ

∣∣∣∣ ≥ c
θ

γ
.

Fix s ∈ (y, y + t) with the above property and assume that |∂1∂1u(·, s)|((xi+1, xi )) < γ/2.
Moreover, we may assume without loss of generality that |∂1u(t, s) − γ | ≤ 3|∂1u(t, s) + γ |

123



8 Page 38 of 40 J. Ginster, B. Zwicknagl

for almost all t ∈ (xi+1, xi ). Then it follows similarly to the proof of Lemma 2 that

xi∫

xi+1

min {|∂1u(t, s) + γ |, |∂1u(t, s) − γ |}2 dt

≥ 1

9
(xi − xi+1)

(
u(xi , s) − u(xi+1, s)

xi − xi+1
− γ

)2

≥ 1

36

θ

γ

(
θ

γ 2

)i

c2
θ2

γ 2

≥ c2

36
γ

θ3

γ 2

(
θ

γ 2

)i+1

≥ c2

36
γ σ.

Consequently, we find

48t Fσ,γ,θ (u; (xi+1, xi ) × (0, 1)) ≥ Fσ,γ,θ (u; (xi+1, xi ) × (y, y + t)) ≥ min

{
1

2
,
c2

36

}
t

48
γ σ.

Dividing by t on both sides of the inequality, this concludes the proof. 
�
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