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Abstract
We consider elliptic operators in divergence form with lower order terms of the form Lu =
—div(A-Vu+bu)—c-Vu—du,inanopenset Q2 C R”,n > 3, with possibly infinite Lebesgue

measure. We assume that the n x n matrix A is uniformly elliptic with real, merely bounded

and possibly non-symmetric coefficients, and either b, c € L">°(Q) and d € LE)’COO(Q),

or b2, |c|?, |d| € Kioe(S2), where Kioc(€2) stands for the loclzflC Stummel-Kato class. Let
Kpini (€2) be a variant of IC(2) satisfying a Carleson-Dini-type condition. We develop a De
Giorgi/Nash/Moser theory for solutions of Lu = f — divg, where f and |g|> € Kpini(R2)
if, for ¢ € [n, 00), any of the following assumptions holds: (i) |b|2, |d| € Kpini(2) and
either ¢ € Lipd(Q) or [c|? € Kioe(2); (i) divb + d < 0 and either b + ¢ € L. (Q) or
16+ c|? € Kioe(R); (iii) —dive +d < 0 and |b + ¢|> € Kpini(S2). We also prove a Wiener-
type criterion for boundary regularity. Assuming global conditions on the coefficients, we
show that the variational Dirichlet problem is well-posed and, assuming —dive +d < 0, we
construct the Green’s function associated with L satisfying quantitative estimates. Under the
additional hypothesis |b + c|> € K/(R2), we show that it satisfies global pointwise bounds
and also construct the Green’s function associated with the formal adjoint operator of L. An
important feature of our results is that all the estimates are scale invariant and independent
of 2, while we do not assume smallness of the norms of the coefficients or coercivity of the

associated bilinear form.
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1 Introduction

In the present paper we will deal with elliptic equations of the form
Lu=—div(A-Vu+bu)—c-Vu —du =0 (1.1)

in an open set @ C R", n > 3, where A(x) = (a;j (x));?’jzl is a matrix with entries
ajj : Q — R, fori,je{l,2,...,n},b,c: Q2 — R" are vector fields, and d : @ — R a
real-valued function. Our standing assumptions are the following:

There exist 0 < A < A < 00, so that

AE? < (A(x)E, &), forallé € R" andae. x € Q, (1.2)
(A(X)E, n) < AlE|ln], forall&, neR"andae. x € , (1.3)
b1, 1c1?, 1d| € Kioe(R) or b,ce L°(Q),d € L) (), (1.4)

where Kjoc(2) and L]°°(2) stand for the local Stummel-Kato class and the local weak-L"

loc
space respectively (see Definitions 2.9 and 2.22)!. In several cases, we will also need to

assume one of the following negativity conditions:
/(dgo—b-V<ﬂ)§0, forall 0 < ¢ € C°(R), (1.5)
Q
or

/(dg0+c-V§0)§0, forall 0 < ¢ € C3°(Q). (1.6)
Q

I our original assumptions were b,c € L"(2) and d € L% (2). The extension to weak Lebesgue spaces
is due to an observation of G. Sakellaris in [28]; a more detailed discussion can be found at the end of the
introduction.
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If (1.5) (resp. (1.6)) holds we will say that the bd (resp. cd) negativity condition is satisfied. If
we reverse the inequality signs we will say that the bd or cd positivity condition is satisfied.

The objective of the current manuscript is to generalize the standard theory of elliptic PDE
of the form —divAVu = 0 in open sets 2 C R", n > 3, with possibly infinite Lebesgue
measure, to equations of the form (1.1) under the aforementioned standing assumptions. In
particular, we aim to show scale invariant a priori local estimates (Caccioppoli inequality,
local boundedness and weak Harnack inequality), interior and boundary regularity for solu-
tions of (1.1), the weak maximum principle, well-posedness of the Dirichlet and obstacle
problems, and finally to construct the Green’s function for our operator satisfying several
quantitative estimates. It is important to highlight that neither the bilinear form associated
with the elliptic equation is coercive, nor the norms of the coefficients are small, which is
one of the main technical difficulties.

We would like to point out that we will only state the theorems in the main body of the
paper, just before their proofs. Nevertheless, the reader can find a detailed description of our
results in the introduction.

Let us give a brief overview of our results. In Sect. 3.1 we prove the standard interior
and boundary Caccioppoli’s inequality under either negativity condition (Theorems 3.1, 3.2,
and 3.3), while, in Sect. 5, having global assumptions on the coefficients, we show the well-
posedness of the generalized Dirichlet problem (5.2) satisfying the estimate (5.11), as well as
the validity of the weak maximum principle (Theorem 5.1). This maximum principle allows
us to solve the obstacle problem in bounded domains (Theorem 5.6). Then we assume that
one of the following conditions hold:

(1) ||, |d| € Kpini(£2) and either |c|? € Kioc(R2) or ¢ € L1 (), for g € [n, 00);
(2) divh +d < 0 and either |b + c|?> € Kioc(Q) or b+ ¢ € L1 (Q), for g € [n, 00);

(3) —dive +d < 0 and |b + ¢|> € Kpini ($2) (see Definition 2.11).

In Sect. 3.2, we demonstrate that the refined Caccioppoli inequality holds in the interior and
the boundary (Theorems 3.5 and 3.8), which leads to the local boundedness of subsolutions
(Theorem 4.4) and the weak Harnack inequality for non-negative supersolutions (Theorem
4.5) both in the interior and at the boundary. In Sect. 4.2 we prove interior and boundary
regularity for solutions and finally, assuming the cd-negativity condition and either b + ¢ €
L"9(),forq € [n, 00),o0r |b +c|? € K'(R), we use the aforementioned results to construct
the Green’s function associated with the operator L satisfying several quantitative estimates.
Under the additional hypothesis |b + ¢|*> € K'(2), we show global pointwise bounds and
construct the Green’s function associated with the formal adjoint operator of L. All our
estimates are scale invariant and independent of the Lebesgue measure of the domain.

We now briefly review the history of work in this area for linear elliptic equations in
divergence form with merely bounded leading coefficients and singular lower order terms.
The generalized Dirichlet problem in the Sobolev space W2 is well-posed if there exists a
unique u € Wh2(Q) such that Lu = f +divgandu —¢ € WOI‘Z(Q) for fixed p € W2(Q)
and f, g € LZ(Q). Moreover, there exists a constant Cg, 7 o so that the global estimate
lullwr2q) < Co. f.¢ holds. For operators without lower order terms this problem has a long
history and we refer to [9, p.214] and the references therein for details. In bounded domains,
in the presence of lower order terms, Ladyzhenskaya and Ural’tseva [19] and Stampacchia
[34] proved well-posedness of the generalized Dirichlet problem assuming conditions related
to the coercivity of the operator or smallness of the norms of the lower order coefficients. This
was quite restrictive as, for example, the “bad” terms coming from the lower order coefficients
can be absorbed in view of smallness. Gilbarg and Trudinger [9] gave an extension of the
previous results replacing the smallness conditions by the assumptions b, ¢, d € L% (2)

@ Springer



266 Page 4 of 69 M. Mourgoglou

assuming either (1.5) or (1.6). In fact, they only need b,c € L*(2) and d € L/2(Q), for
some s > n.Recently, Kim and Sakellaris [16], generalized it to operators whose coefficients
are in the critical Lebesgue space. Unfortunately, in all those results, the implicit constant in
the global estimate depends on the Lebesgue measure of €2 and thus, they cannot be extended
to unbounded domains by approximation. On the other hand, in unbounded domains with
possibly infinite Lebesgue measure, already in 1976, Bottaro and Marina [2] proved that,
ifb,c e L"(Q),d € L"*(Q) + L>®(), and divb +d < p < 0, then the generalized
Dirichlet problem is well-posed. To our knowledge, this was the first paper establishing well-
posedness in such generality. Using the same method, Vitanza and Zamboni [36], showed
well-posedness of the same problem when 1612, |c|?, |1d| € K (RQ).

The local pointwise estimates find their roots in De Giorgi’s celebrated paper [7] on
the Holder continuity of solutions of elliptic equations of the form —divAVu = 0, where
Theorems 4.4 (i) and 4.12 were proved in this special case (see also [25]). A few years later,
Moser gave a new proof of De Giorgi’s theorem in [23]. The same results were extended
in equations of the form (1.1) by Morrey [22] when b, c € L9 andd € L%/%, forq > n
and Stampacchia [32] (in more special cases). Moser also established the weak Harnack
inequality for solutions of —divAVu = 0 in [24], while Stampacchia [34] proved all the
a priori estimates for equations of the form (1.1) with ¢ € L" and |b|2, del’ s >n/2,
assuming that (1.5) holds and the radius of the balls are sufficiently small so that the respective
norms of the lower order coefficients on those balls are small themselves. If the lower order
coefficients are in the Stummel-Kato class K(€2) with sufficiently small norms, one can
find such results in [3] and [18] (see the references therein as well). Under the assumptions
b,c € L", and d € L%, Kim and Sakellaris [16] also established local boundedness for
subsolutions of the equation (1.1) satisfying either (1.5) or (1.6) and b+ c € L*, s > n
(with implicit constants dependent on the Lebesgue measure of 2). They also constructed a
counterexample showing that if (1.6) holds, it is necessary to have an additional hypothesis
on b + ¢ (see [16, Lemma 7.4]).

Proving the boundary regularity of solutions to the generalized Dirichlet problem with
data ¢ € WL2(Q) N C(Q) has been an important problem in the area and stems back to the
work of Wiener for the Laplace operator [37]. Wiener characterized the points § € 02 thata
solution converges continuously to the boundary in terms of the capacity of the complement
of the domain in the balls centered at £. The proof was tied to the pointwise bounds of the
Green’s function and so were its generalizations to elliptic equations. In particular, Littman,
Stampacchia and Weinberger [20] constructed the Green’s function in a bounded domain for
equations —divAVu = 0, where A is real and symmetric, proving such a criterion and later,
Griiter and Widman [11] extended their results to operators with possibly non-symmetric A.
For equations with lower order coefficients in bounded domains, Stampacchia [34] showed a
Wiener-type criterion in sufficiently small balls centered at the boundary of 2. On the other
hand, Kim and Sakellaris [16] succeeded to construct the Green’s function with pointwise
bounds (which was their main goal) following the method of Griiter and Widman, assuming
either (1.6)and b+ c € L", or (1.5)and b + ¢ € L®, s > n. This is the best known result in
this setting in domains with finite Lebesgue measure. In this case though, the construction
of the Green’s function was not used to conclude boundary regularity. For elliptic systems in
unbounded domains, Hofmann and Kim [13] constructed the Green’s function assuming that
their solutions satisfy the interior a priori estimates of De Giorgi/Nash/Moser. They also
showed boundary Holder continuity of the solution of the Dirichlet problem with C*(Q) data
under the stronger assumption of Lebesgue measure density condition of the complement
of Q2 in the balls centered at 9<2 (see also [15]). Recently, Davey, Hill and Mayboroda [6]
extended [13] to systems with lower order terms in b € LY, ¢ € L* and d € L2 with
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min{q, s, t} > n, whose associated bilinear form is coercive. For lower order coefficients in
the Stummel-Kato class in domains with C1-! boundary, the Green’s function was constructed
in [14], while in [39], elliptic systems were considered, assuming though smallness on the
norms and coercivity.

Let us now discuss our methods. Inspired by the treatment of the Dirichlet problem in [2]
and specifically the use of Lemma 2.34, we are able to extend their results to operators with
either negativity assumption (as opposed to —divb + d < u < 0) by requiring solvablhty

in the Sobolev space ¥ 2 instead of W2 with non-divergence interior data in L w2 instead
of L?. This is the “correct” Sobolev space in unbounded domains and had already appeared
in [21] and in connection with the Green’s function in [13]. The main difficulty lies on the
fact that when we are proving the global bounds for the solution of the Dirichlet problem,
we arrive to an estimate where the term

1b + ¢l Lrae | Vulls g

should be absorbed. But unless one has smallness of ||b + c|| n.q(q) this is impossible. To
deal with this issue, we use Lemma 2.34 and split the domain in a finite number of subsets
Q; where the norm L"™9(£2;) norm of b + ¢ becomes small. We also write u as a finite sum of
u; so that (suppVu;) C €2; and, loosely speaking, the term above can be hidden. An iteration
argument is then required, which concludes the desired result. An approximation argument on
the data and the domain yields the desired well-posedness. The same considerations apply to
prove the weak maximum principle for subsolutions with either negativity condition, which,
in turn, allows us to solve the unilateral variational poblem and thus, the obstacle problem
in bounded domains. As a corollary we obtain that the minimum of two subsolutions of the
inhomogeneouus equation Lu = f — divg is also a subsolution.

Moving further to the proof of Caccioppoli inequality, some serious difficulties arise. Up
to now, Caccioppoli’s inequality was unknown with so general conditions, since it could
be solved only for balls » < 1 and then rescale. This resulted to the appearance of the
Lebesgue measure of the domain in the constants and so, it could not serve our purpose for
scale invariant estimates. To overcome this important obstacle, we had to make a technically
challenging adaptation of the method that solves the Dirichlet problem. The idea to use this
iteration method to prove standard and refined Caccoppoli inequalities is novel and turns
out to be the most important ingredient that overcomes the necessity for smallness of the
norms of the coefficients in order to develop a De Giorgi/Nash/Moser theory for so general
operators.

To prove local boundedeness, weak Harnack inequality, interior and boundary regularity,
we have to make a non-trivial adaptation of the arguments of Gilbarg and Trudinger [9, pp.
194-209]. To do so, we are required to prove a refined version of Caccioppoli inequality (The-
orems 3.5-3.8), which in [9] was immediate. This turns out to be an even more demanding task
than the proof of Caccioppoli inequality itself. Once we obtain them, we show Lemma 4.1,
which is the building block of a Moser-type iteration argument. For this lemma, we need an
embedding inequality (see Corollary 2.17) with constants independent of the domain, which
we prove, since we were not able to find it in the literature (with constants independent of the
domain). The use of the Stummel-Kato class K(€2) as an appropriate class of functions for
the interior data and the lower order coefficients is not new and has its roots to Schrédinger
operators with singular potentials (see [18] and the references therein). Although, in our case,
due to the counterexample of Kim and Sakellaris [16] (see Example 4.8), | + ¢|? should
be in appropriate subspace of it satisfying a Carleson-Dini-type condition. In fact, a %-Dini
condition on the Stummel-Kato modulus was imposed in [26] to prove local boundedness
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of subsolutions for certain quasi-linear equations, but their constants depended on 2. Our
Moser-type iteration argument in the proof of Theorem 4.4 follows their ideas, but to get
scale invariant estimates, it is necessary to come up with the condition (2.4) and deal with
some technical details that required attention already in the original proof. In Example 4.9,
we also show that a negativity condition is necessary to obtain local boundedness.

Regarding interior and boundary regularity, as is customary, we go through an application
of the weak Harnack inequality. But for this, we need the positivity condition to hold which
would force us to assume L1 = 0, or equivalently —divb + d = 0. But since this would
lead to a significant restriction on the class of operators that our theorems would apply,
we incorporate —div(bu) and du to the interior data —divg and f respectively. The “new"
equation has the form

Lu= —div(AVu) — cVu = (f + du) — div(g — bu),

for which it is true that L1 = 0. The price we have to pay is to impose the additional
assumptions |b|2 and |d| € Kpini(£2) (for interior regularity and boundary regularity under
the CDC condition). Of course, we require u to be locally bounded as well and thus, we
need to assume one of the Assumptions (1)—(3). It is interesting to see that the proof of
Theorem 4.14 (ii), where we are proving a Wiener type criterion for boundary regularity,
is quite laborious as it requires a modification of the original argument in [9] (which is
not obvious without the capacity density condition) and a new way of handling the second
term X5 in the iteration scheme. Moreover we have to assume a slightly stronger condition,
i.e., that | f],|d| € Kpini,s(%2) and |b|?, |g|> € Kpini,s/2(2) for some § € (0, 1). To our
knowledge, this is the first Wiener-type criterion for boundary regularity of solutions for
equations with lower order coefficients with so general assumptions. Moreover, the interior
regularity is also new in the case that the radii of the balls we consider are not small (and
thus, we do not have smallness of the norms of the coefficients). Let us comment here that
one could try to prove boundary regularity following [11] or even [12], but in both cases,
there would only be treated solutions of equations with no right hand-side and b; = d = 0,
1 <i < n. This is because of the need of lower pointwise bounds for the Green’s function
or equivalently a Harnack inequality, which, in this situation, only holds for equations of the
form Lu = —divAVu — c¢Vu = 0.

Finally, having proved all the results above, we are in a position to construct the Green’s
function using the method of Hofmann and Kim [13] along with its variant of Kang and
Kim [15], where the main ingredients are the well-posedness of the Dirichlet problem, local
boundedness, Caccioppoli’s inequality, and maximum principle, while, for the approximating
operators, we also use the interior continuity for solutions of equations with lower order
coefficients that satisfy 1612, |c|?, |d] € Kpini(§2). We would not need an approximation
argument if it wasn’t for the lack of continuity in the general case. This creates some trouble
in the proof of G(x,y) = G'(y, x) (and nowhere else), where G’ stands for the Green’s
function associated with L’, the formal adjoint of L. It is important to point out that the
pointwise bounds for G do not hold unless local boundedness of subsolutions of L'u = 0
is true; in view of Example 4.8, an additional condition on b + c is necessary. In our case,
this will be |6 + ¢|> € Kpini(€2) as before. Remark that, since Q may have infinite Lebesgue
measure, we can assume 2 = R” and construct the fundamental solution.

Related results: An interesting result, which is very related to our work, was obtained
simultaneously and independently by Georgios Sakellaris. The first version of our paper and
[28] were uploaded on ArXiv.org the same day (9th of April 2019). His primary goal was to
construct Green’s functions for elliptic operators of the form (1.1) in general domains under
either negativity condition that satisfy scale invariant pointwise bounds. Then, he applies them
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to obtain global and local boundedness for solutions to equations with interior data in the case
(1.6). To do this, it was required b+ ¢ to be in a scale invariant space, which for the author was
the Lorentz space L”*l(Q) (as opposed to |b + c|2 € Kpini(£2) we identified). His method is
totally different than ours and is based on delicate estimates for decreasing rearrangements.
In fact, he first proves the existence of Green’s functions via various approximations and
then uses their properties to obtain a priori estimates; our method follows the exact opposite
direction. Our paper and [28] are complementary since, apart from the major differences in
the approach, the conditions |b + ¢|* € Kpini(2) and |b + ¢| € L™ () are not comparable.
Indeed, if g(x) = |x|~!(—log|x) 315 (x), where B := B(0, 1), then g € L™!(B) such
that g2 ¢ Kbini,o (B) for any o > 0 (see [28]), while, in Example 2.23, we show that there
exists a non-negative function f € Kpjnjo (R} )\L?74(R7) for any « > 0, p > 0 and
g € (0,00],andso h := /f ¢ L™ (R") and h* € Kpini,« (R:). We would like to note here
that Sakellaris observed that, due to a Lorentz-Sobolev embedding theorem and density, (1.5)
or (1.6) can be applied assuming that b, c € L™*°(Q),d € L"2:50(Q). Although our original
assumptions were b, ¢ € L"(Q2),d € L"/2(€2), and the constants depended on ||b + c|| (@)
(the same dependence as in [28]), while working the details of the case |b + c? € K(), we
realized that our method extends almost unchanged when b + ¢ € L™4(2), for g € [n, 00),
which is a slight improvement compared to our previous results and the ones in [28]. We
claim no credit though for the idea to use the Lorentz-Sobolev embedding theorem, which
we learned from [28].

Around a year after the last version of the present manuscript was uploaded on ArXiv.org
(26th of April 2019), Sakellaris uploaded [29] on the same preprint server (28th of May 2020),
where, under the assumptions of [28], he obtains interior and boundary Harnack inequalities
and, under smallness assumptions on the norms of the coefficients, he further proves interior
and boundary Moser’s estimates as well as interior local continuity.

2 Preliminaries

We will write a < b if there is C > 0 so thata < Cb and a <; b if the constant C depends
on the parameter r. We write a ~ b tomean a < b < a and define a =, b similarly. If B, (x)
is a ball of radius » and center x € €2, we will denote 2, (x) = B, (x) N L.

2.1 Sobolev space

Definition2.1 If 1 < p < n and p* = 22, we define the Sobolev spaces Y7 () and

n—p’
WLP(Q) to be the space of all weakly differentiable functions u € L”*(Q) and L?(R2)
respectively, whose weak derivatives are functions in L?(€2). We endow these spaces with
the respective norms

lullyrr@) = llullr* ) + IVullLr@)

lullwiry = lullLr@ + 1IVullLr).

We say thatu € Y,>2(Q) (resp.u € WL2(Q))ifu € Y'"2(K) (resp.u € W'2(K)) for any
compact K C Q2. We also define Yol’p(Q) and Wol”'(Q) as the closure of C°(Q) in Y17 ()

and WP (Q) respectively, and denote their dual spaces by ¥ ~17 '(8) and W17 (Q), where
p’ is the Holder conjugate of p.
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By Sobolev embedding theorem, it is clear that Wol’p(Q) cC YOI’P(Q), while if € has finite
Lebesgue measure they are in fact equal. See, for instance, Theorem 1.56 and Corollary 1.57
in [21]. Moreover, Yol’p(R”) = Y1P(R") (see e.g. Lemma 1.76 in [21]). We will denote by
2 = n2_f2 the dual Sobolev exponent for p = 2.

For u € YIL’CZ(Q) and ¢ € CZ2°(R2), the bilinear form which corresponds to the elliptic
operator (1.1) is given by

L(u, p) = / (AVu +du) - Vo — (c - Vu + du) ¢.
Q

which, by the embedding givenin (2.15) or the one in [28, p.6 and Lemma 2.2], is well-defined

n

1, .
if (1.4) holds. For the same reasons we can use (1.5) and (1.6) with ¥ "=1 () functions.
When we write Lu = f — divg, where f € Llloc(Q) and g € LIIOC(Q; R™), we mean that
it holds “in the weak sense”, i.e.,

£(u,v):/fv+g-Vv, forall v e CZ° ().
Q

If f € L*(R) and g € L*(R), we can extend it by density to v € ¥y ().

In the sequel we will require a notion of supremum and infimum of a function in ¥ 1-2(2)
at the boundary of an open set  C R” since such a function is not necessarily continuous all
the way to the boundary. Let ¥ denote either Y1:2(Q) or W12(£2) and Yy be either YO1 ’2(52)

or Wy (Q).

Definition 2.2 Givenafunctionu € Y, wesaythatu < 0ondQifu™ e Yy.Ifu is continuous
in a neighborhood of <2 then # < 0 on d<2 in the Sobolev sense if u < 0 in the pointwise
sense. In the same way u > 0 if —u < Oandu < w if u — w < 0. We define the boundary
supremum and infimum of u as

supu = inf{k e R: (u — bt ey and infu=— sup(—u).
aQ a0 aQ

Definition 2.3 Let E Sﬁ and u € Y. We say that u < 0 on E if u™ is the limit in ¥ -norm
of a sequence of C2°(Q2 \ E). Then u > 0 and u < v can be defined naturally. Moreover, if
2 has finite Lebesgue measure.

supu =inf{k e R:u <k on E} and infu = —sup(—u).
E E a0

If E = 9% the two definitions above coincide.
We record some results for Sobolev functions that we will need later. Their proofs can be
found in [21] and/or in [12] for functions in W!2(€2) or WOI‘Z(Q). Although, one can make

the obvious modifications to prove them for Y L2y or Yol’Z(Q).

Lemma24 If Q C R” is open and connected, u € Y and Vu = 0 a.e. in 2, then u is a
constant in Q2. If we also assume u € Yy, then u = 0.

Proof The fact that u is a constant can be found in [21, Corollary 1.42], while the second
part can proved by a slight modification of the proof of [12, Lemma 1.17]. O
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Lemma 2.5 ([21], Corollary 1.43) Ifu,v € Y (resp. Yo) then max(u, v) and min(u, v) are
inY (resp. Yy) and

Vu ,ifu>v

Vv ,ifvzu’

Vmax(u, v)(x) = [

Vv Jifu>v

Vu ,ivau'

Vmin(u, v)(x) = {

In particular, Vu = Vv a.e. on the set {x € Q : u(x) = v(x)}.

Theorem 2.6 ([21], Theorem 1.74) Let Q C R" be an open set and let f be a Lipschitz
function such that f(0) = 0.

() Ifu e W[L’Cl () then fou e wh! (). Moreover, for a.e. x € 2, we have that either

loc
V(fou)(x) = f'ux)Vu(x),
or
V(fou)x)=Vulx)=0.
(i) Ifu € Yo, then f ou € Yy and
Ifoully < If zeollully.
Remark that it is necessary to have f(0) = 0 when 2 is unbounded. For example, if

F() =1,then fou ¢ YL2(Q).

Lemma 2.7 Let Q2 C R" be an open set and let f : R — R be a function in Lip(R). Ifu € Y,
then f o u € Y.

Lemma 2.8 ([12], Theorem 1.25) Let Q2 C R” be an open set andu € Y.

(1) If u has compact support, then u € Y.
(i) IfveYyand O <u <va.ein, thenu € Y.
(i) Ifv € Yy and |u| < |v| a.e. in Q\K, where K is a compact subset of 2, then u € Y.

2.2 Stummel-Kato class

Definition 2.9 Let f € L] (R"), and set
V(f,r):= sup (/ %dy), for r > 0,
xeRr \JB,(x) [X — yI"

We will denote by dq(f, r) := 9 (f xq,r), for r > 0. We define the Stummel-Kato class K
and its variant K as follows:

K(Q) ={f € L},.(Q) : 9a(f,r) < oo, foreach r > 0},

K(Q) ={f € LIIOC(Q) : lin})ﬁg(f,r) =0 and vq(f,r) < oo, for r > 0}, 2.1

K@Q) ={fe LI(Q) : lin}]ﬂg(f, r) =0 and 9q(f) :=supvq(f,r) < oo}.
r— r>0
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We will write that f € IC]OC(Q) (resp. K1,10c(R2))if f € IC(D) (resp. (D)) for any bounded
open set D C R"*! so that D C Q. If Q is bounded,

ve(f) = sup  Ue(f,r),
re(0,2 diam(£))

and so K(Q) = K'(R).

It is easy to see that, by a simple covering argument, there exists a dimensional constant
Cap > 0 so that

vo(f,r) < Capdq(f,r/2) forevery r > 0. (2.2)

Therefore, since 9o (f, r) is non-decreasing in r, there exists ¢ > 0 so that

4 4
zm(f 5 //2 a0 r S alfir >/ a0

Let us recall that that a function f € L}OC(Q) is in the Morrey space MM (Q), if

ln2

1
sup sup 7/ mQ|f(x)|dx < 00.

r>0B,cRr I’

that a function f € L} () is in the generalized Morrey space M () with modulus ¢ if

loc

11 ! dt
sup sup — / |f(x)|dx < oo and / o(t) — < 0.
>0 B,CR" o) rm N0 0 t

By [27, Lemma 1.1], MT2HE(Q) © K(Q), for any ¢ € (0,2), since for every f €
M"72F€(Q), it holds that

9o (f.r) S "2 fll -2+ ()

while, if f € K(€2) and fol da(f, t)% < 00, then it is straightforward to see that f
MP2U)(Q) since

/ IfDldy < r"0q(f, r).
B(x,r)NQ

For fixed r > 0, we define the space
Llloc’r(Q) = {f € L}OC(Q) : ||f||L110”(Q) = suﬂg ||f||L1(B(x’,)ﬂQ) < oo] ,
’ xeR"

which clearly contains IE(Q). One case see that || - ||L11 @ is a norm on LllOC +(€2) and

Yq(-, r) is a norm on E(Q) and K(2). Analogously, ?q(+) is a norm on K'(€2). In the next
lemma we provide an elementary proof of the fact that those spaces are complete.

Lemma2.10 L! (), I%(Q), K(R), and K' () are Banach spaces.

loc,r
Proof To simplify our notation, for fixed r > 0, we will denote

Xi =L, (), X>2=K(®), X3=Kk(®), and X4=K'(Q).
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We first prove that X is complete. Indeed, there exists k € Z such that 2k < < 2k+1 and
let Q € Dy (R") be the dyadic grid in R” that consists of cubes of sidelength 2¢ and notice
that, by easy geometric considerations,

1 = Su 1 ~ X -
IIfIILDk(Q) Qegk I flzrcone) =n I1f1Ix,

In addition, L%)k (€2) is the direct sum @erk X o of the Banach spaces Xg = L*(Q N Q)

with norm supg |- ||L1(Qm§z)~ In this case, the completeness is preserved and thus, L%)k ()
is a Banach space as well, which readily implies that X is a Banach space.
Now, we will show that X» is a Banach space. Let

Bx, ={feXo:flx, <1}

be the closed unit ball in X», and let f; be a Cauchy sequence in X». It is easy to see that
Ifllx, < r¥ vo(f.r)= r”_2||f||X2, and by the completeness of X, there exists f € X

such that f; — f in X;. By Fatou’s lemma,
vo(f,r) <liminf 9q(fi,r) <1,
k— 00

and so f € By,. Therefore, since X is a Banach space and the embedding of X, in X} is
continuous, by [8, Proposition 14.2.3], we deduce that X» is Banach as well. It is easy to see
that X3 is a closed subspace of X», and thus, Banach, while, if we replace X| by X, and X»
by X4 in the argument above, we infer that X4 is Banach space as well. O

2.3 Carleson-Dini Stummel-Kato class

For any € > 0, we define

Ve(f.r) =0a(f,r)+er, (23)

which is strictly increasing, continuous, and satisfies the same properties as 9o ( f, r). There-
fore, it is invertible with continuous and strictly increasing inverse ¥ slz( f,r). Itis clear that
e q(f, -) also satisfies the doubling condition (2.2) with constant max(Cgp, 2).

Definition 2.11 If @ > 0, we say that a function f € IE(Q) is in the Careslon-Dini Stummel-
Kato class Kpini, (2) if it satisfies

" dt
| vatrn S < coatrne, @4
0
for every r > 0. and we denote
1 4 o dt
Cru:=sup ——— va(f.t) e (2.5)
0

r>0 0Q(fv r)oz

If o = 1 then we write that f € Kpjpi(2) and Cr g := Cr 1.

Example2.12 Let e; = (81, ...,8,;), for j € {1,..., n} be the orthonormal basis of R"
and, forany k € {1,2,...,2"},letus denote Ay = (}\,](, R A’;) # 0 to be the distinct vectors
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suchthat)»f( =0orlfori e {l,...,n}.Fork € {1,2,...,2"}and j € N, define the distinct
points in R" by

n
X = ZA}( e¢; and y,ﬁ = 2jxk.
i=1

Define now

oo 2"

fx) = 13(0’%)()5) + Z Z 1B(y,{,2f’3)(x)'

j=1k=1

Note that the balls B(y,{ ,2/73) are mutually disjoint and thus, | f(x)| < 1 for any x € R".
So, for fixed r > 0 and every x € R",

1
/ LIOIEPN 5/ e,
B(x.r) X —yI" B, 1X =y

which implies that 9 (f, ) < r?. For the reverse inequality, if » > 1 remark that there

exists a positive integer jo such that 2J0=1 <) < 2J0 Then if we set x| = y{°+3,

Lf ()] 1
Orn (f, 1) = / o —dy = ————dy=c¢, r2.
B(x1,r) |X1 - y| B(x1,r) |X1 - yl

Forr <1,

IO, e s

Ve (f, 1) > / y=
BO.r/8) 1YI"2 64

Therefore, Ogpn (f, r) =~ r2 for any r > 0, and so, for any « > 0, it holds
r dt r

/ (.0 f 2 dr = 2%~ 9 (f 1),
0 0

which implies that f € Kpipi o (R"). f R = {(x1,...,x,) € R" : x; > 0}, by similar
arguments, we can show that f € Kpini o (R}) for any & > 0,

The next lemma is easy to prove by a simple change of variables and we leave the routine
details to the interested reader.

Lemma2.13 Let Q2 C R" beanopensetand f € Kpjni(2). For p > 0, set f,(x) = p f(px)
forany x € D, := p Q. Then the following hold:

(i) If x>0, then vq(L f,1) = AMd(f, 1), foranyt > 0and Cy .o = Cy q.
(i) Op,(fp, 1) =Va(f, pt), foranyt > 0.
(iii) Cfp,Dp =Crq.

Moreover, ifg € Kpini(2), andwesetg,(x) = p g(px), V = |fl+Igl,and V, = | fpl+18pl,
then V € Kpini(2) and

Cv,.p, =Cv.a <2Cfq+2C;q.
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2.4 Sobolev embedding and Interpolation inequalities

The following considerations can be found in [18, p.416] and are based on an inequality
proved by Simon in [33, p.455]. Assume that f € K(£2) and let

Y eCPMRY, 0<y <1, ¥ =0inR"\ B, 1), and /1//:1. 2.6)

For § > 0, set ¥5(x) = § "y (5~ 'x) and define
fs = f*vs. 2.7
Then,if G C Q,r >0and 0 < § < r, we have
V6 ((flg)s, r) < D ((flgls, r) <0 (flg,r) +9(f1g,é)

=29(f1g,r) =20(f,r). (2.8)
Thus, for a ball B, so that By, C Q and 0 < § < r, we also obtain
U, (fs,r) < 0B, ((f1B,,)s5,1) <208, (f,1). (2.9)
Moreover, if |g]? € K(S),
Flgsl”, ) < 0 (gl r) + 9 (g%, 8) < 20(1gl%, ). (2.10)

It is useful to remark that if
Qs = {x € Q: dist(x, Q%) > 8§} N B0, ), 2.11)
then 9 ((f1ly)s, 1) = Pa((flays, ).
In the next lemma we use an argument from [36].

Lemma2.14 If f € K(2) and p > 0, it holds that 9o ((flq;)s — f). p) = 0,as8 — 0. If
f e K(Q), then 9o((flg;)s — f) = 0,as § — 0.

&

Proof Fix p > 0 and note that by (2.1), fore > 0, we can find rg < p, sothat ¥ (f, r9) < €
Note that by (2.8), for 0 < § < rp, we have that ¥o((f1q,)s — f.r0) < 3Va(f,ro). Thus,

Ya((flos)s — f,p) < 9a((fley)s — f.10)

[(flas)s(¥) — f ()]
+ sup pr dy
xR J(B(x, )\ B(x,10)NQ2 lx — yl
<e/2+r; " sup / [(flas)s(y) — fFdy
xeR" J B(x,p)NQ2

=eg/2+ rg_”lp.

As 9o((fles)s — f, p) < 30a(f.p) < oo, for0 < § < p, there exists xg € R" such that
= (s () = F()]dy.
B(x0,p)NQ2
Now, using that (f1g,;)s — f in LIIOC(Q), there exists § > 0 such that § < min(rg, p) and
/ (Flans) — FWdy < 471702,
B(x0.0)NQ

Collecting all the estimates we obtain that 9o ((f1o;)s — f, p) < €. The proof for f € K'(Q2)
is the same. O
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Lemma 2.15 If f € KC(B,), there exists a constant c; > 0 depending only on n such that for
anyr > 0andu € WL2(B,), it holds

1
2 2 2
8 |Lt| ffcl ﬁBr(fsr) <||VM||L2(B,)+r7||u||L2(BV)) (212)

Proof This inequality can be found in the proof of Lemma 2.1 in [18] (display (12), p. 416). It
is stated with slightly different assumptions but an inspection of the proof reveals that (2.12)
is also true. For a similar inequality see Lemma 7.3 in [31]. O

Note that if we set f = f5 in (2.12) and use (2.9), we can see that for 0 < § < r,
Wl fs < 2¢1 9, (F, 1) (190120 ) + — Il (2.13)
5 § = 1 UBy, 5 L2(B,) r2 L2(By) | .
where ¢ is independent of §.

Lemma 2.16 If f € IC(R"), then, there exists a constant co > 0 depending only on n such
that for any ¢ > 0 and u € WH2(R"), it holds

fR Nl f < e IVl gy + 2.14)

: || ||2
u .
—1 —1 L2(R"
lyg,Rn (fa cz 8)2 ( )

Proof We cover R" with balls B(z;, r), with center all the points z; so that nz ; /r have integer
coordinates. It is clear that each point x € R" is contained in at most N balls B(z;, 2r), where
N is a positive constant depending only on the dimension 7. Fix ¢ > 0 and choose r > 0
small enough so that ¥¢ gn (f, 7) = (Nc¢p) e, where ¢ is the constant in (2.12). Thus, using
U, (f,r) < Vern(f,r)and (2.12), we have that

o0 o0
& 1
ul* f < / w?f <y — / |Vu|2+—f |u|?
/" ; B(zj.r) ;N B(zj.r) T

1
&
e [ veps S [
n r Rr
which, if we set c; = Ncy, implies (2.14). ]

Animmediate corollary of the latter theorem, which will be used in Sect. 4, is the following:

Corollary 2.17 If f € K(2), then, there exists a constant c; > 0 depending only on n such
that for any ¢ > 0 and u € Wé’2(Q), it holds

£
> f < ellVulis g + —1———llul?s g (2.15)
/Q L%2(Q) 196,9(f’ A 18)2 L%2(Q)

Remark 2.18 In view of (2.13), it is easy to see that (2.14) and (2.15) still hold if we replace
f by fs on the left hand-side and keep the same term on the right hand-side.

The remark above, combined with (2.10) and (the proofs of) Lemmas 2.15 and 2.16, and
Corollary 2.17, leads to the following corollary which will be crucial in an approximation
argument we will need later.
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Corollary 2.19 If |g|*> € K(2), then there exists a constant ¢y > 0 depending only on n such
that for any ¢ > 0 and u € Wé’z(Q) it holds

/Q|M|2|(g195)5|2 < ellVul3a g + Slull72q)-

1 I
O qlgl? ¢y e)

Lemma 2.20 If f is supported in a ball B, and f € K(R"), there exists a constant C;, > 0
depending only on n such that, if u € Y"“2(R"), it holds

/R WP < CL 0 (fo IVl 2.16)

Proof This follows from the combination of [21, Theorem 1.79] and the proof of [38, Lemma
3]. O

Lemma 2.21 If f € K/'(Q), there exists a constant C; > 0 depending only on n such that, if
u € Yy (), it holds

/Q ul? f < C;9a(HIVul]2 g, (2.17)

Proof Let By := B(0, k) and f; = f1p,. Then, since | fy| < |f| and fy — f pointwisely,
by Lemma 2.20, we have that

/ ul® fie < C; 9 (f DIVull}s g < Cooa(NIVul] g,
Q

which, by the dominated convergence theorem, concludes the proof of (2.17). ]

2.5 Lorentz spaces

Definition 2.22 If f is a measurable function we define the distribution function
dra ={xeQ:|f)]>1}, t>0,
and its decreasing rearrangement by
fr@) =inf{s > 0:d; q(r) <s}.

If p € (0, 00) and g € (0, oo], we can define the Lorentz semi-norm

1
pi (/0"" (tdf,g(t)%)q g)q Jif g < oo

1
sup;ootdyr(t)? ,if g = oo.

I fllLra) =

)

If || fllra@) < 0o, we will say that f is in the Lorentz space (p, ¢) and write f € LP9().
This is quasi-norm and (L7 9(2), || - |zr.a(e)) is a quasi-Banach space.

‘We can also define
1

oo (1 ok q); dt .
tep t € ifg < oo
I Lo = (fo ( F )) ! q ,

1
sup,.ot? f*() ,if g = o0.
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which, for p € (1, 00) and ¢ € [1, 00], is a norm and it holds that
p
Ifllzra < 1 flLova@ < ﬁ”fllmq(sz)-

If we equip LP-9(€2) with this norm, it becomes a Banach space (see [1, Lemma 4.5 and
Theorem 4.6]). We will write f € LI (Q) if f € LP4() for any bounded open set
Q' cQ.

We record that

(1) If0< p,r <occand 0 < g < o0,
A zra) = 1F 1 rar gy
2) f0<p<oocand0 < ¢ < g1 < 00,
I fllra @) Spagrge 1 flLra@)s (2.18)

3) If0< p,q,r <00,0<s1,50<00,1/p+1/q=1/r,and 1/s1 + 1/s0 = 1/s,

I fellrs@) Spagusinsa 1 lLrsi@yllgllas (@)- (2.19)
We refer to [1, Chapter 4] and [10, Chapter 1] for the proofs. It is worth noting that

L¥(@) c K@),

while, for n > 3, K(2) and L34 (€2), ¢ > n, are not comparable.
Example 2.23 1f f is the function of Example 2.12, then it is easy to see that

0 Jifr>1

d n(t) =
SR (0 {+oo Jif 1€ (0,1].

and, by definition, for every p > 0 and g € (1, 00),

! 4 . _ ! a
||f||‘£pyq(R”) = p/O drge(t)rtdi=ldr > 24 lp/1/2 dyre(t)? dt = +o00.,

while for every p > Oand g € (0, 1],

1 ¢ 1 q
”f”%l’v‘i(R") = p/o df!Rn([)/’tq Uiy > p/o dyre(t)? dt = +o0.

It is clear that || f||zp.corry = 400. Therefore, f € Kpini,o R™)\LP9(R") for any o > 0,
p > 0,and g € (0, oo]. Similarly, one can show that f € Kpjnj,« R} )\L74(R") for any
a>0,p>0,and g € (0, c0].

Definition 2.24 Let { E}; | be asequence of measurable subsets of Q. We will write E — ¢
a.e.if 1z, — 0 a.e. in 2, which is equivalent to | lim sup,_, ., Ex| = 0.

We will say that a function f in a Banach function space X (see [30, Definition 6.5]) has
absolutely continuous norm in X if || f1g, ||x — O for every sequence {Ej}i>1 such that
E; — ¥ a.e. The set of all functions in X of absolutely continuous norm is denoted by X, .
If X, = X, then the space itself is said to have absolutely continuous norm. In this case,
simple functions supported on a set of finite Lebesgue measure are dense in X.

Record that L?9(2), for p € (1, 00) and ¢ € [1, 00), is a Banach function space (see [1,
p-219, Theorem 4.6]).
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Lemma2.25 Let f € X where X = K'(Q) or LP1(Q2),1 < p <ocand1 < q < oo. If
Il - | x stands for either ¥q(-) or || - || Lr.a(q), then X has absolutely continuous norm. In fact,
for every e > 0, there exists § > 0 such that

if EC Qwith |[E| <6, then | flglx <e.
Proof For K'(2) this was proved in [36, Lemma 2.2], while for L?-4(%) it follows from [1,
p- 23, Corollary 4.3] and [1, p. 221, Corollary 4.8]. O
Lemma 2.26 ([4], Theorem V4) Let [ € LP9(2), with p € (1, 00) and q € [1, 00), and for
8 >0, let Q5 be asin (2.11). Then, it holds that
I(fley)slira@) < Cpg I fllLra and ||(flgs)s — fllLra — O.

In the following definitions and lemmas we follow [28].

Definition 2.27 We define Y(;’(p’q)(Q), for]l < p <nand1 < g < o0, to be the closure of
C2°(€2) under the semi-norm

”M“ 1 (p, ")(Q) @ + ||VM||L17,q(Q),

Lemma2.28 Ifu € YO]’(p’q)(Q), there exists a constant Cy > 0 depending on n such that

[lull < Gs|IVullLra()- (2.20)

Ln
Ifu e YO]’Z(Q), the same is true for p = g = 2.

Proof The proof of the first part can be found in [5, Theorem 4.2(i)] and of the second one
in [28, Lemma 2.2]. ]

Lemma2.29 Ifu,w e Y0 (Q) then uw € Y0 T (Q) and, in particular, it holds that
luwll

1 = 2601Vl @) I Vw2 ). 21

Proof Here we follow the scheme of the proof of [28, Lemma 2.2]. Since both u and w
belong to ¥*(2), we can use (2.20) and (2.19) to deduce that

w9l o g < IVel@lwl, oo o < ColValg IVwlag.  (222)

The analogous estimate holds if we switch the roles of w and u. Since u, w € YO1 ’Z(Q), there
exist sequences {¢x }r>1, {Yi =1 C C°(2) such that ¢y — u and Y — w in YOI’Z(Q). By

L2 1
Lemma 2.28,we can ﬁndasubsequence of ¢y thatis weakly— convergentin Y, "~ )(Q)
to some v € Y0 G (Q) But since v € L2’ 1(Q) C L 2(2), it holds that v = uw in
L7 (). Thus,

= 11m lnf PVl

< Cyliminf [V@yoll, o o) < 2CIVull 2 IVl 2,

luwl]

= " — L ‘@

where in the last step we used the same argument as in (2.22) and the strong convergence of
.12
¢r and Yy in Y7 (S2). O
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Lemma 2.30 (Embedding inequality) Let h € L™ (), for g € [n, o), u € Y2(Q) and
w E YOI’Z(SZ). Then if D C 2 is a Borel set, there exists a constant Cy 4, > 0 (depending
only on n and q) such that

/DhVuw‘ < Csqlhllznay IVl 2y IVwll L2 (q)- (2.23)

Proof This follows from (2.19), (2.20), and (2.18). m]

Remark 2.31 In [28, eq. (2.9)], it was observed that if b, ¢ € L™*°(Q) and d € L%“’O(Q),

(1.5) and (1.6) hold if € ¥, ™1 ().

2.6 Two auxiliary lemmas
The next lemma was stated in [26]. The proof as written in [26] is not totally correct since @
is not absolutely continuous. We overcome this obstacle by an approximation argument.

Lemma 232 Letw : (0, 00) — (0, 00) be a strictly increasing and continuous function such
that lim, _, o+ o (r) = 0 and lim,_, oo 0 (r) = 400. Let T € (0.1), ¢ > 0, and g > 1, and set

by =t and a; = b/ logw ' (by). (2.24)
Then it holds
00 —1.
1 @7 () dt
=Y @ < / w(n'1=. (2.25)
o 1—1 0 t

Proof Note that w is one-to-one and its inverse ! is also strictly increasing and continuous.
If we define w; as in (2.7) in R, then w; is strictly increasing and smooth satisfying

tlirr(l) ws(t) = / Ys(—=s)w(s)ds =: as € [0, w(d)].

Therefore, a)gl is also strictly increasing and smooth on Ran(ws), the range of ws.
As lims_,gws(t) = w(t) locally uniformly in (O, 00),2 it is not hard to show that
lims—ow; '(r) = w~'(r) for all ¥ € Ran(w) = (0, 00). Indeed, let ¢ > 0 and r > 0.
Then, by the continuity of w in (0, 00), there exists §' = §’(e, r) > 0 such that

o lr+8)—w ' <e and |0 'r—8) —w ()| <.

For any sequence {8, },2 | such that §, — 0 as n — oo, it holds that lim, . ws, = @, and

so there exists ng > 0 such that for every n > ny,
lws, (@ ' (r +8)) — (r+8) <8 and |ws, (@ '(r—8)) - —8) <8
Therefore,
ws, (@ 'r +8)) >r and ws (0 '(r—38)) <r,

which, using that a)gql is strictly increasing in (0, 0o), implies that

wy ' (1) elo™ r=8). 07 r +8)]

2 Just pointwise convergence is enough here.
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and thus, |a)5_n1 (r) — o' (r)| < &. This concludes the proof of lim;_, ¢ “’5_] = w pointwisely.
For any fixed positive N € N, it holds that

N N
Y ax —arp) = Y b Gogew™ (i) —logew™ (b))
k=0 k=0

N
. 1/ -1 —1
= 511% ,;_0 bkfl (log wg " (br) — log wg  (b+1))

N 1/ b 1 1
= lim E b / dt
k+1 _ _
60 = + b1 Wy Y1) wj (w; L)

N b 41/q 1
lim f — —— dt
80 k=0 ¢ bk+1 WOg () w@(w(s (®))

IA

c tl/q 1
= lim/ i
520 Jpy 4 Wg () w(s(wg (®))
5 (@)

. dt
lim ws ()1,
820 Jwg by d

Remark that a)_l(bN+1) > 0. For n > 0, there exists 6o = §(1, ¢, by+1) > 0 such that
for every § < &,

loy ') =07 (@) <n and |y ' (by+1) — 0 (By11)] <.

Therefore, for § < J,

-1 -1
G dr o @+ dr
f ws()/1 s/ OGS

a)gl(bNH) o~ N (byy1)—n

Now, by the local uniform convergence of ws, we can find 0 < §; < §p such that for every
8 < 81, it holds that |ws(r) — w(t)| < 7 for every t € [w ' (bys+1) — 1, 0 ' (c) + 7.
Therefore, for § < 81, we infer that

N o~ )+ d

1 — _ 1

> bl oga; ) ~tog oy bus) = [ (00!
k=0

o~ by y1)—n

—1 a)_l(c)+n
ECLII

dt
1 a)(t)l/qia
o ' (byy1) — 1 t

@™l (by+1D)—n
which, by taking § — 0, implies that

N

> (tar —ary) < n log

w—l(c) +7 /w1(6)+n
k=0 @

dt
— w1
o~ (byy1) — 1 t

LN+ -0
Since 7 is arbitrary, we may take n — 0 and deduce that
o c)

N —1/.
dt @™ (o) dt
E (Tak_ak+1)§/ a)(t)l/‘f7 5/ w(t)l/qT'
0

k=0 o~ (byy1)

@ Springer



266 Page 20 of 69 M. Mourgoglou

If we take limits as N — oo, we get

o0 W™ ¢
Y e —arg) < f IO
0

k=0

which, combined with the equality

o0 o0
Y a—ap) =@ - DY a,
k=0 k=0

shows (2.25). O

Lemma 2.33 Letw : (0, 00) — (0, 00) be a strictly increasing and continuous function such
that lim, _, o+ w(r) = 0. Assume that

Cy, :=sup

r>0wr)

r dt
/ w(t) . <00 and w(2r) < cow(r), forany r > 0.
0

Then
w(t)
sup
1€(0,00) @(21)

Proof Since w is strictly increasing and doubling, we have that

ol < w(t)
0 = w0

<1, foreveryt > 0.

This inequality and the continuity of  in (0, co) imply that

(1) . w(D)
sup = im =
1€(0,00) @ (21) 1—0 w(2t)

Assume that lim;_, % = 1. Then, by continuity, if we fix ¢ < (4co Cw)_l, there exists

p > Osuchthatfort < pitholdsthatw(t) > (1 —¢&) w(2t). If we apply this forz,, = 27" p,
m=0,1,..., N — 1, the Dini condition yields

N-1 N—-1

1—(1—gh _
0@ =) (1-e"wp) < ) 0@ "p) <20 Conp).
m=0 m=0
Letting N — oo, we get e~ <2¢yC, which is a contradiction. ]

2.7 The splitting lemmas

The following lemma will be used repeatedly in this manuscript and for the case p = g = n
was proved in [2]. We extend it to the case of Lorentz spaces L74(2) with 1 < p < ¢ < oo.

Lemma2.34 Let Q@ C R” be an open set, u € Y"2(Q), h € LP1(), forl < p<gq<oo
and a > 0. Then there exist mutually disjoint measurable sets Q; C 2 and functions
u; € Y'2(Q) for 1 < i < « with the following properties:
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(]) ”h”L/"‘l(Qi) = a»forl <i<k-—1,and ||h||LP>‘1(QK) <a,
(2) {x e Q:Vu; #0} C Q;,

(3) Vu = Vu,- in Qi,

(4) luil < |ul,

(5) uu; =0,

(6) u= Z;n:] ui,

(7) wiVu = (X, Vuj ) i

(8) uVu; = <Z';:i uj) Vu;,
and k has the upper bound
Kk <a4 ||h||‘£,,,q(m + 1.

Ifu €Yy (), thenu; € Y, 2(Q) for 1 <i < k.
Proof If0 < k <t < 00, we define

Qk,t) :={xeQ:k < |u|l <t,Vu #0},
and by Chebyshev’s inequality, for k > 0, it holds

10k, )] < 12k, 00)] <k~ [Ju]25 < co.
Let us define the function f : [O, 00]? = [0, o) by

fk, 1) = [tk < lu| =1, Vu # 0}

We will show that (-, ) is continuous in [0, co) for any fixed t € (0, oo].
To this end, fix r € (0, oc] and k < ¢, and let {k¢}sen be a positive decreasing sequence
so that kg — k. Thus,

flen =196k 0l = || Q0| = Jim £k 1),
=1

which gives right continuity. Consider now an increasing sequence of positive numbers
{k;};en so that k; — k. Then

(@i 1) =Qk.0)U{x € Q: |u| =k, Vu #0}.
=1

By Lemma 2.5, we get |{x € Q : |u| = t, Vu # 0} = 0, and thus, since |Q (k;, 00)| < o0,
we infer that

’

et =190 01 = | Q. 0] = lim [k,
=1

which implies left continuity of f (-, #) and consequently continuity.
If we set

1 Lif x >0
o(x) = . ,
-1 ,ifx <O
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we define
(t —kyo(u), |ul>t
Fri(w) = 3u—ko(), k<|ul<t and Fjoo(u)= :
0, lul <k,

u—ko(u), |ul>k
0, lul <k’

For fixed k, ¢ € [0, 00, Fi; € Lip(R) and F;,(0) = 0, and thus, since u € Y1?(Q)
(tesp. Y% (2)), by Lemma 2.6, Fy,(u) € Y'"2() (resp. Y% (R2)).

Recall that the L?-?-norm is absolutely continuous by Lemma 2.25 and thus, since, for
any fixed ¢ € [0, oo], Iqk,) — O a.e. ask — ¢, we will have that |hlqk nllLra) — 0.
For 1 < p < g < o0, let us define

o0 a ds
H(k, t) = / s dhlg(k’t) (s)p T
0 S

If H(0, 00) < af, then we set Q1 = {x € Q2 : Vu # 0} and u; = u. Suppose now that
H (0, 00) > a¥, and thus, by the absolute continuity of L? 9, there exists k; > 0 such that

H(ky,00) =af.

If HO, k1) < a?, we set Q1 = Q(ky,00) and Q2 = Q(0, k), and u; = Fj, 00(u) and
uy = Fy i, (u). If, on the other hand, H (0, k1) > a4, there exists k» > 0 so that

H(ky, k1) = a.

If we iterate, there exists jo € Nsothat H(k;, ki—1) = a%,if1 <i < jo,and H(0, kj,) < af,
where kg = +00. Indeed, if there were infinitely many i so that H (k;, ki_1) = a9, then,
since {2 (k;, kj—1)}i>1 are disjoint, we would have

> q - < 4 a ds q
0= 3 dt = Y lhrkion) < | st dingn g ©F S < 10180 < o
which is a contradiction. Here we used that p < ¢ and that for disjoint sets A and B it holds
that
xeA:[fl>tl+{xeB:|f|>1]|<l{xe AUB:[f]>1}].

The same argument gives us joa? < ||h||Lr.q(q), thatis, jo < a4 ||h||l£p,q(m.
Ifwesetk = jo+ land k, =0, fori € {1, ..., «}, we define

Q; = Q(kj,ki—1) and u; = Fy, j,_, (u).

We have already shown (1), so it remains to prove that (2)—(8) hold as well.

Firstly, (2), (3), and (4) are clear by definition, while (5) follows by simple computations;
indeed, note first that uu; = 0 whenever |u| < k;. In the set where |u| > k;_1 > k;, we have
that

uu; = uou) (ki—y — ki) = |u| (ki—1 —k;) >0,
while, when k; < |u| < k;j_1,
uuj = u> —o W) uk; = |ul(ju| —k;) > 0.

This concludes the proof of (5).
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For (6) and (7), we may rewrite u ; = Uk;,00 — Uk in view of which, we have

j—1,00?

Dty = Fiy o) + Y (Fij o0 () = Fi;_y.00 (W) = Fi; 00(u). (2.26)
Jj=1 j=2

In the case i = «k, we have

K

D uj = Froolw) =u,

j=1

yielding (6). By definition, Vuy, oo = Vu, when |u| > k; (i.e., in the support of u;), while
u; = 0, whenever |u| < k;. and so, (7) follows from (2.26). Since {Vu; # 0} C ©; we can
use (6) to get

K K
uViu; =uiZVuj =Vui2uj.
j=1 j=i

This concludes the proof of the lemma. m}

The direct analogue of this lemma for the space K'(£2) was proved in [36] but it is not
stated as such. For the reader’s convenience we will give a sketch of the proof.

Lemma 2.35 Let 2 C R" beanopenset,u € Y12(Q) (resp. Yol’z(Q)), hekK'(Qanda > 0.
Then, there exist mutually disjoint measurable sets Q; C 2 and functions u; € Y "2(Q) (resp.
Yy 2 (Q), for | < i < k, satisfying (2)~(8), so that

va(hlg) =a?, for 1 <i <k —1, and Vg(hlg,) <a’.
If po > 0 is such that 9o (h, po) = a/4, then k has the upper bound
k< 1+2a2p5 "l q)-

If Q is a bounded open set contained in a ball B,, we can assume h € K(2) replacing ¥q(-)
by vq(-, r).

Proof Using the same notation as before, we define
H(k,t) = Vo(hlqk.)-

Making the same stopping time argument with respect to the condition h(k, 1) = a” and
noticing that we only used the absolute continuity of the norm, we can reason as in the proof
of Lemma 2.34. The only difference lies on the estimate of « since we cannot linearize it as
we did in the previous case.

Let us first show that the stopping process results to a finite number of sets. Indeed, arguing
as in the proof of Lemma 2.14, we can find pg so that ¥ (h, pg) = a2/4 so that

2
_ a _
@ = dalila) = 20a(ha, p0)+ 3" [ Ihila dy = S+ 05 [ ihita,ay.
Q; Qi
So, if assume that there infinite many €2;, we can sum in i as before and get

o< pp " Z/Q lhilg, dy < pd "llhllL1 g
i i
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which is a contradiction. If jo is the number of i’s for which dq(hlg;) = a?, the same
argument will give the bound

. 2 2
Jo <2a72p " I q)-

Remark 2.36 1t is interesting to see that the bound on «, although at a first glace does not
seem to be scale invariant, in fact it is (with the correct scaling). Indeed, let i, = r2h(rx) in
the open set , = r~!Q. Then, by making the change of variables y = rx we have that

2— _
25 " e e,y = (0 ) " Al L1 -

Now, recall that pp was chosen so that g, (h,, pp) = a? /4, which, by the same change of
variables, implies that 9q(h, por) = a? /4. Note that if ¥ (h, -) is invertible, we have that
por =g (h,a’/4).

2.8 Variational capacity

Definition 2.37 Let @ C R” be open and E C Q. If we set
Kg(Q) = {w e ¥, 2(Q): E C {w > 1)°)
then we define the (variational) capacity of the condenser (E, 2) as
Cap(E, Q) = wlenﬂgE /Q [Vw|?.
The following properties of capacity verify that it is a Choquet capacity and satisfies the

axioms considered by Brelot. A proof can be found for instance in Theorem 2.3 in [21].

(i) If E C Q is compact,
Cap(E, Q) = inf{/ [Vw]? : w e C®(Q), u>1in E}
Q

(i) If E C Qs open,

Cap(E, Q) = sup Cap(K, 2).
compact KCE

(iii) If E; D E; D ... is a sequence of compact subsets of €2,
Cap( () Ej @) = lim Cap(E;. Q).
j=1
(iv) If Ey C E C ... is asequence of arbitrary subsets of €2,
Cap(|J Ej. @) = lim Cap(E;. Q).
j=1
(v) If Eq, E» C ... are arbitrary subsets of €2, then

Cap(|J £5.2) =Y Cap(E;, 2.

Jj=1 j=1
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3 Interior and boundary Caccioppoli inequality

In Sects. 3-5 we will be dealing with subsolutions and supersolutions of the equation
Lu = —div(AVu + bu) — cVu —du = f — divg, 3.1
where f € L} (@) and g € L] (2 R").

loc
3.1 Standard Caccioppoli inequality

Theorem 3.1 (Caccioppoli inequality I) Let u € Yli)’CZ(Q) be either a solution or a non-
negative subsolution of (3.1) and f € L (). Assume also that (1.5) is satisfied and either

loc

(i)b+c e LT(Q), for q € [n, 00), or (ii) |b + cl? € Kioe(S2). Fora non-negative function

loc

n € CX (), we let Q' be a bounded open set such that suppn C Q' € Q. Then it holds
IVl 2y S 1uVnl7apy + 11172 ) + 1871720

where the implicit constant depends only on A, A, and also either on Cy 4 and ||b+c|| pn.a (),
for q = n under assumption (i), or C} and 9¢ (|b + c|?, 2diam&’) under assumption (ii)>.

Proof We will only treat the case that u is a non-negative subsolution of (3.1) as the proof
when u is a solution is almost identical and is omitted. Notice that since K := suppn is a
compact subset of 2, we can always find a bounded open set ' such that K C Q' € Q, and
asu € YIL’CZ(Q), it holds that u € Y1 2(). Working in €' instead of 2, we may assume,
without loss of generality, that u € ¥ 2(Q). Moreover, u is clearly a subsolution in any open
subset of €. For simplicity, let us preserve the notation €2 instead of &’

We first assume that b + ¢ f L™4(2). Apply Lemma 2.34 to the function u, for p = n,

g>nh=b+c,anda = 8C,o° where Cy 4 is the constant in (2.23), to find ©; C €2 and

ui € Y2(Q), 1 < i < «, satisfying (1)—(8). Note that (5) tells us that «; and u have the
same sign, and so, the functions nu; € Yol’z(Q) are non-negative. Thus, using that u is a
subsolution for (3.1) we have

/ fPu) + / gV (ntu) > f AVUY (0*ui) + buV (1*u;) — Vun’u;) — du(n’u;)
Q Q Q
:/ AVuV (*u;) + bV uu;) — (b + o) Vun*u; — dn’uu;
Q
2/ AVuV(nzui) - (b+c)Vun2u,-,
Q

where in the last inequality we used (5), Lemma (2.29), Remark 2.31, and (1.5). In view of
(3) and (6), the latter inequality can be written as

i
/ AVuiVuinz < —2[ AVuVnu;n + E / (b+c)Vujn2u,~
i j=17%

+/Qf(?72ui)+/9gv(n2ui)=: Li@) + L3 +130) + 146). (3.2)
By (1.2) we get

MnVui|7, < / AVu;Vuin®, (3.3)

i

3 Recall that Cjand C s,q are the constants in Lemmas 2.20 and 2.30 respectively.

@ Springer



266 Page 26 of 69 M. Mourgoglou

while, by Holder’s inequality,
L] = 2AlnVullp2lui Vall 2. (3.4

If we apply (2.23) and Young’s inequality, along with the fact that ||b+c||ra(q;) < ﬁ
forany 1 < j <k, we get that

i—1
Iz(i):/ (b—}-c)Vumzui—}- E / (b+c)Vujn2u,~
i =17

i—1

< Z InVujll 2 IV @il 2

A
= Cs,qWIIﬂVMi||L2||V(um)||Lz +Csq 8C
s.q

A 2 A 2 A 2
< E“ﬂvuian + R”WV’?”I; + E(lluivnﬂu + InVu;ll2)

i—1 2
> InVuilge
j=1
2 i—1 2
||nw 172 + ||u Vallgs + 3¢ | 2o InVujlz | - (3.5)
j=1
By Holder’s, Sobolev’s and Young’s inequalities we obtain
Z 1

= + 55 llenlzs + 281w Vi, + 2810 Vuillp.. (3.6)

Choosing § = 3)‘—2 in (3.6), we can combine (3.2), (3.3), (3.4), and (3.5) and infer that

2
i—1

32 X 472 A 6
§|IHVM1‘||L2§ 7+ ||141V77||Lz+16 Z”nvu]”Lz +7llgnlle

16 C?
+ —I e

which implies that there exist positive constants Cy, C2 and C3 depending on A, A and C; 4
so that

i—1
InVuillr2 < Cillus Vallz2 + Ca (L0l 2 + lgnliz2) + D InVaujl 2.
j=1

1/2
+ C3llnVull 5 lus Vol 5

Note that the constant the sum is multiplied with is indeed 1, which is convenient in the
iteration argument below. If we denote Cy := max(Cq, Ca, C3),

Dl

xj = InVujliz2, and yo := uVnl2 + [nVu] + I fnllr2 + gnllz2s
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and use that (4), the latter inequality can be written as

x1 < Co Yo,
i-1
xi<Coyo+ Y xj. fori=2, k. (3.7)
j=1
By induction, we get

xi <271 Co yo. (3.8)

Indeed, fori = 1,itholds x; < C¢ yo. Assumenow thatx; < 2J-1 Coyoforalll < j <i-—1.
Then, by (3.7) and the induction hypothesis,

i—1
xi < Coyo+Coyoy 2/t =2""" Coyo.
j=I

Summing (3.8) ini € {1, ..., x} we obtain

K
in <2“Co yo, (3.9)
i—1

which, in light of (6), (3.9) and Young’s inequality (with a small constant), implies that

K
InVullz2 <Y InVuil2 <4 C5 (luVallgz + 1l + llgnllz2) -
i=1

This concludes our proof when b + ¢ € L™9(Q2; R"), since « depends only A, A, C; 4, and
also on ||b + c||Ln.a(q; rn).

Let us now prove the same result in the case |b + c|? € K('). We apply Lemma 2.35
to the function u, for h = b + ¢, and a = C’ , where C’ is the constant in (2.16), to find

Qi cQandu; e YH2(Q), 1 <i <«, satisfying (1)—(8). The main argument will be exactly
the same as in the previous case will not be repeated. Although, there is a difference coming
from the embedding theorem we apply, which is Lemma 2.20 as opposed to Lemma 2.30 we
used before. Taking this under consideration, it is enough to handle the term 7, (7).

To this end, apply Cauchy-Scwharz’s inequality, (2.17), Sobolev’s and Young’s inequali—
ties, along with the fact that for any 1 < j < m it holds dq/ (|6 + c|219 2diamQ’) < C, ,
and get that '

i—1

L) = / b —I—C)Vuln u; + Z b +C)V”ﬂ72”i
Q/

< CUIV@imlze | g7 (b +cf? 19>||nw,||Lz+Zz9”2 b+ P10 InVu;l 2
j=1
i—1
< —nnw I V@l + 5 Z Vsl 2 1V @im) 2
] 1
< X Va2 + 2Vl + sVl + a2
=16 L2 e e L L
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i—1
> lInVujlp
j=1
A
_ElanuzlleL % iVl + 1 | 20 InVaslie

This concludes the proof the Theorem. O

Theorem 3.2 (Caccioppoli inequality II) Letu € Y1 2(Q) be either a solution or a non-

negative subsolution of (3.1) and f € L? 1oe(§2). Assume also that (1.6) is satisfied and either
(i)b+c € Lloc (), for q € [n, 00), or (u) 16+ ¢|? € Kioe(S2). For a non- -negative function
n € CX (), we let Q' be a bounded open set such that suppn C Q' € Q. Then it holds

I Vulga gy S MuVnlGa gy + 150172 g + 1871172 g

where the implicit constant depends only on A, A, and also either on Cy 4 and ||b+c| pna (),
for q = n under assumption (i), or C} and 9¢ (|b + c|?, 2 diam€’) under assumption (ii).

Proof We only deal with the case that « is a non-negative subsolution (3.1). As seen in

Theorem 3.1, we may assume that u € ¥1:2() and apply Lemma 2.34 to the function u, for
p=n,qgq>nh=>b+c,anda = ﬁ, where Cy 4 is the constant in (2.23). Using that

nzu i € YO1 ’2(52) and non-negative, along with the fact that u is a subsolution, we have
/ foPui) + / gV (n’iu) = / AVUN (Pup) + bu¥V (°u;) — cVu(nu;) — du(n’u;)
Q Q Q
> / AVUV (Pur) — (b + OuV (ur),
Q

where in the last inequality we used (5), Lemma (2.29), Remark 2.31, and (1.6). In view of
(3) and (6), the latter inequality can be written as

/ AVu;iVuin® < —2/ AVuVr]um—i-/ (b—f—c)Vu,-nzu—f-Z/ b+ c)Vnujun
Q Q ol Q

+/ f(’?zui)+/ eV 2ui) = =201 () + L) 4 213() + 14() + 15G).
Q Q

(3.10)

By Holder’s inequality,
Li@) = AlinVullp2[|ui Vall 2. (.11
Using (8) and the fact that ||b + c|| 2. 4@ < for all 1 < j < «, along with (2.23)

and Young’s inequality, we have

100 —f (b+c)Vu,r] u; + Z (b—i—c)vumZui
j=i+1 Q;

<C

=Cuage, InVuill 2 IV @imli2 + C

Z IVl 21V @il 2

S18C, .
sqj =i+l
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A S

= gVl ga + SlnVuil 2w Vol 2
2
A ) ) A “
+ 3¢ (s Vall gz + I Vuill ) + 1 Z InVullz
j=i+1
2

A A P N

< 2 InVailg, + SVl + - ,;H InVujliz | - (3.12)

If § > 0 is small enough to be chosen, then by similar (but easier) considerations we get

I3@0) = Cogllb+ clipnalluVall 21V @in)ll .2 (3.13)
2
< 1B+ ellna luVnligs + 81 Vuilz, + 8 lui VollZ. (3.14)
If we apply Holder’s, Sobolev’s and Young’s inequalities we get
(i) 4+ I5() < €y 2 4 2
4() +150) < 15 0l + +% llgnll;-

+ (L+20)lus Vall > + 20 nVuil 7. (3.15)

Choose now § = 1)‘—6 and p = %. Combining (3.10), (1.2), (3.11), (3.12), (3.13), and
(3.15), and using (4), we can find positive constants C1 = C{ (&, Cs g4, [|b + cllpna), C2 =
C2(A, Cs ¢) and C3 = C3(2) so that

InVuillz, < 2A1nVull2luVnl 2 + CiluVali, + Call f1l3,,

A ~ ’
+Csllgnlz + 1o | D2 IVujlle
j=itl
For j e {1,...,k}, we set
xj = |nVujl 2

and

1 1
¥0 1= V2N IVl o 1Vl L2 ) + VCIuVnll 2 + VCall fall 2.+ V/Callgnll 2.

and so, the latter inequality can be written as

K
xe<yoand x; <yo+ Y xj, fori=1,2,-+ k—1. (3.16)
j=i+1
By induction, (3.16) yields x; < 2K_iy0 fori =1,2,---,k — 1, and thus, summing over all

such i, we infer
i 1 1
InVull2 < InVuill2 < 2VAlnVul 2, [u Vil 2,

i=1
+2¢ (VCuVall 2 +V/Call 2 +V/Csllgnllzz)
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where in the first inequality we used (6). The theorem readily follows from another application
of Young’s inequality. This finishes the proof in the case b + ¢ € L™9(), while the
modifications to obtain the result the case [b+¢|? € K (') are identical to the ones presented
in the proof of Theorem 3.1 and are omitted. O

The proofs of Theorems 3.1 and 3.2 can easily be adapted to prove the following Cac-
cioppoli inequality at the boundary.

Theorem 3.3 (Caccioppoli inequality at the boundary) If B, is a ball such that B, N\ Q # @,
set 2, = B, N Q and assume that u € Y1’2(Q,) vanishing on Q2 N B, in the sense of
definition 2.3. Assume that f € L*> (), ¢ € L*(,) and either (1.5) or (1.6) holds. If
either b + ¢ € L'"1(R,), q € [n, 00), or |b + c|2 € K(2,), and u is either a solution or a
non-negative subsolution of (3.1) in Q,, then for any non-negative function n € C°(B,) it
holds

InVuljag,, S 1uVnlgag,, + 110072 g, + 1870172 s (3.17)
where the implicit constant depends only on A, A, and also either on Cy 4 and ||b+c|pna(@,),
forq = n, or C and 9g, (|b + c2, 7).

Proof We follow the same strategy as before and apply either Lemma 2.34 to the function
uin Q. (x),forp =n,q >n,h =b+c,anda = ﬁ, where C; 4 is the constant in
(2.23), or apply Lemma 2.35 to the function u in Q,(x), forh = b+ c,anda = %, where

C! is the constant in (2.16). Thus, we find ; C Q,(x) and u; € Y!2(,) that vanishes on
B, N, for 1 <i < «, satisfying (1)—(8). Using that the non-negative function n%u; is in
YO1 'Z(Q, (x)), along with the fact that u is either a solution or a non-negative subsolution of
(3.1) in 2,-, we may proceed as in the proofs of Theorems 3.1 and 3.2 to obtain (3.17). We
skip the details. O

Remark 3.4 We would like to note that if b 4+ ¢ € K'(£2), we can dominate 9¢, (|b + cl?,2r)
by ¥ (b + c/?).

3.2 Refined Caccioppoli inequality

Letm = infyonp, u and M = sup,qnp, u in the sense of Definition 2.2. Define

- {inf(u(x),m) xeQ
u,(x):=
m ,x e R"\ Q
and
+ _Jsupu(x), M) ,x e
”M(x)‘_{M X ER\Q

Theorem 3.5 Let B, be a ball such that Q, = B, N Q # @ and assume that either b + ¢ €
L™9(2;), g € [n,00), or |b+ c? € K(2,). We also assume that one of the following holds:

(1) divb+d > 0, B € (—00,0) and u € YV2(,) is a non-negative L-supersolution of
(3.1)in Q;
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(2) divb+d <0, B € (0,00) and u € Y"2(,) is a non-negative L-subsolution of (3.1) in
Q.

If we set

S - Q" :={xeQ u<m} ,inCase(l),
" M.—(xeQ :u>M)} ,inCase(2),

and for k > 0 we define

_ u, +k ,inCase(1), ~ {x € Q :Vu,,(x) #0} ,in Case(l),
u = + X nd QV = + .
uy +k in Case (2), {x € Qr : Vuy(x) #0} ,in Case(2),

then, there exist constants Cy, C1, C, depending on B, such that for any non-negative function
n € C°(B,) we have

I T Vunyﬁz)w<mnu VnnL%Q)—%jg (C1If1+ Calg ) aPT'n?, (3.18)

where f = | f|/ii, § = |g|/ii, and the implicit constant depends on A, A, and also either on
Cy.q and |b+c||pra(e,), forg > n, or C,and 9, (|b+c|?, r). When |B| > 1, Co = |B+1]72,

=B+ 17", and C; = 1+ |B + 1|72, while when |B| < 1, Co = 4°|B|~% and C| =
Cr = 2¢|B|7", where either k < 1+ ﬁ”b—}—cll'l"n,q(%) ork <14+2a2 pg_"||h||L1(Qr).
Inthe case p=—1,Co=C;1 =Cp = 1.

Proof We first assume that u is a non-negative supersolution of (3.1) and g < —1.
For k > 0 we define the auxiliary function

p+1

_ B+l B+l
w=u2 —(m+k) 2.

It is clear that w € Y 12(2,) vanishing on 82 N B, and so, we can apply Lemma 2.34 to w
and Q, withp =n,qg > n,h =b+c,anda = ﬁ, where C; 4 is the constant in Sobolev’s
inequality, to find w; € YI’Z(SZ,) that vanishes on 02N B, and 2; C er, 1 <i <k, sothat
(1)—(8) hold. B

Since w; vanishes on 92 N B,.. there is a sequence ¢ € C°(R2\ (92 N B,)) such that
¢r — w; in Y12(Q). Thus, the sequence 772¢k € C2°(£2,) converges to nzw,- in Y12(Q,),
which implies that nw; € Yol’z(Qr). Note also that, by (5), n?w; is non-negative. Thus, for
i=1,2,...k,

/|vm Af|VWF%

1 g1
5/ AVw; Vw; 772 = ﬂ%/ AVquiﬁTnz

r

1 _ -1 B
:ﬂi</ AVuV(wiuTnz)—2f AVuVnnw;i T)

2
1
—ﬁ% (/ AVUVi'T w,n> ﬁiul bh—J3). (3.19)
Qr
Let us point out that
_ Bl
O<w <w=<iu? (3.20)
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and
Vilg, =Vulgn and {x € Q, :w; #0} C{x € Q1w # 0} = Q. (3.21)
Recalling that 8 < —1 and using (3.21), (1.2), and that & > 0, we get that
-1 _
J3 = Lz / AVuVu T p? fx\—ﬂz / VuP i’ n? <0, (3.22)

and thus, — £11 'H J3 < 0. Moreover, by (1.3), Holder’s inequality, (3.20), and (3.21),

[J2] < 21\||77V14 & 22 (@my lwi Vll 2 (qm)
< 2A||77Vb_iT ”LZ(Q’,")”’/_‘TVﬂ”LZ(Q;")' (3.23)

Since u is a supersolution of (3.1), 8 + 1 < 0, and divb — d > 0, we obtain

Ji

v

_B-1 _B-1 B—1
(b+c)VuwiuTn2+/ fwiuTn2+/ gV(w,u 2 772)
Q Q Q
=L+ Db+, (3.24)

andso 3y < ZXL(1 + b + I3). As

-1

B-1 p-1 B—
V(wiﬁT n2)=Vw,-IZT nz—i—ZVnw,-nﬁ 5 + Vu e w,-nz,

we may write /3 as the sum of three integrals 131, I3, 133 that correspond to the terms on
the right hand-side of the latter equality. So, by Young’s inequality (for ¢ small enough to be
chosen) along with (3.20) and (3.21), we get

P 1 < eV i, + 'ﬂ;:'zfm g2, (3.25)
P ; Uiy < ||ﬁ@w||iz(g,,,) + "32”2/ |gl*a#~"n*. (3.26)
|ﬂ+1l|1 | < Mna% vannizmﬁ'ﬁl;:'z/m g 2af 12 (3.27)

L] sfm|f|ﬁﬂn2. (3.28)

Moreover, by (7),

B+1
2

112/ (b +)Vww; n*
Qr
i—1 ) i—1 )
:/ b+ o) Vw; wi n* + /(b+c)ijwin2::11’+§ . (329
i j=1 J j=1

If we apply (2.23) and Young’s inequality,

I

| /\

Cs.qllb + clliLna@pInVwill 2 ) Vw2,

I /\

3aC aC
= VWil 7 g,y + = N0 Vil g (3.30)
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Similarly,

i—1 i—1
D= Coglib+cllra@p IV w2 D InVw; g,
j=1 j=1
2

qu i—1
< aCyglInVwill}2 g, +aCsgllwiVall72 g, + > InVwjlizae,)
j=1
(3.31)
Let us set
_B-1 _ B+1
xo = [l 2 Vil p2gmy, xj = InVwjliz2q,), yo=llu 2 Vnl2qm,

and also, if yp := |8 + 1]/2, set

_B _p-1
@ nl2my, 21 =llgli = nllr2gm, and

20 = Il f12i
Cle, yo) i=[(@e) ' + 1) y¢ + &) (1 + n)?]?

Then, using this notation, |8 — 1|/2 < 1+ yp, and choosing « small enough, depending on A,
A, |Ib + cllLn (), and C; 4, we can collect the inequalities (3.19)—(3.31) and find a constant
Co (depending on A, A and Cj ,) so that

i1
xi < Co(v/020 + C(e, ¥0)21 + Ve vo X0 + 30) + ) X
j=1

By the induction argument that appeared in the proof of Theorem 3.1 and (3.21), we can
show that

vox0 = lIn Vwll}, o ) < Ci(W/7020 + Cle, v0)21 + V& 1o X0 + Yo),

where Cy dependson A, A, [|b+cl|;ra(q) and Cy ;. We may choose & small enough compared
to sz and use Young’s inequality with ¢ to deduce

Yo X0 < C2 (Yo + /7020 + (1 + v ?21)

in order to show (3.18). The details are omitted.
We turn our attention to the case that u is a non-negative supersolution of (3.1) and
B €[—1,0). For k > 0 we define the auxiliary function

w=if — (m+kP.
Since w € Y12(2) and vanishes on Q2 N B, we apply Lemma 2.34 as in the previous case
to w and &, for p = n, h = b + ¢, and a small enough depending on 2, B, Cs 4 (to be

picked later), to find w; € € Y12(Q) that also Vamshes on 02N B, and ; C Qr, 1<i<m,
satisfying (1)—(8). By (5) we see that n2w; € YO (Q) is non-negative and we may use it as
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a test function. Therefore,

FPw) + f gV (n*w)

Q Q

< f AVUV (P w;) + buV(n*w;) — eVun*w;) — du(nw;)
Qr

= / AVuV(nzwi) + bV(nzuwi) — b+ c)Vm]zw; — dnzuwi

r

< / AVUY (Pwi) — (b + &) Vun*w;,
o

where in the last inequality we used (1.5).
At this point let us recall (3.21) and also record that

O<w; <w<il
and
Vw; = i 'Vulg,.

Therefore, by (3.34) and S < 0, (3.32) can be written

_B-1 _B—
MBI = Vull7s g, < 1Bl /Q AVu - Vur’i? 152/Q AVu -V win

4
— | b+ c)Vun*w, —/ foPwy) —/ gV (rw) = Zl"'
Q, Q Q

i=1
We apply Holder’s inequality along with (3.21) and (3.33) to get
_B-L _p+1
] < 2Almu 2" Vull g2 qmyllu 2 Vil p2qm-

By Young’s inequality, (3.33), and (3.34), it is easy to see that

JAEA s/ |f|ﬁﬁn2+(1+@>/ gl
Q;rn 48 ern

+|ﬁ|8/ ﬁﬂ*‘|W|2n2+/ P2,
Q; Qn

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

It only remains to handle 7. At this point we cannot use (6) or (7) as in previous arguments.
The reason why is that we do not have u and u; but rat'her two different functions u and w;.
Although, we can recall that {x € @, : w; # 0} = U’jzlﬂj and thus, using (2.23), (3.21),

(3.33), b + cllzrace,) < a forany j € {1,2,---m}, and wiit T n € YR, we get

_B-t _1-8
12l = Csgllb +clina@pline 2 Vull 2 o) IVt 2 m)li2q,)
_B-1 _18
< aCsqlinu 2 V’/‘”LZ(U;:]Q/.)”V(wiu 2 77)”[,2((2,)«
Note that

1- 1 — 1
1 B i

_1=p _B-1 - -
V(wjn 2 n)lg, = Bni = Vulg, +wiu Vn—i—Twiu_
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Also, for B € [~1,0), it holds £ > 0 and Z£! > 0. Thus, by (3.33),

_ _1=8 _B— _
<uz1y 2 and w;ju 2 <ufu 21, 2 <u 2 lg;rn,
which, in turn, implies that

_B-1 _B+1
||V(w,u = M2,y < 1Bllnie 2 Vil 2,y + llu 2 Vﬂ”LZ(Q;ﬂ)

1—p 1
+ i T Vil g gy 639

Set now
_B-l _B-1 _Bfl
xo = llnit 2" Vullpa@my, xj = lIni 2 Vill2q;y. yo = [l 2Vl qm).

1o B _p-t
20 = A1V 20iZ |l 2oy and 21 = lliglnit T [l z2gm)-
With this notation, we can write

i—1

_ 2
||77” V ||L2(U‘ 125 =X +le
j=1

_1g 1+ 18 :
IV @i = mlla,) < 1Bl +yo+ —— |+ 57|

which, in combination with inequalities (1.2) and (3.35)—(3.39), and | 8| < 1, implies
2 2 = 2\/2 2 - 2\/2
1Blx? = 205030 +aCo (37 + D x3) (1Bl +yo+ (57 +D°43) )
j=1 j=1

+ (Iﬂlsxé—i—yé +z3+ (1 + %)z%)

Therefore, if we choose « small enough (depending linearly on |8]), by Young’s inequality,
we can find a positive constant C depending only on A, A, and Cy 4 so that

((xoyo)1/2+ 1Ble x0 4+ (1+/1BD)yo + 20 + (1 +\/W)zl) +ij,

j=1

l‘f|

The proof of (3.18) is concluded by the same iteration argument as in the proof of Theorem
3.1 along with the facts that U_, Q; = Q, and |8| < 1 obtaining

K

X0 < % ((XO)’O)]/Z + /1Bl xo + yo + 20 + 2z1) ,
wherek < 1+ ﬁﬁ\” b+ c||2,,,q(9r). By Young’s inequality and if we choose & small enough
(depending on A, A, Cp, and k), we obtain (3.18). The case § > 0 and u positive subsolution
of (3.1) is almost identical and we will not repeat it.

The same reasoning shows (3.18) when |b+ c|? € K(R,) if we use Lemma 2.35. The only
difference lies on the manipulation of the terms that include b + ¢ and a similar argument
can be found at the end of the proof of Theorem 3.1. The details are omitted. O

In fact, if we incorporate —div(bu) and du into the interior data, the same proof gives the
following theorem:
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Theorem 3.6 If we use the same notation as in Theorem 3.5 and either ¢ € L™(R,), for
g € [n, 00) or |c|* € K(S2,), then for any non-negative function n € C2°(B,), we have

_B-1 _ B+l = _ _
Ini = Vul?, 5 < Colli 2 Vi, s + [ (ClLf+Cild|+Cag* +Calb| P Tn?,
L=(2;) L=(2;) o

(3.40)

where f = |f|/i#, § = |gl|/ii, and Co, Ci, and C» are the constants given in Theorem
3.5. The implicit constant depends on A, A, and either on Cy 4 and ||c||Lra(q,), or C; and
dq, (cl?, ).

The analogue of Theorem 3.5 for the case —dive +d > 0 (or —dive + d < 0) will be
a lot easier to prove, as one does not need to handle either the L™ 7-norm of b 4 ¢ or the
K-norm of |b + ¢|? in a delicate way as before. Instead, we will incorporate |b + c|? into
the interior data side (as in Theorem 3.6). It may look surprising bearing in mind the special
case B = 1 we proved in Theorem 3.2, but (3.18) cannot hold in this case. The reason is that
it is the main ingredient of the proof of local boundedness and weak Harnack inequality and,
by Example (4.8), we know that if b 4 ¢ does not have any additional hypothesis, solutions
may not be locally bounded.

Theorem 3.7 If we replace divb + d > 0 (or divb + d < 0) with —dive +d > 0 (or
—dive 4+ d < 0) in the assumptions of Theorem 3.5 and use the same notation, we can find
constants Co, C1, Ca depending on B, such that for any non-negative function n € C2°(B;)
we have

_ -1 _ B+l = _ -
Ina™= Vuljsg ) < Colld > Vnlljsg  + fﬁ (C1f+C2g* +Calb+cPya 2,
(3.41)

where f = | f|/i, § = |gl|/ii, and the implicit constant depends ) and A. When |B| > 1,
Co=IB+17%C1 =B+ 1|7, and Cy = 1+ |8+ 1|72, while when | 8| < 1, Co = |B| >
and C; = Coy = ||~ When B = —1,Co=C; = C, = 1.

Proof We will only give a sketch of the proof. Let us assume that 8 € [—1, 0). For k > 0 we
define the auxiliary function

w =il — (m+ kP,

Since n’w € YO1 ’Z(Qr), arguing as in Case 8 > —1 in the proof of the previous theorem and
using —dive +d > 0, we get

f fw) + f gV (w) < / AVuV (*w) — (b + uV(n*w).
Q, Q, »

Because B < 0 and {x € Q, : w # 0} = Q, the latter inequality can be written as

18] / AVu - Vunzﬁﬁ_l < 2/ AVu -Vnwn —/ (b+c)uV(n2w)
Q r Q

4
- 2w) — Vntw) =Y .
Qrf(n w) /Qrg (" w) ;
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Note that if we use 0 < u < u, then I, I3 and I4 can be bounded as in (3.36) and (3.37). So,
it only remains to handle />. But as we do not need to use Lemma 2.34 it will be fairly easy
to do so. Indeed,

I = —2/ (b+c)Vnwm;+|,8|/ b+ c)Vun?aPu,
y o

which, in light of Young’s inequality with & small (to be picked), w < b Iern and B € [—1,0),
implies

I12|5(1+|ﬂ|(48)‘1)f9 |b+c|2ﬁﬁ“n2+/g Ianzﬁﬁ“JrSIﬂI/Q VPP

If we choose ¢ small enough we conclude our result. We may handle the case 8 < —1 and
B > 0 for subsolutions in a similar fashion adapting the argument in the proof of Theorem
3.5. We omit the routine details. O

Moreover, the proofs of Theorems 3.5, 3.6, and 3.7 can be easily adapted to get a refined
version of Theorems 3.1 and 3.2. We only state the first one.

Theorem 3.8 Let B, be a ball of radius r > 0 so that B, C Q and assume that either
b+c e L™ (B,), q € [n,00), or |b+c|? € K(B.). Ifu € Y 2(B,) and one of the following
holds:

(1) divb +d < 0and u is L-subsolution in B, and B € (0, +00);

(2) divb +d < 0 and u is L-supersolution in B, and € (0, +00);

(3) divb +d > 0 and u is a non-negative L-supersolution in B, and € (—00, 0).

For k > 0, we set

ut +k ,inCase(l),
u=3u" +k ,inCase(2),
u+k ,inCase(3).

Then, there exist constants Cy, C1, C> depending on B, such that for any non-negative function
n € C°(B,) we have

_B-1 _B+1 = _ —
Ina= Vull?s, S Colla > Valjs s ) + /B (CilF1+ CalglP) a* 1%, (3.42)

where f = |f|/it, § = |g|/i, and the implicit constant depends on \, A, and also either
on Cs 4 and |b + cllzracs,), or C and 9, (b + c|*, r). When |B] > 1, Co = |8+ 1|72,
Ci= 1B+ 1"" and C; = 1+ |B + 1|72, while when |B| < 1, Co = 4°|8|72 and C, =
Cy = 2¢|B|7", where either k < 1+ ﬁllb—i—c”’i”,q(&) ork <1+2a~? p(%_n”h”Ll(B,)'
Inthe case p=—1,Co=C1 =Cr = 1.

4 Local estimates and regularity of solutions up to the boundary

In this part we will present the iterating method of Moser to obtain the following results:

Local boundedness for subsolutions;

Weak Harnack inequality for supersolutions;

Holder continuity in the interior for solutions;

A Wiener criterion for continuity of solutions at the boundary.
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4.1 Local boundedness and weak Harnack inequality

Denote Q,, = B,, N # @, where ry € (0, oo, and let f € K(£2,,) and |g|2 € K(2,). Set

yi=B8+1
and
k(r) := g, (|f1,r) + Vo, (11>, r)'/?, forany r € (0, rol.
Define
i 1
w= 47 A (4.1)
logu, if p=-—1,

where u is either the one given in Theorem 3.5 or in Theorem 3.8, with
k =k(r).

Here B, is a ball of radius r € (0, ro] which is either centered at the boundary (as in Theorem
3.5) or such that B, C 2 (as in Theorem 3.8). We will handle both cases simultaneously and
it should be understood from the context what kind of balls we are referring to. Set

= L gl 72

=——, and V = .

f= ) STy f+e
Notice that for k = k(r) we have that |f| < |f| and |g| < |g| and so (3.18), (3.40), (3.41),
and (3.42) hold for f and g instead of f and g. Moreover,

Lf O

1
vq, (V,r) = UP/
0 k(r) cemn B(x,nNQ, X — x — y—2
1 lgI?
+ 1 ap / BT 42
k(r)? ycpn BNy, 1X = V1" 2

Lemma 4.1 Assume that B, be a ball such that Q. = B, N Q # @, r < ro, and that
either b+ c € L™9(Qy,), q € [n,00), or |b + cl? e K(2y). If w is defined in (4.1), and
n € CX(B,) is non-negative, then the following hold: If |B| > 1, there exist constants ¢’ > 1
and cj € (0, 1) so that for any 0 < € < 1,

A+ |y
ﬁg_sgm(v, ec,(1+|y|~2™D

Inwll 2+ 5,y < G+ VaDwll 25, 43)
and if, in addition, |y| > % there exist c3 > 1 and c4 € (0, 1) such that
3

Vo, (Voealyl™)

Inwll 2% g,y = I+ 1VnDwll2g,)- (4.4)

If there exists Bo € (0, 1) such that o < |B| < 1, then there exist constants cs > 1 and
ce = c6(Bo) € (0, 1) so that

€5

— I+ IVaDwli2p,)- (4.5)
U, éz,o(V,ece lyD &)

Inwll 2+ g,y =

The implicit constants are independent of € and gamma.
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Proof 1f | 8| > 1, for ¢ to be chosen, by (2.15) we have that

- 1
g1Hw’n? V(wn)? —/ 2. @
/Qr(lflJrlgl Jwn® < cie /er (wn)|” + T oy [wn| (4.6)

By (4.6), we may rewrite (3.18) or (3.42),
[ vl <cipi® [ wntetszeca iy [ vanp
r Q2 Q

1
+eCer(1+yl” )—/ lwn|?.
1 Y W.oley n

Therefore, if we choose ¢ = < 0.1, we deduce

€
10Ce1(1+y172)

1 1
nVul® < C| |—2/ IVn|2w2+*/ Vwn)P + / wnl?,
/,. v Q 5 Ja, 10196Q (V, ey 'e)? Jo,

which, in turn, since C > 1, implies

10+ |y|™> 1
/W( i < —/ |Vn|2w2+,l—,12f . @7)
B, 306,94,(‘/’62 &) Je,

Notice that € < ﬂe,gro(v, 1) and so 19;12,_0(\/, €) < 1. Thus

o, (Voerley =074 (Voe(10Caica( +1y™) ) =07h (V.o =1,
which, if we set ¢ := (10Ccic2) ™! < {5, in light of (4.7), gives

(11C/3)(1 + |y™)
Dehy (V-eci (L1vI?)

IVwmliLg,) = _,) [+ 1VnDhwll2g,)-

> %, and, if we set ¢4 :=

Iyl
we can deduce
I+[y]? = 10y

Moreover, if |y| > %, it holds that
that

10’

IVwmliLg,) = 20C(17§Q (V,ecaly" N0+ 1Vahwl 2,

Since nw € Y, 2(B,), (4.3) and (4.4) follow by Sobolev’s inequality.

In a similar fashion, for 0 < |8] < 1, if we choose ¢ = 10‘@1 < 1—10, since 4 > 1, we

obtain

C 1 1
InVw|? fIVn|2w2+*/ IV(wn)|* + f|wn|2.
[g, = P 5Je, 109, o, (V.cy'e)? Ja,

which entails
10C 1 1
|V(wn>|25—(1+—>/ VnlPw? + /Iwnl2-
/B, 3 1817 ) Je, 30q, (V. ecilp? o,
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Thus, as 0 < By < |B| < 1, we have that cz_] e > € Bic, > elylBic,/2 and so, if we set
c6 1= ﬂgcg/Z, since € cg < 0E,QrO(V, ce) and so 19;512,0(‘/’ € cg) < cg, there exists ¢5 > 1
(independent of Bp) such that

(&)

VoWl 2@, < —1——
Vg, (V.ecslyD

I+ IVaDwllp2(g,)-

We conclude the proof of (4.5) by Sobolev’s inequality. O

Remark 4.2 Lemma 4.1 can be proved in the cases
(1) —dive +d <0 (or > 0) and |b + c|*> € K(R2y,),
Q) b)?* e K(2,,) and d € K(2,), and either c € L™(R2,,), g € [n, 00), or lc|? e K(82).
We set
k) — [199,0(|f|, r) + 9, (182 1" + 9, (b +cl2 )/ in Case (1),
Oq,, (1f1. 1) + 00, (g1, '/ + vg, (161>, 1/ +9q, (1d],r) ,inCase (2),
(4.8)

For k as in (4.8), we use Theorem 3.7 and Theorem 3.6 respectively, and set

_ If1+18>+ b+c> ,inCase (1),
|fl 41812 + |bI*> +|d| .in Case (2),

in order to obtain the same results as in Lemma 4.1.
We are now ready to prove the local boundedness of subsolutions.

Definition 4.3 We will say that the condition (N),, is satisfied if one the following conditions
hold:

(1) divb+d <0and b +c € L™(Qy,), g € [1n,00) or |b + c|® € K(2,);
(2) —dive +d <0and [b + c|* € Kpini(Qy,)-

Analogously, we will say that the condition (P),, is satisfied if we reverse the inequalities in
condition (N). Here, (N) and (P) stand for the negativity and positivity condition respectively.
We will also say that the condition (D), is satisfied if 16)? € Kpini(2,), d € Kpini(€2,), and
either c € L™9(R2,), g € [n, 00), or lc|? € K(£2,,). If the above conditions hold globally,
i.e., for rp = oo and 2 instead of €2, we will drop the subscript 9 and simply write (N),
(P), and (D).

In the next theorem we borrow ideas from [26], although, some details are different in our
case. For example, we had to introduce the auxiliary modulus 195’2r to be able to use Lemma
2.32 and define the appropriate Dini condition that gives constants independent of €2.

Theorem 4.4 (Local boundedness) Let B, be a ball such that B, N Q # @, for r < ry, and
assume that f, |g|2 € Kpini(R2ry). If o € (0, 1), then the following hold:
(1) If u is a subsolution of (3.1) in B, N 2 and the condition (N),, or (D),, holds, then

() if B C Q
suput S (1 —o) P (r P T Lopy + k() ; (4.9)

Bor
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(i) if B, is centered at a point £ € 9€2,

suput; S (1L—o) P (r P luf e, + k(). (4.10)
Bﬂr

(2) If u is a supersolution of (3.1) in B, C €2 and the condition (P),, or (D), holds, then
) if B, C Q

supu” S (1 —o) P (r™P lu" ocs,) + k(). 4.11)
Bor

(ii) if B, is centered at a point £ € 9€2,

sup(—ut,) < (1 — o) P (r™"/P |luy, || Lo s,y + k() - (4.12)
BUV
The implicit constants depend only on p, o, n, A, A, C| £l C PEX-M and according to our
assumptions, on the following: a) C; 4 and ||b + C“Ln,q(QrO), or C} and 199,0 (b + c|2, r), b)

C|b+c‘2’gr0 ,andc) C\h|2,9,0’ Cld), ., andeither Cs g and [[c]lLra (@), or Cg and P, (cl?, 7).

ro)’

—_

Proof Let us now pick 7 so that, for 0 <oy <03 < 3,
0<n=<1, n=1inBs,, n=0in Bo,r, [Vnlec <2/(02 —01)r.
If we set x = n”fz and k = k(r), then (4.4) for r < 1 can be written as
2c3 1
I, < =g Tk (Voearlr D

1wl 12(5,,,)+

which, in turn, implies that

2¢3 2y
lullLvx(B,,,) < ( ) lallLy (B, (4.13)
(Boyr) (o9 — o)r 19;51% (V,ecaly|-H2r (Boyr)
if |y| > % and u is a subsolution.
For p > 1 and any non-negative integer i, we set
: : 1 1
vi=x'p=0+:2)'p=p>1 and o =+ o
and apply (4.13) with y = y;, 01 = 0;41 and 02 = o; to obtain
Il e a,,, ) < 23272 /)20 2]l % (3,

Ve, (Voecay )
1

-1 —iy2/px
De gy, (Veer 70

— (Kl/rz/P)l/X Ké/x R ||IZ||LVi(Br7ir)’

where K| = (8 C3)2/P and K, = 2%/P and ¢7 = €cqy p < 1 (we can choose c4 so that
p c4 < 1). Iteration of this inequality leads to

- ik X );7 - 1 _
supu < (K1)~ ' K, — , = lullLe(s,)- (4.14)
B2 D) ﬁéyglzro (V,e7 x=1)2/px
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Thus, since

2 & c7 _ _;
lgﬂﬁ_l S = e 2y o8 Va, (Veerx ™,

(Voeg e cos =y

we may apply Lemma 2.32 for = x ! and ¢ = ¢7, and by Lemma 2.13, we obtain

(V,e7)
C7 9] _i 2x €. dt
LR Z g9 b (Voerx™) < ()(—7/0 Doy (V-1

€cy “ Decy
71
2% e,y (V-07) dt 2x €
= 9o, (V1) — + —2—— vV,
(X—1)€C4/0 %V DT+ G Deay TtV D
2x P - _
= (Clrtitg P (71 928, (V7)) + Clap., Py (812 958, (Vo cn)
2x €
(X “Decy €, Q'O(V C7)

2x —1 -1
= = Dees ((Cm,szro + Clep 0, )02, (V. Ueq, (V) +edig (V. C7))

2 -1
= (= Decg ™ ((lewro +Cigp.0,): 1) Ve, (V. 0o, (V,en)
2x ¢7 ( 2x p
< —" max(Cy Clery 1) = (cis Cler,y 1)
= X —Dees max ( Cr1,2, + Cgp2.0, o-D max | Ciri.e, + Cigp.q,

where C| |, 2, and C 18I, stand for the Carleson-Dini constants (2.5).
By the deﬁmtlon of u, we get

supuM < supuM +k(r)<r —n/p litllrpy S "/p||uM||Lp(B, + k(r),
B2 B2

from which, (4.10) for r < 1 follows. Replacing u;{,[ by u™, the same argument shows (4.9)
forr < 1.

To obtain the desired estimates in any ball of arbitrary radius r > 1 we use a rescaling
argument. Note that u, = u(rx) is a subsolution (resp. supersolution) of the equation
—div(A,Vw + byw) — ¢,Vw — dyw = f, — divg,,
where
Ar(x) = A(rx), by(x) =rb(rx), ¢ (x) =rc(rx), do(x)=r>d(rx),
fr@) =r2f ), gr(x) =rg(ra).

If we set D, = %Qm, by Lemma 2.13, we get that

br + crliLnap,y = b+ cllLmace,)
9p, (fr, 1) =q, (f.r) Op,g > 1) =, (g ),

and since the Dini condition is scale invariant, we have

Cfr,Dr = Cf»QrO C‘gr‘z’Dr = C‘glz’gro'
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If we apply (4.14) to u, in the domain D,, by the change of variables y = rx, we obtain the
following estimate:

supid = sup iy S litrllLecs) & r~"'P il Los,)-
B2 By
Remark that the implicit constants do not depend on r.

Moreover, if 0 < o < 1/2,

sup <supiut < Fn/p lliell e B,
Bsr Br/Z
S A=) Pr P ]| L s,
andif 1/2 < o < 1, then for any ball B(z, (1 —o)r) C By, we get
sup i@ S (1 =—o)Pr P it o seai-or < (1 —0) ™ Pr P i Los,).
B(z,(1-0)r)
Thus, for any o € (0, 1), we have shown that
supit < (1—0)™Pr=" |li|l Lr(s,).
Bar

which trivially implies (4.9) and (4.10). To show (4.11) and (4.12) it suffices to notice that
w = —u is a subsolution of Lw = — f + divg and use (4.9) and (4.10) as divb + d < O still
holds.

Using Remark 4.2 we can prove the same result under either condition (D) or —dive+d < 0
and |b + c|2 € Kpini (£2;-). We omit the details. ]

We turn our attention to the weak Harnack inequality.

Theorem 4.5 (Weak Harnack inequality) Let B, be a ball such that B, N Q2 # @, forr < ry,
and assume that f, |g|2 € Kpini(2ry). If u is a supersolution of (3.1) in B, N Q and the
condition (P), or (D), is satisfied, then for 0 < s < p < x = n/n — 2, the following hold:

(i) if B C Q

r Pl S e ullLs s,y + kG, (4.15)
P ullLees,y < li?nf u+k@r/2). (4.16)

r/2

(ii) if By is centered at a point & € 0%2,

F PN e sy ST i s sy + k@), (4.17)
<

r P g \lLe s, ;n/g w, +k(r/2), (4.18)

The implicit constants depend only on p, s, o, n, A, A, C|f"9r0’ C|g|2~9r0 and according
to our assumptions, on the following: a) Cy 4 and ||b + C”Ln.q(gro), or C; and 0Qr0 (b +
cl?,r), b) C|b+c\2,§2,0’ and c) C\b|2.sz,0’ Cld‘yﬂro’ and either Cy 4 and ||c||Ln,q(Q,0), or C; and

dg,, (Icl2. 7).

Proof We shall first prove the reverse Holder inequality for iz. Recall first that y = g+ 1. If
p < x,there exists § € (0, 1) such that p = § x. For any non-negative integer i, we let

1

)’i=X_iP and (Ti=1—2l-ﬁ,
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and apply (4.13) (which is still true as 8 < Owhen 0 < y = g+ 1 < 1) withy = y,
o1 = o; and 07 = o;41. If we argue as in the proof of the previous theorem we obtain

1
224, (V. cox

— x' iy _
lullzris,) = Ky'" Ky ||M||LV:'+1(BUI.+1),

where K| = (4¢5)>P and K» = 2%/ and ¢ < 1. As q < p, there exists ip € N such that
Yio—1 < q < Vip—2. Thus, if we iterate the latter inequality iy times we get

lallr (s, S lullLas,)- (4.19)
If u is a supersolution, then (4.5) for r = 1 implies

1

Db, (V. cox0)2/rr®

- - /310 i/ x -
Il 20 (Boy) = Mitll i1, ) = K177 K Il 7o (5,,)-

By a similar iteration argument as above we can show that for any ¢ € (0, x),
lall-a(p,) < inf u. (4.20)
Bija

Setnow w = log u and let B, (x) aball centered at x of radius » < 1/2sothat By, (x) C Bj.
Let also n € C2°(Bar(x)) so that n = 1in B,(x), n = 0 outside By, (x) and | Vnlle S 1/r.

~

Then, by F:oinca~ré and Holder inequalities, along with (3.18) or (3.42) for 8 = —1 and the
factthat | f < |f],|g| < |gl|, and k = k(1), we get

1/2
/ w—][ w‘,ﬁr/ Vw| < rr/? </ |Vw|2>
By (x) B, By (x) By (x)

2 N\ i . LG
<l (/ |an|> < ! [/ val+ [ afi+ig )]
Bo,(x) By, (x) By (x)

~ . 1/2
2
< rr? / |V77|2+r”_2/ wdy
Bay (x) By X =Yl

172

S [1+ 0, (F1r) + do, (271

2 12
:,{Hﬁﬂro('f'v’) z?g,ougl,r)} -

k(1) k(1)

This shows that, w € BMO(B;) and thus, there exists s € (0, 1) such that ¢*" is in the class
of A> Muckenhoupt weights in Bj. That is,

(1) =(L=)

This, combined with (4.19) and (4.20), implies that, for any 0 < p < yx,
u < inf u
lallr s S e

and so (4.15)-(4.18) hold for r = 1. The general case follows by rescaling. ]
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Remark 4.6 1f we impose global assumptions (e.g. |c|> € K'(R) and |b|?, |d| € Kpini ()
on the coefficients and the interior data, then we may take ro = oo and all of the constants
in Theorems 4.4 and 4.5 are independent of r. In particular, the implicit constants depend on
p,o,n, A A, Csy, Ciras C|g|z,Q and according to our assumptions, on the following: a)
Cs,q and ||b + cl|pna(q), for g € [n, 00), or C; and 9o (b + c|2), b) C|b+c‘279, and ¢) Cs 4
and ||c||zrg(q), for ¢ € [n, 00), or C. and 9q(|b + c|?), Cip2.> and Cla) Q-

Remark 4.7 Let 8 > 0, s be as in (2.6), and Q5 = {x € Q : dist(x, 9Q) > 8} N B(0, 1.
Define bs = (blgqy) * Vs, cs = (clgy) * Vs, and ds = (dlgy) * Y¥q,. Let us also define
Lsu = —divAVu—div(bsu) —csVu—dsu.If (1.5) (resp. (1.6)) holds for b, c and d in €2, then
(1.5) (resp. (1.6)) holds in £2;. For a proof see Lemma 6.9 in [16]. Moreover, ||bs +c5||1m.a ()
is dominated by 2||b + c||pn4 (@) and so, all the constants in the theorems of Sect. 3 are
independent of §. In the case that (1.5) holds, everything works exactly as before. On the
other hand, if (1.6) is satisfied and |b + c|2 € Kpini(£2), we should use Corollary 2.17 in the
proof of Lemma 4.1 to obtain bounds which are independent of . Theorems (4.4) and (4.5)
for subsolutions and supersolutions of Ls in €25 will then follow from the same proofs with
estimates uniform in §.

Example 4.8 Let us now refer to the counterexample constructed in [16, Lemma 7.4]. In
particular, the authors defined the operator

—Au — div(sbu) = 0 in B(0, e 1),

where b(x) = ——=>— and § > 0, and showed that the solution u = |In Ix||® e
lx[*] 1 x|

Y1’2(B(0, e~ 1)) does not satisfy (4.9) around 0. They proved that b € L?(B(0, e 1) for
any ¢ > n but not in L"(B(0, e~1)). It is not hard to see that |b|*> € K(B(0,e"!)) but
not in Kpini(B(0, e~1)), and thus, assuming |b + c]? € K(S2) does not suffice to establish
local boundedness. A modification of this example shows that (4.16) does not hold when
b+ c|2 € K(2). It is important to note that, since § can be taken as small as we want, this
example shows that assuming the norms to be small is not enough either.

Example 4.9 Adjusting the previous example we can find an operator which does not satisfy
neither (1.5) nor (1.6), for which there exists a non-bounded solution in the ball B (0, e 1.
Indeed, let

n—2

— Au —du =0 in B(0, eil), where d(x) = L TE
<1 In |x]]

421

It is not hard to see that d > 0 is in the Lorentz space L”/z’q(B(O, e~ 1)), for any g > 1.
But notice that u = |In |x|| is a solution of (4.21) and u € Y"2(B(0, e~ ")). Since u fails
to be bounded around 0, the necessity of either (1.5) or (1.6) to prove local boundedness
is established. It is interesting to see that d is not in /(B (0, e~ 1) (and thus, it is not in
L"21(B(0, e71)) either).
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4.2 Interior and boundary regularity

Theorem 4.10 Let u be a supersolution of (3.1) in Q with supg u < 0o and assume that the
condition (P) or (D) holds. Then u has a lower semi-continuous representative satisfying

u(x) = essliminf u(y) = lim][ u(y)dy, forall x € Q. 4.22)
y—x r=>0JBx,r)

Proof We follow the proof of [12, Theorem 3.66]. Fix a ball B, centered at x € € so that
By, C € and apply Theorem 4.5 (i) to u — m,., where m, = essinfp, u. Then, we have

0 S][ (u —my) < C((mpj2 —my) +k(r)).
B,

Since C is either a constant independent of r and (m,,» — m,) + k(r) — Oasr — 0, by
taking limits in the inequality above as r — 0, we obtain

lim][ (u —m;) =essliminf(u —m,) =0,

r—0 B, y—>Xx

which implies (4.22). ]
Let us now introduce some notation that we will use in the rest of this section. Forr < rg/2

and ry € (0, oo], set

ke (r) i= Do, (1f1,r) + (suplul) Da, (d], r) +er, (4.23)
Q
lim ke 1(r) = ki (r) = Dg, (1f1, 1) + (suplul) g, (1d], r), (4.24)
— Qr
kea(r) =, (Ig1*. 1)'/* + (sup ul) o, (161> )" * +er, (4.25)
lim ke2(r) = ka(r) = Do, (1817, 12 + (sup lu]) Do, (161, 1)'/2, (4.26)
€e—> Q,
ke3(r) = Pq, (IbI*, N'* + g, (1dl, r) +er, 427
im ke 3(r) = k3(r) = Do, (6%, '/ + 9g, (Id], 1), (4.28)
€—
kea(r) := g, (1f],r) + Do, (181>, N'/* +er, (4.29)
lim ke a(r) = ka(r) = Dg, (1%, )2 + 90, (1£1, 1), (4.30)
ke (r) = ke 1(r) + ke 2 (r), 431)
k(r) == ki (r) + ka(r). (4.32)

If k is defined as in Case (2) of (4.8), then k = k3 + k4. All the functions above with
subscript € are strictly increasing and from their very definitions we have the following:

Lemma 4.11 Ifu satisfies

12
sup |u| S (][ |u|2> + k@2r), foranyr <ry/2. (4.33)
QZr

r

then, if 0 < r1 <ry,

172
k(r) < ka(r) (][ |M|2> +k(r) | +ka(r), foranyr <ri/2. (4.34)
,
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Theorem 4.12 (Modulus of continuity in the interior) Let 0 < r < ro/2 and B, be a ball such
that B, C Q. Assume that |f|, |d|, |b|?, and |g|* € Kpini(By,), and either ¢ € L™9(B,,),
q € [n, o), or le|? e K(Byy). If u is a solution of (3.1) in B, then for every ju € (0, 1), there
exists a € (0, 1) so that

_ o4 1 1/2
Iu(X)—u(y)|§[<|xr7y|> +k3(|x—y|"r1*“)] |:(r"/ |u|2> +k(r)]

+ ka(lx — yFr!H),

forallx,y € By 2, where k3(r) and ky(r) are given by (4.28). and (4.30). Note that a and the
implicit constants depend only on X, A, C\f\ﬂro’ C‘g|2yg‘2r0 and either on Cy 4 and ||c||Lra(g,),

or Cg and ¥g, (1b + > 7).

Proof Fix r; € (0, rog/2) such that B,, C 2 and assume that u is a weak solution of the
equation Lu = f —divg in B,,.Itis easy to see that u is also a weak solution of the equation

Lu = —divAVu — ¢Vu = (f + du) — div(g — bu). (4.35)
in B,. Ngte that .1 = 0 and since d = Ez =0,i=1,...,n, wecan use Theorems 4.4 and
4.5 with k as in (4.32) to get

sup(u + k(r)) < ][ uw+k@r) < inf (u + k(r)), forany r <rg/2.  (4.36)
B, By, r

Now, let

My =sup|u|, M, =supu and m, =infu,
By, B, By

and since M, — u and u — m, are non-negative solutions of (4.35) in B,,, by (4.36) for

r < rg/2, we obtain

(My —u) < C (M, — Myj2 +Kk(r/2)),
B,

f (u—my) < C(mr/Z — My —i—z(l’/Z))
B,

Summing those two inequalities we get
(M, —m) < C[(M; —my) = (Myj2 = myp2) + 2k(r/2)],
which further implies
Cc-1
C

Ifwesetw(r) =oscg u =M, —m,andy =1— cle (0, 1), the latter inequality can be
written

(M, —m,) + 2k(r/2).

(Mypp —myp2) <

w(r/2) < yo(r) + 2k(r/2),

which implies that for any u € (0, 1) and for @« = —(1 — ) logy/log2 € (0, 1), there
exists a constant C’ > 0 depending only on y such that

o) < (ri) w(r) + ke,
1

which, by (4.34), concludes the proof. O
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The last goal of this section is to develop of a Wiener-type criterion for boundary regularity
of solutions. We will follow the proof of Theorem 8.30 in [9]. Several modifications are
required in our case and in particular, we would like to draw the reader’s attention to the
iteration argument at the end of the proof. In [9] it is claimed that the inequality (8.81) on p.
208 can be iterated to produce the desired oscillation bound at the boundary. Unless the CDC
is satisfied, it is not clear to us that the second term on the right hand-side of that inequality
will converge after infinitely many iterations. In fact, the exact term one picks up after m
iterations is

m—1 m
2m 2k 1 — 2] = )
x(r/ )+§x(r/ )_111< X(/2D) | ose w=: Sy ose u
=l Jj=

It seems that if we do not have additional information about the behavior of the sequence
a; = x (r/2%), we could choose different sequences ay so that S, either converges or diverges
or even have multiple limit points. We resolve this issue by incorporating this term into the
main oscillation term.

Let us first introduce some definitions.

Definition 4.13 We say that a set E is thick at & € E if
/1 Cap(E N B, (§), By (§)) dr
0

S = oo, 4.37)

If @ C R" is an open set and for £ € 92 it holds that
Cap(B, (&) \ Q, By (£)) > cor" 2, forall r € (0, diamd<),

for some ¢ € (0, 1) independent of r, we say that €2 satisfies the capacity density condition
(CDC) at &. If this holds for every £ € 9<2 and a uniform constant ¢, we say that 9<2 has the
capacity density condition.

Theorem 4.14 (Boundary oscillation) Let r < ro/2 and B, befa ball centered at £ € 0%2.
Assume also that u is a solution of (3.1) and ¢ € Y12(Q) N C(Q) so that u — ¢ vanishes on
02 N B, in the Sobolev sense. Then, the following hold:

1) Let |f]|, |d], |b|2, and |g|2 € Kpini(2y,y), and either c € L9(82,,), g € [n,00), or
lc|? € K(2y,). If Q satisfies the (CDC) at €, then

N | 12
|u<x>—u(y>|5[('xr7y') +k3(|x—y|“r‘—“)] [<r/9 |u|2> +k(r>}

+ka(lx = yI*r' ) + o) — o), (4.38)
forallx,y € Byjpand0 < r < ro/2. Here k3 and k4 (r) are given by (4.28). and (4.30),
and the implicit constants depend on the CDC constant co, C|f|,,,» C\glz,Qro’ C‘b|2’9ro’
C‘dLQrU, A, A, and either Cs and ||c||Lra(g,) or C} and 739,0(|C|2, r).
(i) Let |1, 1d] € Kpinis(Qry), 1b1%, 181> € Kpinisy2(S2ry) for some 8 € (0, 1), and either
¢ € L"), q € [n,00), or [e|* € K(Q,). Forany 0 < p < r/2, it holds

osc u< osc @
B,(£)NQ IQNB, (&)

. (—é /cw@\md)( H(;(Mk(m/z)r)),
2

o sn—2 s B (E)NQ ro/2
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where C > 0 depends on A, A, ko as defined in (4.43), C|f|,§2,0,87C|g\2,9,0,5/2:
C\bP,Q,O,(S/Z’ C|d|,g2r0’5, and either Cy and ||c|| ra(q,) or C; and 199,_0(|c|2, r).

Proof If we set B, = B, (&) we record that u is a solution of Lu = f — divg in B, N Q
and thus, a solution of (4.35). Using the same notation as above, one can prove that for
n € CX(By),

IV, 25, < I+ VD)@, + ze)”LZ(B,)- (4.39)

This follows easily by inspection of the proofs of Theorem 3.5 and Lemma 4.1. _
We fix nsothatn = 1in By2,0 < n < 1l and |Vn| < 2. If we set w = n(u,, + ke(1)),
by (4.39) and (the proof of) (4.18), we deduce that

IVwlga s, S 100+ V0D Gty + ke (D)5 5,

< (m +’k1(1>)f (ty, + ke (1)) < (m + ke () (inf uy, + ke (1/2)).
B B2

If we rescale, the latter inequality is written as

PNV W2,y S 0t ke (nf ,, +ke(r/2)).
r/2

w
m-ke(r)
capacity. This observation along with the latter inequality implies that

It is easy to see that is a function in the convex set KEr/Z\Q in the definition of

(m + ke (r)*Cap(B, 2 \ ) < 7" 2(m + ke (r)( inf u,, + ke (r/2)).
r/2

Therefore, since ?e (r) =0,

Cap(B,)» \ Q)

o = CUnt i + K/ (4.40)
If we set
Cap(B Q
2y = SRB N e w and m= inf u,

C(r/2n—2 "7’ B,N0Q B,NIQ
we can apply (4.40) to the functions M, — u and u — m, to obtain
(My = M)y (r/2) < My = Mypp + Ke(r/2) = (My = M) = (M2 = M) + ke (r/2),
m —m)y(r/2) <myp—my +ke(r/2) = (m —my) — (m —my2) + ke (r/2).
Set

w(r) = osc u — 0sC u,
QNB, 9QNB,

and sum the above inequalities to get
or/2) <A —-yF/2)w()+ ZEG(r/2). (4.41)

If y(r) > ¢, for every r > 0, we can write (4.41) as w(r/2) < (1 — c)w(r) + 2;6 (r/2)
and take limits as € — 0. Then, we can repeat the iteration argument in the proof of Theorem
4.12 to show (4.38).
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If y (r) is not uniformly bounded from below, then for m € N, (4.41) can be iterated to
obtain

w7"r)

IA

[Ta-ve'mer +2) ke7n [T a-ye@ )

j=1 j=1 (=j+1
=3 + 2. (4.42)

To handle ¥, we adjust the argument in [21, pp. 202-203]. Let us define

. ke (t
ky™* == sup K (4.43)
1€(0.r) ke (21)

for some § € (0, 1), where we used Lemma 2.33 to deduce that ky < 1. Define also

by = L0 where y= (1 —ko)~! sup y ().
1L+ y re(0,r0)

Since b(r) <1 — kg forallr € (0,r9), 1 —t < e ' and b(r) < y(r), we have

n J
S <2[]e @Y k@ In]a - bt

3

k=1 j=1 =1
m m .
=2[[e " Y k@ ik’
k=1 j=1
m m t+1
< exp ( - Zb(z—"r)) Y ke ]_[ (k (2(2 M”)
k=1 =1

m m

— %' exp ( -3 b(27kr)) Y k@i
k=1 j

KO exp (= Db ) Ker/2), (4.44)
k=1

where in the last inequality we used the fact that | f|, |[d| € Kpini,s(2,,) and b2, Igl2
Kbini,5/2(82r,) and the implicit constants depend on the constants of the relevant Carleson-
Dini conditions. If we choose € = m1n(2k(r0 /2)/ro, 1), the latter quantity is dominated
by

~ 2k(ro/2 -
(k(r> 1 2K/2) )r) exp ( - Zb(2‘kr)). (4.45)
ro
k=1
Arguing similarly, we get
$1 < exp ( -3 b(2_kr))a)(r). (4.46)
k=1
Therefore, combining (4.42), (4.44), (4.45) and (4.46), we infer that

02 r) < (w(r) + (ko) + Zk(m/ 2 r)) exp(—3ob@*n). @4
k=1
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It is easy to see that

—my

m—1
r d .
/ bs) = <223 b,
2 s i

which can be used in (4.47) along with Ko y (s) := 12—y (s) < b(s) (using the fact that
Cap,(B(&,s), B(§,2s)) = cps" 2 for any s > 0) to obtain

wMr) < (a)(r) +2 (;(r) + L(FU/Z) r)) exp (— 21532 /r Cap(By \ ) ds) .
2

ro e sn—2 s

(4.48)

For any p < r < ro/2, there exists mo € N such that 27mo=ly < p < 270y Thus, by
(4.48) we deduce that

0sC u < 0sC u
B,NQ dQNB,

+ exp (_ Ko /r Cap(Bsz\ Q) ds) <osc u— osc u+2 (E(r) + M})) ’

22 )5, s s BNQ 3QNB, 7o

which, by (4.34), concludes the proof of Theorem 4.14, since oscyonp, # > 0 and u = ¢ on
dQ2 N B, in the Sobolev sense. ]

As a corollary of the previous theorem we obtain the following Wiener-type criterion for
continuity of solutions up to the boundary as well as a modulus of continuity under the CDC.

Theorem 4.15 (Boundary continuity) Under the assumptions of Theorem 4.14, if u is the
unique solution of 5.2 the following hold:

(i) If& € 902 and R"\Q is thick at &, then limgs ¢ u(x) = @(&) continuously.

(i) If ¢ is continuous with a modulus of continuity and 92 has the CDC, then u is continuous
in Q with a modulus of continuity depending on the one of ¢ as well as the Stummel-Kato
modulus of continuity of the data and the coefficients in the definition of k.

5 Dirichlet and obstacle problems in Sobolev space

In this section we will need to assume the following standing (global) assumptions:

b2, 1c]%, |d] € K/(Q) or b,ce L™®(Q),d e LT°(Q).

5.1 Weak maximum principle

Theorem 5.1 Let @ C R”" be an open and connected set and assume that either b + ¢ €
L™9(Q), forq € [n,00), orb+c € K'(Q). Ifu € Y12(Q) is a subsolution of Lu = 0, then
the following hold:

(i) If(1.5) holds then

supu < supu™.
Q a9
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(i) If(1.6) holds and u™ € Y, *(RQ), then

supu < 0. 5.1
Q

Proof Set £ = supyq u™ and define w = (u — £)* € YO]’Q(Q). We apply Lemma 2.34 to w,
for p =n,q € [n.00), h = b +¢,and a = 1/2Cy 4, to find w; € Y3 *(Q) and ; C 2,
1 <i < m, satisfying (1)—(8). In light of (5), as w > 0, we have that w; € YOI’Z(Q) is also
non-negative. Recall also that Vw; = Vu in ;. We will now proceed as usual. Indeed, using
that u is a subsolution along with (1.2), (1.5), (8), and (2.23), we infer

MIVwil72q, §/AVw,~Vw,- :/ AVuVw; 5/(b+c)Vuwi
Q Q Q

= Z/(b+c)ijwi
j=1"¢

i—1
2
< aC, g IVwill}aq) +aCs gl Vwill 2@ D IIVW;l2(g),

j=1
which implies
i—1
IVwill 2 < Y IVw;llz2g)-
j=1
By the induction argument in the proof of Theorem 3.1, we get that forany i = 1,2, ..., «,

IVwill2(q) = 0, which we may sum in i and use the condition (6) to obtain | Vw|12(q) = 0.
Since w € YO1 ’Z(Q), by Lemma 2.4, w = 0. Therefore, u < ¢, which concludes the proof of

(.
To prove of (ii), we argue as above for w = u™ ¢ Yol‘z(Q) (i.e., ¢ = 0) and use (1.6)
instead of (1.5), to get

K
MVl = [ G+ ouvu =3 [ 60w vu
=i

K

< aCyglIVwill}s g +aCsgIVwill 2@y Y IVwil 2 g)-
j=i+1

Thus,

K
IVwill 2@ < Y IVw;li2),
j=i+1
which, by the induction argument in Theorem 3.2, implies |[Vw]| 2., = 0, and so, (5.1)
readily follows.
The proof when b + ¢ € K/'(2) is analogous and the required adjustments are the same
as in the proof of Theorem 3.1. Details are omitted. O

A direct consequence of the weak maximum principles proved above is the following
comparison principle:
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Corollary 5.2 Let Q C R”" be an open and connected set and assume that either (1.5) or
(1.6) holds. Assume also either b + ¢ € L™1(Q), for g € [n,00), or b+ ¢ € K'(Q). If
ueY2(Qisa supersolution of (3.1) and v € Y12(Q) is a subsolution of (3.1) such that
v—u)te Yol’z(Q), then we have that

v<uin Q.

Proof Since L(v—u) <0Oand (v—u)" e YOI’Z(Q), we apply Theorem 5.1 (either (i) or (ii))
and obtain

sup(v —u) <0,
Q

which concludes our proof. O

5.2 Dirichlet problem

Let f:Q >R, g:Q— Rtandg : Q@ — R, such that f € L*(R), g € L*(R), and
@ € Y12(). In this section we deal with the Dirichlet problem

{Lu:f—divg 5.2)

u—geYyiQ).

In particular, we show that it is well-posed assuming either (1.5) or (1.6). In fact, if we set
w=u— ¢, then, w € YOI’Q(Q), and (in the weak sense) it holds

Lw=Lu—Leg
=(f —cVo —dp) —div(g + AVe + by)
=: f —divg.

Thus, (5.2) is readily reduced to the following inhomogeneous Dirichlet problem with zero
boundary data:

ue Y, (Q). 6

{Lu = f —divg
Well-posedness of the Dirichlet problem (5.3) with solutions u € W01’2(§2) instead of
u e YOI’Z(Q) in unbounded domains was shown in [2, Theorem 1.4] for data f, g € L),
but with a stronger negativity assumption than divb 4+ d < 0. Namely, it was assumed that
there exists u < O such that divb +d < p. This was necessary exactly because they required
the solutions to be in Wol’z(Q) as opposed to Y(;’Z(Q). It is worth mentioning that (1.6) was
not treated at all.
In the following theorem we follow the proof of [2, Theorem 1.4] adjusting the arguments
to the weaker negativity assumption divb +d < 0 and the Sobolev space YO1 2(82). Moreover,
our argument works for Lorentz spaces as well as the Stummel-Kato class.

Theorem 5.3 Let @ C R” be an open and connected set and assume that either b + ¢ €
L™9(2), forq € [n, o0), or |b+c|? € K/'().Ifgi € L2(Q) for1 <i <n, f € L**(R), and
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either (1.5) or (1.6) holds, then the Dirichlet problem (5.3) has a unique solution u € Yol’2 (RQ)
satisfying

lullyrz) S 12 @) + 182 @) (54
where the implicit constant depends only on X, A, and either Cy 4 and ||b + || n.a(q) or C;
and 9o (1b + c|?).

Proof To demonstrate that (5.4) holds assuming that such a solution exists, it is enouzgh to
repeat the argument in the proof of Theorem 5.1 applying Lemma 2.34 to u € Yol’ ().
The difference is that we should use that u is a solution of (3.1) instead of a subsolution of
Lu = 0 and thus, we pick up two terms related to the interior data exactly as in the proofs
of Theorems 3.1 and 3.2. Similar (but easier) manipulations along with the same induction
argument conclude (5.4). We omit the details.

To show that (5.3) has a unique solution it is enough to apply the comparison principle
given in Corollary 5.2.

Existence of solutions of (5.3) is also based on (5.4). We first assume that €2 is a bounded
domain and solve the variational problem (5.3) in WOI’Z(Q) with interior data f € L?(Q2) N
L*(Q) and g € L*(Q).

Letu € WOI’Z(Q) and note that by (1.2) and divb + d < 0 we have

L(u,u) = / AVUVu + (b = uVu — du® = M|Vul o, — / (b+c)-Vuu. (5.5)
Q Q
If (b +c¢) € L™(R2), for § > 0 sufficiently small to be chosen, we can find ¢ € L>®(R2)
which support has finite Lebesgue measure, such that ||(b + 0)?— ¢llpnace) < 8. Thus, by
(2.23),
f (b +0) - Vuu < Cogllb +c — ¢ llpnae 1 Vull 2y lull 2+ o) + / ¢ Vuu
Q Q

< 8C 1 Vullog, + [ ¢ Vuu. (56)
Q
If ¢ > 0 small enough to be chosen, then by (5.5), (5.6), and Young inequality, we infer
LGt) = (= 6Cog — DIVus g — o [ 16Pu
) - s,q9 2 LZ(Q) 28 o .
‘We now choose ¢ = % and § = %, and obtain
5.q

2
2018 1 g A
2

Loy = SIVulRs o — @ e P2, g2
’ =9 L2(Q) A L2(Q) —° L2(Q) L2(Q)"

5.7
If |b 4 ¢|* € K(R), then we apply Cauchy-Schwarz and (2.15),

12
/(b+C)Vuu < ([ |b+c|2|u|2) IVl L2
Q Q

< el Vull}a g, + Cell Vull 2 lull 2 ()

2 2
E 25‘||VM||L2(Q) + C; ”u”LZ(Q)'

If we choose ¢ = %, we get
LGy = S1VUlRs o — Ol = S 1VulZa e — o lull?
=5 L@~ Te Wiz T L2(Q) L)
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Let us denote H = L2(Q), V = WOI‘Z(Q) and its dual V* = W—1-2(Q) and define
Low:=Lw+ ocw.

By (5.7), its associated bilinear form is clearly coercive and bounded in V. As f € H and
g € H, by Lax-Milgram theorem, there exists a unique solution to the problem

{Lgu=f—divg (5.8)
uev.
and so, L, has a bounded inverse L;l cVE =S V.
If J : V — V*is an embedding given by
Jv =/ uv, vev, 5.9)
Q

I, : V — H isthe natural embedding and /; : H — V* is an embedding given also by (5.9),
we can write J = I o I,. It is clear that J is compact as I, is compact and /; is continuous.
The interior data naturally induces a linear functional on V by

F(U)I/ fv+g-Vuv, forveV,
Q

so we wish to solve the equation Lu = F. This is is equivalent to Lou — o Ju = F, which
in turn, can be written as

u—oL ' Ju=L'F. (5.10)

But L' J is compact as J is compact and L ! is continuous. Thus, by the Fredholm alterna-
tive, (5.10) has a unique solution if and only if w = 0 is the unique function in V satisfying
w—oL; Ljw = 0 (or else Lw = 0). But this readily follows from the weak maximum
principle in Theorem 5.1 and thus, a solution of (5.3) exists in bounded domains.

If €2 be an unbounded domain, we can find a sequence of function f; € C2°(2) such that
fi — f in L>*(R), and then for j € N define

Q= {x e QN B0, j): dist(x, ) > j'}.

Since f; € L2() N L*() and 2; is a bounded open set, by (5.8), there exists uy ; €
W()]’Q(Qj) = Yol’2(§2j) such that Luy, ; = fr —divg in Q;. If we extend uy ; by zero outside
Q2;, by (5.4), we will have

luk,jllyr2) S Ifillp2e @) + gl 2@)

that is, u ; is a uniformly bounded sequence in YOI’Z(Q) with bounds independent of j and
k. Thus, since YO1 ’Z(Q) is weakly compact, there exists a subsequence {u, j,, }m>1 converging

weakly to a function uy € YO1 ’2(52). Notice also that if ¢ € C2°(£2), then for j large enough,
it also holds ¢ € CZ°(2;). Therefore, since Luy j = fx — divg in ©; for any j > 0, and
ug, j, — ug weakly in YOI’Z(Q) as m — 00, we obtain

(fio @) + (&, Vo) = LGtk ) == L(ug, @), forall p € CX(Q),

ie., Luy = fr—divg in Q. In addition, since uy is the weak limit of uy_ j,,, for k large enough,
it satisfies

lurllyrz) S I fill2e ) + 18l S 1f 2 @) + 18l 2
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with implicit contants independent of k. Once again by the weak compactness of YOI‘Z(Q),
we can find a subsequence {uy, },»>1 converging weakly to a function u € YOl ’Z(Q). Thus,
since Luy = fi — divg in Q, uy,, — u weakly in YOI’Z(Q) and fi, — fin L% (§2)-norm,
we obtain

L, 9)=(f,¢)+ (Vg ), forall ¢ € C(Q).

The proof is now concluded. O

An immediate corollary of the last theorem in light of the considerations at the beginning
of this section is the following:

Theorem 5.4 Let @ C R” be an open and connected set and assume that either b + ¢ €
L™9(), for g € [n,00), or [b+c|? € K'(Q). If o € YV2(Q), gi € L2(Q) for 1 <i <n,
fe L% (), and either (1.5) or (1.6) holds, then the Dirichlet problem (5.2) has a unique
solution u € Y->(Q) satisfying

lullyrz@) = llellyrz) + 1 f L2 @) + 181220 (5.11)

with the implicit constant depending only on A, A, and either Cy 4 and ||b + c||pr.a(q) or Cy
and 9o (|b + c|?).

5.3 Obstacle problem

In this subsection, we let 2 be a bounded and open set, and assume that either (1.5) or (1.6)
is satisfied, and also that either b + ¢ € L™9(Q), for ¢ € [n, 00), or |b + ¢|* € K'(R2) holds.

Definition 5.5 Let v, ¢ € W12() such that ¢ > v on 9K in the W2 sense. Let us also
define the convex set

K:={ve Wl‘z(Q) v >y on  in the W2 sense and v — ¢ € Wé’z(Q)}.

We say that u is a solution to the obstacle problem in Q with obstacle ¥ and boundary values
¢ and we write u € Ky ¢(2), if u € K and

Lu,v—u) >0, forallv € K.

This problem can be reduced to the one with zero boundary data as follows: Let us define
the convex set

Ko :={w € WS’Z(Q) Tw > Y — ¢ on Q inthe w2 sense}.
Suppose that u € ICy, 4(£2) and write
u=uy+ ¢, foruvyy e Ky
v=uvy+ ¢, foruvy e K.
Thus,
L(ug, vo —uo) = (f, vo — uo) — L(¢, vo — uo),

and since (F, n) := (f,n) — L($,n), n € W(}’Q(Q), defines an element F € W—12(Q), it
is enough to prove the following theorem:
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Theorem 5.6 Let yr be measurable such that < 0 on 32 in the W2 sense. Define
Ky :={we WOI’Z(Q) Tw > Y in Q in the w2 sense}.
Given F € W—L2(Q), there exists a unique u € Ky, such that
Lu,v—u)>(F,v—u), forallveKy.

Moreover, u is the minimal among all w € W12() that are supersolutions of Lw = F and
satisfy w > ¥ in Q and w > 0 on 9Q in the W12 sense.

Proof By the weak maximum principle proved in Theorem 5.1, our theorem follows from
Theorem 4.27 in [35] and the Corollary right after it. O

An important consequence of this theorem is the following:

Corollary 5.7 Let Q@ C R" be an open set (not necessarily bounded). If u and v are superso-
lutions of Lw = F in 2, then min(u, v) is a supersolution of the same equation.

Proof If Q is bounded, the proof is a consequence of Theorem 5.6 and can be found in
[17, Chapter II, Theorem 6.6]. Let €2 be an unbounded open set and assume that u and v
are supersolutions of Lw = F in Q. Since they are supersolutions of the same equation in
any bounded open set D C 2, min(u, v) is a supersolution in any such D as well. Using a
partition of unity, this yields that min(u, v) is a supersolution in 2. O

The proof of the following theorem can be found for instance in [17, Chapter II, Theorem
6.9].

Theorem 5.8 Let u be the unique solution obtained in Theorem 5.6 for v € WY2(S2). Then
there exists a non-negative Radon measure so that

Lu=f+nu, inQ,
with
supp() C I :=Q\ {x € Q:u(x) > ¥(x)}.
In particular,

Lu=f in{xeQ:ulx) >y}

6 Green'’s functions in unbounded domains
Here we construct the Green’s function associated with an elliptic operator given by (1.1)

satisfying either negativity assumption following the approach of Hofmann and Kim [13]
along with its variation due to Kang and Kim [15].

6.1 Construction of Green'’s functions

Before we start, we should mention that the equation formal adjoint operator of L is given
by

L'u = —div(A-Vu —cu) +b - Vu —du =0,
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with corresponding bilinear form
Lu, @) = / (A'Vu — cu)Vo — (du — bVu)e.
Q

Moreover, if £ satisfies (1.5), then its adjoint satisfies (1.6) and vice versa.
In the current section, we will require the following conditions to hold:

b2, 1c]%, |d] € K/(Q) or b,ce L™®(Q),d e LT°(Q).

Theorem 6.1 Let 2 C R" be an open and connected set and L be an operator given by (1.1)
so that (1.6) holds. For a fixed y € 2, there exists the Green’s function G(x, y) > 0 for a.e.
x € Q\ {y} with the following properties:

(1) G(-,y) € YY2(Q\ B, (y)) for all r > 0 and vanishes on dS2.

(2) If f € L2Y(Q) and g € L"1(), we have that

u(x)=/QG(y,X)f(y)dy+/QVyG(y,X)g(y)dy, 6.1

is a solution of L'u = f — divg in Q and u € YOI’Z(Q) satisfying lullpo@) <
171,31 gy + l€lzn1 @)

(3) For any other Green’s function a(x, y) satisfying (3), it holds G(x,y) = a(x, y) for
a.e. x € Q\{y}.

(4) G(-,y) € W21 () and for any n, € C (B, (y)) such that y = 1in By 2(y), forr > 0,
it holds that

L(G(,y), (1 =ny)e) =0, forany ¢ € C(S). (6.2)

Ifwe set dy = dist(y, 02) (dy = oo if 2 =R"), the following bounds are satisfied:
IGC M lyra@soy S0 forany r >0, 6.3)
NG W Lr@ oy Spr> "7, forallr <dy and p € 1, nnfz)’ (6.4)
IVGC, e o) Sp P forall r < dy, and p € [1, n”j), (6.5)
|{er:G(x,y)>t}|§t_$, forall t >0, (6.6)
Hx € Q:V,G(x,y) >t} S t_nnTl, forall t >0, 6.7)

The implicit constants depend only on X, A, and either Cy 4 and ||b + c|pna(@), or C; and
(b + c|?). If we also assume |b + c|? € Kpini(), then

G(x,y) < forall x € Q\ {y}. (6.8)

lx — yn=2’
where the implicit constant depends also on C, . o

If1b +c|2 € Kpini(2), we can construct the Green’s function G' (x, ) associated with the
operator L' which is non-negative for a.e. x € Q\ {y} and satisfies the analogous properties
(1)—~(4) and the bounds (6.3)—(6.8). The implicit constants depend on 1, A, C, and Cotel2.
and, in the pointwise bounds, on ||b + c||n.4 (), or C; and 9o (|b + c|?) as well. Moreover,
ifb,c e L"1(Q),d € L%'q(Q),forq € [n, 00), or |b|%, |c|?, |d| € K/(), it holds that

G'(x,y) = G(y,x), forae. (x,y)eQ*\ {x # y}, (6.9)
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and
u(x) :/ G'(x,y) f(y)dy —i—/ VyG'(x, v)g(y)dy, forallx € Q2. (6.10)
Q Q

Proof Given apoint y € Q,if Q,(y) = 2N B,(y), we define

foxoy) = 1By, (x), x €.
Since L satisfies (1.6) and f, (-, y) € L°(£2) with bounded support, we may apply Theorem
5.3 (i) to find a function G (-, y) € ¥;*(2) so that

LGy, ), 9) = / FoCiy) e, (6.11)
for any ¢ € C2°(2), with global bounds

2-n
1G o My < 1B, 5 (6.12)

Note that G, (-, y) € Y(} ’2(9) and is an L-supersolution. If we apply the maximum principle
given in Theorem 5.1 (ii),we get that G, (-, y) > 0in Q.

Let now f € L°°(2) and g € L°°(2) so that | supp(f)| + | supp(g)| < oo. Then, by
Theorem 5.3, there exists u € YOI’Z(Q) such that

£ (u, %) =/fw+/ng forall ¥ € C(Q), (6.13)
satisfying
lullyr2i@y S 112 @) + gl
< [supp()I'5 | fllzee) + Isupp(@)I? g~  (6.14)

Remark here that, by the density of C2°(S2) in ¥,'*(£2), both (6.11) and (6.13) can be
extended to test functions ¢ € YOI’Q(Q). So, if weset ¢ = uin (6.11) and = G, (-, y) in
(6.13), we obtain that

/Gp(x,y)f(x)dx+/Vpr(x,y)g(x)dx=][ u(x)dx. (6.15)

Qp(y)

For r > 0 fixed, assume that supp(f) C 2,(y), g =0, and let p < r/2. Since u s is in
YL@, (v)), vanishes on B, (y) N 0€2, and satisfies L’uf = fin Q,(y), by Theorem 4.4
(1) with M = 0, we obtain

||uf||L°°(Q%(y)) S uslieg, oy + Pl o S I Flle@ on

where in the penultimate inequality we used Holder inequality and (6.14). Similarly, if f = 0,
supp(g) C Q,(y), and p < r/2, since ugy € Y12(Q,(y)) that vanishes on B, (y) N 9 and
L'ug = —divg in Q,(y),

””g”LOO(Q%(y)) S 2 ugliag, vy T rlgllLe@ oy S rllgliee @, o))

By (6.15), duality considerations, and the latter two estimates, we have that for all » > 0
and p <r/2,

1G oG L, oy S 72 (6.16)
||VGp(', )’)”Ll(gz,(y)) ,S r.
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In fact, arguing similarly, we can prove that forall » > 0, p < r/2,and g € [1, nnTz)’

n+

2 pan
GG a0 ST 7,

l—n+7
IVG (o WllLa,on S e

To avoid an early use of the pointwise bounds and thus, of the assumption |b 4 c|?> €
Kpini (€2), we will need the following auxiliary lemma.

Lemma 6.2 Let Q C R" be an open set and L be the operator given by (1.1) that satisfies
either (1.5) or (1.6). Let By = B(x,s) be a ball of radius s centered at x € Q such that
3By C Qandu € Y"2(Q\By) be a solution of Lu = 0 in Q\ By that vanishes on 9S2. Then
foranyr > 4s we have

2
1
/ |u|257/ ul) . 6.17)
QN(Bar\By3) r QN (B3, \By/4)

where the implicit constants depend only on A, A, ||b + cl||pn(q; Ry, and C; 4.

Proof The proof can be found in [16, Lemma 3.19] with the difference that we use Theo-
rems 3.3 instead of [16, Lemma 3.18] that only holds for r < 1. O

For fixed r > 0 and p € (0, r/6) we let n € C*°(R") so that

4
0<n=<1, n=1onR"\B.(y), n=0on B,;p(y), and |Vpy| =< -.
-

Thus, by Theorem 3.3, since LG (-, y) = 0, in Q\ B, 2(y),

3.17)
VG o720, ) = fQ VG, P S fg G, )Vl
1
S G-, y)*
2
= Jon(B (»\B,2(»)
©6.17) 1 / 2 6.16) -
< Gy(-,y) < T, (6.18)
2\ Jan, 5)\B, 4

which, in turn, by Sobolev embedding theorem, implies that for 0 < p < r/6,
||Gp(" y)lle*(Q\B,(y)) =< ||G,o('a y)nlle*(g) 5 ||V(Gp('a y)’))”LZ*(Q) 5 rl_%- (6.19)
On the other hand, for p > r /6, by (6.12), we have that

2-n _
1G oG D llyiaans, o) < 1GoC Wliyiagy S 1BpeI T S r2 (6.20)

Therefore, if we apply (6.18), (6.19), and (6.20), we obtain that for any » > 0, there exists
a constant C (r) depending on r so that

1G oG Wlyre@\ s, i) = €,

uniformly in p > 0. So, by a diagonalization argument and weak compactness of YOl ’2, there

exists a sequence {0, }5_; that converges to zero as m — oo such that for all r > 0,

Gpp (o )=G(, y) in Y32\ By(y), asm — oo, (6.21)
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where G(-, y) € Y, 2(R \ B,(y)). Moreover, by (6.20),
||G('a )’)”yl,Z(Q\Br(y)) 5 r2—n’ forall r > 0.

If we follow the proof of inequalities (3.21) and (3.23) in [13] using the the same consid-
erations that lead to the proof of the estimates for G, (-, y) away from the pole, we can show
that

Hxr € Q:G,(x,y) > s} <s™m2, foralls >0, (6.22)
Hx € Q:V,G,p(x,y) > s}| Ss™iT, foralls > 0, (6.23)

uniformly in p > 0. This yields that G, (-, y) € L#2°°(Q) and VG,(,y) € Li12(Q)
with bounds independent of p.

Moreover, in light of (6.22) and (6.23), we can mimic the proof of inequalities (3.24) and
(3.26) in [13] and infer that for any p > 0 and r < d,,

2—n+%
1GoCo ey S "7, pe(,25),

l—n+2
IVG, G e, o ST "7, pe( 2.
In particular,

1Go G lwirs, oy < Clryp), r<dy, pell,;2y),

uniformly in p > 0. Thus, fixing p € (1, ;"), by a diagonalization argument, we can find
a subsequence of p,, in (6.21) (which we still denote by p,, for simplicity) so that

Gy, ¥)=G (-, y) in WP(B,(y)) asm — oo, (6.24)

for all » < d,. We also have that G(-, y) satisfies (6.4) and (6.5) for this particular p. Since
G(-,y) = G(-, y) in B(y, d,)\B(y, dy/2), we can extend G (-, y) by G(-, ) to the entire 2
by setting G (-, y) = G(~, y).

Let Q; = {x € Q:G(x,y) >t},p= %, e € (0, p — 1). If we apply Chebyshev
inequality, and then use that the L?”-norms are weakly lower semicontinuous and |2;| < oo,
by (6.3) and (6.4), we have

tp é‘|gzt| < ||G( )’)||Lp Q) — < hmlnf ”G,Dm( }’)|Lp £(Q2)

timint P 516 p— ©2Dp Q|7 CPe.
<liminf 2|17 1G, (0I5 < *' r

1
Letting ¢ — p — 1, we get |€,|? < 1 which proves (6.6). A similar reasoning proves (6.7).
Moreover,

G, (- Y)~G(-y) in LF®(Q) as m — oo, (6.25)
VG, (- Y)=VG(-, y) in LET°(Q) as m — oo. (6.26)

Therefore, by (6.11) and (6.15), in view of (6.25), (6.26), and (6.21), we can prove (6.2)
and also, (6.1) for f € L*°(Q2) and g € L*°(R2) so that | supp(f)| + |supp(g)| < oo (a
detailed but more involved argument can be found after equation (6.33)). To show that (6.1)
holds in general, it is enough to use that simple functions are dense in L?-9(Q2) if ¢ # oo
along with (6.6) and (6.7). Details are left to the reader.
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The proof of inequalities (3.30) and (3.31) in [13] gives us (6.4) and (6.5) for any p (in
the stated range).

We will now demonstrate that for a fixed y € 2, G(-, y) > 0 a.e. in Q2\{y}. Assume that
o, is the sequence converging to zero for which G, (-, y) converge to G (-, y) in the sense of
(6.21) and (6.24). If necessary, we can pass to a subsequence so that o, < min(|x—y|, dy)/10.
Fix x € @ so that x # y and let p, be a sequence converging to zero so that p, <
min(|x — y|, dy)/10. Therefore, since G, (-, y) > 0 in €2, we have that

0 5][ Go, (-, y) — G(-,y), as n — 00,
Bpm (x) Bﬁm ()C)

where we used (6.21) in the case B, (y) C \B,(x) for some r > 0 and (6.24) in the case
By, (x)N By, (y) # V. By Lebesgue differentiation theorem, if we let m — oo, we infer that
G(x,y) >0forae.x € Q\ {y}.

To prove uniqueness of the Green’s function, we assume that G (-, ¥) is another Green’s
function for the same operator. Then for f € C2°(2) and ¢ = 0, we have that for fixed
y €L,

/ G(,y) f=1(y) €Yy (Q) and L'%=f.
Q

By the comparison principle Corollary 5.2, u =  in €2 and so,

/QG(‘,y)f=/95(-,y)f-

Since f € C2°(2) is arbitrary, this readily implies that G (x, y) = G(x, y)fora.e.x € Q\{y}.

So far, we have not used the local boundedness of solutions of L’u = 0 and thus, the
assumption |b + c|2 € Kpini (£2). It is only for the pointwise bounds we will need it. Indeed,
letx,y € Q,x # yandsetr = |x — y|/4. Then, (6.2) yields that LG (-, y) = 0 away from
y. So, by Theorem 4.4 and (6.3) for p = 2, we obtain

G, I < sup |G| S r"2IGE W2, )
Q2 (x)

<22 |y 2, (6.27)

Notice that, under the additional assumption |b+-c]| 2 € Kpini (), wecan apply the previous
considerations to construct the Green’s function G’ (-, y) associated with the operator L’ with
all the properties above. The only thing that remains to be shown is that G’ (x, y) = G(y, x)
fora.e. (x,y) € Q2\{x = y}. We will first prove it in the case that solutions of Lu = 0 and
L'u = 0 are locally Ho6lder continuous in ©\{x} and Q\{y} respectively. In this case, all
the properties that hold a.e. in Q\{pole}, because of the continuity therein, will actually hold
everywhere in Q \ {pole}.

To this end, let o, and p,, be the sequences converging to zero for which G, (-, x) and
Gi)m (-, y) converge to G(-,x) and G'(-, y) in the sense of (6.21), (6.24), and (6.25). If
necessary, we may further pass to subsequences so that

op < min(|x — y|,dy)/10 and p, < min(|lx — y|,dy)/10.

Because G, (-, x) and thm (-, y) are locally Holder continuous in \{x} and Q\{y} respec-
tively, with constants uniform in o, and p,,, and, by Theorem 4.4, they are uniformly bounded
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on compact subsets of the respective domains, we may pass to subsequences so that

Go, (-, x) = G(-, x) unifomly on compact subsets of €\ {x}, (6.28)
G, (- ¥) = G'(-, y) unifomly on compact subsets of €\ {y}.

‘We now use G;m (-, y) and Gy, (-, x) as test functions in their very definitions to obtain
][ G, () = L(Go, (-, x), G, (- )))
Ban (x)

:‘Ct(Gtm('v y)vGa'n('7x)) :f GU,«,('!X)-

Bﬂm )

By Lebesgue’s differentiation theorem and continuity of G, (-, x) in €\{x},

lim Go, (-, x) = Gg, (v, X),

m— 00 By ()

which, in view of (6.28), yields that

lim lim Gy, (-.x) = G(y,x) forally € 2\ {x}.

On the other hand, the weak convergence of G;)m(-, y)inY 1’Z(Q\Br (y)) forany r > 0
implies

lim G, (.y) = ][ G'(,y),
m—00 Bdn('x) Bzrn(x)

from which, by Lebesgue differentiation theorem and the continuity of G’ (-, y) in Q\{y},
we deduce that

lim lim G, () =G'(x,y) forallx € Q\ {y}.

n—0o0 m—00 B, ()C
on

Therefore, G(x, y) = G'(y, x) for all (x, y) € Qz\{x = y}, which, combined with (6.1),
implies (6.10).
We are now ready to remove the Holder continuity assumption. Set

Q={xeQ:dx Q) >k '} N B(O,k),

which are open sets such that U1 = Q. Let ¢y € C2°(R") so that
0<y <1, ¥y =0inR"\ B(0,1) and /wzl.

For k € N, set Y (x) = k" (kx) and define by = (b1g,) * Y, ck = (c1lg,) * Yx and
dr = (d1g,) * Yi.
Define

Liu = —divAVu — div(bgu) — cxVu — dyu.

If we fix x # y € Q, there exists ko large enough such that x,y € € for every
k > ko and in particular, x and y are in the same connected component of €2;. Therefore,
Remark 4.7 applies, and since, for such k, Theorem 4.4 holds for Ly in €2; with bounds
independent of k, we can construct the Green’s functions G (-, y) and G,i(-, x) associated
with L; and L;( in ; as above, with the additional property that G (-, x) and G;((«, y) are
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locally Holder continuous away from x and y respectively. In the last part we used Theorem
4.12, which applies in this situation, since by, ck, dy € L°° with compact support and thus,
1bk)2, ek |2, |di] € Kpini(S2%) (with implicit constants depending in the domain). Extend both
Gr(-, x) and ch(~, y) by zero outside €2 and note that (6.3)-(6.7) hold in 2 with constants
independent of k (see Remark 4.7). Therefore, repeating essentially the arguments concerning
the convergence of G, and the inheritance of the bounds from G ,,, we can find G (-, y) which
is non-negative a.e. in 2 \ {y} and vanishes on 9€2. Additionally, it satisfies (6.3)-(6.7), and,
after passing to a subsequence,

Gi(, y)=G(-, y) in Y'2(Q\ B.(y)) forall r > 0,
Gi(, y)=G(-,y) in WHP(B,(y)), forall r <d,,

Gi(, y)=G(, y) in Li2%(Q), (6.29)
VG (-, y)—*\VG(-, y) in Lﬁ’oo(Q), (6.30)
Gr(-,y) > G(-, y) ae.in Q. (6.31)

The considerations above apply to G;( as well.
Let f € L*(2) and g € L) which supports have finite Lebesgue measure. Thus, by
virtue of (6.1), we have that

ui(y) =/QG1<(-,y)f+/QVGk(-,y)g. (6.32)

Since uy € Yol’z(Qk), we can extend it by 0 outside ;. Recall that u; satisfies Liuk =
f —divg in  and also

lurllyro@y = lukllyrzioy S I 2 1812 = 1 L2 @) + 11812 ()

where the implicit constant is independent of k. If we take limits in (6.32) as k — oo and
use (6.29) and (6.30) for G;((~, y), we can show that for all y € €,

lim ug(y) = lim / Gr(x,y) f(x)dx + lim / VGi(x,y)gx)dx
k—o00 k—oo Jo k—oo Jo
= [ 6w+ [ V6@ s dx = u)

Therefore, since u;y — u pointwisely in Q and uy is a uniformly bounded sequence in
Y01’2(S2), it holds that uz—u in Y12(Q) and u € Yol’z(Q). For a proof see for instance [12,
Theorem 1.32]. We will show that u is the unique solution of the Dirichlet problem L'u = f
and u € YOI’Z(SZ). If ¢ € C°(Q), there exists k; > ko such that ¢ € C2°(€2;) for every
k > k1. Thus,

L’k,g(uk,w)zﬁi,gk(uk,w)zf f¢+/ gW:f f<p+/ gVe.
o Qe Q Q

To pass to the limit, we need to treat each of the terms of the bilinear form separately. We
first write

/kauk¢ :/(bk—b)Vuk¢+/ bVurg = If | + If 5.
Q Q Q
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If b € L'9(2), by Lemma 2.26 we have that by — b in L™9(2), which, combined with
(2.23) and the uniform Y1-2_bound of uy, yields that limg_, Ié‘ | = 0. To prove that

lim I}, = / bVup, (6.33)
k—oo 7 Q

it is enough to notice that, by Holder inequality in Lorentz spaces and Lemma 2.30, b¢ €
L%(2), and then use that Vug— Vu in L2(2). If |b|? € K'(£2), we combine Cauchy-Schwarz
inequality, Lemma 2.21, the uniform Y12 bound of uy, and Lemma 2.14, to show / é‘ 1 —~> 0.

By (2.17), we have that b¢ € L2(2), and thus, (6.33) follows from the weak-L? convergence
of Vuy to Vu. Let us now prove the limit for the one involving dj. To this end, write

/ drurgp = / (dy — dyurd +/ duxp = 15,1 + 15,2~
Q Q Q

Ifd e L34 (RQ),dy — din L34 (£2), which, by Holder inequality for Lorentz spaces, (2.18),
(2.21), and the uniform ¥ "-2-bound of uy, yields that limy . 15 | = 0. Moreover, as u; — u
pointwisely, we can apply the dominated convergence theorem to obtain

lim 1%, = / dug. (6.34)
k—oo 7’ Q

If |d| € K'(R2), we first apply Cauchy-Schwarz inequality, and then use Lemma 2.21 and the
uniform Y !2-bound of uy. Finally, in view of Lemma 2.14, we can take limits as k — oo
to conclude that limy_, o / 5, 1~ The proof of (6.34) follows by dominated convergence. The
integral involving ¢4 can be treated very similarly and the details are left to the reader. We
have thus proved that

Lo, ) = lim zz,gz(uk,ga):/ f<p+/ Vo,
k—00 Q Q

which, in turn, yields that u is the unique solution of the Dirichlet problem L'u = f — divg
and u € Y, *(Q).

Let us now recall thatfrom the first part of the proof (before the approximation) we can
construct a Green’s function G (-, y) associated with L so that the function

'L?(y)=/Q(A;(x,y)f(X)dx+/§2Vx5(x,y)g(X)dx,

is also a solution of the Dirichlet problem L't = f —divg andu € YOI‘Z(Q). But since there
is only one such solution we must have u = %, which, as we showed before, implies that
Gx,y) = a(x, y), for a.e. x € Q\{y}. As we have shown that (6.3) holds for G(x, y), it
also holds for G (x, y).

The same arguments are valid if we replace G by G” and L by L’ (and vice versa), implying
that

tim u(0) = fim [ ') Oy + fim [ 9,640,000 dy
k— o0 k—o0 Jo k—oo Jo
= [Gomsmar+ [ 9,6'0.0 f0rdy =),
Q Q
and after passing to a subsequence, u}—u’ in Y''2(Q), u’ € Yol’z(Q), and Lu' = f in Q.
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For f, g € C2°(2) we set
uf,k(y)szk(x,y)f(x)dx and u’g,k(x)szi(y,X)g(y)dy;

ui) = [ G fdr and e = [ 6.0 g dy.
Recall that
upp—usin Y'2(Q) and us € ¥4 A(Q),
and
ul =l in Y'2(Q) and uf € Yy ¥(Q).

By Fubini theorem and ch(x, y) = Gi(y, x) forall (x, y) € Qz\{x = y}, we have that
[ursremiar= [ 00 [ G s axay

= f f@) f Gi(y.x) g(y) dy dx = / w0 fO)dx. (635)

If we take limits as k — oo in (6.35),

/uf(y)g(y)dy=/u‘g(X) f(x)dx,

which implies

[ [own rwemaxay = [ [ 6060 rwayas.

Since f, g € C°() are arbitrary, we conclude that G’ (x, y) = G(y, x) for a.e. (x,y) €
Q%\{x = y}.

Once we have that (6.4) holds, the proof of (6.8) is the same as in (6.27), while (6.1)
follows by density. O

Remark 6.3 1f ¢ € C2°(2) and it holds that bV¢ € L%*I(Q), cp € L"™Y(Q), and do €
L3} (€2), then we can show that

LG, y), 9) = 9(y).
This is straightforward if we use (6.6) and (6.7).

Finally, we can prove that, under certain restrictions, the Green’s function has pointwise
lower bounds as well.

Lemma 6.4 Let @ C R" be an open and connected set and Lu = —div(AVu + bu) be
an elliptic operator so that b € Kpini(2). Let x,y € Q, x # y, such that 2|x — y| <
dist({x, y}, 02). If we set r = |x — y|/4, then the Green’s functions G constructed in
Theorem 6.1 satisfy the following lower bound:

G2 s
T

G'(x,y) 2 (6.36)

lx —y|r=2
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Proof Letus fixx, y € Qwithx # y. If wesetr = “22 andlet € C§°(B, ()) be a bump
function so that

1
0<n=1 n=1inBg(y), and |Vy|< -.
"

Then using it as a test function we have that

I=n(y)=LGE y),n) = /QAVG(-, »Vn+ /QbG(~, »Vn

1 1
< = . — n . n
S IVGC(, y)”Ll(B,(y)\B%(y)) + p DN Lr (@) IG (-, y)llLﬁ(Br(y)\B%(y))

_ 1
Sps L SR I AT

where we used Holder, Sobolev and Caccioppoli inequality, along with Lemma 6.2. Thus,
from (4.16), we have that G(x, y) 2>

=
Letv e Y'2(Q) bea nonnegative function such that Lv = 0 and v(y) > 0, and let n be

. . . v dy 4.
the bump function defined above. Then, if we assume p < min (leoy ‘ s ﬁ, ‘1%>’

][ nv = LG, y),nv)
Bp()’)
:/ A'VGL(, ) Vv = A'ViVu G (., y) + AVUV (Gl (-, y)n)
Q
+/ vaG;(-,y)n—/ bVn G, v
Q Q
:/ A'VGL( »)Vnv = A'VaVu GG, y) —=b Vi GL(, y) v
Q

=5 —h—1I,

where we used that Gi) (-, ¥)n is a test function and Lv = 0. We will only estimate /3 since
I1 and I, can be handled similarly.

1
31 S N6+ cllnas, sy o0 G, ) 2, onmg on 10122 3008y 00)

1 1
S 7z NG ony on W2y o1y o)

where in the first inequality we used Holder inequality and in the second one the local
bonudedness of v. If p,, is the sequence obtained in (6.21), then by Rellich-Kondrachov
theorem and a diagonalization argument, we may pass to a subsequence so that

Gl (.y) = G'(y), strongly in L*(B,(y) \ By (y)).
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Thus, if we take m — 0o, by Lemma 6.2, for a.e. y € €,

v(y) =n(v(y) = mlgnoo - )nv
Pm y

A

1
. t
il 2 16, G2 sy on 101228 0By o)

1
t
el ERCRMI R AV INE) ”v”LZ(B%r(Y)\B%r(y))

t
2 167G o0 o0 P12 o0\BL 01

N

So, by (4.16) and Remark (4.2), we get

v(») S Ix = yI"2 G (x, y) v(y),
which implies (6.36). ]
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