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Abstract
On a closed Riemannian surface (M, ḡ) with negative Euler characteristic, we study the
problem of finding conformal metrics with prescribed volume A > 0 and the property that
their Gauss curvatures fλ = f +λ are given as the sum of a prescribed function f ∈ C∞(M)

and an additive constant λ. Our main tool in this study is a new variant of the prescribed
Gauss curvature flow, for which we establish local well-posedness and global compactness
results. In contrast to previous work, our approach does not require any sign conditions on
f . Moreover, we exhibit conditions under which the function fλ is sign changing and the
standard prescribed Gauss curvature flow is not applicable.

Mathematics Subject Classification 53E99 · 35K55 · 58J35

1 Introduction

Let (M, ḡ) be a two-dimensional, smooth, closed, connected, oriented Riemann manifold
endowed with a smooth background metric ḡ. A classical problem raised by Kazdan and
Warner in [11] and [10] is the question which smooth functions f : M → R arise as the
Gauss curvature Kg of a conformal metric g(x) = e2u(x)ḡ(x) on M and to characterise the
set of all such metrics.
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For a constant function f , this prescribedGauss curvature problem is exactly the statement
of the Uniformisation Theorem (see e.g. [12, 16]):
There exists a metric g which is pointwise conformal to ḡ and has constant Gauss curvature
Kg ≡ K̄ ∈ R.
We now use this statement to assume in the following without loss of generality that the
background metric ḡ itself has constant Gauss curvature Kḡ ≡ K̄ ∈ R. Furthermore we can
normalise the volume of (M, ḡ) to one. We recall that the Gauss curvature of a conformal
metric g(x) = e2u(x)ḡ(x) on M is given by the Gauss equation

Kg(x) = e−2u(x)(−�ḡu(x) + K̄ ). (1.1)

Therefore the problem reduces to the question for which functions f there exists a conformal
factor u solving the equation

− �ḡu(x) + K̄ = f (x)e2u(x) in M . (1.2)

Given a solution u, we may integrate (1.2) with respect to the measure μḡ on M induced by
the Riemannian volume form. Using the Gauss–Bonnet Theorem, we then obtain the identity∫

M
f (x)dμg(x) =

∫
M
K̄dμḡ(x) = K̄ volḡ = K̄ = 2πχ(M), (1.3)

where dμg(x) = e2u(x)dμḡ(x) is the element of area in the metric g(x) = e2u(x)ḡ(x).
We note that (1.3) immediately yields necessary conditions on f for the solvability of the
prescribed Gauss curvature problem. In particular, if ±χ(M) > 0, then ± f must be positive
somewhere. Moreover, if χ(M) = 0, then f must change sign or must be identically zero.

In the present paper we focus on the case χ(M) < 0, so M is a surface of genus greater
than one and K̄ < 0. The complementary cases χ(M) ≥ 0—i.e., the cases where M = S2

or M = T , the 2-torus—will be discussed briefly at the end of this introduction, and we
also refer the reader to [2, 8, 18, 19] and the references therein. Multiplying Eq. (1.2) with
the factor e−2u and integrating over M with respect to the measure μḡ , we get the following
necessary condition—already mentioned by Kazdan and Warner in [11]—for the average
f̄ := 1

volḡ

∫
M f (x)dμḡ(x), with volḡ := ∫

M dμḡ(x):

f̄ = 1

volḡ

∫
M

f (x)dμḡ(x) =
∫
M

(−�ḡu(x) + K̄ )e−2u(x)dμḡ(x)

=
∫
M

(−2|∇ḡu(x)|2ḡ + K̄ )e−2u(x)dμḡ(x) < 0.
(1.4)

This condition is not sufficient. Indeed, it has already been pointed out in [11, Theorem 10.5]
that in the case χ(M) < 0 there always exist functions f ∈ C∞(M) with f̄ < 0 and the
property that (1.2) has no solution.

We recall that solutions of (1.2) can be characterised as critical points of the functional

E f : H1(M, ḡ) → R;
E f (u) := 1

2

∫
M

(
|∇ḡu(x)|2ḡ + 2K̄ u(x) − f (x)e2u(x)

)
dμḡ(x). (1.5)

Under the assumption χ(M) < 0, i.e., K̄ < 0, the functional E f is strictly convex and
coercive on H1(M, ḡ) if f ≤ 0 and f does not vanish identically. Hence, as noted in [7], the
functional E f admits a unique critical point u f ∈ H1(M, ḡ) in this case, which is a strict
absolute minimiser of E f and a (weak) solution of (1.2). The situation is more delicate in

123



A variant prescribed curvature flow... Page 3 of 34 262

the case where fλ = f0 + λ, where f0 ≤ 0 is a smooth, nonconstant function on M with
maxx∈M f0(x) = 0, and λ > 0. In the case where λ > 0 sufficiently small (depending on f0),
it was shown in [7] and [1] that the corresponding functional E fλ admits a local minimiser
uλ and a further critical point uλ 	= uλ of mountain pass type.

These results motivate our present work, where we suggest a new flow approach to the
prescribed Gausss curvature problem in the case χ(M) < 0. It is important to note here that
there is an intrinsic motivation to formulate the static problem in a flow context. Typically,
elliptic theories are regarded as the static case of the corresponding parabolic problem; in
that sense, many times the better-understood elliptic theory has been a source of intuition
to generalise the corresponding results in the parabolic case. Examples of this feedback are
minimal surfaces/mean curvature flow, harmonic maps/solutions of the heat equation, and
the Uniformisation Theorem/the two-dimensional normalised Ricci flow.

In this spirit, a flow approach to (1.2), the so-called prescribed Gauss curvature flow, was
first introduced by Struwe in [19] (and [2]) for the caseM = S2 with the standard background
metric and a positive function f ∈ C2(M). More precisely, he considers a family of metrics
(g(t, ·))t≥0 which fulfils the initial value problem

∂t g(t, x) = 2(α(t) f (x) − Kg(t,·)(x))g(t, x) in (0, T ) × M; (1.6)

g(0, x) = g0(x) on {0} × M, (1.7)

with

α(t) =
∫
M Kg(t,·)(x)dμg(t,·)(x)∫

M f (x)dμg(t,·)(x)
= 2πχ(M)∫

M f (x)dμg(t,·)(x)
. (1.8)

This choice of α(t) ensures that the volume of (M, g(t, ·)) remains constant throughout the
deformation, i.e.,∫

M
dμg(t,·)(x) =

∫
M
e2u(t,x)dμḡ(x) ≡ volg0 for all t ≥ 0,

where g0 denotes the initial metric on M . Equivalently one may consider the evolution
equation for the associated conformal factor u given by g(t, x) = e2u(t,x)ḡ(x):

∂t u(t, x) = α(t) f (x) − Kg(t,·)(x) in (0, T ) × M; (1.9)

u(0, x) = u0(x) on {0} × M . (1.10)

Here the initial value u0 is given by g0(x) = e2u0(x)ḡ(x). The flow associated to this parabolic
equation is usually called the prescribed Gauss curvature flow. With the help of this flow,
Struwe [19] provided a new proof of a result by Chang and Yang [6] on sufficient criteria
for a function f to be the Gauss curvature of a metric g(x) = e2u(x)gS2(x) on S2. He also
proved the sharpness of these criteria.

In the case of surfaces with genus greater than one, i.e., with negative Euler character-
istic, the prescribed Gauss curvature flow was used by Ho in [9] to prove that any smooth,
strictly negative function on a surface with negative Euler characteristic can be realised as
the Gaussian curvature of some metric. More precisely, assuming that χ(M) < 0 and that
f ∈ C∞(M) is a strictly negative function, he proves that Eq. (1.9) has a solution which is
defined for all times and converges to a metric g∞ with Gaussian curvature Kg∞ satisfying

Kg∞(x) = α∞ f (x)

for some constant α∞.

123



262 Page 4 of 34 F. Borer et al.

While the prescribed Gauss curvature flow is a higly useful tool in the cases where f is
of fixed sign, it cannot be used in the case where f is sign-changing. Indeed, in this case
we may have

∫
M f (x)dμg(t,·)(x) = 0 along the flow and then the normalising factor α(t) is

not well-defined by (1.8). As a consequence, a long-time solution of (1.9) might not exist.
In particular, the static existence results of [7] and [1] can not be recovered and reinterpreted
with the standard prescribed Gauss curvature flow.

In this paper we develop a new flow approach to (1.2) in the case χ(M) < 0 for general
f ∈ C∞(M), which sheds new light on the results in [1, 7] and [9]. Themain idea is to replace
the multiplicative normalisation in (1.9) by an additive normalisation, as will be described in
details in the next chapter.

At this point, it should be noted that the normalisation factor α(t) in the prescribed Gauss
curvature flow given by (1.8) is also not the appropriate choice in the case of the torus, where,
as noted before, f has to change sign or be identically zero in order to arise as the Gauss
curvature of a conformal metric. The case of the torus was considered by Struwe in [18],
where, in particular, he used to a flow approach to reprove and partially improve a result by
Galimberti [8] on the static problem. In this approach, the normalisation in (1.8) is replaced
by

α(t) =
∫
M f (x)Kg(t,·)(x)dμg(t,·)(x)∫

M f 2(x)dμg(t,·)(x)
. (1.11)

With this choice, Struwe shows that for any smooth

u0 ∈ C∗ :=
{
u ∈ H1(M, ḡ) |

∫
M

f (x)e2u(x)dμḡ(x) = 0,
∫
M
e2u(x)dμḡ(x) = 1

}

there exists a unique, global smooth solution u of (1.9) satisfying u(t, ·) ∈ C∗ for all t > 0.
Moreover, u(t, ·) → u∞(·) in H2(M, ḡ) (and smoothly) as t → ∞ suitably, where u∞ +c∞
is a smooth solution of (1.2) for some c∞ ∈ R.

In principle, the normalisation (1.11) could also be considered in the case χ(M) < 0,
but then the flow is not volume-preserving anymore, which results in a failure of uniform
estimates for solutions of (1.9). Consequently, we were not able to make use of the associated
flow in this case.

The paper is organised as follows. In Sect. 2 we set up the framework for the new variant
of the prescribed Gauss curvature flow with additive normalisation, and we collect basic
properties of it. In Sect. 3, we then present our main result on the long-time existence and
convergence of the flow (for suitable times tk → ∞) to solutions of the corresponding static
problem. In particular, our results show how sign changing functions of the form fλ = f0+λ

arise depending on various assumptions on the shape of f0 and on the fixed volume A of M
with respect to the metric g(t). Before proving our results on the time-dependent problem,
we first derive, in Sect. 4, some results on the static problem with volume constraint. Most
of these results will then be used in Sect. 5, where the parabolic problem is studied in detail
and the main results of the paper are proved. In the appendix, we provide some regularity
estimates and a variant of a maximum principle for a class of linear evolution problems with
Hölder continuous coefficients.

In the remainder of the paper, we will use the short form f , g(t), u(t), Kg(t),
volg(t) := ∫

M dμg(t) = ∫
M e2u(t)dμḡ , and so on instead of f (x), g(t, x), u(t, x), Kg(t,·)(x),∫

M dμg(t,·)(x) = ∫
M e2u(t,x)dμḡ(x), et cetera.
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2 A new flow approach and some of its properties

Before introducing the additively rescaled prescribed Gauss curvature flow, we recall an
important and highly useful estimate. The following lemma (see e.g. [5, Corollary 1.7]) is a
consequence of the Trudinger’s inequality [20] which was improved by Moser in [15] (for
more details see e.g. [18, Theorem 2.1 and Theorem 2.2]):

Lemma 2.1 For a two-dimensional, closed Riemannian manifold (M, ḡ) there are constants
η > 0 and CMT > 0 such that∫

M
e(u−ū)dμḡ ≤ CMT exp

(
η‖∇ḡu‖2L2(M,ḡ)

)
(2.1)

for all u ∈ H1(M, ḡ) where

ū := 1

volḡ

∫
M
u dμḡ =

∫
M
u dμḡ,

in view of our assumption that volḡ = 1.

As a consequence of Lemma 2.1, we have∫
M
epudμḡ = epū

∫
M
e(pu− p̄u)dμḡ ≤ epūCMT exp

(
η‖∇ḡ(pu)‖2L2(M,ḡ)

)
< ∞ (2.2)

for every u ∈ H1(M, ḡ) and p > 0. Therefore, for a given A > 0, the set

CA :=
{
u ∈ H1(M, ḡ) |

∫
M
e2udμḡ = A

}
(2.3)

is well defined. We also note that

ū ≤ 1

2
log(A) for u ∈ CA, (2.4)

since by Jensen’s inequality and our assumption that volḡ = 1 we have

2ū = −
∫
M
2udμḡ =

∫
M
2udμḡ ≤ log

(
−
∫

e2udμḡ

)
= log(A) for u ∈ CA. (2.5)

Next, we let f ∈ C∞(M) be a fixed smooth function. As a consequence of (2.2), the energy
functional E f given in (1.5) is then well defined and of class C1 on H1(M, ḡ). Moreover,
we have

E f (u) ≤ 1

2
‖∇u‖2L2(M,ḡ) + |K̄ |‖u‖L1(M,ḡ) + A

2
‖ f ‖L∞(M,ḡ) for u ∈ CA (2.6)

We now consider the additively rescaled prescribed Gauss curvature flow given by the
evolution equation

∂t u(t) = f − Kg(t) − α(t) = f + e−2u(t)(�ḡu(t) − K̄ ) − α(t) in (0, T ) × M, (2.7)

where α(t) is chosen such that the volume volg(t) of M with respect to the metric g(t) =
e2u(t)ḡ remains constant along the flow. The latter condition requires that

1

2

d

dt
volg(t) =

∫
M

∂t u(t)dμg(t) =
∫
M

( f − Kg(t) − α(t))dμg(t)

=
∫
M

f dμg(t) − α(t) volg(t) −K̄ (2.8)
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vanishes for t > 0 and therefore suggest the definition of α(t) given in (2.11) below. We first
note the following observations.

Proposition 2.2 Let T > 0, f ∈ C∞(M), A > 0, let u0 ∈ CA, and let u ∈
C([0, T ), H1(M, ḡ)) ∩ C1((0, T ), H2(M, ḡ)) be a solution of the initial value problem

∂t u(t) = f − Kg(t) − α(t) in (0, T ) × M; (2.9)

u(0) = u0 on {0} × M, (2.10)

where

α(t) = 1

A

(∫
M

f dμg(t) − K̄

)
= 1

A

(∫
M

f e2u(t)dμḡ − K̄

)
(2.11)

Then

1. the volume volg(t) of (M, g(t)) is preserved along the flow, i.e., volg(t) ≡ volg0 = A and
therefore u(t) ∈ CA for t ∈ [0, T );

2. along this trajectory, we have a uniform bound for α given by

|α(t)| ≤ α0 for t ∈ [0, T ) with α0 := ‖ f ‖L∞(M,ḡ) + |K̄ |
A

; (2.12)

3. the Eq. (2.9) remains invariant under adding a constant c ∈ R to the function f ;
4. the function t → E f (u(t)) is decreasing on [0, T ), so in particular E f (u(t)) ≤ E f (u0)

for t ∈ [0, T );
5. there exist constants c0 = c0(u0) > 0, c1 = c1(u0) > 0 depending only on u0 with the

property that

‖∇ḡu(t)‖2L2(M,ḡ) ≤ c0 + c1‖ f ‖L∞(M,ḡ) for t ∈ [0, T ); (2.13)

6. there exist constants m0 = m0(u0) ∈ R, m1 = m1(u0) > 0 depending only on u0 with
the property that

m0 − m1‖ f ‖L∞(M,ḡ) ≤ ū(t) ≤ 1

2
log(A) for t ∈ [0, T ); (2.14)

7. for every p ∈ R there exist constants ν0 = ν0(u0, p), ν1 = ν1(u0, p) > 0 with
∫
M
e2pu(t)dμḡ ≤ ν0e

ν1‖ f ‖L∞(M,ḡ) for t ∈ [0, T ). (2.15)

Proof 1. Let h(t) = 1
2

(
volg(t) −A

)
. Then by (2.8) we have

ḣ(t) = 1

2

d

dt
volg(t) =

∫
M

f dμg(t) − α(t) volg(t) −K̄

=
(∫

M
f dμg(t) − K̄

) (
1 − volg(t)

A

)

= 2

A

(∫
M

f dμg(t) − K̄

)
h(t) for t ∈ (0, T ).

Since h is continuous in 0 and h(0) = 0, Gronwall’s inequality (see e.g. [3]) implies that
h(t) = 0 and therefore volg(t) = A for t ∈ [0, T ).
2. follows directly from (2.11).
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To show 3., we note that replacing f by f + c in (2.9) gives

f + c − Kg(t) − 1

A

(∫
M

( f + c)dμg(t) − K̄

)
= f − Kg(t) − 1

A

(∫
M

f dμg(t) − K̄

)

= ∂t u(t),

so the equation remains unchanged.
To see 4., we use (2.8) and get

d

dt
E f (u(t)) =

∫
M

(−�ḡu(t) + K̄ − f e2u(t))∂t u(t)dμḡ

=
∫
M

((−�ḡu(t) + K̄ )e−2u(t) − f )e2u(t)∂t u(t)dμḡ

=
∫
M

((−�ḡu(t) + K̄ )e−2u(t) − f )∂t u(t)dμg(t)

=
∫
M

(Kg(t) − f )∂t u(t)dμg(t) =
∫
M

(Kg(t) − f + α(t))∂t u(t)dμg(t)

= −
∫
M

|∂t u(t)|2dμg(t) ≤ 0.

(2.16)

Therefore, we have

E f (u(τ )) +
∫ τ

0

∫
M

|∂t u(t)|2dμg(t)dt = E f (u(0)) for 0 < τ < T . (2.17)

5. Since u(t) ∈ CA for t ∈ [0, T ) by 1., we may use 4., (2.5) and (2.6) to observe that

‖∇ḡu(t)‖2L2(M,ḡ) = 2E f (u(t)) −
∫
M

(2K̄ u(t) − f e2u(t))dμḡ

= 2E f (u(t)) +
∫
M

(2|K̄ |u(t) + f e2u(t))dμḡ

≤ 2E f (u0) + |K̄ | log(A) + A‖ f ‖L∞(M,ḡ)

≤ ‖∇u0‖2L2(M,ḡ) + |K̄ |
(
log(A) + 2‖u0‖L1(M,ḡ)

)
+ 2A‖ f ‖L∞(M,ḡ)

≤ c0 + c1‖ f ‖L∞(M,ḡ) for t ∈ [0, T ).

(2.18)

with constants c0, c1 > 0 depending only on u0 (recall here that A = ∫
M e2u0(t)dμḡ).

6. With (2.13) and Lemma 2.1 we can estimate

A =
∫
M
e2u(t)dμḡ = e2ū(t)

∫
M
e2(u(t)−ū(t))dμḡ ≤ e2ū(t)CMT exp(η1‖∇ḡ(2u(t))‖2L2(M,ḡ))

≤ e2ū(t)CMT exp
(
η1(c1 + c2‖ f ‖L∞(M,ḡ))

)
and therefore

ū(t) ≥ 1

2
log

(
A

CMT

)
− 1

2
η1(c1 + c2‖ f ‖L∞(M,ḡ)) = m0 − m1‖ f ‖L∞(M,ḡ)

with constants m0 ∈ R, m1 > 0 depending only on u0. Combining this lower bound with
the upper bound given by (2.4), we obtain (2.14).
7. With Lemma 2.1, (2.5), and (2.18) we directly get for any p ∈ R that
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∫
M
e2pu(t)dμḡ = e2pū(t)

∫
M
e2p(u(t)−ū(t))dμḡ

≤ ep log(A)CMT exp(4η2 p
2‖∇ḡu(t)‖2L2(M,ḡ))

≤ ApCMT exp
(
(4η2 p

2(c1 + c2‖ f ‖L∞(M,ḡ)
))

≤ CMTA
pe4η2 p

2c1 exp
(
4η2 p

2c2‖ f ‖L∞(M,ḡ)
)

= ν0e
ν1‖ f ‖L∞(M,ḡ)

with constants νi = νi (u0, p) > 0, i ∈ {0, 1}. ��

3 Main results

In the following, we put

Cp,A := W 2,p(M, ḡ) ∩ Cp,A

=
{
v ∈ W 2,p(M, ḡ) |

∫
M
e2vdμḡ = A

}
for p > 2, A > 0. (3.1)

The following is our first main result.

Theorem 3.1 Let f ∈ C∞(M), p > 2, and u0 ∈ Cp,A for a given A > 0.
Then the initial value problem (2.9), (2.10) admits a unique global solution

u ∈ C([0,∞) × M) ∩ C([0,∞); H1(M, ḡ)) ∩ C∞((0,∞) × M)

satisfying the energy bound E f (u(t)) ≤ E f (u0) for all t ≥ 0.
Moreover, u is uniformly bounded in the sense that

sup
t>0

‖u(t)‖L∞(M,ḡ) < ∞.

Furthermore, if (tl)l ⊂ (0,∞) is a sequence with tl → ∞ as l → ∞, then, after passing to
a subsequence, u(tl) converges in H2(M, ḡ) to a function u∞ ∈ H2(M, ḡ) ∩ CA solving the
equation

− �ḡu∞ + K̄ = fλe
2u∞ in M, (3.2)

where fλ := f + λ with

λ = 1

A

(
K̄ −

∫
M

f e2u∞dμḡ

)
. (3.3)

In otherwords, u∞ induces ametric g∞ with volg∞ = A andGauss curvature Kg∞ satisfying

Kg∞(x) = fλ(x) = f (x) + λ for x ∈ M . (3.4)

Some remarks are in order.

Remark 3.2 It follows in a standard way that, under the assumptions of Theorem 3.1, the
ω-limit set

ω(u0) :=
⋂
T>0

{u(t) : T ≤ t < ∞}
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is a compact connected subset of H2(M, ḡ)∩CA (with respect to the H2-topology) consisting
of solutions of (3.2), (3.3),which are precisely the critical points of the restriction of the energy
functional E f to CA.

In particular, the connectedness implies that, if u∞ in Theorem 3.1 is an isolated critical
point in CA, then ω(u0) = {u∞} and therefore we have the full convergence of the flow line

u(t) → u∞ in H2(M, ḡ) as t → ∞. (3.5)

In particular, (3.5) holds if u∞ is a strict local minimum of the restriction of E f to CA.
Remark 3.3 For functions f < 0, the convergence of the flow (1.9) is shown in [9]. For
the additively rescaled flow (2.9) with initial data (2.10) we get convergence for arbitrary
functions f ∈ C∞(M). In general we do not have any information about λ and therefore no
information about the sign of fλ in Theorem 3.1. On the other hand, more information can
be derived for certain functions f ∈ C∞(M) and certain values of A > 0.

(i) In the case where A ≤ − K̄
‖ f ‖L∞(M,ḡ)

, it follows that

λ = 1

A

(
K̄ −

∫
M

f e2udμḡ

)
≤ K̄

A
+ ‖ f ‖L∞(M,ḡ)

A

∫
M
e2udμḡ

= K̄

A
+ ‖ f ‖L∞(M,ḡ) ≤ 0

for every solution u ∈ C2,A := {
v ∈ H2(M, ḡ) | ∫

M e2vdμḡ = 0
}
of the static problem

(3.2), and therefore this also applies to λ in Theorem 3.1 in this case.
(ii) The following theorems show that fλ in Theorem 3.1 may change sign if A >

− K̄
‖ f ‖L∞(M,ḡ)

, so in this case we get a solution of the static problem (1.2) for sign-

changing functions f ∈ C∞(M) by using the additively rescaled prescribed Gauss
curvature flow (2.9).

Theorem 3.4 Let p > 2. For every A > 0 and c > − K̄
A there exists ε = ε(c, A, K̄ ) > 0

with the following property.
If u0 ≡ 1

2 log(A) ∈ Cp,A and f ∈ C∞(M) with −c ≤ f ≤ 0 and ‖ f + c‖L1(M,ḡ) < ε

are chosen in Theorem 3.1, then the value λ defined in (3.3) is positive.
In particular, if f has zeros on M, then fλ in (3.4) is sign changing.

Under fairly general assumptions on f , we can prove that λ > 0 if A is sufficiently large
and u0 ∈ Cp,A is chosen suitably.

Theorem 3.5 Let f ∈ C∞(M) be nonconstant with maxx∈M f (x) = 0. Then there exists
κ > 0 with the property that for every A ≥ κ there exists u0 ∈ Cp,A such that the value λ

defined in (3.3) is positive.

In fact we have even more information on the associated limit u∞ in this case, see Corol-
lary 4.7 below.

It remains open how large λ can be depending on A and f . The only upper bound we have
is

λ < −
∫
M

f dμḡ, (3.6)

since we must have

f̄λ = 1

volḡ

∫
M

fλdμḡ =
∫
M

f dμḡ + λ
!
< 0,
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so that fλ fulfills the necessary condition (1.4) provided by Kazdan and Warner in [11].

4 The static minimisation problemwith volume constraint

To obtain additional information on the limiting function u∞ and the value λ ∈ R associated
to it by (3.3) and (3.4), we need to consider the associated static setting for the prescribed
Gauss curvature problem with the additional condition of prescribed volume. In this setting,
we wish to find, for given f ∈ C∞(M) and A > 0, critical points of the restriction of the
functional E f defined in (1.5) to the set CA defined in (2.3). A critical point u ∈ CA of this
restriction is a solution of (3.2) for some λ ∈ R, where, here and in the following, we put
again fλ := f + λ ∈ C∞(M). In other words, such a critical point induces, similarly as
the limit u∞ in Theorem 3.1, a metric gu with Gauss curvature Kgu satisfying Kgu (x) =
fλ(x) = f (x) + λ. The unknown λ ∈ R arises in this context as a Lagrange multiplier and
is a posteriori characterised again by

λ = 1

A

(
K̄ −

∫
M

f e2udμḡ

)
.

In the study of critical points of the restriction of E f to CA, it is natural to consider the
minimisation problem first. For this we set

m f ,A = inf
u∈CA

E f (u).

We have the following estimates for m f ,A:

Lemma 4.1 Let f ∈ C∞(M), A > 0. Then we have

m f ,A ≤ 1

2

(
K̄ log(A) − A

∫
M

f dμḡ

)
. (4.1)

Moreover, if max f ≥ 0, then we have

lim sup
A→∞

m f ,A

A
≤ 0. (4.2)

Proof Let u0(A) ≡ 1
2 log(A), so that

∫
M e2u0(A)dμḡ = A. Hence u0(A) is the (unique)

constant function in CA, and

m f ,A ≤ E f (u0(A)) = 1

2

∫
M

(|∇ḡu0(A)|2ḡ + 2K̄ u0(A) − f e2u0(A))dμḡ

= 1

2

∫
M

(K̄ log(A) − f A)dμḡ = 1

2

(
K̄ log(A) − A

∫
M

f dμḡ

)
.

This shows (4.1). To show (4.2), we let ε > 0. Since f ∈ C∞(M) and max f ≥ 0 by
assumption, there exists an open set � ⊂ M with f ≥ −ε on �. Next, let ψ ∈ C∞(M),
ψ ≥ 0, be a function supported in � and with ‖ψ‖L∞(M,ḡ) = 2. Consequently, the set
�′ := {x ∈ M | ψ > 1} is a nonempty open subset of �, and therefore μḡ(�

′) > 0.
Next we consider the continuous function

h : [0,∞) → [0,∞); h(τ ) =
∫
M
e2τψdμḡ
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and we note that h(0) = ∫
M dμḡ = 1, and that

h(τ ) ≥
∫

�′
e2τψdμḡ ≥ e2τμḡ(�

′) for τ ≥ 0.

Hence for every A ≥ 1 there exists

0 ≤ τA ≤ 1

2

(
log(A) − log(μḡ(�

′))
)

(4.3)

with h(τA) = A and therefore τAψ ∈ CA. Consequently,

m f ,A ≤ E f (τAψ) = 1

2

∫
M

(|∇ḡτAψ |2ḡ + 2K̄ τAψ − f e2τAψ)dμḡ

= τ 2Ac1 − τAc2 − c3 − 1

2

∫
�

f e2τAψdμḡ

with

c1 = 1

2

∫
M

|∇ḡψ |2ḡdμḡ, c2 = −K̄
∫
M

ψdμḡ and c3 = 1

2

∫
M\�

f dμḡ.

Since f ≥ −ε on �, we thus deduce that

m f ,A ≤ τ 2Ac1 − 2τAc2 + c3 + ε

2

∫
�

e2τAψdμḡ ≤ τ 2Ac1 − 2τAc2 + c3 + εA

2
.

Since τA
A → 0 as A → ∞ by (4.3), we conclude that

lim sup
A→∞

m f ,A

A
≤ ε

2
.

Since ε > 0 was chosen arbitrarily, (4.2) follows. ��
Lemma 4.2 Let f ∈ C∞(M) nonconstant with maxx∈M f (x) = 0. For every ε > 0 there
exists κ0 > 0 with the following property. If A ≥ κ0 and u ∈ CA is a solution of

− �ḡu + K̄ = ( f + λ)e2u (4.4)

for some λ ∈ R with E f (u) < εA
2 , then we have λ < ε.

Proof For given ε > 0, we may choose κ0 > 0 sufficiently large so that |K̄ |
2

log(A)
|A| < ε

2 for
A ≥ κ0.

Now, let A ≥ κ0, and let u ∈ CA be a solution of (4.4) satisfying E f (u) < εA
2 . Integrating

(4.4) over M with respect to μḡ and using that volḡ(M) = 1 and
∫
M e2udμḡ = A, we obtain

λ = 1

A

(
K̄ −

∫
M

f e2udμḡ

)
≤ − 1

A

∫
M

f e2udμḡ

= 1

A

(
E f (u) − 1

2

∫
M

(|∇ḡu|2ḡ + 2K̄ u)dμḡ

)
≤ 1

A

(
E f (u) + |K̄ |ū)

≤ ε

2
+ |K̄ |

2

log(A)

A
< ε,

as claimed. Here we used (2.4) to estimate ū. ��
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Proposition 4.3 Let f ∈ C∞(M) be a nonconstant function with maxx∈M f (x) = 0. More-
over, let λn → 0+ for n → ∞, and let (un)n∈N be a sequence of solutions of

− �ḡun + K̄ = ( f + λn)e
2un in M (4.5)

which are weakly stable in the sense that
∫
M

(|∇ḡh|2ḡ − 2( f + λn)e
2un h2)dμḡ ≥ 0 for all h ∈ H1(M). (4.6)

Then un → u0 in C2(M), where u0 is the unique solution of

− �ḡu0 + K̄ = f e2u0 in M . (4.7)

Proof We only need to show that

(un)n∈N is bounded in C2,α(M) for some α > 0. (4.8)

Indeed, assuming this for the moment, we may complete the argument as follows. Suppose
by contradiction that there exists ε > 0 and a subsequence, also denoted by (un)n∈N, with
the property that

‖un − u0‖C2(M) ≥ ε for all n ∈ N. (4.9)

By (4.8) and the compactness of the embedding C2,α(M) ↪→ C2(M), we may then pass to
a subsequence, still denoted by (un)n∈N, with un → u∗ in C2(M) for some u∗ ∈ C2(M).
Passing to the limit in (4.5), we then see that u∗ is a solution of (4.7), which by uniqueness
implies that u∗ = u0. This contradicts (4.9), and thus the claim follows.

The proof of (4.8) follows by similar arguments as in [7, p. 1063 f.]. Since the framework
is slightly different, we sketch the main steps here for the convenience of the reader. We first
note that, by the same argument as in [7, p. 1063 f.], there exists a constant C0 > 0 with

un ≥ −C0 for all n. (4.10)

Since { f < 0} is a nonempty open subset of M by assumption, we may fix a nonempty
open subdomain � ⊂⊂ { f < 0}. By [1, Appendix], there exists a constant C1 > 0 with

‖u+
n ‖H1(�,ḡ) ≤ C1 for all n

and therefore ∫
�

e2un dμḡ ≤
∫

�

e2u
+
n dμḡ ≤ C2 for all n (4.11)

for some C2 > 0 by the Moser–Trudinger inequality. Next, we consider a nontrivial, non-
positive function h ∈ C∞

c (�) ⊂ C∞(M) and the unique solution w ∈ C∞(M) of the
equation

−�ḡw + K̄ = he2w in M .

Moreover, we let wn := un − w, and we note that wn satisfies

−�ḡwn + he2w = ( f + λn)e
2un in M .

Multiplying this equation by e2wn and integrating by parts, we obtain
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∫
M

( f + λn)e
2(un+wn)dμḡ =

∫
M

(
−�ḡwn + he2w

)
e2wn dμḡ

=
∫
M

(
2e2wn |∇ḡwn |2ḡ + he2(w+wn)

)
dμḡ

= 2
∫
M

|∇ḡe
wn |2ḡdμḡ +

∫
�

he2un dμḡ. (4.12)

Moreover, applying (4.6) to h = ewn gives∫
M

( f + λn)e
2(un+wn)dμḡ ≤ 1

2

∫
M

|∇ḡe
wn |2ḡdμḡ. (4.13)

Combining (4.11), (4.12) and (4.13) yields

‖∇ḡe
wn‖2L2(M,ḡ) ≤ −2

3

∫
�

he2un dμḡ ≤ 2

3
‖h‖L∞(M,ḡ)C2 for all n. (4.14)

Next we claim that also ‖ewn‖L2(M,ḡ) remains uniformly bounded. Suppose by contradiction
that

‖ewn‖L2(M,ḡ) → ∞ as n → ∞. (4.15)

We then set vn := ewn

‖ewn ‖L2(M,ḡ)
, and we note that

‖vn‖L2(M,ḡ) = 1 for all n and ‖∇ḡvn‖2L2(M,ḡ) → 0 as n → ∞ (4.16)

by (4.14). Consequently, wemay pass to a subsequence satisfying vn⇀v in H1(M, ḡ), where
v is a constant function with

‖v‖L2(M,ḡ) = 1. (4.17)

However, since

‖ewn‖L2(�,ḡ) ≤ ‖eun‖L2(�,ḡ)‖e−w‖L∞(�,ḡ) ≤ √
C2‖e−w‖L∞(�,ḡ) for all n ∈ N

by (4.11) and therefore

‖v‖L2(�,ḡ) = lim
n→∞ ‖vn‖L2(�,ḡ) = lim

n→∞
‖ewn‖L2(�,ḡ)

‖ewn‖L2(M,ḡ)
= 0

by (4.15), we conclude that the constant function v must vanish identically, contradicting
(4.17).

Consequently, ‖ewn‖L2(M,ḡ) remains uniformly bounded, which by (4.14) implies that
ewn remains bounded in H1(M, ḡ) and therefore in L p(M, ḡ) for any p < ∞. Since eun ≤
‖ew‖L∞(M,ḡ)ewn on M for all n ∈ N, it thus follows that also eun remains bounded in
L p(M, ḡ) for any p < ∞. Moreover, by (4.10), the same applies to the sequence un itself.
Therefore, applying successively elliptic L p and Schauder estimates to (4.5), we deduce
(4.8), as required. ��

In the proof of the next proposition, we need the following classical interpolation inequal-
ity, see e.g. [4].

Lemma 4.4 (Gagliardo–Nirenberg–Ladyžhenskaya inequality) For every r > 2, there exists
a constant CGNL = CGNL(r) > 0 with

‖ζ‖rLr (M,ḡ) ≤ CGNL‖ζ‖2L2(M,ḡ)‖ζ‖r−2
H1(M,ḡ)

for every ζ ∈ H1(M, ḡ).
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Proposition 4.5 Let f ∈ C∞(M) be a nonconstant function with maxx∈M f (x) = 0. Then
there existsλ� and aC1-curve (−∞, λ�] → C2(M); λ → uλ with the following properties.

(i) If λ ≤ 0, then uλ is the unique solution of

− �ḡu + K̄ = fλe
2u in M (4.18)

and a global minimum of E fλ .
(ii) If λ ∈ (0, λ�], then uλ is the unique weakly stable solution of (4.18) in the sense of (4.6),

and it is a local minimum of E fλ .
(iii) The curve of functions λ → uλ is pointwisely strictly increasing on M, and so the volume

function

(−∞, λ�] → [0,∞); λ → V (λ) :=
∫
M
e2uλdμḡ (4.19)

is continuous and strictly increasing.

Proof We already know that, for λ ≤ 0, the energy E fλ admits a strict global minimiser uλ

which depends smoothly on λ. Moreover, by [1, Proposition 2.4], the curve λ → uλ can be
extended as a C1-curve to an interval (−∞, λ�] for some λ� > 0. We also know from [1,
Proposition 2.4] that, for λ ∈ (−∞, λ�], the solution uλ is strongly stable in the sense that

Cλ := inf
h∈H1(M,ḡ)

1

‖h‖2
H1(M,ḡ)

∫
M

(
|∇ḡh|2ḡ − 2 fλe

2uλh2
)
dμḡ > 0. (4.20)

Here we note that the function λ → Cλ is continuous since uλ depends continuously on λ

with respect to the C2-norm. Next we prove that, after making λ� > 0 smaller if necessary,
the function uλ is the unique weakly stable solution of (4.18) for λ ∈ (0, λ�]. Arguing by
contradiction, we assume that there exists a sequence λn → 0+ and corresponding weakly
stable solutions (un)n∈N of

− �ḡun + K̄ = ( f + λn)e
2un in M (4.21)

with the property that un 	= uλn for every n ∈ N. By Proposition 4.3, we know that un → u0
in C2(M). Consequently, vn := un − uλn → 0 in C2(M) as n → ∞, whereas the functions
vn solve

− �ḡvn = ( f + λn)
(
e2un − e2uλn

)
= ( f + λn)e

2uλn
(
e2vn − 1

)
in M for every n ∈ N. (4.22)

Combining this fact with (4.20), we deduce that

‖vn‖2H1(M,ḡ) ≤ 1

Cλ

∫
M

(
|∇ḡvn |2ḡ − 2( f + λn)e

2uλn v2n

)
dμḡ

= 1

Cλ

∫
M

( f + λn)e
2uλn

(
e2vn − 1 − 2vn

)
vndμḡ.

Since vn → 0 in C2(M), there exists a constant C > 0 with |(e2vn − 1 − 2vn)vn | ≤ C |vn |3
on M for all n ∈ N, which then implies with Hölder’s inequality and Lemma 4.4 that

‖vn‖2H1(M,ḡ) ≤ C‖( f + λn)e
2uλn ‖L∞(M,ḡ)‖vn‖3L3(M,ḡ)

≤ C

(∫
M

|vn |3· 43 dμḡ

) 3
4 = C‖vn‖3L4(M,ḡ) ≤ C‖vn‖3H1(M,ḡ)

123



A variant prescribed curvature flow... Page 15 of 34 262

with a constant C > 0 independent on M . This contradicts the fact that vn → 0 in H1(M)

as n → ∞. The claim thus follows.
It remains to prove that the curve of functions λ → uλ is pointwisely strictly increasing

on M . This is a consequence of the uniqueness of weakly stable solutions stated in (ii) and
the fact that, as noted in [7], if uλ0 is a solution for some λ0 ∈ (−∞, λ�], it is possible
to construct, via the method of sub- and supersolutions, for every λ < λ0, a weakly stable
solution uλ with uλ < uλ0 everywhere in M . ��
Corollary 4.6 Let f ∈ C∞(M) be nonconstant with maxx∈M f (x) = 0, and let λ� > 0 be
given as in Proposition 4.5. Then there exists κ1 > 0 with the following property.

If A ≥ κ1 and u ∈ CA is a solution of

− �ḡu + K̄ = ( f + λ)e2u (4.23)

for some λ ∈ R with E f (u) <
λ�A
2 , then 0 < λ < λ�, and u is not a weakly stable solution

of (4.23), so u 	= uλ.

Proof Let κ0 > 0 be given as in Lemma 4.2 for ε = λ� > 0. Moreover, let

κ1 := max
{
κ0, V (uλ�)

}
with V defined in (4.19). Next, let u ∈ CA be a solution of (4.23) for some λ ∈ R with
E f (u) <

λ�A
2 . From Lemma 4.2, we then deduce that 0 < λ < λ�, and by Proposition 4.5

(iii) we have u 	= uλ. Since uλ is the unique weakly stable solution of (4.23), it follows that
u is not weakly stable. ��
Corollary 4.7 Let p > 2, f ∈ C∞(M) be nonconstant with maxx∈M f (x) = 0, and let
λ� > 0 be given as in Proposition 4.5. Then there exists κ > 0 with the property that for
every A ≥ κ the set

C̃ :=
{
u0 ∈ Cp,A | E f (u0) <

λ�A

2

}

is nonempty, and for every u0 ∈ C̃ the global solution u ∈ C([0,∞) × M) ∩
C([0,∞); H1(M, ḡ)) ∩ C∞((0,∞) × M) of the initial value problem (2.9), (2.10) con-
verges, as t → ∞ suitably, to a solution u∞ of the static problem (4.23) for some λ ∈ (0, λ�)

which is not weakly stable and hence no local minimiser of E fλ .

Proof Let κ1 > 0 be given by Corollary 4.6. By (4.2), there exists κ ≥ κ1 > 0 with m f ,A <
λ�A
4 for fixed A > κ . Consequently, there exists u0 ∈ CA ∩ W 2,p(M, ḡ) with E f (u0) <

λ�A
2 . By Theorem 3.1, the global solution u ∈ C([0,∞) × M) ∩ C([0,∞); H1(M, ḡ)) ∩

C∞((0,∞) × M) of the initial value problem (2.9), (2.10) converges, as t → ∞ suitably,
to a solution u∞ ∈ CA of the static problem (4.23) for some λ ∈ R, whereas E f (u∞) ≤
E f (u0) <

λ�A
2 . Consequently, λ ∈ (0, λ�) by Corollary 4.6, and u∞ is not weakly stable. ��

5 Proof of themain results

5.1 Preliminaries

In the following, we consider, for fixed T > 0, the spaces

L p
t L

r
x := L p([0, T ]; Lr (M, ḡ)) and L p

t H
q
x := L p([0, T ]; Hq(M, ḡ)).
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We stress that, although these spaces depend on T , we prefer to use a T -independent notation.
We also note that, since T < ∞ and volḡ = 1, we have Lq

t L
r
x ⊂ Ls

t L
p
x for p, q, r , s ∈ [1,∞]

with q ≥ s, r ≥ p.

Lemma 5.1 (Sobolev inequality) There exists a constant CS > 0 such that for every T ≤ 1
and every ρ ∈ L∞

t H1
x we have

‖ρ‖2
L4
t L4

x
≤ CS(‖ρ‖2L∞

t L2
x
+ ‖∇ḡρ‖2

L2
t L2

x
) < ∞. (5.1)

Proof By Lemma 4.4, applied with r = 4, there exists a constant CGNL = CGNL(4) > 0
with the property that, for all T ≤ 1,

‖ρ‖4
L4
t L4

x
=

∫ T

0
‖ρ(t)‖4L4(M,ḡ)dt ≤ CGNL

∫ T

0
‖ρ(t)‖2L2(M,ḡ)‖ρ(t)‖2H1(M,ḡ)dt

≤ CGNL‖ρ‖2L∞
t L2

x

∫ T

0
(‖ρ(t)‖2L2(M,ḡ) + ‖∇ḡρ(t)‖2L2(M,ḡ))dt

≤ CGNL · T ‖ρ‖4L∞
t L2

x
+ CGNL‖ρ‖2L∞

t L2
x
‖∇ḡρ‖2

L2
t L2

x

≤ CGNL

(
‖ρ‖4L∞

t L2
x
+ ‖ρ‖2L∞

t L2
x
‖∇ḡρ‖2

L2
t L2

x

)

≤ CGNL

(
3

2
‖ρ‖4L∞

t L2
x
+ 1

2
‖∇ḡρ‖4

L2
t L2

x

)

≤ 3CGNL

2

(
‖ρ‖2L∞

t L2
x
+ ‖∇ḡρ‖2

L2
t L2

x

)2
.

Hence the first inequality in (5.1) holds with CS =
(
3CGNL

2

) 1
2
. Moreover, since T is finite,

ρ ∈ L∞
t H1

x implies that ρ ∈ L p
t H

1
x for all p ∈ [1,∞] which shows that the RHS in (5.1) is

finite. ��
Now we can turn to the proofs of the main results.

5.2 Short-time existence

Let A > 0 and p > 2 be fixed. We are looking for a short-time solution of (2.9), (2.10) with
initial value u0 ∈ Cp,A, where Cp,A is defined in (3.1). Using the Gauss Eq. (1.1) we can
rewrite (2.9), (2.10) in the following way:

∂t u(t) = f − Kg(t) − α(t)

= e−2u(t)�ḡu(t) − e−2u(t) K̄ + f − α(t) (5.2)

= e−2u(t)�ḡu(t) + K̄

(
1

A
− e−2u(t)

)
+ f − 1

A

∫
M

f e2u(t)dμḡ;
u(0) = u0 ∈ Cp,A, (5.3)

where

α(t) = 1

A

(∫
M

f dμg(t) − K̄

)
.

To find a solution of (5.2), (5.3) on a short time interval, we consider the linear equation
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∂t u(t) = e−2v(t)�ḡu(t) + K̄

(
1

A
− e−2v(t)

)
+ f − 1

A

∫
M

f e2v(t)dμḡ; (5.4)

u(0) = u0 ∈ Cp,A, (5.5)

and use a fixed point argument in the Banach space

(X , ‖ · ‖X ) := (C([0, T ] × M), ‖ · ‖L∞([0,T ]×M)). (5.6)

For this we first observe that Eq. (5.4) is strongly parabolic for v ∈ X . Furthermore, since
p > 2 and M is compact, we have u0 ∈ Cp,A ⊂ H2(M, ḡ), and therefore u0 ∈ C(M).

For the fixed point argument we fix u0 ∈ Cp,A and set

R = R(u0) := ‖u0‖L∞(M,ḡ) + 1.

For fixed T > 0 and v ∈ X , we then get, by Proposition 6.2 in the appendix, a unique
solution uv ∈ W 2,1

p ((0, T ) × M) of (5.4) which satisfies (5.5) in the initial trace sense. Here

W 2,1
p ((0, T ) × M) denotes the space of functions u ∈ L p((0, T ) × M) which have weak

derivatives Du, D2u and ∂t u in L p((0, T ) × M), so this space is compactly embedded in
C(X) by Lemma 6.1 in the appendix. On XR = {U ∈ X | ‖U‖X ≤ R}, we now define the
function � as follows: for v ∈ XR , let �(v) =: uv be the unique solution of (5.4), (5.5).
First, we show that � : XR → XR if T > 0 is chosen small enough.

Lemma 5.2 If T > 0 is fixed with

T ≤
(

|K̄ |e2(‖u0‖L∞(M,ḡ)+1) + ‖ f ‖L∞(M,ḡ)

(
1 + e2(‖u0‖L∞(M,ḡ)+1)

A

))−1

(5.7)

and v ∈ XR, then �(v) ∈ XR.

Proof With Proposition 6.4 (ii) we directly get

‖�(v)‖X = ‖uv‖X ≤ ‖u+
0 ‖L∞(M,ḡ) + TdT (5.8)

where

dT ≤ |K̄ |e2‖v‖X + ‖ f ‖L∞(M,ḡ) + ‖ f ‖L∞(M,ḡ)e2‖v‖X
A

≤ |K̄ |e2R + ‖ f ‖L∞(M,ḡ)

(
1 + e2R

A

)
,

hence

‖�(v)‖X ≤ T

(
|K̄ |e2R + ‖ f ‖L∞(M,ḡ)

(
1 + e2R

A

))
+ ‖u+

0 ‖L∞(M,ḡ)

≤ 1 + ‖u0‖L∞(M,ḡ) = R,

by (5.7) and since R = ‖u0‖L∞(M,ḡ) + 1, which shows the claim. ��
We now use Schauder’s fixed point Theorem [17] to show the following proposition.

Proposition 5.3 If u0 ∈ Cp,A ⊂ W 2,p(M, ḡ) and T > 0 is fixed with (5.7), then there exists
a short-time solution u ∈ X ∩ C∞((0, T ) × M) of (5.2), (5.3).
Moreover, any such solution satisfies u ∈ C([0, T ), H1(M, ḡ)).
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Proof Step 1: First we recall Schauder’s Theorem: If H is a nonempty, convex, and closed
subset of a Banach space B and F is a continuous mapping of H into itself such that F(H)

is a relatively compact subset of H , then F has a fixed point.
In our case, B=̂X = C([0, T ] × M), H=̂XR = {u ∈ X | ‖u‖X = ‖u‖CtCx ≤ R}, and

F=̂�. So to show the existence of a fixed point of � in XR , it remains to show that

1. � : XR → XR is continuous and
2. �(XR) ⊂ XR is relatively compact.

First, we show that� : XR → XR is continuous. For this, let v ∈ XR , and let (vn)n ⊂ XR

be a sequence with ‖vn − v‖X → 0. Moreover, let u = �(v) and un = �(vn) for n ∈ N.
By Proposition 6.2, we know that

‖un‖W 2,1
p

≤ C(‖u0‖W 2,p(M,ḡ) + ‖dn‖L p
t L

p
x
)

and ‖u‖W 2,1
p

≤ C(‖u0‖W 2,p(M,ḡ) + ‖d‖L p
t L

p
x
)

for n ∈ N with

dn(t) := K̄

(
1

A
− e−2vn(t)

)
+ f − 1

A

∫
M

f e2vn(t)dμḡ and

d(t) := K̄

(
1

A
− e−2v(t)

)
+ f − 1

A

∫
M

f e2v(t)dμḡ.

Since vn → v in X , we have e±2vn → e±2v and therefore also dn → d in X , which also
implies that dn → d in L p

t L
p
x for all p. Moreover, the difference un − u = �(vn) − �(v)

fulfils the equation

∂t (un − u)(t) = e−2vn(t)�ḡun(t) + dn(t) − e−2v(t)�ḡu(t) − d(t)

= e−2vn(t)�ḡ(un − u)(t) + (e−2vn(t) − e−2v(t))�ḡu(t) + dn(t) − d(t).

Since also [un − u](0) = 0, we have, again by Proposition 6.2,

‖un − u‖W 2,1
p

≤ C‖(e−2vn − e−2v)�ḡu + dn − d‖L p
t L

p
x

≤ C
(
‖e−2vn − e−2v‖X‖�ḡu‖L p

t L
p
x

+ ‖dn − d‖L p
t L

p
x

)

Since ‖�ḡu‖L p
t L

p
x
is finite, it thus follows that �(vn) − �(v) = un − u → 0 in W 2,1

p

and therefore also �(vn) − �(v) → 0 in X , since W 2,1
p is embedded in X by Lemma 6.1.

Together with 5.2, this shows the continuity of � : XR → XR .
Next, we show that �(XR) is relatively compact. For this let (un)n∈N ⊂ �(XR) be an

arbitrary sequence in�(XR), and let vn ∈ XR with�(vn) = un for n ∈ N. So, by definition
of � and by Proposition 6.2, we see that

‖un‖W 2,1
p

≤ C

(
‖u0‖W 2,p(M,ḡ) + T |K̄ |

A
+ ‖K̄ e−2vn‖L p

t L
p
x

+ ‖ f ‖L p
t L

p
x

+
∥∥∥∥ 1

A

∫
M

f e2vn dμḡ

∥∥∥∥
L p
t L

p
x

)

≤ C

(
‖u0‖W 2,p(M,ḡ) + T |K̄ |

A
+ |K̄ |e2R + T ‖ f ‖L∞(M,ḡ) + T

A
‖ f ‖L∞(M,ḡ)e

2R
)

for n ∈ N. Hence (un)n∈N is uniformly bounded in W 2,1
p ((0, T ) × M). Using now that

W 2,1
p ((0, T ) × M) is compactly embedded in X by Lemma 6.1, we conclude the claim.

We have thus proved that � has a fixed point u in XR , which then is a (strong) solution
u ∈ W 2,1

p ((0, T ) × M) of (5.2), (5.3).
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Step 2: We now show that u ∈ C∞((0, T ) × M). To see this, we first note the trivial
fact that u ∈ W 2,1

p ((0, T ) × M) is a strong solution of (5.4), (5.5) with v = u. Since then

v ∈ W 2,1
p ((0, T )× M) ⊂ Cα([0, T ]× M), [14, Theorems 5.9 and 5.10] imply the existence

of a classical solution ũ ∈ X ∩ C2+α′,1+α′
loc ((0, T ) × M) of (5.4), (5.5) with v = u for some

α′ > 0. Here C2+α′,1+α′
loc ((0, T ) × M) denotes the space of functions f ∈ C2,1((0, T ) × M)

with the property that ∂t f and all derivatives up to second order of f with respect to x ∈ M
are locally α′-Hölder continuous. In particular, ũ ∈ W 2,1

p ((ε, T − ε) × M) for ε ∈ (0, T ).

The function w := u − ũ ∈ W 2,1
p ((ε, T − ε) × M) is then a strong solution of the initial

value problem

∂tw(t) = e−2v(t)�ḡw(t) for t ∈ (ε, T − ε), w(ε) = u(ε, ·) − ũ(ε, ·).
By Proposition 6.4 (ii) we then have |w| ≤ ‖u(ε, ·) − ũ(ε, ·)‖L∞(M,ḡ) on (ε, T − ε) × M ,
whereas ‖u(ε, ·) − ũ(ε, ·)‖L∞(M,ḡ) → 0 as ε → 0 by the continuity of u and ũ. It thus

follows that u ≡ ũ on (0, T ) × M), and therefore u ∈ C2+α′,1+α′
loc ((0, T ) × M). Since u

solves (5.4), (5.5) with v = u ∈ C2+α′,1+α′
loc ((0, T ) × M), we can apply [14, Theorems

5.9] and the above argument again to get u ∈ C4+α′′,2+α′′
loc ((0, T ) × M) for some α′′ > 0.

Repeating this argument inductively, we get u ∈ C
k, k2
loc ((0, T ) × M) for every k > 0, and

hence u ∈ C∞((0, T ) × M).
Step 3: It remains to show that any solution u ∈ X ∩ C∞((0, T ) × M) of (5.2), (5.3) also
satisfies u ∈ C([0, T ), H1(M, ḡ)). Since u ∈ C∞((0, T )× M), only the continuity in t = 0
needs to be proved. Setting φ(t) = ‖u(t)‖2

H1(M,ḡ)
for t ∈ (0, T ), we see that

1

2
(φ(t2) − φ(t1)) = 1

2

∫ t2

t1
∂t‖u(t)‖2H1(M,ḡ) dt

=
∫ t2

t1

∫
M

(
u(t)∂t u(t) + ∇u(t)∇∂t u(t)

)
dμḡdt

=
∫ t2

t1

∫
M

(
u(t)∂t u(t) − [�u(t)]∂t u(t)

)
dμḡdt

and therefore, by Hölder’s inequality,

1

2
|φ(t2) − φ(t1)| ≤

∫ t2

t1

∫
M

(|u||∂t u| + |�u||∂t u|)dμḡdt

≤ C‖∂t u‖L p((0,T )×M)

(‖u‖L p((0,T )×M) + ‖�u‖L p((0,T )×M)

)
(t2 − t1)

β

≤ C‖u‖W 1,2
p ((0,T )×M)

(t2 − t1)
β,

for 0 < t1 < t2 < T with some β > 0 depending on p > 2, which implies that the function
φ is uniformly continuous and therefore bounded on (0, T ).

We now assume by contradiction that u is not continuous at t = 0 with respect to the
H1(M, ḡ)-norm. Then there exists a sequence (tn)n∈N in (0, T ) and ε > 0 with tn → 0+ as
n → ∞ and

‖u(tn) − u0‖H1(M,ḡ) ≥ ε for all n ∈ N. (5.9)

Since ‖u(tn)‖2H1(M,ḡ)
= φ(tn) remains bounded as n → ∞, we conclude that, passing to

a subsequence, the sequence u(tn) converges weakly in H1(M, ḡ) and therefore strongly in
L2(M, ḡ). Since the strong L2-limit of u(tn) must be u0 = u(0) as a consequence of the
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fact that u ∈ X , we deduce that u(tn)⇀u0 weakly in H1(M, ḡ) as n → ∞. Combining this
information with Proposition 6.2 from the appendix, we deduce that

lim sup
n→∞

‖u(tn)‖2H1(M,ḡ) ≤ ‖u0‖2H1(M,ḡ) ≤ lim inf
n→∞ ‖u(tn)‖2H1(M,ḡ) (5.10)

and therefore ‖u(tn)‖H1(M,ḡ) → ‖u0‖H1(M,ḡ). Note here that this part of Proposition 6.2

applies since u solves (5.4), (5.5) with v = u ∈ W 2,1
p ((0, T ) × M) ⊂ Cα([0, T ] × M) for

some α > 0. From (5.10) and the uniform convexity of the Hilbert space H1(M, ḡ), we
conclude that u(tn) → u0 strongly in H1(M, ḡ), contrary to (5.9). ��

5.3 Uniqueness

We now show that the solution from Proposition 5.3 is unique.

Lemma 5.4 Let u0 ∈ W 2,p(M, ḡ), p > 2, and T > 0 be fixed with (5.7). Then the short-time
solution of u ∈ X ∩ C∞((0, T ) × M) of (5.2), (5.3) given by Proposition 5.3 is unique.

Proof Let u1, u2 ∈ X ∩ C∞((0, T ) × M) be two solutions of (5.2), (5.3). The difference
u := u1 − u2 ∈ X ∩ C∞((0, T ) × M) then fulfils

∂t u(t) = e−2u1(t)�ḡu1(t) − e−2u2(t)�ḡu2(t)

− K̄ (e−2u1(t) − e−2u2(t)) − 1

A

∫
M

f (e2u1(t) − e2u2(t))dμḡ

= e−2u1(t)�ḡu(t) + �ḡu2(t)
(
e−2u1(t) − e−2u2(t)

)

− K̄ (e−2u1(t) − e−2u2(t)) − 1

A

∫
M

f (e2u1(t) − e2u2(t))dμḡ for t ∈ (0, T ).

(5.11)

In the following, the letter C denotes different positive constants. Multiplying (5.11) with
2u and integrating over M gives

d

dt
‖u(t)‖2L2(M,ḡ)

= 2
∫
M
u(t)∂t u(t)dμḡ

= 2
∫
M
e−2u1(t)u(t)�ḡu(t)dμḡ

+ 2
∫
M
u(t)�ḡu2(t)

(
e−2u1(t) − e−2u2(t)

)
dμḡ (5.12)

− 2
∫
M
K̄u(t)(e−2u1(t) − e−2u2(t))dμḡ − 2

A

∫
M

f (e2u1(t) − e2u2(t))dμḡ

∫
M
u(t)dμḡ

≤ 2
∫
M
e−2u1(t)u(t)�ḡu(t) + 2

∫
M
V (t, x)u2(t) + 2ρ(t)‖u(t)‖L2(M,ḡ)

∫
M

|u(t)|dμḡ

≤ 2

(
−

∫
M
e−2u1(t)|∇ḡu(t)|2ḡ + 2

∫
M
e−2u1(t)u(t)〈∇ḡu1(t),∇ḡu(t)〉ḡdμḡ

)

+ 2‖V (t, ·)‖L p(M,ḡ)‖u(t)‖2
L2p′ (M,ḡ)

+ C‖u(t)‖2L2(M,ḡ)

≤ C‖∇ḡu1(t)‖L4(M,ḡ)‖u(t)‖L4(M,ḡ)‖∇ḡu(t)‖L2(M,ḡ)
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+ 2‖V (t, ·)‖L p(M,ḡ)‖u(t)‖2
L2p′ (M,ḡ)

+ C‖u(t)‖2L2(M,ḡ)

≤ C
(
‖u1(t)‖H2(M,ḡ)‖u(t)‖2H1(M,ḡ) + 2‖V (t, ·)‖L p(M,ḡ)‖u(t)‖2H1(M,ḡ) + ‖u(t)‖2L2(M,ḡ)

)

≤ C
(
‖u1(t)‖H2(M,ḡ) + 2‖V (t, ·)‖L p(M,ḡ) + 1

)
‖u‖2H1(M,ḡ), (5.13)

with functions V ∈ L p((0, T ) × M) ∩ C∞((0, T ) × M) and ρ ∈ L∞(0, T ). Here we used
the Sobolev embeddings H1(M, ḡ) ↪→ Lρ(M) for ρ ∈ [1,∞). Multiplying (5.11) with
−2�u and integrating over M yields

d

dt
‖∇gu(t)‖2L2(M,ḡ) = 2

∫
M

∇u(t)∇∂t u(t)dμḡ = −2
∫
M

�gu(t)∂t u(t)dμḡ

≤ −2
∫
M
e−2u1(t)|�ḡu(t)|2dμḡ + 2

∫
M
V (t, x)|u(t)||�u(t)|dμḡ

≤ −κ‖�ḡu(t)‖2L2(M,ḡ) + 2‖V (t, ·)‖L p(M,ḡ)‖u‖Lα(M,ḡ)‖�gu‖L2(M,ḡ)

≤ −κ‖�ḡu(t)‖2L2(M,ḡ) + 1

κ
‖V (t, ·)‖2L p(M,ḡ)‖u‖2Lα(M,ḡ) + κ‖�gu‖2L2(M,ḡ)

= 1

κ
‖V (t, ·)‖2L p(M,ḡ)‖u‖2Lα(M,ḡ) ≤ C‖V (t, ·)‖2L p(M,ḡ)‖u‖2H1(M,ḡ), (5.14)

where we used first Hölder’s inequality with α = 2p
p−2 , then Young’s inequality and finally

Sobolev embeddings again. Here we note that, by making C > 0 larger if necessary, we may
assume that the constants are the same in (5.13) and (5.14). Combining these estimates gives

d

dt
‖u(t)‖2H1(M,ḡ) ≤ g(t)‖u(t)‖2H1(M,ḡ) for t ∈ (0, T ) (5.15)

with the function g ∈ L1(0, T ) given by g(t) = C
(
‖u1(t)‖H2(M,ḡ)+3‖V (t, ·)‖L p(M,ḡ)+1

)
.

Integrating and using the fact that u ∈ C([0, T ), H1(M, ḡ)) by Proposition 5.3 with u(0) =
u1(0) − u2(0) = 0, we see that

‖u(t)‖2H1(M,ḡ) ≤
∫ t

0
g(s)‖u(s)‖2H1(M,ḡ) ds for t ∈ [0, T ).

It then follows from Gronwall’s inequality [3] that ‖u(t)‖2
H1(M,ḡ)

≡ 0 on [0, T ), hence
u1 ≡ u2. ��

5.4 Global existence

Let f ∈ C∞(M), A > 0, p > 2 and u0 ∈ Cp,A. In this section, we wish to show that the
(unique) local solution

u ∈ C([0, T ] × M) ∩ C([0, T ], H1(M, ḡ)) ∩ C∞((0, T ) × M)

of the initial value problem (5.2), (5.3) for small T > 0 can be extended to a global und
uniformly bounded solution defined for all positive times.

We first need the following local boundedness property on open time intervals.

Lemma 5.5 Let, for some T > 0, u ∈ C([0, T ) × M) ∩ C([0, T ), H1(M, ḡ)) ∩ C∞((0, T )

× M) be a solution of (5.2), (5.3) on [0, T ). Then we have

sup
t∈[0,T )

‖u(t)‖L∞(M,ḡ) ≤ M (5.16)
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with some M = M(‖u0‖L∞(M,ḡ), ‖ f ‖L∞(M,ḡ), T ) > 0 which is increasing in all of its
variables.

Proof Since K̄ < 0, we have

∂t u(t) = e−2u(t)�ḡu(t) − e−2u(t) K̄ + f − α(t)

= e−2u(t)�ḡu(t) + e−2u(t)|K̄ | + f − α(t) for t ∈ [0, T )

by (5.2), where

|α(t)| ≤ α0 := ‖ f ‖L∞(M,ḡ) + |K̄ |
A

for t ∈ [0, T )

by (2.12). Hence the function v = −u satisfies

∂tv(t) = e2v(t)�ḡv(t) − e2v(t)|K̄ | − f + α(t) ≤ e2v(t)�ḡv(t) + c for t ∈ (0, T )

with c = ‖ f ‖L∞(M,ḡ) + α0. Next, let (Tk)k ⊂ (0, T ) be a sequence with Tk → T for
k → ∞. For fixed k ∈ N the continuous function e2v is then bounded from below by a
positive constant on the compact set [0, Tk] × M . Therefore Proposition 6.4 (ii) from the
appendix implies that

v(t, x) ≤ ‖u0‖L∞(M,ḡ) + Tkc for (t, x) ∈ [0, Tk] × M .

Letting k → ∞, we deduce that

u(t, x) = −v(t, x) ≥ −‖u0‖L∞(M,ḡ) − T c for (t, x) ∈ [0, T ) × M . (5.17)

In order to derive an upper bound for u, we now observe that

∂t u(t) = e−2u(t)�ḡu(t) + e−2u(t)|K̄ | + f − α(t)

≤ e−2u(t)�ḡu(t) + e2(‖u0‖L∞(M,ḡ)+T c) + c

on M for t ∈ [0, T ). Applying Proposition 6.4 (ii) in the same way as above therefore gives

u(t, x) ≤ ‖u0‖L∞(M,ḡ) + T
(
e2(‖u0‖L∞(M,ḡ)+T c) + c

)
. (5.18)

Combining (5.17) and (5.18) yields

sup
t∈[0,T )
x∈M

|u(t, x)| ≤ M with

M = M(‖u0‖L∞(M, ḡ), ‖ f ‖L∞(M,ḡ), T ) := ‖u0‖L∞ + T
(
e2(‖u0‖L∞(M,ḡ)+T c) + c

)
,

(5.19)

as claimed in (5.18). ��
Corollary 5.6 The initial value problem (5.2), (5.3) admits a unique global solution u ∈
C([0,∞) × M) ∩ C([0,∞), H1(M, ḡ)) ∩ C∞((0,∞) × M).

Proof This follows from Proposition 5.3, Lemma 5.4 and Lemma 5.5 by a standard contin-
uation argument using condition (5.7). ��

In the next lemma, with the help of (2.17), we turn (5.16) into a uniform estimate for all
time.
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Lemma 5.7 Let u be the global, smooth solution of the initial value problem (5.2), (5.3).
Then we have

sup
t>0

‖u(t)‖L∞(M,ḡ) ≤ N

with some N = N (u0, ‖ f ‖L∞(M,ḡ)) > 0 which is increasing in its second variable.

Proof We argue similarly as in the proof of [18, Lemma 2.5].
By using the fact that u(t) is a volume preserving solution of (5.2) with u(0) = u0 ∈ Cp,A

and therefore
∫
M e2u(t)dμḡ ≡ A, we get with (2.4) and the fact that K̄ < 0 that

E f (u(t)) = 1

2
‖∇ḡu(t)‖2L2(M,ḡ) +

∫
M
K̄u(t)dμḡ − 1

2

∫
M

f e2u(t)dμḡ

≥ K̄

2

∫
M
2u(t)dμḡ − 1

2

∫
M

f e2u(t)dμḡ ≥ K̄

2
log(A) − A

2
‖ f ‖L∞(M,ḡ) > −∞.

(5.20)

For the function

t → F(t) :=
∫
M

|∂t u(t)|2dμg(t) =
∫
M

|∂t u(t)|2e2u(t)dμḡ, (5.21)

we then obtain, by combining (5.20) with (2.17), the estimate
∫ ∞

0
F(t)dt = lim

T→∞

∫ T

0

∫
M

|∂t u(t)|2dμg(t)dt

≤ E f (u0) + |K̄ |
2

| log(A)| + A

2
‖ f ‖L∞(M,ḡ). (5.22)

Hence, for any T > 0 we find tT ∈ [T , T + 1] such that

F(tT ) = inf
t∈(T ,T+1)

F(t) ≤ E f (u0) + |K̄ |
2

| log(A)| + A

2
‖ f ‖L∞(M,ḡ)

≤ 1

2
‖∇u0‖2L2(M,ḡ) + |K̄ |(1

2
| log(A)| + ‖u‖L1(M,ḡ)

) + A‖ f ‖L∞(M,ḡ)

= d1 + d2‖ f ‖L∞(M,ḡ) (5.23)

with constants di = di (u0) > 0. Here we used (2.6).
So, at time tT we get with (2.7), Hölders inequality, Young’s inequality, (2.15), and (5.23)

that

‖�ḡu(tT )‖
L

3
2 (M,ḡ)

≤ ‖e2u(tT )∂t u(tT )‖
L

3
2 (M,ḡ)

+ ‖K̄‖
L

3
2 (M,ḡ)

+ ‖e2u(tT ) f ‖
L

3
2 (M,ḡ)

+ ‖e2u(tT )α(tT )‖
L

3
2 (M,ḡ)

≤ ‖eu(tT )‖L6(M,ḡ)F(tT )
1
2 + |K̄ | + ‖ f ‖L∞(M,ḡ)

(∫
M
e3u(tT )dμḡ

) 2
3 + |α(tT )|

(∫
M
e3u(tT )dμḡ

) 2
3

≤ 1

2
‖eu(tT )‖2L6(M,ḡ) + 1

2
F(tT ) + |K̄ | + 1

3

(
‖ f ‖3L∞(M,ḡ) + |α(tT )|3

)
+ 4

3

∫
M
e3u(tT )dμḡ

≤ 1

2

(
ν0(u0, 6)e

ν1(u0,6)‖ f ‖L∞(M,ḡ)

)1/3 + 1

2

(
d1 + d2‖ f ‖L∞(M,ḡ)

)
+ |K̄ |

+ 1

3

(
‖ f ‖3L∞(M,ḡ) + |α(tT )|3

)
+ 4

3
ν0(u0, 3)e

ν1(u0,3)‖ f ‖L∞(M,ḡ)

≤ d3e
d4‖ f ‖L∞(M,ḡ)

(5.24)
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with constants di = di (u0), i ∈ {3, 4}. Here the constants νi (u0, 3), i ∈ {0, 1} are given in
(2.15).

Furthermore, with Sobolev’s embedding theorem we have W 2, 32 (M) ⊂ C0, 23 ⊂
L∞(M, ḡ). Therefore we get with Poincaré’s inequality, the Calderón–Zygmund inequality
for closed surfaces, and with (5.24) that

‖u(tT ) − ū(tT )‖
3
2
L∞(M,ḡ) ≤ d5‖u(tT ) − ū(tT )‖

3
2

W 2, 32 (M,ḡ)
≤ d6‖∇2

ḡ u(tT )‖
3
2

L
3
2 (M,ḡ)

≤ d7‖�ḡu(tT )‖
3
2

L
3
2 (M,ḡ)

≤ d8e
d9‖ f ‖L∞(M,ḡ) .

(5.25)

with constants di > 0, i ∈ {5, 6, 7} and di = di (u0) > 0, i ∈ {8, 9}. With (2.14) we therefore
obtain the uniform bound

‖u(tT )‖L∞(M,ḡ) ≤ d8e
d9‖ f ‖L∞(M,ḡ) + max

{
|m0| + m1‖ f ‖L∞(M),

1

2
| log(A)|

}
. (5.26)

Upon shifting time by tT , we therefore get from Lemma 5.5

sup
s∈[T+1,T+2]

‖u(s)‖L∞(M,ḡ)

≤ sup
s∈[tT ,tT +3)

‖u(s)‖L∞(M,ḡ) ≤ M(‖u(tT )‖L∞(M,ḡ), ‖ f ‖L∞(M,ḡ), 3)

≤ M
(
d8e

d9‖ f ‖L∞(M,ḡ) + max

{
|m0| + m1‖ f ‖L∞(M,ḡ),

1

2
| log(A)|

}
, ‖ f ‖L∞(M,ḡ), 3

)

=: N (u0, ‖ f ‖L∞(M,ḡ)).

(5.27)

Since M is increasing in its first and second variables by Lemma 5.5, we see that N is
increasing in ‖ f ‖L∞(M,ḡ), as claimed. Since T > 0 was arbitrary, the claim follows. ��

5.5 Convergence of the flow

Let f ∈ C∞(M), A > 0, p > 2 and u0 ∈ Cp,A as before, and let u denote the global,
smooth solution of the initial value problem (5.2), (5.3). In this section we shall show that for
a suitable sequence tl → ∞, l → ∞, the associated sequence of metrics g(tl) tends to a limit
metric g∞ = e2u∞ ḡ with Gauss curvature Kg∞ , which then implies that Kg∞ = f − α∞
with a constant α∞. Afterwards, we shall have a closer look at this constant α∞.

By (5.22), we know that, for a suitable sequence tl → ∞, l → ∞ we have∫
M

|∂t u(tl)|2dμg(tl ) =
∫
M

| f − Kgl − α(tl)|2dμg(tl ) → 0 for l → ∞. (5.28)

We can strengthen this observation as follows.

Lemma 5.8 For F(t) = ∫
M |∂t u(t)|2dμg(t) as above, we have F(t) → 0 for t → ∞.

Proof First we consider the evolution equation of the curvature Kg(t) and of α(t). By the
Gauss Eq. (1.1) and (5.2) we have

∂t Kg(t) = ∂t (−e−2u(t)�ḡu(t) + e−2u(t) K̄ )

= −2∂t u(t)Kg(t) − �g(t)∂t u(t)
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= 2Kg(t)(Kg(t) − f + α(t)) + �g(t)(Kg(t) − f + α(t))

= 2(Kg(t) − f + α(t))2 + 2( f − α(t))(Kg(t) − f

+α(t)) + �g(t)(Kg(t) − f + α(t))

= 2(∂t u(t))2 − 2( f − α(t))∂t u(t) − �g(t)∂t u(t)

(5.29)

for t > 0. Moreover, by (2.11) we have

d

dt
α(t) = 2

A

∫
M

f e2u(t)∂t u(t)dμḡ = 2

A

∫
M

f ∂t u(t)dμg(t). (5.30)

Combining (5.2), (5.29) and (5.30), we arrive at

∂t t u(t) = ∂t
(
f − Kg(t) − α(t)

)

= −2(∂t u(t))2 + 2( f − α(t))∂t u(t) + �g(t)∂t u(t) + 2

A

∫
M

f ∂t u(t)dμg(t).
(5.31)

We therefore get, using (2.12), that

1

2

d

dt
F(t) = 1

2

d

dt

∫
M

|∂t u(t)|2e2u(t)dμḡ =
∫
M

(
∂t u(t)∂t t u(t) + |∂t u(t)|2∂t u(t)

)
dμg(t)

=
∫
M

(
−(∂t u(t))3 + 2

(
f − α(t)

)
(∂t u(t))2 + ∂t u(t)�g(t)∂t u(t)

)
dμg(t)

≤ −
∫
M

(∂t u(t))3dμg(t) + 2
(‖ f ‖L∞(M,ḡ) + α0

)
F(t) − G(t)

(5.32)

with

G(t) :=
∫
M

|∇g(t)∂t u(t)|2g(t)dμg(t) for t > 0.

With Lemma 4.4, applied with r = 3, CGNL = CGNL(3) > 0, (5.2) and Lemma 5.7 we can
furthermore estimate

−
∫
M

(∂t u(t))3dμg(t)

≤
∫
M

|∂t u(t)|3e2u(t)dμḡ ≤ e2N ‖∂t u(t)‖3L3(M,ḡ)

≤ e2NCGNL‖∂t u(t)‖2L2(M,ḡ)‖∂t u(t)‖H1(M,ḡ)

= e2NCGNL

∫
M

|∂t u(t)|2e−2u(t)dμg(t)

( ∫
M

|∂t u(t)|2e−2u(t)dμg(t)

+
∫
M

|∇g(t)∂t u(t)|2dμg(t)

) 1
2

≤ e6NCGNL

∫
M

|∂t u(t)|2dμg(t)

(∫
M

|∂t u(t)|2dμg(t) +
∫
M

|∇g(t)∂t u(t)|2dμg(t)

) 1
2

= e6NCGNLF(t)
(
F(t) + G(t)

) 1
2 ≤

(
e6NCGNL

)2
2

F2(t) + 1

2

(
F(t) + G(t)

)
,

(5.33)
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where we used Young’s inequality and the fact that

G(t) =
∫
M

|∇g(t)∂t u(t)|2g(t)dμg(t) =
∫
M

|∇ḡ∂t u(t)|2ḡdμḡ for t > 0.

Combining (5.32) and (5.33) and using that G(t) ≥ 0 gives

d

dt
F(t) ≤ d

dt
F(t) + G(t) ≤ (

e6NCGNL
)2
F2(t) + (

4(‖ f ‖L∞(M,ḡ) + α0) + 1
)
F(t)

=: C̃1F(t) + C̃2F
2(t).

(5.34)

By integrating (5.34) over (tl , t) ⊂ (tl , T ) and taking the supremum over t ∈ (tl , T ) we get

sup
t∈(tl ,T )

F(t) ≤ F(tl) + C̃1

∫ T

tl
F(t)dt + C̃2

∫ T

tl
F2(t)dt

≤ F(tl) + C̃1

∫ ∞

tl
F(t)dt + C̃2 sup

t∈(tl ,T )

F(t)
∫ ∞

tl
F(t)dt .

With (5.22) we also have
∫ ∞
tl

F(t)dt → 0 for l → ∞ and thus 1− C̃2
∫ ∞
tl

F(t)dt > 0 for l
sufficiently large. For these l and T > tl we thus have

sup
t∈(tl ,T )

F(t) ≤ 1(
1 − C̃2

∫ ∞
tl

F(t)dt
)

(
F(tl) + C̃1

∫ ∞

tl
F(t)dt

)
.

Letting T → ∞ yields

sup
t∈(tl ,∞)

F(t) ≤ 1(
1 − C̃2

∫ ∞
tl

F(t)dt
)

(
F(tl) + C̃1

∫ ∞

tl
F(t)dt

)
→ 0 as l → ∞

which shows the claim. ��
To prove now the convergence of the flow, we first note u(t) is uniformly (in t ∈ (0,∞))

bounded in H1(M, ḡ) by Proposition 2.25. and Lemma 5.8. We now consider a sequence
tl → ∞, l → ∞ and the associated sequence of functions ul := u(tl). This sequence
is bounded in H1(M, ḡ), hence there exists a subsequence, again denoted by (ul)l , with
ul → u∞ weakly in H1(M, ḡ) and therefore strongly in L2(M, ḡ). Furthermore with (2.12)
we know that αl := α(tl) → α∞ as l → ∞ after passing again to a subsequence. Moreover
we claim that e±ul → e±u∞ (as l → ∞) in L p(M, ḡ) for any 2 ≤ p < ∞. Indeed, using
Lemma 5.7 and the elementary estimate

|1 − ex | ≤ |x |e|x | for x ∈ R, (5.35)

we find that

‖eul − eu∞‖p
L p(M,ḡ) =

∫
M
epul |1 − eu∞−ul |pdμḡ

≤ epN
∫
M

|1 − eu∞−ul |pdμḡ

≤ epN
∫
M

|u∞ − ul |pep|u∞−ul ||dμḡ
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≤ epN e2pN
∫
M

|u∞ − ul |p−2|u∞ − ul |2dμḡ

≤ e3pN (2N )p−2‖u∞ − ul‖2L2(M,ḡ) → 0 as l → ∞.

Replacing ul by −ul we get also e−ul → e−u∞ in L p(M, ḡ) as l → ∞ for any p < ∞.
Furthermore, we have

‖e2ulαl − e2u∞α∞‖L2(M,ḡ) ≤ ‖e2ul (αl − α∞)‖L2(M,ḡ) + ‖α∞(e2ul − e2u∞)‖L2(M,ḡ)

≤ ‖e2ul‖L∞(M,ḡ)|αl − α∞|A 1
2 + |α∞|‖e2ul − e2u∞‖L2(M,ḡ)

→ 0 for l → ∞.

Since moreover e2ul ∂t ul → 0 in L2(M, ḡ) as l → ∞ with Lemma 5.7 and Lemma 5.8, the
evolution Eq. (5.2) yields

�ḡul = e2ul ∂t ul + K̄ − e2ul f + e2ulαl → K̄ − e2u∞ f + e2u∞α∞ in L2(M, ḡ).

Since the Laplace operator �ḡ is closed in L2(M, ḡ) with domain H2(M, ḡ), we deduce
that u∞ in H2(M, ḡ) with

�ḡu∞ = K̄ − e2u∞ f + e2u∞α∞ (5.36)

and thus

‖�ḡ(ul − u∞)‖L2(M,ḡ) → 0 as l → ∞.

So, we even have strong convergence ul → u∞ in H2(M, ḡ) and uniformly, which implies
that u∞ ∈ CA and therefore

α∞ = 1

A

(∫
M

f dμg∞ − K̄

)

by integrating (5.36) over M . Consequently, for the Gauss curvature Kg∞ of the limit metric
g∞ = e2u∞ ḡ we get from (1.1) and (5.36) that

Kg∞ = e−2u∞(−�ḡu∞ + K̄
) = f − α∞ = f + 1

A

(
K̄ −

∫
M

f dμg∞

)

which shows the convergence of the flow.

5.6 The Sign of the Constant˛∞

In this subsection we complete the proofs of Theorem 3.4 and Theorem 3.5. For this we
show, under certain assumptions, that the expression

λ = 1

A

(
K̄ −

∫
M

f dμg∞

)

is positive. The proof of Theorem 3.5 is already completed by the statement of Corollary 4.7.
So we can turn to Theorem 3.4.

Proof of Theorem 3.4 (completed) We have seen in Lemma 5.7 that in the case where u0 ≡
1
2 log(A) ∈ Cp,A, the uniform L∞-bound on the global solution of the initial value problem
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(5.2), (5.3) only depends on A and an upper bound on ‖ f ‖L∞(M,ḡ). In other words, if A > 0
and c > 0 are fixed, then there exists τ > 0 with the property that

sup
t>0

‖u(t)‖L∞(M,ḡ) ≤ τ

for every f ∈ C∞(M) with ‖ f ‖L∞(M,ḡ) ≤ c and the corresponding solution u of the
initial value problem (5.2), (5.3) with u0 ≡ 1

2 log(A) ∈ Cp,A. Consequently, we also have
‖u∞‖L∞(M,ḡ) ≤ τ under the current assumptions on f , which implies that

λ = 1

A

(
K̄ −

∫
M

f e2u∞dμḡ

)
= 1

A

(
K̄ + cA −

∫
M

( f + c)e2u∞dμḡ

)

≥ c + K̄

A
− ‖ f + c‖L1(M,ḡ)‖e2u∞‖L∞(M,ḡ) ≥ c + K̄

A
− ‖ f + c‖L1(M,ḡ)e

2τ .

Hence, if ‖ f + c‖L1(M,ḡ) < ε := c+ K̄
A

e2τ
, we have λ > 0. ��
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6 Appendix

In this section, we collect some helpful estimates and well-posedness results for a class of
linear second order parabolic equations in non-divergence formwith continuous second order
coefficient. Most of these results should be known to experts but seem hard to find in the
required form in the literature.

As before, let (M, ḡ) be a two-dimensional, smooth, closed, connected, oriented Riemann
manifold endowedwith a smooth backgroundmetric ḡ. For a domain� ⊂ R×M and p ≥ 1,
we let W 2,1

p (�) denote the space of functions u ∈ L p(�) which have weak derivatives Du,
D2u and ∂t u in L p(�). In the following,wefix p > 2, andwe recall the following embedding,
see e.g. [13, Lemma 3.3].

Lemma 6.1 If the domain � ⊂ R× M is bounded, then W 2,1
p (�) is continuously embedded

in Cα(�) for some α = α(p) > 0 and therefore compactly embedded in C(�).

We consider the linear parabolic problem

∂t u(t, x) = a(t, x)�ḡu(t, x) + c(t, x)u(t, x) + d(t, x), (6.1)
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with a, c, d ∈ C(�) and d ∈ L p(�). We say that a function u ∈ W 2,1
p (�) is a (strong)

solution of (6.1) in � if (6.1) holds almost everywhere in �. Specifically, we consider (6.1)
on the cylindrical domains �T = (0, T ) × M and �̃T = (−∞, T ) × M in the following.

In particular, we consider strong solutions of (6.1) together with the initial condition

u(0, x) = u0(x) in M (6.2)

with u0 ∈ W 2,p(M, ḡ), which is supposed to hold in the (initial) trace sense.

Proposition 6.2 Let T > 0, a, c ∈ C(�T ) with aT := min
(t,x)∈�T

a(t, x) > 0, let d ∈ L p(�T )

for some p > 2, and let u0 ∈ W 2,p(M, ḡ).
Then the initial value problem (6.1), (6.2) has a unique strong solution u ∈ W 2,1

p (�T ).
Moreover, u satisfies the estimate

‖u‖W 2,1
p (�T )

≤ C
(
‖u0‖W 2,p(M,ḡ) + ‖d‖L p(�T )

)
(6.3)

with a constant C > 0 depending only on ‖a‖L∞(�T ), ‖c‖L∞(�T ) and aT . Moreover, C does
not increase after making T smaller.
If, moreover, a, c, d ∈ Cα(�T ) for some α > 0, then u ∈ C(�T ) ∩ C2,1(�T ) is a classical
solution of (6.1), (6.2), and we have the inequality

‖u0‖H1(M,ḡ) ≥ lim sup
t→0+

‖u(t)‖H1(M,ḡ) (6.4)

Proof In the following, the letter C stands for various positive constants depending only on
‖a‖L∞(�T ), ‖c‖L∞(�T ), and aT , and which do not increase after making T smaller.

Step 1:We first assume that we are given a strong solution u ∈ W 2,1
p (�T ) of (6.1), (6.2)

with u0 ≡ 0 ∈ W 2,p(M, ḡ). We then define v : �̃T → R by

v(t, x) =
{
u(t, x), for t > 0;
0, for t ≤ 0.

Then v ∈ W 2,1
p (�̃T ) solves (6.1) with a, c, d replaced by suitable extensions ã, c̃,∈

L∞(�̃T ), d̃ ∈ L p(�̃T ) satisfying ã(t, x) = a(x, 0), c̃(t, x) = c(x, 0) and d̃(t, x) = 0
for t ≤ 0, x ∈ M .

Therefore, [14, Theorem 7.22] gives rise to the uniform bound

‖D2v‖L p(�̃T ) + ‖∂tv‖L p(�̃T ) ≤ C
(
‖d̃‖L p(�̃T ) + ‖v‖L p(�̃T )

)
. (6.5)

This translates into the estimate

‖D2u‖L p(�T ) + ‖∂t u‖L p(�T ) ≤ C
(
‖d‖L p(�T ) + ‖u‖L p(�T )

)
. (6.6)

Moreover, setting V (t) := ‖u(t)‖p
L p(M,ḡ) for t ∈ R, we have V (0) = 0 and

V̇ (t) = p
∫
M

|u(t)|p−2u(t)∂t u(t)dμḡ ≤ pV (t)
1
p′ ‖∂t u(t)‖L p(M,ḡ)

≤ p

(
V (t)

p′ + ‖∂t u(t)‖p
L p(M,ḡ)

p

)
= p

p′ V (t) + ‖∂t u(t)‖p
L p(M,ḡ)
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for t ∈ (0, T ), therefore

V (t) =
∫ t

0
V̇ (s) ds ≤ p

p′

∫ t

0
V (s) ds + ‖∂t u‖p

L p(�t )

≤ p

p′

∫ t

0
V (s) ds + C

(
‖d‖p

L p(�t )
+ ‖u‖p

L p(�t )

)
≤ C

(∫ t

0
V (s) ds + ‖d‖p

L p(�t )

)
.

By Gronwall’s inequality we get V (t) ≤ C‖d‖p
L p(�t )

and thus

‖u(t)‖L p(M,ḡ) ≤ C‖d‖L p(�t ) for t ∈ [0, T ]. (6.7)

This already implies the uniqueness of strong solutions of (6.1), (6.2), since the difference
u of two solutions u1, u2 ∈ W 2,1

p (�T ) of (6.1), (6.2) satisfies (6.1), (6.2) with u0 = 0 and

d = 0. Moreover, if u ∈ W 2,1
p (�T ) is a strong solution of (6.1), (6.2), then the function

û ∈ W 2,1
p (�T ) given by û(t, x) := u(t, x) − u0(x) safisfies (6.1), (6.2) with u0 = 0 and d

replaced by d̂ given by

d̂(t, x) = d(t, x) + a(t, x)�ḡu0(x) + c(t, x)u0(x).

Consequently, combining (6.6) and (6.7), and using an interpolation estimate for Du, we find
that

‖u‖W 2,1
p (�T )

≤ ‖û‖W 2,1
p (�T )

+ ‖u0‖W 2,p(M,ḡ) ≤ C
(
‖d̂‖L p(�T ) + ‖û‖L p(�T )

)

+ ‖u0‖W 2,p(M,ḡ)

≤ C‖d̂‖L p(�T ) + ‖u0‖W 2,p(M,ḡ) ≤ C
(‖d‖L p(�T ) + ‖u0‖W 2,p(M,ḡ)

)
,

as claimed in (6.3).
Step 2 (Existence): In the casewhere a, c, d ∈ Cα(�T ) and u0 ∈ C2+α(M), the existence

of a classical solution u ∈ C(�T ) ∩ C2,1(�T ) of (6.1), (6.2) follows as in [14, Theorem
5.14].

In the general case we consider (6.1), (6.2) with coefficients an, cn, dn ∈ Cα(�T ), u0,n ∈
C2+α(M), in place of a, c, d, u0 with the property that an → a, cn → c in L∞(�T ),
dn → d ∈ L p(�T ) as well as u0,n → u0 in W 2,p . The associated unique solutions un ∈
C(�T ) ∩ C2,1(�T ) are uniformly bounded in W 2,1

p (�T ) by (6.3), and therefore we have

un⇀u in W 2,1
p (�T ) after passing to a subsequence. For every φ ∈ C∞

c (�T ), we then have∫
�T

(
∂t u(t, x) − a(t, x)�ḡu(t .x) − c(t, x)u(t, x) − d(t, x)

)
φ(t, x)dμḡ(x)dt

= lim
n→∞

∫
�T

(
∂t un(t, x) − an(t, x)�ḡun(t, x) − cn(t, x)un(t, x) − dn(t, x)

)

× φ(t, x)dμḡ(x)dt = 0,

and from this we deduce that ∂t u(t, x) − a(t, x)�ḡu(t, x) − c(t, x)u(t, x) − d(t, x) = 0
almost everywhere in �T , so u is a strong solution of (6.1).
Step 3: It remains to show the inequality (6.4) in the case where a, c, d ∈ Cα(�T ) for some
α > 0. Since u ∈ C(�T ) ∩ C2,1(�T ) in this case and therefore

‖u0‖L2(M,ḡ) = lim
t→0+ ‖u(t)‖L2(M,ḡ),

it suffices to show that

‖∇u0‖L2(M,ḡ) ≥ lim sup
t→0+

‖∇u(t)‖L2(M,ḡ). (6.8)
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If u0 ∈ C2+α(M) for some α > 0, this follows by [14, Theorem 5.14] with lim in place of
lim sup, since the function t → u(t) is continuous from [0, T ) → C2+α(M) in this case.
Moreover, in this case we have, by Hölder’s and Young’s inequality,

d

dt
‖∇u(t)‖2L2(M,ḡ) = −

∫
M

∂t u(t)�u(t)dμḡ

= −
∫
M

(
a(t)|�u(t)|2 + c(t)u(t)�u(t) + d(t)�u(t)

)
dμḡ

≤ −aT ‖�ḡu(t)‖2L2(M,ḡ) + ‖c(t)u(t) + d(t)‖L2(M,ḡ)‖�ḡu(t)‖L2(M,ḡ)

≤ −aT ‖�ḡu(t)‖2L2(M,ḡ) + aT ‖�ḡu(t)‖2L2(M,ḡ)

+ 1

4aT
‖c(t)u(t) + d(t)‖2L2(M,ḡ)

= 1

4aT
‖c(t)u(t) + d(t)‖2L2(M,ḡ),

and therefore

‖∇u(t)‖2L2(M,ḡ) ≤ ‖∇u(0)‖2L2(M,ḡ)

+ 1

4aT

∫ t

0
‖c(s)u(s) + d(s)‖2L2(M,ḡ) ds for t > 0. (6.9)

In the general case, we consider (6.1), (6.2) with a sequence of initial conditions un,0 in
place of u0, where un,0 → u0 in H2(M). The associated unique solutions un ∈ C(�T ) ∩
C2,1(�T ) are uniformly bounded inW 2,1

p (�T ) by (6.3), and they are also uniformly bounded
in C2,1([ε, T ] × M) by [14, Theorem 5.15] for every ε ∈ (0, T ). Fix t ∈ (0, T ). Passing to
a subsequence, we may assume that un⇀u in W 2,1

p (�T ), un → u strongly in C0(�T ) and
un(t) → u(t) strongly in C1(M). As in Step 2, we see, by testing with φ ∈ C∞

c (�T ), that
∂t u(t, x) − a(t, x)�ḡu(t, x) − c(t, x)u(t, x) − d(t, x) = 0 almost everywhere in �T , so u
is the unique strong solution of (6.1), (6.2). Moreover, by (6.9) we have

‖∇u(t)‖2L2(M,ḡ) = lim
n→∞ ‖∇un(t)‖2L2(M,ḡ)

≤ lim
n→∞

(
‖∇un(0)‖2L2(M)

+ 1

4aT

∫ t

0
‖c(s)un(s) + d(s)‖2L2(M,ḡ) ds

)

= ‖∇u(0)‖2L2(M,ḡ) + 1

4aT

∫ t

0
‖c(s)u(s) + d(s)‖2L2(M,ḡ) ds.

It thus follows that

‖∇u(t)‖2L2(M,ḡ) − ‖∇u(0)‖2L2(M,ḡ) ≤ 1

4aT

∫ t

0
‖c(s)u(s) + d(s)‖2L2(M,ḡ) ds

and therefore

lim sup
t→0

(
‖∇u(t)‖2L2(M,ḡ) − ‖∇u(0)‖2L2(M,ḡ)

)
≤ 1

4aT
lim
t→0+

∫ t

0
‖c(s)u(s) + d(s)‖2L2(M,ḡ) ds = 0,

as claimed in (6.8). ��
Next we prove a maximum principle for solutions of (6.1), (6.2). We need the following

preliminary lemma.
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Lemma 6.3 Let T > 0.

(i) For any function u ∈ C2(M) we have
∫

{x∈M|u(x)>0}
�ḡudμḡ ≤ 0.

(ii) Let u, ρ ∈ C1([0, T ]) be functions with u(0) ≤ 0 and ρ(T ) ≥ 0. Then
∫

{t∈[0,T ]|u(t)>0}
(
ρ(t)∂t u(t) + κu(t)

)
dt ≥ 0 with κ := sup

s∈(0,T )

∂tρ(s). (6.10)

(iii) Let u ∈ C2,1(�T ) ∩ C0,1(�T ), ρ ∈ C0,1(�T ) be functions with u ≤ 0 on {0} × M and
ρ ≥ 0 on {T } × M. Then we have∫

{(t,x)∈[0,T ]×M|u(t,x)>0}
(ρ(t, x)∂t u(t, x) + κu(t, x) − �ḡu(t, x))dμḡ(x)dt ≥ 0

with κ := sup
(s,x)∈(0,T )×M

∂tρ(s, x).
(6.11)

Proof (i) By Lebesgue’s theorem, it suffices to prove
∫

{x∈M|u(x)>εn}
�ḡudμḡ ≤ 0 (6.12)

for a sequence εn → 0+. By Sard’s Lemma, we may choose this sequence such that
�ε := {x ∈ M | u(x) > εn} is an open set of class C1, whereas the outer unit vector

field of �ε is given by (t, x) → − ∇ḡu(t,x)
|∇ḡu(t,x)|ḡ . Hence (6.12) follows from the divergence

theorem.
(ii) The set {t ∈ [0, T ] | u(t) > 0} is a union of at most countably many open intervals I j ,

j ∈ N. For any such interval, partial integration gives

∫
I j

(
ρ(t)∂t u(t) + ∂tρ(t)u(t)

)
dt =

{
0, if T /∈ I j ;
ρ(T )u(T ) ≥ 0, if T ∈ I j .

Consequently,
∫

{t∈[0,T ]|u(t)>0}
ρ(t)∂t u(t) dt ≥ −

∫
{t∈[0,T ]|u(t)>0}

∂tρ(t)u(t) dt

≥ −
∫

{t∈[0,T ]|u(t)>0}
κu(t) dt

with κ given in (6.10). This shows the claim.
(iii) This is a direct consequence of (i), (ii) and Fubini’s theorem.

��
Proposition 6.4 (Maximum principle)
Let T > 0, a, c ∈ C(�T ) with aT := min

(t,x)∈�T

a(t, x) > 0, let d ∈ L p(�T ) for some p > 2

with dT := sup(t,x)∈�T
d(t, x) < ∞, and let u0 ∈ W 2,p(M, ḡ). Moreover, let u ∈ W 2,1

p (�T )

be the unique solution of (6.1), (6.2).

(i) If u0 ≤ 0 on M and dT ≤ 0, then u ≤ 0 on �T .
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(ii) If c ≡ 0 on �T , then

u(t, x) ≤ ‖u+
0 ‖L∞(M,ḡ) + tdT for t ∈ [0, T ], x ∈ M . (6.13)

Proof (i) Step 1:We consider the special case a ∈ C0,1(�T ), u0 ≤ 0 and dT ≤ −ε for some
ε > 0. We put ρ := 1

a ∈ C0,1(�T ) and κ := sup
(s,x)∈(0,T )×M

∂tρ(s, x) as in (6.11). Moreover,

we consider the function

ŭ ∈ W 2,1
p (�T ), ŭ(t, x) = e−κ̆t u(t, x)

with κ̆ = |κ|
min(t,x)∈�T

ρ(t,x) + ‖c‖L∞(�T ), noting that ŭ satisfies

ρ(t, x)∂t ŭ(t, x) − �ḡ ŭ(t, x) + κ ŭ(t, x)

= e−κ̆t
(
u(t, x)(ρ(t, x)c(t, x) − ρ(t, x)κ̆ + κ) + ρ(t, x)d(t, x)

)

≤ −ρ(t, x)εe−κ̆t almost everywhere in {(t, x) ∈ �T | ŭ(t, x) > 0}.
(6.14)

We now let (un)n∈N be a sequence in C2,1(�T ) ∩ C0,1(�T ) with un(x, 0) ≤ 0 and
un → ŭ in W 2,1

p (�T ). Since the functions gn := 1{(t,x)∈[0,T ]×M|un(t,x)>0} are bounded in
L p′

(�T ), we may pass to a subsequence such that gn⇀g in L p′
(�T ), where g ≥ 0 and

g ≡ 1 in {(t, x) ∈ [0, T ] × M | ŭ(t, x) > 0}, since un → ŭ uniformly as a consequence
of Lemma 6.1 and therefore gn → 1 pointwisely on {(t, x) ∈ [0, T ] × M | ŭ(t, x) > 0}.
Applying Lemma 6.3 (iii) to un , we find that

0 ≤
∫

{(t,x)∈[0,T ]×M|un(t,x)>0}

(
ρ(t, x)∂t un(t) − �ḡun(t, x) + κun(t, x)

)
dμḡ(x)dt

=
∫

(0,T )×M
gn(t, x)

(
ρ(t, x)∂t un(t, x) − �ḡun(t, x) + κun(t, x)

)
dμḡ(x)dt

for all n ∈ N and therefore

0 ≤ lim
n→∞

∫
(0,T )×M

gn(t, x)
(
ρ(t, x)∂t un(t, x) − �ḡun(t, x) + κun(t, x)

)
dμḡ(x)dt

=
∫

(0,T )×M
g(t, x)

(
ρ(t, x)∂t ŭ(t, x) − �ḡ ŭ(t, x) + κ ŭ(t, x)

)
dμḡdt

≤ −
∫

(0,T )×M
g(t, x)ρ(t, x)εe−κ̆t dμḡ(x)dt

≤ −
∫

{(t,x)∈(0,T )×M|ŭ(t,x)>0}
ρ(t, x)εe−κ̆t dμḡ(x)dt .

We thus conclude that {(t, x) ∈ (0, T ) × M | ŭ(t, x) > 0} = {(t, x) ∈ (0, T ) × M |
u(t, x) > 0} = ∅ and therefore u ≤ 0 in (0, T ) × M .
Step 2: In the special case where a ∈ C0,1(�T ), u0 ≤ 0 and dT ≤ 0, we may apply Step 1 to
the functions uε ∈ W 2,1

p (�T ) defined by uε(t, x) = u(t, x) − εt , which yields that uε ≤ 0
for every ε > 0 and therefore u ≤ 0 in �T .
Step 3: In the general case, we consider a sequence an ∈ C0,1(�T ) with an → a in C(�T ),
and we let un denote the associated solutions of (6.1), (6.2) with a replaced by an . As in the
end of the proof of Proposition 6.2, we then find that, after passing to a subsequence, un⇀ũ
inW 2,1

p (�T ), where ũ is a solution of (6.1), (6.2). By uniqueness, we have u = ũ. Moreover,
since un ≤ 0 for all n by Step 3, we have u = ũ ≤ 0, as required.
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(ii) We consider the function v ∈ W 2,1
p (�T ) given by v(t, x) = u(t, x) − ‖u+

0 ‖L∞(M,ḡ) −
tdT , which, by assumption, satisfies (6.1), (6.2) with c ≡ 0, d − dT in place of d and
u0 − ‖u+

0 ‖L∞(M,ḡ) in place of u0. Then (i) yields v ≤ 0 in �T , and therefore u satisfies
(6.13). ��
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