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Abstract
We consider elliptic operators in divergence form with lower order terms of the form Lu =
−div(A·∇u+bu)−c·∇u−du, in an open set� ⊂ R

n , n ≥ 3,with possibly infinite Lebesgue
measure. We assume that the n × n matrix A is uniformly elliptic with real, merely bounded

and possibly non-symmetric coefficients, and either b, c ∈ Ln,∞
loc (�) and d ∈ L

n
2 ,∞
loc (�),

or |b|2, |c|2, |d| ∈ Kloc(�), where Kloc(�) stands for the local Stummel–Kato class. Let
KDini(�) be a variant of K(�) satisfying a Carleson-Dini-type condition. We develop a De
Giorgi/Nash/Moser theory for solutions of Lu = f − divg, where f and |g|2 ∈ KDini(�)

if, for q ∈ [n,∞), any of the following assumptions holds: (i) |b|2, |d| ∈ KDini(�) and
either c ∈ Ln,q

loc (�) or |c|2 ∈ Kloc(�); (ii) divb + d ≤ 0 and either b + c ∈ Ln,q
loc (�) or

|b + c|2 ∈ Kloc(�); (iii) −divc + d ≤ 0 and |b + c|2 ∈ KDini(�). We also prove a Wiener-
type criterion for boundary regularity. Assuming global conditions on the coefficients, we
show that the variational Dirichlet problem is well-posed and, assuming −divc + d ≤ 0, we
construct the Green’s function associated with L satisfying quantitative estimates. Under the
additional hypothesis |b + c|2 ∈ K′(�), we show that it satisfies global pointwise bounds
and also construct the Green’s function associated with the formal adjoint operator of L . An
important feature of our results is that all the estimates are scale invariant and independent
of �, while we do not assume smallness of the norms of the coefficients or coercivity of the
associated bilinear form.
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1 Introduction

In the present paper we will deal with elliptic equations of the form

Lu = −div(A · ∇u + bu) − c · ∇u − du = 0 (1.1)

in an open set � ⊂ R
n , n ≥ 3, where A(x) = (ai j (x))n

i, j=1 is a matrix with entries
ai j : � → R, for i, j ∈ {1, 2, . . . , n}, b, c : � → R

n are vector fields, and d : � → R a
real-valued function. Our standing assumptions are the following:

There exist 0 < λ < � < ∞, so that

λ|ξ |2 ≤ 〈A(x)ξ, ξ 〉, for all ξ ∈ R
n and a.e. x ∈ �, (1.2)

〈A(x)ξ, η〉 ≤ �|ξ ||η|, for all ξ, η ∈ R
n and a.e. x ∈ �, (1.3)

|b|2, |c|2, |d| ∈ Kloc(�) or b, c ∈ Ln,∞
loc (�), d ∈ L

n
2 ,∞
loc (�), (1.4)

where Kloc(�) and Ln,∞
loc (�) stand for the local Stummel-Kato class and the local weak-Ln

space respectively (see Definitions 2.9 and 2.22)1. In several cases, we will also need to
assume one of the following negativity conditions:∫

�

(d ϕ − b · ∇ϕ) ≤ 0, for all 0 ≤ ϕ ∈ C∞
0 (�), (1.5)

or ∫
�

(d ϕ + c · ∇ϕ) ≤ 0, for all 0 ≤ ϕ ∈ C∞
0 (�). (1.6)

1 Our original assumptions were b, c ∈ Ln(�) and d ∈ L
n
2 (�). The extension to weak Lebesgue spaces

is due to an observation of G. Sakellaris in [28]; a more detailed discussion can be found at the end of the
introduction.
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If (1.5) (resp. (1.6)) holds we will say that the bd (resp. cd) negativity condition is satisfied. If
we reverse the inequality signs we will say that the bd or cd positivity condition is satisfied.

The objective of the current manuscript is to generalize the standard theory of elliptic PDE
of the form −divA∇u = 0 in open sets � ⊂ R

n , n ≥ 3, with possibly infinite Lebesgue
measure, to equations of the form (1.1) under the aforementioned standing assumptions. In
particular, we aim to show scale invariant a priori local estimates (Caccioppoli inequality,
local boundedness and weak Harnack inequality), interior and boundary regularity for solu-
tions of (1.1), the weak maximum principle, well-posedness of the Dirichlet and obstacle
problems, and finally to construct the Green’s function for our operator satisfying several
quantitative estimates. It is important to highlight that neither the bilinear form associated
with the elliptic equation is coercive, nor the norms of the coefficients are small, which is
one of the main technical difficulties.

We would like to point out that we will only state the theorems in the main body of the
paper, just before their proofs. Nevertheless, the reader can find a detailed description of our
results in the introduction.

Let us give a brief overview of our results. In Sect. 3.1 we prove the standard interior
and boundary Caccioppoli’s inequality under either negativity condition (Theorems 3.1, 3.2,
and 3.3), while, in Sect. 5, having global assumptions on the coefficients, we show the well-
posedness of the generalized Dirichlet problem (5.2) satisfying the estimate (5.11), as well as
the validity of the weak maximum principle (Theorem 5.1). This maximum principle allows
us to solve the obstacle problem in bounded domains (Theorem 5.6). Then we assume that
one of the following conditions hold:

(1) |b|2, |d| ∈ KDini(�) and either |c|2 ∈ Kloc(�) or c ∈ Ln,q
loc (�), for q ∈ [n,∞);

(2) divb + d ≤ 0 and either |b + c|2 ∈ Kloc(�) or b + c ∈ Ln,q
loc (�), for q ∈ [n,∞);

(3) −divc + d ≤ 0 and |b + c|2 ∈ KDini(�) (see Definition 2.11).

In Sect. 3.2, we demonstrate that the refined Caccioppoli inequality holds in the interior and
the boundary (Theorems 3.5 and 3.8), which leads to the local boundedness of subsolutions
(Theorem 4.4) and the weak Harnack inequality for non-negative supersolutions (Theorem
4.5) both in the interior and at the boundary. In Sect. 4.2 we prove interior and boundary
regularity for solutions and finally, assuming the cd-negativity condition and either b + c ∈
Ln,q(�), for q ∈ [n,∞), or |b+c|2 ∈ K′(�), we use the aforementioned results to construct
the Green’s function associated with the operator L satisfying several quantitative estimates.
Under the additional hypothesis |b + c|2 ∈ K′(�), we show global pointwise bounds and
construct the Green’s function associated with the formal adjoint operator of L . All our
estimates are scale invariant and independent of the Lebesgue measure of the domain.

We now briefly review the history of work in this area for linear elliptic equations in
divergence form with merely bounded leading coefficients and singular lower order terms.
The generalized Dirichlet problem in the Sobolev space W 1,2 is well-posed if there exists a
unique u ∈ W 1,2(�) such that Lu = f + divg and u −φ ∈ W 1,2

0 (�) for fixed φ ∈ W 1,2(�)

and f , gi ∈ L2(�). Moreover, there exists a constant Cφ, f ,g so that the global estimate
‖u‖W 1,2(�) � Cφ, f ,g holds. For operators without lower order terms this problem has a long
history and we refer to [9, p.214] and the references therein for details. In bounded domains,
in the presence of lower order terms, Ladyzhenskaya and Ural’tseva [19] and Stampacchia
[34] provedwell-posedness of the generalized Dirichlet problem assuming conditions related
to the coercivity of the operator or smallness of the norms of the lower order coefficients. This
was quite restrictive as, for example, the “bad” terms coming from the lower order coefficients
can be absorbed in view of smallness. Gilbarg and Trudinger [9] gave an extension of the
previous results replacing the smallness conditions by the assumptions b, c, d ∈ L∞(�)
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assuming either (1.5) or (1.6). In fact, they only need b, c ∈ Ls(�) and d ∈ Ls/2(�), for
some s > n. Recently, Kim and Sakellaris [16], generalized it to operators whose coefficients
are in the critical Lebesgue space. Unfortunately, in all those results, the implicit constant in
the global estimate depends on the Lebesgue measure of� and thus, they cannot be extended
to unbounded domains by approximation. On the other hand, in unbounded domains with
possibly infinite Lebesgue measure, already in 1976, Bottaro and Marina [2] proved that,
if b, c ∈ Ln(�), d ∈ Ln/2(�) + L∞(�), and divb + d ≤ μ < 0, then the generalized
Dirichlet problem is well-posed. To our knowledge, this was the first paper establishing well-
posedness in such generality. Using the same method, Vitanza and Zamboni [36], showed
well-posedness of the same problem when |b|2, |c|2, |d| ∈ K′(�).

The local pointwise estimates find their roots in De Giorgi’s celebrated paper [7] on
the Hölder continuity of solutions of elliptic equations of the form −divA∇u = 0, where
Theorems 4.4 (i) and 4.12 were proved in this special case (see also [25]). A few years later,
Moser gave a new proof of De Giorgi’s theorem in [23]. The same results were extended
in equations of the form (1.1) by Morrey [22] when b, c ∈ Lq and d ∈ Lq/2, for q > n
and Stampacchia [32] (in more special cases). Moser also established the weak Harnack
inequality for solutions of −divA∇u = 0 in [24], while Stampacchia [34] proved all the
a priori estimates for equations of the form (1.1) with c ∈ Ln and |b|2, d ∈ Ls , s > n/2,
assuming that (1.5) holds and the radius of the balls are sufficiently small so that the respective
norms of the lower order coefficients on those balls are small themselves. If the lower order
coefficients are in the Stummel-Kato class K(�) with sufficiently small norms, one can
find such results in [3] and [18] (see the references therein as well). Under the assumptions
b, c ∈ Ln , and d ∈ L

n
2 , Kim and Sakellaris [16] also established local boundedness for

subsolutions of the equation (1.1) satisfying either (1.5) or (1.6) and b + c ∈ Ls , s > n
(with implicit constants dependent on the Lebesgue measure of �). They also constructed a
counterexample showing that if (1.6) holds, it is necessary to have an additional hypothesis
on b + c (see [16, Lemma 7.4]).

Proving the boundary regularity of solutions to the generalized Dirichlet problem with
data φ ∈ W 1,2(�) ∩ C(�) has been an important problem in the area and stems back to the
work of Wiener for the Laplace operator [37]. Wiener characterized the points ξ ∈ ∂� that a
solution converges continuously to the boundary in terms of the capacity of the complement
of the domain in the balls centered at ξ . The proof was tied to the pointwise bounds of the
Green’s function and so were its generalizations to elliptic equations. In particular, Littman,
Stampacchia and Weinberger [20] constructed the Green’s function in a bounded domain for
equations −divA∇u = 0, where A is real and symmetric, proving such a criterion and later,
Grüter and Widman [11] extended their results to operators with possibly non-symmetric A.
For equations with lower order coefficients in bounded domains, Stampacchia [34] showed a
Wiener-type criterion in sufficiently small balls centered at the boundary of �. On the other
hand, Kim and Sakellaris [16] succeeded to construct the Green’s function with pointwise
bounds (which was their main goal) following the method of Grüter and Widman, assuming
either (1.6) and b + c ∈ Ln , or (1.5) and b + c ∈ Ls , s > n. This is the best known result in
this setting in domains with finite Lebesgue measure. In this case though, the construction
of the Green’s function was not used to conclude boundary regularity. For elliptic systems in
unbounded domains, Hofmann and Kim [13] constructed the Green’s function assuming that
their solutions satisfy the interior a priori estimates of De Giorgi/Nash/Moser. They also
showed boundary Hölder continuity of the solution of the Dirichlet problemwithCα(�) data
under the stronger assumption of Lebesgue measure density condition of the complement
of � in the balls centered at ∂� (see also [15]). Recently, Davey, Hill and Mayboroda [6]
extended [13] to systems with lower order terms in b ∈ Lq , c ∈ Ls and d ∈ Lt/2, with
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min{q, s, t} > n, whose associated bilinear form is coercive. For lower order coefficients in
the Stummel-Kato class in domainswithC1,1 boundary, theGreen’s functionwas constructed
in [14], while in [39], elliptic systems were considered, assuming though smallness on the
norms and coercivity.

Let us now discuss our methods. Inspired by the treatment of the Dirichlet problem in [2]
and specifically the use of Lemma 2.34, we are able to extend their results to operators with
either negativity assumption (as opposed to −divb + d ≤ μ < 0) by requiring solvability

in the Sobolev space Y 1,2 instead of W 1,2 with non-divergence interior data in L
2n

n+2 instead
of L2. This is the “correct” Sobolev space in unbounded domains and had already appeared
in [21] and in connection with the Green’s function in [13]. The main difficulty lies on the
fact that when we are proving the global bounds for the solution of the Dirichlet problem,
we arrive to an estimate where the term

‖b + c‖Ln,q (�)‖∇u‖2L2(�)

should be absorbed. But unless one has smallness of ‖b + c‖Ln,q (�) this is impossible. To
deal with this issue, we use Lemma 2.34 and split the domain in a finite number of subsets
�i where the norm Ln,q(�i ) norm of b +c becomes small. We also write u as a finite sum of
ui so that (supp∇ui ) ⊂ �i and, loosely speaking, the term above can be hidden. An iteration
argument is then required, which concludes the desired result. An approximation argument on
the data and the domain yields the desired well-posedness. The same considerations apply to
prove the weak maximum principle for subsolutions with either negativity condition, which,
in turn, allows us to solve the unilateral variational poblem and thus, the obstacle problem
in bounded domains. As a corollary we obtain that the minimum of two subsolutions of the
inhomogeneouus equation Lu = f − divg is also a subsolution.

Moving further to the proof of Caccioppoli inequality, some serious difficulties arise. Up
to now, Caccioppoli’s inequality was unknown with so general conditions, since it could
be solved only for balls r ≤ 1 and then rescale. This resulted to the appearance of the
Lebesgue measure of the domain in the constants and so, it could not serve our purpose for
scale invariant estimates. To overcome this important obstacle, we had to make a technically
challenging adaptation of the method that solves the Dirichlet problem. The idea to use this
iteration method to prove standard and refined Caccoppoli inequalities is novel and turns
out to be the most important ingredient that overcomes the necessity for smallness of the
norms of the coefficients in order to develop a De Giorgi/Nash/Moser theory for so general
operators.

To prove local boundedeness, weak Harnack inequality, interior and boundary regularity,
we have to make a non-trivial adaptation of the arguments of Gilbarg and Trudinger [9, pp.
194–209]. To do so, we are required to prove a refined version of Caccioppoli inequality (The-
orems 3.5–3.8),which in [9]was immediate. This turns out to be an evenmore demanding task
than the proof of Caccioppoli inequality itself. Once we obtain them, we show Lemma 4.1,
which is the building block of a Moser-type iteration argument. For this lemma, we need an
embedding inequality (see Corollary 2.17) with constants independent of the domain, which
we prove, since we were not able to find it in the literature (with constants independent of the
domain). The use of the Stummel-Kato class K(�) as an appropriate class of functions for
the interior data and the lower order coefficients is not new and has its roots to Schrödinger
operators with singular potentials (see [18] and the references therein). Although, in our case,
due to the counterexample of Kim and Sakellaris [16] (see Example 4.8), |b + c|2 should
be in appropriate subspace of it satisfying a Carleson-Dini-type condition. In fact, a 1

2 -Dini
condition on the Stummel-Kato modulus was imposed in [26] to prove local boundedness
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of subsolutions for certain quasi-linear equations, but their constants depended on �. Our
Moser-type iteration argument in the proof of Theorem 4.4 follows their ideas, but to get
scale invariant estimates, it is necessary to come up with the condition (2.4) and deal with
some technical details that required attention already in the original proof. In Example 4.9,
we also show that a negativity condition is necessary to obtain local boundedness.

Regarding interior and boundary regularity, as is customary, we go through an application
of the weak Harnack inequality. But for this, we need the positivity condition to hold which
would force us to assume L1 = 0, or equivalently −divb + d = 0. But since this would
lead to a significant restriction on the class of operators that our theorems would apply,
we incorporate −div(bu) and du to the interior data −divg and f respectively. The “new"
equation has the form

L̃u = −div(A∇u) − c∇u = ( f + du) − div(g − bu),

for which it is true that L̃1 = 0. The price we have to pay is to impose the additional
assumptions |b|2 and |d| ∈ KDini(�) (for interior regularity and boundary regularity under
the CDC condition). Of course, we require u to be locally bounded as well and thus, we
need to assume one of the Assumptions (1)–(3). It is interesting to see that the proof of
Theorem 4.14 (ii), where we are proving a Wiener type criterion for boundary regularity,
is quite laborious as it requires a modification of the original argument in [9] (which is
not obvious without the capacity density condition) and a new way of handling the second
term �2 in the iteration scheme. Moreover we have to assume a slightly stronger condition,
i.e., that | f |, |d| ∈ KDini,δ(�) and |b|2, |g|2 ∈ KDini,δ/2(�) for some δ ∈ (0, 1). To our
knowledge, this is the first Wiener-type criterion for boundary regularity of solutions for
equations with lower order coefficients with so general assumptions. Moreover, the interior
regularity is also new in the case that the radii of the balls we consider are not small (and
thus, we do not have smallness of the norms of the coefficients). Let us comment here that
one could try to prove boundary regularity following [11] or even [12], but in both cases,
there would only be treated solutions of equations with no right hand-side and bi = d = 0,
1 ≤ i ≤ n. This is because of the need of lower pointwise bounds for the Green’s function
or equivalently a Harnack inequality, which, in this situation, only holds for equations of the
form Lu = −divA∇u − c∇u = 0.

Finally, having proved all the results above, we are in a position to construct the Green’s
function using the method of Hofmann and Kim [13] along with its variant of Kang and
Kim [15], where the main ingredients are the well-posedness of the Dirichlet problem, local
boundedness, Caccioppoli’s inequality, andmaximumprinciple, while, for the approximating
operators, we also use the interior continuity for solutions of equations with lower order
coefficients that satisfy |b|2, |c|2, |d| ∈ KDini(�). We would not need an approximation
argument if it wasn’t for the lack of continuity in the general case. This creates some trouble
in the proof of G(x, y) = Gt (y, x) (and nowhere else), where Gt stands for the Green’s
function associated with Lt , the formal adjoint of L . It is important to point out that the
pointwise bounds for G do not hold unless local boundedness of subsolutions of Lt u = 0
is true; in view of Example 4.8, an additional condition on b + c is necessary. In our case,
this will be |b + c|2 ∈ KDini(�) as before. Remark that, since � may have infinite Lebesgue
measure, we can assume � = R

n and construct the fundamental solution.
Related results: An interesting result, which is very related to our work, was obtained
simultaneously and independently by Georgios Sakellaris. The first version of our paper and
[28] were uploaded on ArXiv.org the same day (9th of April 2019). His primary goal was to
construct Green’s functions for elliptic operators of the form (1.1) in general domains under
either negativity condition that satisfy scale invariant pointwise bounds. Then, he applies them
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to obtain global and local boundedness for solutions to equations with interior data in the case
(1.6). To do this, it was required b+c to be in a scale invariant space, which for the author was
the Lorentz space Ln,1(�) (as opposed to |b + c|2 ∈ KDini(�) we identified). His method is
totally different than ours and is based on delicate estimates for decreasing rearrangements.
In fact, he first proves the existence of Green’s functions via various approximations and
then uses their properties to obtain a priori estimates; our method follows the exact opposite
direction. Our paper and [28] are complementary since, apart from the major differences in
the approach, the conditions |b + c|2 ∈ KDini(�) and |b + c| ∈ Ln,1(�) are not comparable.
Indeed, if g(x) = |x |−1(− log |x |)−31B(x), where B := B(0, 1

e ), then g ∈ Ln,1(B) such
that g2 /∈ KDini,α(B) for any α > 0 (see [28]), while, in Example 2.23, we show that there
exists a non-negative function f ∈ KDini,α(Rn+)\L p,q(Rn+) for any α > 0, p > 0 and
q ∈ (0,∞], and so h := √

f /∈ Ln,1(Rn+) and h2 ∈ KDini,α(Rn+). We would like to note here
that Sakellaris observed that, due to a Lorentz-Sobolev embedding theorem and density, (1.5)
or (1.6) can be applied assuming that b, c ∈ Ln,∞(�), d ∈ Ln/2,∞(�). Although our original
assumptions were b, c ∈ Ln(�), d ∈ Ln/2(�), and the constants depended on ‖b + c‖Ln(�)

(the same dependence as in [28]), while working the details of the case |b + c|2 ∈ K(�), we
realized that our method extends almost unchanged when b + c ∈ Ln,q(�), for q ∈ [n,∞),
which is a slight improvement compared to our previous results and the ones in [28]. We
claim no credit though for the idea to use the Lorentz-Sobolev embedding theorem, which
we learned from [28].

Around a year after the last version of the present manuscript was uploaded on ArXiv.org
(26th ofApril 2019), Sakellaris uploaded [29] on the same preprint server (28th ofMay 2020),
where, under the assumptions of [28], he obtains interior and boundary Harnack inequalities
and, under smallness assumptions on the norms of the coefficients, he further proves interior
and boundary Moser’s estimates as well as interior local continuity.

2 Preliminaries

We will write a � b if there is C > 0 so that a ≤ Cb and a �t b if the constant C depends
on the parameter t . We write a ≈ b to mean a � b � a and define a ≈t b similarly. If Br (x)

is a ball of radius r and center x ∈ �, we will denote �r (x) = Br (x) ∩ �.

2.1 Sobolev space

Definition 2.1 If 1 ≤ p < n and p∗ = np
n−p , we define the Sobolev spaces Y 1,p(�) and

W 1,p(�) to be the space of all weakly differentiable functions u ∈ L p∗
(�) and L p(�)

respectively, whose weak derivatives are functions in L p(�). We endow these spaces with
the respective norms

‖u‖Y 1,p(�) = ‖u‖L p∗
(�) + ‖∇u‖L p(�)

‖u‖W 1,p(�) = ‖u‖L p(�) + ‖∇u‖L p(�).

We say that u ∈ Y 1,2
loc (�) (resp. u ∈ W 1,2

loc (�)) if u ∈ Y 1,2(K ) (resp. u ∈ W 1,2(K )) for any

compact K ⊂ �. We also define Y 1,p
0 (�) and W 1,p

0 (�) as the closure of C∞
c (�) in Y 1,p(�)

and W 1,p(�) respectively, and denote their dual spaces by Y −1,p′
(�) and W −1,p′

(�), where
p′ is the Hölder conjugate of p.
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By Sobolev embedding theorem, it is clear that W 1,p
0 (�) ⊂ Y 1,p

0 (�), while if� has finite
Lebesgue measure they are in fact equal. See, for instance, Theorem 1.56 and Corollary 1.57
in [21]. Moreover, Y 1,p

0 (Rn) = Y 1,p(Rn) (see e.g. Lemma 1.76 in [21]). We will denote by
2∗ = 2n

n+2 the dual Sobolev exponent for p = 2.

For u ∈ Y 1,2
loc (�) and ϕ ∈ C∞

c (�), the bilinear form which corresponds to the elliptic
operator (1.1) is given by

L(u, ϕ) =
∫

�

(A∇u + du) · ∇ϕ − (c · ∇u + du) ϕ.

which, by the embedding given in (2.15) or the one in [28, p.6 andLemma2.2], iswell-defined

if (1.4) holds. For the same reasons we can use (1.5) and (1.6) with Y
1, n

n−1
0 (�) functions.

When we write Lu = f − divg, where f ∈ L1
loc(�) and g ∈ L1

loc(�;Rn), we mean that
it holds “in the weak sense”, i.e.,

L(u, v) =
∫

�

f v + g · ∇v, for all v ∈ C∞
c (�).

If f ∈ L2∗(�) and g ∈ L2(�), we can extend it by density to v ∈ Y 1,2
0 (�).

In the sequel we will require a notion of supremum and infimum of a function in Y 1,2(�)

at the boundary of an open set� ⊂ R
n since such a function is not necessarily continuous all

the way to the boundary. Let Y denote either Y 1,2(�) or W 1,2(�) and Y0 be either Y 1,2
0 (�)

or W 1,2
0 (�).

Definition 2.2 Given a function u ∈ Y , we say that u ≤ 0 on ∂� if u+ ∈ Y0. If u is continuous
in a neighborhood of ∂� then u ≤ 0 on ∂� in the Sobolev sense if u ≤ 0 in the pointwise
sense. In the same way u ≥ 0 if −u ≤ 0 and u ≤ w if u − w ≤ 0. We define the boundary
supremum and infimum of u as

sup
∂�

u = inf{k ∈ R : (u − k)+ ∈ Y0} and inf
∂�

u = − sup
∂�

(−u).

Definition 2.3 Let E ⊂ � and u ∈ Y . We say that u ≤ 0 on E if u+ is the limit in Y -norm
of a sequence of C∞

c (� \ E). Then u ≥ 0 and u ≤ v can be defined naturally. Moreover, if
� has finite Lebesgue measure.

sup
E

u = inf{k ∈ R : u ≤ k on E} and inf
E

u = − sup
∂�

(−u).

If E = ∂� the two definitions above coincide.
We record some results for Sobolev functions that we will need later. Their proofs can be

found in [21] and/or in [12] for functions in W 1,2(�) or W 1,2
0 (�). Although, one can make

the obvious modifications to prove them for Y 1,2(�) or Y 1,2
0 (�).

Lemma 2.4 If � ⊂ R
n is open and connected, u ∈ Y and ∇u = 0 a.e. in �, then u is a

constant in �. If we also assume u ∈ Y0, then u = 0.

Proof The fact that u is a constant can be found in [21, Corollary 1.42], while the second
part can proved by a slight modification of the proof of [12, Lemma 1.17]. ��

123



Elliptic equations with lower order terms Page 9 of 69 266

Lemma 2.5 ([21], Corollary 1.43) If u, v ∈ Y (resp. Y0) then max(u, v) and min(u, v) are
in Y (resp. Y0) and

∇ max(u, v)(x) =
{

∇u , if u ≥ v

∇v , if v ≥ u
,

∇ min(u, v)(x) =
{

∇v , if u ≥ v

∇u , if v ≥ u
.

In particular, ∇u = ∇v a.e. on the set {x ∈ � : u(x) = v(x)}.

Theorem 2.6 ([21], Theorem 1.74) Let � ⊂ R
n be an open set and let f be a Lipschitz

function such that f (0) = 0.

(i) If u ∈ W 1,1
loc (�) then f ◦ u ∈ W 1,1

loc (�). Moreover, for a.e. x ∈ �, we have that either

∇( f ◦ u)(x) = f ′(u(x))∇u(x),

or

∇( f ◦ u)(x) = ∇u(x) = 0.

(ii) If u ∈ Y0, then f ◦ u ∈ Y0 and

‖ f ◦ u‖Y ≤ ‖ f ′‖L∞(�)‖u‖Y .

Remark that it is necessary to have f (0) = 0 when � is unbounded. For example, if
f (t) = 1, then f ◦ u /∈ Y 1,2(�).

Lemma 2.7 Let � ⊂ R
n be an open set and let f : R → R be a function in Lip(R). If u ∈ Y ,

then f ◦ u ∈ Yloc.

Lemma 2.8 ([12], Theorem 1.25) Let � ⊂ R
n be an open set and u ∈ Y .

(i) If u has compact support, then u ∈ Y0.
(ii) If v ∈ Y0 and 0 ≤ u ≤ v a.e.in �, then u ∈ Y0.
(iii) If v ∈ Y0 and |u| ≤ |v| a.e. in �\K , where K is a compact subset of �, then u ∈ Y0.

2.2 Stummel–Kato class

Definition 2.9 Let f ∈ L1
loc(R

n), and set

ϑ( f , r) := sup
x∈Rn

(∫
Br (x)

| f (y)|
|x − y|n−2 dy

)
, for r > 0,

We will denote by ϑ�( f , r) := ϑ( f χ�, r), for r > 0. We define the Stummel-Kato class K
and its variant K′ as follows:

K̂(�) = { f ∈ L1
loc(�) : ϑ�( f , r) < ∞, for each r > 0},

K(�) = { f ∈ L1
loc(�) : lim

r→0
ϑ�( f , r) = 0 and ϑ�( f , r) < ∞, for r > 0},

K′(�) = { f ∈ L1(�) : lim
r→0

ϑ�( f , r) = 0 and ϑ�( f ) := sup
r>0

ϑ�( f , r) < ∞}.
(2.1)
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Wewill write that f ∈ K̂loc(�) (resp.K1,loc(�)) if f ∈ K̂(D) (resp.K(D)) for any bounded
open set D ⊂ R

n+1 so that D ⊂ �. If � is bounded,

ϑ�( f ) = sup
r∈(0,2 diam(�))

ϑ�( f , r),

and so K(�) = K′(�).

It is easy to see that, by a simple covering argument, there exists a dimensional constant
Cdb > 0 so that

ϑ�( f , r) ≤ Cdbϑ�( f , r/2) for every r > 0. (2.2)

Therefore, since ϑ�( f , r) is non-decreasing in r , there exists c > 0 so that

c := ln 2

Cdb
≤ 1

ϑ�( f , r)

∫ r

r/2
ϑ�( f , t)

dt

t
≤ 1

ϑ�( f , r)

∫ r

0
ϑ�( f , t)

dt

t
.

Let us recall that that a function f ∈ L1
loc(�) is in the Morrey space Mλ(�), if

sup
r>0

sup
Br ⊂Rn

1

rλ

∫
Br ∩�

| f (x)| dx < ∞.

that a function f ∈ L1
loc(�) is in the generalized Morrey space Mϕ(�) with modulus ϕ if

sup
r>0

sup
Br ⊂Rn

1

ϕ(r)

1

rn−2

∫
Br ∩�

| f (x)| dx < ∞ and
∫ 1

0
ϕ(t)

dt

t
< ∞.

By [27, Lemma 1.1], Mn−2+ε(�) ⊂ K(�), for any ε ∈ (0, 2), since for every f ∈
Mn−2+ε(�), it holds that

ϑ�( f , r) � rn−2+ε‖ f ‖Mn−2+ε(�),

while, if f ∈ K(�) and
∫ 1
0 ϑ�( f , t) dt

t < ∞, then it is straightforward to see that f ∈
Mϑ�( f ,·)(�) since ∫

B(x,r)∩�

| f (y)| dy ≤ rn−2ϑ�( f , r).

For fixed r > 0, we define the space

L1
loc,r (�) =

{
f ∈ L1

loc(�) : ‖ f ‖L1
loc,r (�) := sup

x∈Rn
‖ f ‖L1(B(x,r)∩�) < ∞

}
,

which clearly contains K̂(�). One case see that ‖ · ‖L1
loc,r (�) is a norm on L1

loc,r (�) and

ϑ�(·, r) is a norm on K̂(�) and K(�). Analogously, ϑ�(·) is a norm on K′(�). In the next
lemma we provide an elementary proof of the fact that those spaces are complete.

Lemma 2.10 L1
loc,r (�), K̂(�),K(�), and K′(�) are Banach spaces.

Proof To simplify our notation, for fixed r > 0, we will denote

X1 = L1
loc,r (�), X2 = K̂(�), X3 = K(�), and X4 = K′(�).
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We first prove that X1 is complete. Indeed, there exists k ∈ Z such that 2k < r ≤ 2k+1, and
let Q ∈ Dk(R

n) be the dyadic grid in R
n that consists of cubes of sidelength 2k and notice

that, by easy geometric considerations,

‖ f ‖L1
Dk

(�) := sup
Q∈Dk

‖ f ‖L1(Q∩�) ≈n ‖ f ‖X1 .

In addition, L1
Dk

(�) is the direct sum
⊕

Q∈Dk
X Q of the Banach spaces X Q = Ls(Q ∩ �)

with norm supQ ‖ · ‖L1(Q∩�). In this case, the completeness is preserved and thus, L1
Dk

(�)

is a Banach space as well, which readily implies that X1 is a Banach space.
Now, we will show that X2 is a Banach space. Let

BX2 = { f ∈ X2 : ‖ f ‖X2 ≤ 1}
be the closed unit ball in X2, and let fk be a Cauchy sequence in X2. It is easy to see that

‖ f ‖X1 ≤ r
n−2

s ϑ�( f , r) = rn−2‖ f ‖X2 , and by the completeness of X1, there exists f ∈ X1

such that fk → f in X1. By Fatou’s lemma,

ϑ�( f , r) ≤ lim inf
k→∞ ϑ�( fk, r) ≤ 1,

and so f ∈ BX2 . Therefore, since X1 is a Banach space and the embedding of X2 in X1 is
continuous, by [8, Proposition 14.2.3], we deduce that X2 is Banach as well. It is easy to see
that X3 is a closed subspace of X2, and thus, Banach, while, if we replace X1 by X2 and X2

by X4 in the argument above, we infer that X4 is Banach space as well. ��

2.3 Carleson-Dini Stummel–Kato class

For any ε > 0, we define

ϑε,�( f , r) = ϑ�( f , r) + ε r , (2.3)

which is strictly increasing, continuous, and satisfies the same properties as ϑ�( f , r). There-
fore, it is invertible with continuous and strictly increasing inverse ϑ−1

ε,�( f , r). It is clear that
ϑε,�( f , ·) also satisfies the doubling condition (2.2) with constant max(Cdb, 2).

Definition 2.11 If α > 0, we say that a function f ∈ K̂(�) is in the Careslon-Dini Stummel-
Kato class KDini,α(�) if it satisfies

∫ r

0
ϑ�( f , t)α

dt

t
≤ C ϑ�( f , r)α, (2.4)

for every r > 0. and we denote

C f ,�,α := sup
r>0

1

ϑ�( f , r)α

∫ r

0
ϑ�( f , t)α

dt

t
. (2.5)

If α = 1 then we write that f ∈ KDini(�) and C f ,� := C f ,�,1.

Example 2.12 Let e j = (δ1 j , . . . , δnj ), for j ∈ {1, . . . , n} be the orthonormal basis of Rn

and, for any k ∈ {1, 2, . . . , 2n}, let us denote �λk = (λ1k, . . . , λ
n
k ) �= 0 to be the distinct vectors
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such that λi
k = 0 or 1 for i ∈ {1, . . . , n}. For k ∈ {1, 2, . . . , 2n} and j ∈ N, define the distinct

points in R
n by

xk :=
n∑

i=1

λi
k ei and y j

k := 2 j xk .

Define now

f (x) = 1B(0, 18 )(x) +
∞∑
j=1

2n∑
k=1

1
B(y j

k ,2 j−3)
(x).

Note that the balls B(y j
k , 2 j−3) are mutually disjoint and thus, | f (x)| ≤ 1 for any x ∈ R

n .
So, for fixed r > 0 and every x ∈ R

n ,
∫

B(x,r)

| f (y)|
|x − y|n−2 dy ≤

∫
B(x,r)

1

|x − y|n−2 dy = cnr2,

which implies that ϑRn ( f , r) � r2. For the reverse inequality, if r ≥ 1 remark that there
exists a positive integer j0 such that 2 j0−1 ≤ r < 2 j0 . Then if we set x1 = y j0+3

1 ,

ϑRn ( f , r) ≥
∫

B(x1,r)

| f (y)|
|x1 − y|n−2 dy ≥

∫
B(x1,r)

1

|x1 − y|n−2 dy = cn r2.

For r < 1,

ϑRn ( f , r) ≥
∫

B(0,r/8)

| f (y)|
|y|n−2 dy = cn

64
r2.

Therefore, ϑRn ( f , r) ≈ r2 for any r > 0, and so, for any α > 0, it holds
∫ r

0
ϑRn ( f , t)α

dt

t
≈

∫ r

0
t2α−1 dt = r2α ≈ ϑRn ( f , r)α,

which implies that f ∈ KDini,α(Rn). If Rn+ := {(x1, . . . , xn) ∈ R
n : x1 > 0}, by similar

arguments, we can show that f ∈ KDini,α(Rn+) for any α > 0,

The next lemma is easy to prove by a simple change of variables and we leave the routine
details to the interested reader.

Lemma 2.13 Let � ⊂ R
n be an open set and f ∈ KDini(�). For ρ > 0, set fρ(x) = ρ f (ρ x)

for any x ∈ Dρ := ρ−1�. Then the following hold:

(i) If λ > 0, then ϑ�(λ f , t) = λϑ�( f , t), for any t > 0 and Cλ f ,� = C f ,�.
(ii) ϑDρ ( fρ, t) = ϑ�( f , ρ t), for any t > 0.

(iii) C fρ ,Dρ = C f ,�.

Moreover, if g ∈ KDini(�), and we set gρ(x) = ρ g(ρ x), V = | f |+|g|, and Vρ = | fρ |+|gρ |,
then V ∈ KDini(�) and

CVρ ,Dρ = CV ,� ≤ 2C f ,� + 2Cg,�.
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2.4 Sobolev embedding and Interpolation inequalities

The following considerations can be found in [18, p.416] and are based on an inequality
proved by Simon in [33, p.455]. Assume that f ∈ K(�) and let

ψ ∈ C∞
c (Rn), 0 ≤ ψ ≤ 1, ψ = 0 in R

n \ B(0, 1), and
∫

ψ = 1. (2.6)

For δ > 0, set ψδ(x) = δ−nψ(δ−1x) and define

fδ = f ∗ ψδ. (2.7)

Then, if G ⊂ �, r > 0 and 0 < δ ≤ r , we have

ϑG(( f 1G)δ, r) ≤ ϑ(( f 1G)δ, r) ≤ ϑ( f 1G , r) + ϑ( f 1G , δ)

≤ 2ϑ( f 1G , r) ≤ 2ϑ( f , r). (2.8)

Thus, for a ball Br so that B2r ⊂ � and 0 < δ < r , we also obtain

ϑBr ( fδ, r) ≤ ϑBr (( f 1B2r )δ, r) ≤ 2ϑB2r ( f , r). (2.9)

Moreover, if |g|2 ∈ K(�),

ϑ(|gδ|2, r) ≤ ϑ(|g|2, r) + ϑ(|g|2, δ) ≤ 2ϑ(|g|2, r). (2.10)

It is useful to remark that if

�δ = {x ∈ � : dist(x,�c) > δ} ∩ B(0, δ−1), (2.11)

then ϑ(( f 1�δ )δ, r) = ϑ�(( f 1�δ )δ, r).
In the next lemma we use an argument from [36].

Lemma 2.14 If f ∈ K(�) and ρ > 0, it holds that ϑ�(( f 1�δ )δ − f ), ρ) → 0, as δ → 0. If
f ∈ K′(�), then ϑ�(( f 1�δ )δ − f ) → 0, as δ → 0.

Proof Fix ρ > 0 and note that by (2.1), for ε > 0, we can find r0 < ρ, so that ϑ�( f , r0) < ε
6 .

Note that by (2.8), for 0 < δ < r0, we have that ϑ�(( f 1�δ )δ − f , r0) ≤ 3ϑ�( f , r0). Thus,

ϑ�(( f 1�δ )δ − f , ρ) ≤ ϑ�(( f 1�δ )δ − f , r0)

+ sup
x∈Rn

∫
(B(x,r)\B(x,r0))∩�

|( f 1�δ )δ(y) − f (y)|
|x − y|n−2 dy

≤ ε/2 + r2−n
0 sup

x∈Rn

∫
B(x,ρ)∩�

|( f 1�δ )δ(y) − f (y)| dy

=: ε/2 + r2−n
0 Iρ.

As ϑ�(( f 1�δ )δ − f , ρ) ≤ 3ϑ�( f , ρ) < ∞, for 0 < δ < ρ, there exists x0 ∈ R
n such that

Iρ ≤ 2
∫

B(x0,ρ)∩�

|( f 1�δ )δ(y) − f (y)| dy.

Now, using that ( f 1�δ )δ → f in L1
loc(�), there exists δ > 0 such that δ < min(r0, ρ) and∫

B(x0,ρ)∩�

|( f 1�δ )δ(y) − f (y)| dy < 4−1rn−2
0 ε.

Collecting all the estimates we obtain thatϑ�(( f 1�δ )δ− f , ρ) < ε. The proof for f ∈ K′(�)

is the same. ��
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Lemma 2.15 If f ∈ K(Br ), there exists a constant c1 > 0 depending only on n such that for
any r > 0 and u ∈ W 1,2(Br ), it holds

∫
Br

|u|2 f ≤ c1 ϑBr ( f , r)

(
‖∇u‖2L2(Br )

+ 1

r2
‖u‖2L2(Br )

)
. (2.12)

Proof This inequality can be found in the proof of Lemma 2.1 in [18] (display (12), p. 416). It
is stated with slightly different assumptions but an inspection of the proof reveals that (2.12)
is also true. For a similar inequality see Lemma 7.3 in [31]. ��

Note that if we set f = fδ in (2.12) and use (2.9), we can see that for 0 < δ < r ,
∫

Br

|u|2 fδ ≤ 2c1 ϑB2r ( f , r)

(
‖∇u‖2L2(Br )

+ 1

r2
‖u‖2L2(Br )

)
, (2.13)

where c1 is independent of δ.

Lemma 2.16 If f ∈ K(Rn), then, there exists a constant c2 > 0 depending only on n such
that for any ε > 0 and u ∈ W 1,2(Rn), it holds∫

Rn
|u|2 f ≤ ε ‖∇u‖2L2(Rn)

+ ε

ϑ−1
ε,Rn ( f , c−1

2 ε)2
‖u‖2L2(Rn)

. (2.14)

Proof WecoverRn with balls B(z j , r), with center all the points z j so that nz j/r have integer
coordinates. It is clear that each point x ∈ R

n is contained in at most N balls B(z j , 2r), where
N is a positive constant depending only on the dimension n. Fix ε > 0 and choose r > 0
small enough so that ϑε,Rn ( f , r) = (Nc1)−1ε, where c1 is the constant in (2.12). Thus, using
ϑBr ( f , r) ≤ ϑε,Rn ( f , r) and (2.12), we have that

∫
Rn

|u|2 f ≤
∞∑
j=1

∫
B(z j ,r)

|u|2 f ≤
∞∑
j=1

ε

N

(∫
B(z j ,r)

|∇u|2 + 1

r2

∫
B(z j ,r)

|u|2
)

≤ ε

∫
Rn

|∇u|2 + ε

r2

∫
Rn

|u|2,

which, if we set c2 = Nc1, implies (2.14). ��
An immediate corollary of the latter theorem,whichwill be used inSect. 4, is the following:

Corollary 2.17 If f ∈ K(�), then, there exists a constant c2 > 0 depending only on n such
that for any ε > 0 and u ∈ W 1,2

0 (�), it holds
∫

�

|u|2 f ≤ ε‖∇u‖2L2(�)
+ ε

ϑ−1
ε,�( f , c−1

2 ε)2
‖u‖2L2(�)

. (2.15)

Remark 2.18 In view of (2.13), it is easy to see that (2.14) and (2.15) still hold if we replace
f by fδ on the left hand-side and keep the same term on the right hand-side.

The remark above, combined with (2.10) and (the proofs of) Lemmas 2.15 and 2.16, and
Corollary 2.17, leads to the following corollary which will be crucial in an approximation
argument we will need later.
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Corollary 2.19 If |g|2 ∈ K(�), then there exists a constant c′
2 > 0 depending only on n such

that for any ε > 0 and u ∈ W 1,2
0 (�) it holds∫

�

|u|2|(g1�δ )δ|2 ≤ ε‖∇u‖2L2(�)
+ ε

ϑ−1
ε,�(|g|2, c′

2
−1

ε)2
‖u‖2L2(�)

.

Lemma 2.20 If f is supported in a ball Br and f ∈ K(Rn), there exists a constant C ′
s > 0

depending only on n such that, if u ∈ Y 1,2(Rn), it holds∫
Rn

|u|2 f ≤ C ′
s ϑRn ( f , r)‖∇u‖2L2(Rn)

. (2.16)

Proof This follows from the combination of [21, Theorem 1.79] and the proof of [38, Lemma
3]. ��

Lemma 2.21 If f ∈ K′(�), there exists a constant C ′
s > 0 depending only on n such that, if

u ∈ Y 1,2
0 (�), it holds ∫

�

|u|2 f ≤ C ′
s ϑ�( f )‖∇u‖2L2(�)

. (2.17)

Proof Let Bk := B(0, k) and fk = f 1Bk . Then, since | fk | ≤ | f | and fk → f pointwisely,
by Lemma 2.20, we have that∫

�

|u|2 fk ≤ C ′
s ϑ�( f , k)‖∇u‖2L2(�)

≤ C ′
s ϑ�( f )‖∇u‖2L2(�)

,

which, by the dominated convergence theorem, concludes the proof of (2.17). ��

2.5 Lorentz spaces

Definition 2.22 If f is a measurable function we define the distribution function

d f ,�(t) = |{x ∈ � : | f (x)| > t}|, t > 0,

and its decreasing rearrangement by

f ∗(t) = inf{s > 0 : d f ,�(t) ≤ s}.
If p ∈ (0,∞) and q ∈ (0,∞], we can define the Lorentz semi-norm

‖ f ‖L p,q (�) =

⎧⎪⎨
⎪⎩

p
1
q

(∫ ∞
0

(
t d f ,�(t)

1
p

)q
dt
t

) 1
q

, if q < ∞
supt>0 t d f ,�(t)

1
p , if q = ∞.

,

If ‖ f ‖L p,q (�) < ∞, we will say that f is in the Lorentz space (p, q) and write f ∈ L p,q(�).
This is quasi-norm and (L p,q(�), ‖ · ‖L p,q (�)) is a quasi-Banach space.

We can also define

‖ f ‖L(p,q)(�) =

⎧⎪⎨
⎪⎩

(∫ ∞
0

(
t
1
p f ∗∗(t)

)q
) 1

q
dt
t , if q < ∞

supt>0 t
1
p f ∗∗(t) , if q = ∞.

,
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which, for p ∈ (1,∞) and q ∈ [1,∞], is a norm and it holds that

‖ f ‖L p,q (�) ≤ ‖ f ‖L(p,q)(�) ≤ p

p − 1
‖ f ‖L p,q (�).

If we equip L p,q(�) with this norm, it becomes a Banach space (see [1, Lemma 4.5 and
Theorem 4.6]). We will write f ∈ L p,q

loc (�) if f ∈ L p,q(�′) for any bounded open set
�′ ⊂ �.

We record that

(1) If 0 < p, r ≤ ∞ and 0 < q ≤ ∞,

‖| f |r‖L p,q (�) = ‖ f ‖r
L pr,qr (�);

(2) If 0 < p ≤ ∞ and 0 < q2 < q1 ≤ ∞,

‖ f ‖L p,q1 (�) �p,q1,q2 ‖ f ‖L p,q2 (�); (2.18)

(3) If 0 < p, q, r ≤ ∞, 0 < s1, s2 ≤ ∞, 1/p + 1/q = 1/r , and 1/s1 + 1/s2 = 1/s,

‖ f g‖Lr,s (�) �p,q,s1,s2 ‖ f ‖L p,s1 (�)‖g‖Lq,s2 (�). (2.19)

We refer to [1, Chapter 4] and [10, Chapter 1] for the proofs. It is worth noting that

L
n
2 ,1(�) ⊂ K′(�),

while, for n ≥ 3, K(�) and L
n
2 ,q(�), q ≥ n, are not comparable.

Example 2.23 If f is the function of Example 2.12, then it is easy to see that

d f ,Rn (t) =
{
0 , if t > 1

+∞ , if t ∈ (0, 1].
and, by definition, for every p > 0 and q ∈ (1,∞),

‖ f ‖q
L p,q (Rn)

= p
∫ 1

0
d f ,Rn (t)

q
p tq−1 dt ≥ 2q−1 p

∫ 1

1/2
d f ,Rn (t)

q
p dt = +∞.,

while for every p > 0 and q ∈ (0, 1],

‖ f ‖q
L p,q (Rn)

= p
∫ 1

0
d f ,Rn (t)

q
p tq−1 dt ≥ p

∫ 1

0
d f ,Rn (t)

q
p dt = +∞.

It is clear that ‖ f ‖L p,∞(Rn) = +∞. Therefore, f ∈ KDini,α(Rn)\L p,q(Rn) for any α > 0,
p > 0, and q ∈ (0,∞]. Similarly, one can show that f ∈ KDini,α(Rn+)\L p,q(Rn+) for any
α > 0, p > 0, and q ∈ (0,∞].

Definition 2.24 Let {Ek}∞k=1 be a sequence ofmeasurable subsets of�.Wewillwrite Ek → ∅
a.e. if 1Ek → 0 a.e. in �, which is equivalent to | lim supk→∞ Ek | = 0.

We will say that a function f in a Banach function space X (see [30, Definition 6.5]) has
absolutely continuous norm in X if ‖ f 1Ek ‖X → 0 for every sequence {Ek}k≥1 such that
Ek → ∅ a.e. The set of all functions in X of absolutely continuous norm is denoted by Xa .
If Xa = X , then the space itself is said to have absolutely continuous norm. In this case,
simple functions supported on a set of finite Lebesgue measure are dense in X .

Record that L p,q(�), for p ∈ (1,∞) and q ∈ [1,∞), is a Banach function space (see [1,
p.219, Theorem 4.6]).
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Lemma 2.25 Let f ∈ X where X = K′(�) or L p,q(�), 1 < p < ∞ and 1 ≤ q < ∞. If
‖ · ‖X stands for either ϑ�(·) or ‖ · ‖L p,q (�), then X has absolutely continuous norm. In fact,
for every ε > 0, there exists δ > 0 such that

if E ⊂ � with |E | < δ, then ‖ f 1E‖X < ε.

Proof For K′(�) this was proved in [36, Lemma 2.2], while for L p,q(�) it follows from [1,
p. 23, Corollary 4.3] and [1, p. 221, Corollary 4.8]. ��

Lemma 2.26 ([4], Theorem V4) Let f ∈ L p,q(�), with p ∈ (1,∞) and q ∈ [1,∞), and for
δ > 0, let �δ be as in (2.11). Then, it holds that

‖( f 1�δ )δ‖L p,q (�) ≤ C p,q ‖ f ‖L p,q (�) and ‖( f 1�δ )δ − f ‖L p,q (�) → 0.

In the following definitions and lemmas we follow [28].

Definition 2.27 We define Y 1,(p,q)
0 (�), for 1 < p < n and 1 ≤ q ≤ ∞, to be the closure of

C∞
c (�) under the semi-norm

‖u‖
Y 1,(p,q)
0 (�)

= ‖u‖
L

np
n−p ,q

(�)
+ ‖∇u‖L p,q (�).

Lemma 2.28 If u ∈ Y 1,(p,q)
0 (�), there exists a constant Cs > 0 depending on n such that

‖u‖
L

np
n−p ,q

(�)
≤ Cs‖∇u‖L p,q (�). (2.20)

If u ∈ Y 1,2
0 (�), the same is true for p = q = 2.

Proof The proof of the first part can be found in [5, Theorem 4.2(i)] and of the second one
in [28, Lemma 2.2]. ��

Lemma 2.29 If u, w ∈ Y 1,2
0 (�), then uw ∈ Y

1,( n
n−1 ,1)

0 (�) and, in particular, it holds that

‖uw‖
L

n
n−2 ,1

(�)
≤ 2C2

s ‖∇u‖L2(�)‖∇w‖L2(�). (2.21)

Proof Here we follow the scheme of the proof of [28, Lemma 2.2]. Since both u and w

belong to Y 1,2
0 (�), we can use (2.20) and (2.19) to deduce that

‖w∇u‖
L

n
n−1 ,1

(�)
≤ ‖∇u‖L2(�)‖w‖

L
2n

n−2 ,2
(�)

≤ Cs‖∇u‖L2(�)‖∇w‖L2(�). (2.22)

The analogous estimate holds if we switch the roles of w and u. Since u, w ∈ Y 1,2
0 (�), there

exist sequences {φk}k≥1, {ψk}k≥1 ⊂ C∞
c (�) such that φk → u and ψk → w in Y 1,2

0 (�). By

Lemma 2.28,we can find a subsequence ofφkψk that isweakly-* convergent inY
1,( n

n−1 ,1)
0 (�)

to some v ∈ Y
1,( n

n−1 ,1)
0 (�). But since v ∈ L

n
n−2 ,1(�) ⊂ L

n
n−2 (�), it holds that v = uw in

L
n

n−2 ,1(�). Thus,

‖uw‖
L

n
n−2 ,1

(�)
≤ lim inf

k→∞ ‖φkψk‖
L

n
n−2 ,1

(�)

≤ Cs lim inf
k→∞ ‖∇(φkψk)‖

L
n

n−1 ,1
(�)

≤ 2C2
s ‖∇u‖L2(�)‖∇w‖L2(�),

where in the last step we used the same argument as in (2.22) and the strong convergence of
φk and ψk in Y 1,2

0 (�). ��
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Lemma 2.30 (Embedding inequality) Let h ∈ Ln,q(�), for q ∈ [n,∞], u ∈ Y 1,2(�) and
w ∈ Y 1,2

0 (�). Then if D ⊂ � is a Borel set, there exists a constant Cs,q > 0 (depending
only on n and q) such that∣∣∣∣

∫
D

h∇uw

∣∣∣∣ ≤ Cs,q‖h‖Ln,q (D)‖∇u‖L2(D)‖∇w‖L2(�). (2.23)

Proof This follows from (2.19), (2.20), and (2.18). ��

Remark 2.31 In [28, eq. (2.9)], it was observed that if b, c ∈ Ln,∞(�) and d ∈ L
n
2 ,∞(�),

(1.5) and (1.6) hold if ϕ ∈ Y
1,( n

n−1 ,1)
0 (�).

2.6 Two auxiliary lemmas

The next lemma was stated in [26]. The proof as written in [26] is not totally correct since ω

is not absolutely continuous. We overcome this obstacle by an approximation argument.

Lemma 2.32 Let ω : (0,∞) → (0,∞) be a strictly increasing and continuous function such
that limr→0+ ω(r) = 0 and limr→∞ ω(r) = +∞. Let τ ∈ (0.1), c > 0, and q ≥ 1, and set

bk = c τ kq and ak = b1/q
k logω−1(bk). (2.24)

Then it holds

−
∞∑

k=1

ak ≤ 1

1 − τ

∫ ω−1(c)

0
ω(t)1/q dt

t
. (2.25)

Proof Note thatω is one-to-one and its inverseω−1 is also strictly increasing and continuous.
If we define ωδ as in (2.7) in R, then ωδ is strictly increasing and smooth satisfying

lim
t→0

ωδ(t) =
∫

ψδ(−s) ω(s) ds =: αδ ∈ [0, ω(δ)].

Therefore, ω−1
δ is also strictly increasing and smooth on Ran(ωδ), the range of ωδ .

As limδ→0 ωδ(t) = ω(t) locally uniformly in (0,∞),2 it is not hard to show that
limδ→0 ω−1

δ (r) = ω−1(r) for all r ∈ Ran(ω) = (0,∞). Indeed, let ε > 0 and r > 0.
Then, by the continuity of ω in (0,∞), there exists δ′ = δ′(ε, r) > 0 such that

|ω−1(r + δ′) − ω−1(r)| < ε and |ω−1(r − δ′) − ω−1(r)| < ε.

For any sequence {δn}∞n=1 such that δn → 0 as n → ∞, it holds that limn→∞ ωδn = ω, and
so there exists n0 > 0 such that for every n > n0,

|ωδn (ω
−1(r + δ′)) − (r + δ′)| < δ′ and |ωδn (ω

−1(r − δ′)) − (r − δ′)| < δ′.

Therefore,

ωδn (ω
−1(r + δ′)) > r and ωδn (ω

−1(r − δ′)) < r ,

which, using that ω−1
δn

is strictly increasing in (0,∞), implies that

ω−1
δn

(r) ∈ [ω−1(r − δ′), ω−1(r + δ′)]

2 Just pointwise convergence is enough here.
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and thus, |ω−1
δn

(r)−ω−1(r)| < ε. This concludes the proof of limδ→0 ω−1
δ = ω pointwisely.

For any fixed positive N ∈ N, it holds that

N∑
k=0

(τak − ak+1) =
N∑

k=0

b1/q
k+1(logω−1(bk) − logω−1(bk+1))

= lim
δ→0

N∑
k=0

b1/q
k+1(logω−1

δ (bk) − logω−1
δ (bk+1))

= lim
δ→0

N∑
k=0

b1/q
k+1

∫ bk

bk+1

1

ω−1
δ (t)

1

ω′
δ(ω

−1
δ (t))

dt

≤ lim
δ→0

N∑
k=0

∫ bk

bk+1

t1/q

ω−1
δ (t)

1

ω′
δ(ω

−1
δ (t))

dt

= lim
δ→0

∫ c

bN+1

t1/q

ω−1
δ (t)

1

ω′
δ(ω

−1
δ (t))

dt

= lim
δ→0

∫ ω−1
δ (c)

ω−1
δ (bN+1)

ωδ(t)
1/q dt

t
.

Remark that ω−1(bN+1) > 0. For η > 0, there exists δ0 = δ(η, c, bN+1) > 0 such that
for every δ < δ0,

|ω−1
δ (c) − ω−1(c)| < η and |ω−1

δ (bN+1) − ω−1(bN+1)| < η.

Therefore, for δ < δ0,

∫ ω−1
δ (c)

ω−1
δ (bN+1)

ωδ(t)
1/q dt

t
≤

∫ ω−1(c)+η

ω−1(bN+1)−η

ωδ(t)
1/q dt

t
.

Now, by the local uniform convergence of ωδ , we can find 0 < δ1 ≤ δ0 such that for every
δ < δ1, it holds that |ωδ(t) − ω(t)| < η for every t ∈ [ω−1(bN+1) − η, ω−1(c) + η].
Therefore, for δ < δ1, we infer that

N∑
k=0

b1/q
k+1(logω−1

δ (bk) − logω−1
δ (bk+1)) =

∫ ω−1(c)+η

ω−1(bN+1)−η

ωδ(t)
1/q dt

t

≤ η log
ω−1(c) + η

ω−1(bN+1) − η
+

∫ ω−1(c)+η

ω−1(bN+1)−η

ω(t)1/q dt

t
,

which, by taking δ → 0, implies that

N∑
k=0

(τak − ak+1) ≤ η log
ω−1(c) + η

ω−1(bN+1) − η
+

∫ ω−1(c)+η

ω−1(bN+1)−η

ω(t)1/q dt

t
.

Since η is arbitrary, we may take η → 0 and deduce that

N∑
k=0

(τak − ak+1) ≤
∫ ω−1(c)

ω−1(bN+1)

ω(t)1/q dt

t
≤

∫ ω−1(c)

0
ω(t)1/q dt

t
.
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If we take limits as N → ∞, we get

∞∑
k=0

(τak − ak+1) ≤
∫ ω−1(c)

0
ω(t)1/q dt

t
,

which, combined with the equality

∞∑
k=0

(τak − ak+1) = (τ − 1)
∞∑

k=0

ak,

shows (2.25). ��

Lemma 2.33 Let ω : (0,∞) → (0,∞) be a strictly increasing and continuous function such
that limr→0+ ω(r) = 0. Assume that

Cω := sup
r>0

1

ω(r)

∫ r

0
ω(t)

dt

t
< ∞ and ω(2r) ≤ c0ω(r), for any r > 0.

Then

sup
t∈(0,∞)

ω(t)

ω(2t)
< 1.

Proof Since ω is strictly increasing and doubling, we have that

c−1
0 ≤ ω(t)

ω(2t)
< 1, for every t > 0.

This inequality and the continuity of ω in (0,∞) imply that

sup
t∈(0,∞)

ω(t)

ω(2t)
= 1 ⇔ lim

t→0

ω(t)

ω(2t)
= 1.

Assume that limt→0
ω(t)
ω(2t) = 1. Then, by continuity, if we fix ε < (4 c0 Cω)−1, there exists

ρ > 0 such that for t < ρ it holds that ω(t) > (1−ε) ω(2t). If we apply this for tm = 2−mρ,
m = 0, 1, . . . , N − 1, the Dini condition yields

1 − (1 − ε)N

ε
ω(ρ) =

N−1∑
m=0

(1 − ε)mω(ρ) <

N−1∑
m=0

ω(2−mρ) ≤ 2 c0 Cω ω(ρ).

Letting N → ∞, we get ε−1 ≤ 2 c0 Cω which is a contradiction. ��

2.7 The splitting lemmas

The following lemma will be used repeatedly in this manuscript and for the case p = q = n
was proved in [2]. We extend it to the case of Lorentz spaces L p,q(�)with 1 < p ≤ q < ∞.

Lemma 2.34 Let � ⊂ R
n be an open set, u ∈ Y 1,2(�), h ∈ L p,q(�), for 1 < p ≤ q < ∞

and a > 0. Then there exist mutually disjoint measurable sets �i ⊂ � and functions
ui ∈ Y 1,2(�) for 1 ≤ i ≤ κ with the following properties:
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(1) ‖h‖L p,q (�i ) = a, for 1 ≤ i ≤ κ − 1, and ‖h‖L p,q (�κ ) ≤ a,
(2) {x ∈ � : ∇ui �= 0} ⊂ �i ,
(3) ∇u = ∇ui in �i ,
(4) |ui | ≤ |u|,
(5) uui ≥ 0,
(6) u = ∑m

i=1 ui ,

(7) ui∇u =
(∑i

j=1 ∇u j

)
ui ,

(8) u∇ui =
(∑κ

j=i u j

)
∇ui ,

and κ has the upper bound

κ ≤ a−q‖h‖q
L p,q (�) + 1.

If u ∈ Y 1,2
0 (�), then ui ∈ Y 1,2

0 (�) for 1 ≤ i ≤ κ .

Proof If 0 ≤ k < t ≤ ∞, we define

�(k, t) := {x ∈ � : k < |u| ≤ t,∇u �= 0},
and by Chebyshev’s inequality, for k > 0, it holds

|�(k, t)| ≤ |�(k,∞)| ≤ k−2∗‖u‖2∗
L2∗ < ∞.

Let us define the function f : [0,∞]2 → [0,∞) by

f (k, t) = |{k < |u| ≤ t,∇u �= 0}|.
We will show that f (·, t) is continuous in [0,∞) for any fixed t ∈ (0,∞].

To this end, fix t ∈ (0,∞] and k < t , and let {k�}�∈N be a positive decreasing sequence
so that k� → k. Thus,

f (k, t) = |�(k, t)| = ∣∣ ∞⋃
�=1

�(k�, t)
∣∣ = lim

�→∞ f (k�, t),

which gives right continuity. Consider now an increasing sequence of positive numbers
{kl}l∈N so that kl → k. Then

∞⋂
l=1

�(kl , t) = �(k, t) ∪ {x ∈ � : |u| = k,∇u �= 0}.

By Lemma 2.5, we get
∣∣{x ∈ � : |u| = t,∇u �= 0}∣∣ = 0, and thus, since |�(k1,∞)| < ∞,

we infer that

f (k, t) = |�(k, t)| = ∣∣ ∞⋂
l=1

�(kl , t)
∣∣ = lim

l→∞
∣∣�(kl , t)

∣∣,

which implies left continuity of f (·, t) and consequently continuity.
If we set

σ(x) =
{
1 , if x > 0

−1 , if x < 0
,
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we define

Fk,t (u) =

⎧⎪⎨
⎪⎩

(t − k)σ (u), |u| > t

u − kσ(u), k < |u| ≤ t

0, |u| ≤ k,

and Fk,∞(u) =
{

u − kσ(u), |u| > k

0, |u| ≤ k
.

For fixed k, t ∈ [0,∞], Fk,t ∈ Lip(R) and Fk,t (0) = 0, and thus, since u ∈ Y 1,2(�)

(resp. Y 1,2
0 (�)), by Lemma 2.6, Fk,t (u) ∈ Y 1,2(�) (resp. Y 1,2

0 (�)).
Recall that the L p,q -norm is absolutely continuous by Lemma 2.25 and thus, since, for

any fixed t ∈ [0,∞], 1�(k,t) → 0 a.e. as k → t , we will have that ‖h1�(k,t)‖L p,q (�) → 0.
For 1 < p ≤ q < ∞, let us define

H(k, t) :=
∫ ∞

0
sq dh1�(k,t) (s)

q
p

ds

s
.

If H(0,∞) ≤ aq , then we set �1 = {x ∈ � : ∇u �= 0} and u1 = u. Suppose now that
H(0,∞) > aq , and thus, by the absolute continuity of L p,q , there exists k1 > 0 such that

H(k1,∞) = aq .

If H(0, k1) ≤ aq , we set �1 = �(k1,∞) and �2 = �(0, k1), and u1 = Fk1,∞(u) and
u2 = F0,k1(u). If, on the other hand, H(0, k1) ≥ aq , there exists k2 ≥ 0 so that

H(k2, k1) = aq .

If we iterate, there exists j0 ∈ N so that H(ki , ki−1) = aq , if 1 ≤ i < j0, and H(0, k j0) ≤ aq ,
where k0 = +∞. Indeed, if there were infinitely many i so that H(ki , ki−1) = aq , then,
since {�(ki , ki−1)}i≥1 are disjoint, we would have

∞ =
∞∑

i=1

aq =
∞∑

i=1

H(ki , ki−1) ≤
∫ ∞

0
sq dh1�(0,∞)

(s)
q
p

ds

s
≤ ‖h‖q

L p,q (�) < ∞,

which is a contradiction. Here we used that p ≤ q and that for disjoint sets A and B it holds
that

|{x ∈ A : | f | > t}| + |{x ∈ B : | f | > t}| ≤ |{x ∈ A ∪ B : | f | > t}|.
The same argument gives us j0 aq ≤ ‖h‖L p,q (�), that is, j0 ≤ a−q‖h‖q

L p,q (�).
If we set κ = j0 + 1 and kκ = 0, for i ∈ {1, . . . , κ}, we define

�i = �(ki , ki−1) and ui = Fki ,ki−1(u).

We have already shown (1), so it remains to prove that (2)–(8) hold as well.
Firstly, (2), (3), and (4) are clear by definition, while (5) follows by simple computations;

indeed, note first that uui = 0 whenever |u| < ki . In the set where |u| > ki−1 > ki , we have
that

uui = u σ(u) (ki−1 − ki ) = |u| (ki−1 − ki ) ≥ 0,

while, when ki < |u| ≤ ki−1,

uui = u2 − σ(u) u ki = |u|(|u| − ki ) ≥ 0.

This concludes the proof of (5).
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For (6) and (7), we may rewrite u j = uk j ,∞ − uk j−1,∞ , in view of which, we have

i∑
j=1

u j = Fk1,∞(u) +
i∑

j=2

(Fk j ,∞(u) − Fk j−1,∞(u)) = Fki ,∞(u). (2.26)

In the case i = κ , we have

κ∑
j=1

u j = Fkκ ,∞(u) = u,

yielding (6). By definition, ∇uki ,∞ = ∇u, when |u| > ki (i.e., in the support of ui ), while
ui = 0, whenever |u| ≤ ki . and so, (7) follows from (2.26). Since {∇ui �= 0} ⊂ �i we can
use (6) to get

u∇ui = ui

κ∑
j=1

∇u j = ∇ui

κ∑
j=i

u j .

This concludes the proof of the lemma. ��
The direct analogue of this lemma for the space K′(�) was proved in [36] but it is not

stated as such. For the reader’s convenience we will give a sketch of the proof.

Lemma 2.35 Let � ⊂ R
n be an open set, u ∈ Y 1,2(�) (resp. Y 1,2

0 (�)), h ∈ K′(�) and a > 0.
Then, there exist mutually disjoint measurable sets �i ⊂ � and functions ui ∈ Y 1,2(�) (resp.
Y 1,2
0 (�)), for 1 ≤ i ≤ κ , satisfying (2)–(8), so that

ϑ�(h1�i ) = a2, for 1 ≤ i ≤ κ − 1, and ϑ�(h1�κ ) ≤ a2.

If ρ0 > 0 is such that ϑ�(h, ρ0) = a2/4, then κ has the upper bound

κ ≤ 1 + 2 a−2 ρ2−n
0 ‖h‖L1(�).

If � is a bounded open set contained in a ball Br , we can assume h ∈ K(�) replacing ϑ�(·)
by ϑ�(·, r).

Proof Using the same notation as before, we define

H(k, t) = ϑ�(h1�(k,t)).

Making the same stopping time argument with respect to the condition h(k, t) = a2 and
noticing that we only used the absolute continuity of the norm, we can reason as in the proof
of Lemma 2.34. The only difference lies on the estimate of κ since we cannot linearize it as
we did in the previous case.

Let us first show that the stopping process results to a finite number of sets. Indeed, arguing
as in the proof of Lemma 2.14, we can find ρ0 so that ϑ�(h, ρ0) = a2/4 so that

a2 = ϑ�(h1�i ) ≤ 2ϑ�(h1�i , ρ0) + ρ2−n
0

∫
�i

|h|1�i dy ≤ a2

2
+ ρ2−n

0

∫
�i

|h|1�i dy.

So, if assume that there infinite many �i , we can sum in i as before and get

∞ ≤ ρ2−n
0

∑
i

∫
�i

|h|1�i dy ≤ ρ2−n
0 ‖h‖L1(�),
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which is a contradiction. If j0 is the number of i’s for which ϑ�(h1�i ) = a2, the same
argument will give the bound

j0 ≤ 2a−2ρ2−n
0 ‖h‖L1(�).

��

Remark 2.36 It is interesting to see that the bound on κ , although at a first glace does not
seem to be scale invariant, in fact it is (with the correct scaling). Indeed, let hr = r2h(r x) in
the open set �r = r−1�. Then, by making the change of variables y = r x we have that

ρ2−n
0 ‖hr‖L1(�r )

= (ρ0 r)2−n‖h‖L1(�).

Now, recall that ρ0 was chosen so that ϑ�r (hr , ρ0) = a2/4, which, by the same change of
variables, implies that ϑ�(h, ρ0 r) = a2/4. Note that if ϑ�(h, ·) is invertible, we have that
ρ0 r = ϑ−1

� (h, a2/4).

2.8 Variational capacity

Definition 2.37 Let � ⊂ R
n be open and E ⊂ �. If we set

KE (�) := {w ∈ Y 1,2
0 (�) : E ⊂ {w ≥ 1}o}

then we define the (variational) capacity of the condenser (E,�) as

Cap(E,�) = inf
w∈KE

∫
�

|∇w|2.

The following properties of capacity verify that it is a Choquet capacity and satisfies the
axioms considered by Brelot. A proof can be found for instance in Theorem 2.3 in [21].

(i) If E ⊂ � is compact,

Cap(E,�) = inf

{∫
�

|∇w|2 : w ∈ C∞
c (�), u ≥ 1 in E

}
.

(ii) If E ⊂ � is open,

Cap(E,�) = sup
compact K⊂E

Cap(K ,�).

(iii) If E1 ⊃ E2 ⊃ . . . is a sequence of compact subsets of �,

Cap
( ⋂

j≥1

E j ,�
)

= lim
j→∞Cap(E j ,�).

(iv) If E1 ⊂ E2 ⊂ . . . is a sequence of arbitrary subsets of �,

Cap
( ⋃

j≥1

E j ,�
)

= lim
j→∞Cap(E j ,�).

(v) If E1, E2 ⊂ . . . are arbitrary subsets of �, then

Cap
( ⋃

j≥1

E j ,�
)

≤
∑
j≥1

Cap(E j ,�).

123



Elliptic equations with lower order terms Page 25 of 69 266

3 Interior and boundary Caccioppoli inequality

In Sects. 3–5 we will be dealing with subsolutions and supersolutions of the equation

Lu = −div(A∇u + bu) − c∇u − du = f − divg, (3.1)

where f ∈ L1
loc(�) and g ∈ L2

loc(�;Rn).

3.1 Standard Caccioppoli inequality

Theorem 3.1 (Caccioppoli inequality I) Let u ∈ Y 1,2
loc (�) be either a solution or a non-

negative subsolution of (3.1) and f ∈ L2∗
loc(�). Assume also that (1.5) is satisfied and either

(i) b + c ∈ Ln,q
loc (�), for q ∈ [n,∞), or (ii) |b + c|2 ∈ Kloc(�). For a non-negative function

η ∈ C∞
c (�), we let �′ be a bounded open set such that supp η ⊂ �′ � �. Then it holds

‖η∇u‖2L2(�′) � ‖u∇η‖2L2(�′) + ‖ f η‖2L2∗ (�′) + ‖gη‖2L2(�′),

where the implicit constant depends only on λ, �, and also either on Cs,q and ‖b+c‖Ln,q (�′),
for q ≥ n under assumption (i), or C ′

s and ϑ�′(|b + c|2, 2 diam�′) under assumption (ii)3.

Proof We will only treat the case that u is a non-negative subsolution of (3.1) as the proof
when u is a solution is almost identical and is omitted. Notice that since K := supp η is a
compact subset of �, we can always find a bounded open set �′ such that K ⊂ �′ � �, and
as u ∈ Y 1,2

loc (�), it holds that u ∈ Y 1,2(�′). Working in �′ instead of �, we may assume,
without loss of generality, that u ∈ Y 1,2(�). Moreover, u is clearly a subsolution in any open
subset of �. For simplicity, let us preserve the notation � instead of �′.

We first assume that b + c ∈ Ln,q(�′). Apply Lemma 2.34 to the function u, for p = n,
q ≥ n, h = b + c, and a = λ

8Cs,q
, where Cs,q is the constant in (2.23), to find �i ⊂ � and

ui ∈ Y 1,2(�), 1 ≤ i ≤ κ , satisfying (1)–(8). Note that (5) tells us that ui and u have the
same sign, and so, the functions η2ui ∈ Y 1,2

0 (�) are non-negative. Thus, using that u is a
subsolution for (3.1) we have∫

�

f (η2ui ) +
∫

�

g∇(η2ui ) ≥
∫

�

A∇u∇(η2ui ) + bu∇(η2ui ) − c∇u(η2ui ) − du(η2ui )

=
∫

�

A∇u∇(η2ui ) + b∇(η2uui ) − (b + c)∇uη2ui − dη2uui

≥
∫

�

A∇u∇(η2ui ) − (b + c)∇uη2ui ,

where in the last inequality we used (5), Lemma (2.29), Remark 2.31, and (1.5). In view of
(3) and (6), the latter inequality can be written as

∫
�i

A∇ui∇uiη
2 ≤ −2

∫
�

A∇u∇ηuiη +
i∑

j=1

∫
� j

(b + c)∇u jη
2ui

+
∫

�

f (η2ui ) +
∫

�

g∇(η2ui ) =: I1(i) + I2(i) + I3(i) + I4(i). (3.2)

By (1.2) we get

λ‖η∇ui‖2L2 ≤
∫

�i

A∇ui∇uiη
2, (3.3)

3 Recall that C ′
s and Cs,q are the constants in Lemmas 2.20 and 2.30 respectively.
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while, by Hölder’s inequality,

|I1(i)| ≤ 2�‖η∇u‖L2‖ui∇η‖L2 . (3.4)

If we apply (2.23) and Young’s inequality, along with the fact that ‖b+c‖Ln,q (� j ) ≤ λ
8Cs,q

for any 1 ≤ j ≤ κ , we get that

I2(i) =
∫

�i

(b + c)∇uiη
2ui +

i−1∑
j=1

∫
� j

(b + c)∇u jη
2ui

≤ Cs,q
λ

8Cs,q
‖η∇ui‖L2‖∇(uiη)‖L2 + Cs,q

λ

8Cs,q

i−1∑
j=1

‖η∇u j‖L2‖∇(uiη)‖L2

≤ 3λ

16
‖η∇ui‖2L2 + λ

16
‖ui∇η‖2L2 + λ

16
(‖ui∇η‖L2 + ‖η∇ui‖L2)2

+ λ

16

⎛
⎝ i−1∑

j=1

‖η∇u j‖L2

⎞
⎠

2

≤ 5λ

16
‖η∇ui‖2L2 + 3λ

16
‖ui∇η‖2L2 + λ

16

⎛
⎝ i−1∑

j=1

‖η∇u j‖L2

⎞
⎠

2

. (3.5)

By Hölder’s, Sobolev’s and Young’s inequalities we obtain

I3(i) + I4(i) ≤C2
s,q

4δ
‖ f η‖2L2∗ + 1

2δ
‖gη‖2L2 + 2δ‖ui∇η‖2L2 + 2δ‖η∇ui‖2L2 . (3.6)

Choosing δ = λ
32 in (3.6), we can combine (3.2), (3.3), (3.4), and (3.5) and infer that

3λ

8
‖η∇ui‖2L2 ≤

(
4�2

λ
+ λ

4

)
‖ui∇η‖2L2 + λ

16

⎛
⎝ i−1∑

j=1

‖η∇u j‖L2

⎞
⎠

2

+ 16

λ
‖gη‖2L2

+ 16C2
s,q

λ
‖ f η‖2L2∗ ,

which implies that there exist positive constants C1, C2 and C3 depending on λ, � and Cs,q

so that

‖η∇ui‖L2 ≤ C1‖ui∇η‖L2 + C2
(‖ f η‖L2∗ + ‖gη‖L2

) +
i−1∑
j=1

‖η∇u j‖L2 .

+ C3‖η∇u‖1/2
L2 ‖ui∇η‖1/2

L2 .

Note that the constant the sum is multiplied with is indeed 1, which is convenient in the
iteration argument below. If we denote C0 := max(C1, C2, C3),

x j := ‖η∇u j‖L2 , and y0 := ‖u∇η‖L2 + ‖η∇u‖1/2
L2 ‖u∇η‖1/2

L2 + ‖ f η‖L2∗ + ‖gη‖L2 ,
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and use that (4), the latter inequality can be written as

x1 ≤ C0 y0,

xi ≤ C0 y0 +
i−1∑
j=1

x j , for i = 2, · · · , κ. (3.7)

By induction, we get

xi ≤ 2i−1 C0 y0. (3.8)

Indeed, for i = 1, it holds x1 ≤ C0 y0.Assumenow that x j ≤ 2 j−1 C0 y0 for all 1 ≤ j ≤ i−1.
Then, by (3.7) and the induction hypothesis,

xi ≤ C0 y0 + C0 y0

i−1∑
j=1

2 j−1 = 2i−1 C0 y0.

Summing (3.8) in i ∈ {1, . . . , κ} we obtain
κ∑

i=1

xi ≤ 2κ C0 y0, (3.9)

which, in light of (6), (3.9) and Young’s inequality (with a small constant), implies that

‖η∇u‖L2 ≤
κ∑

i=1

‖η∇ui‖L2 ≤ 4κ C2
0

(‖u∇η‖L2 + ‖ f η‖L2∗ + ‖gη‖L2
)
.

This concludes our proof when b + c ∈ Ln,q(�; Rn), since κ depends only λ, �, Cs,q , and
also on ‖b + c‖Ln,q (�;Rn).

Let us now prove the same result in the case |b + c|2 ∈ K(�′). We apply Lemma 2.35
to the function u, for h = b + c, and a = λ

8C ′
s
, where C ′

s is the constant in (2.16), to find

�i ⊂ � and ui ∈ Y 1,2(�), 1 ≤ i ≤ κ , satisfying (1)–(8). The main argument will be exactly
the same as in the previous case will not be repeated. Although, there is a difference coming
from the embedding theorem we apply, which is Lemma 2.20 as opposed to Lemma 2.30 we
used before. Taking this under consideration, it is enough to handle the term I2(i).

To this end, apply Cauchy-Scwharz’s inequality, (2.17), Sobolev’s and Young’s inequali-
ties, along with the fact that for any 1 ≤ j ≤ m it holds ϑ�′(|b + c|21� j , 2 diam�′) ≤ λ

8C ′
s
,

and get that

I2(i) =
∫

�i

(b + c)∇uiη
2ui +

i−1∑
j=1

∫
� j

(b + c)∇u jη
2ui

≤ C ′
s‖∇(uiη)‖L2

⎛
⎝ϑ

1/2
�′ (|b + c|21�i )‖η∇ui‖L2 +

i−1∑
j=1

ϑ
1/2
�′ (|b + c|21� j )‖η∇u j‖L2

⎞
⎠

≤ λ

8
‖η∇ui‖L2‖∇(uiη)‖L2 + λ

8

i−1∑
j=1

‖η∇u j‖L2‖∇(uiη)‖L2

≤ λ

16
‖η∇ui‖2L2 + λ

16
‖ui∇η‖2L2 + λ

16
(‖ui∇η‖L2 + ‖η∇ui‖L2)2
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+ λ

16

⎛
⎝ i−1∑

j=1

‖η∇u j‖L2

⎞
⎠

2

≤ 3λ

16
‖η∇ui‖2L2 + 3λ

16
‖ui∇η‖2L2 + λ

16

⎛
⎝ i−1∑

j=1

‖η∇u j‖L2

⎞
⎠

2

.

This concludes the proof the Theorem. ��

Theorem 3.2 (Caccioppoli inequality II) Let u ∈ Y 1,2
loc (�) be either a solution or a non-

negative subsolution of (3.1) and f ∈ L2∗
loc(�). Assume also that (1.6) is satisfied and either

(i) b + c ∈ Ln,q
loc (�), for q ∈ [n,∞), or (ii) |b + c|2 ∈ Kloc(�). For a non-negative function

η ∈ C∞
c (�), we let �′ be a bounded open set such that supp η ⊂ �′ � �. Then it holds

‖η∇u‖2L2(�′) � ‖u∇η‖2L2(�′) + ‖ f η‖2L2∗ (�′) + ‖gη‖2L2(�′),

where the implicit constant depends only on λ, �, and also either on Cs,q and ‖b+c‖Ln,q (�′),
for q ≥ n under assumption (i), or C ′

s and ϑ�′(|b + c|2, 2 diam�′) under assumption (ii).

Proof We only deal with the case that u is a non-negative subsolution (3.1). As seen in
Theorem 3.1, we may assume that u ∈ Y 1,2(�) and apply Lemma 2.34 to the function u, for
p = n, q ≥ n, h = b + c, and a = λ

8Cs,q
, where Cs,q is the constant in (2.23). Using that

η2ui ∈ Y 1,2
0 (�) and non-negative, along with the fact that u is a subsolution, we have

∫
�

f (η2ui ) +
∫

�

g∇(η2ui ) ≥
∫

�

A∇u∇(η2ui ) + bu∇(η2ui ) − c∇u(η2ui ) − du(η2ui )

≥
∫

�

A∇u∇(η2ui ) − (b + c)u∇(η2ui ),

where in the last inequality we used (5), Lemma (2.29), Remark 2.31, and (1.6). In view of
(3) and (6), the latter inequality can be written as∫

�

A∇ui∇uiη
2 ≤ −2

∫
�

A∇u∇ηuiη +
∫

�i

(b + c)∇uiη
2u + 2

∫
�

(b + c)∇ηui uη

+
∫

�

f (η2ui ) +
∫

�

g∇(η2ui ) =: −2I1(i) + I2(i) + 2I3(i) + I4(i) + I5(i).

(3.10)

By Hölder’s inequality,

I1(i) ≤ �‖η∇u‖L2‖ui∇η‖L2 . (3.11)

Using (8) and the fact that ‖b + c‖Ln,q (� j ) ≤ λ
8Cs,q

for all 1 ≤ j ≤ κ , along with (2.23)
and Young’s inequality, we have

I2(i) =
∫

�i

(b + c)∇uiη
2ui +

κ∑
j=i+1

∫
� j

(b + c)∇u jη
2ui

≤ Cs,q
λ

8Cs,q
‖η∇ui‖L2‖∇(uiη)‖L2 + Cs,q

λ

8Cs,q

κ∑
j=i+1

‖η∇u j‖L2‖∇(uiη)‖L2
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≤ λ

8
‖η∇ui‖2L2 + λ

8
‖η∇ui‖L2‖ui∇η‖L2

+ λ

16
(‖ui∇η‖2L2 + ‖η∇ui‖2L2) + λ

16

⎛
⎝ κ∑

j=i+1

‖η∇u j‖L2

⎞
⎠

2

≤ λ

4
‖η∇ui‖2L2 + λ

8
‖ui∇η‖2L2 + λ

16

⎛
⎝ κ∑

j=i+1

‖η∇u j‖L2

⎞
⎠

2

. (3.12)

If δ > 0 is small enough to be chosen, then by similar (but easier) considerations we get

I3(i) ≤ Cs,q‖b + c‖Ln,q ‖u∇η‖L2‖∇(uiη)‖L2 (3.13)

≤ C2
s,q

4δ
‖b + c‖2Ln,q ‖u∇η‖2L2 + δ ‖η∇ui‖2L2 + δ ‖ui∇η‖2L2 . (3.14)

If we apply Hölder’s, Sobolev’s and Young’s inequalities we get

I4(i) + I5(i) ≤ C2
s,q

4ρ
‖ f η‖2L2∗ +

(
1 + 1

4ρ

)
‖gη‖2L2

+ (1 + 2ρ)‖ui∇η‖2L2 + 2ρ‖η∇ui‖2L2 . (3.15)

Choose now δ = λ
16 and ρ = λ

8 . Combining (3.10), (1.2), (3.11), (3.12), (3.13), and
(3.15), and using (4), we can find positive constants C1 = C1(λ, Cs,q , ‖b + c‖Ln,q ), C2 =
C2(λ, Cs,q) and C3 = C3(λ) so that

‖η∇ui‖2L2 ≤ 2�‖η∇u‖L2‖u∇η‖L2 + C1‖u∇η‖2L2 + C2‖ f η‖2L2∗

+ C3‖gη‖2L2 + λ

16

⎛
⎝ κ∑

j=i+1

‖η∇u j‖L2

⎞
⎠

2

.

For j ∈ {1, . . . , κ}, we set
x j := ‖η∇u j‖L2

and

y0 := √
2�‖η∇u‖

1
2
L2(�)

‖u∇η‖
1
2
L2(�)

+ √
C1‖u∇η‖L2 + √

C2‖ f η‖L2∗ + √
C3‖gη‖L2 ,

and so, the latter inequality can be written as

xκ ≤ y0 and xi ≤ y0 +
κ∑

j=i+1

x j , for i = 1, 2, · · · , κ − 1. (3.16)

By induction, (3.16) yields xi ≤ 2κ−i y0 for i = 1, 2, · · · , κ − 1, and thus, summing over all
such i , we infer

‖η∇u‖L2 ≤
κ∑

i=1

‖η∇ui‖L2 ≤ 2κ
√

�‖η∇u‖
1
2
L2‖u∇η‖

1
2
L2

+ 2κ
(√

C1‖u∇η‖L2 + √
C2‖ f η‖L2∗ + √

C3‖gη‖L2

)
,
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where in the first inequalitywe used (6). The theorem readily follows fromanother application
of Young’s inequality. This finishes the proof in the case b + c ∈ Ln,q(�′), while the
modifications to obtain the result the case |b+c|2 ∈ K(�′) are identical to the ones presented
in the proof of Theorem 3.1 and are omitted. ��

The proofs of Theorems 3.1 and 3.2 can easily be adapted to prove the following Cac-
cioppoli inequality at the boundary.

Theorem 3.3 (Caccioppoli inequality at the boundary) If Br is a ball such that Br ∩ � �= ∅,
set �r = Br ∩ � and assume that u ∈ Y 1,2(�r ) vanishing on ∂� ∩ Br in the sense of
definition 2.3. Assume that f ∈ L2∗(�r ), g ∈ L2(�r ) and either (1.5) or (1.6) holds. If
either b + c ∈ Ln,q(�r ), q ∈ [n,∞), or |b + c|2 ∈ K(�r ), and u is either a solution or a
non-negative subsolution of (3.1) in �r , then for any non-negative function η ∈ C∞

c (Br ) it
holds

‖η∇u‖2L2(�r )
� ‖u∇η‖2L2(�r )

+ ‖ f η‖2L2∗ (�r )
+ ‖gη‖2L2(�r )

, (3.17)

where the implicit constant depends only on λ, �, and also either on Cs,q and ‖b+c‖Ln,q (�r ),
for q ≥ n, or C ′

s and ϑ�r (|b + c|2, r).

Proof We follow the same strategy as before and apply either Lemma 2.34 to the function
u in �r (x), for p = n, q ≥ n, h = b + c, and a = λ

8Cs,q
, where Cs,q is the constant in

(2.23), or apply Lemma 2.35 to the function u in �r (x), for h = b + c, and a = λ
8C ′

s
, where

C ′
s is the constant in (2.16). Thus, we find �i ⊂ �r (x) and ui ∈ Y 1,2(�r ) that vanishes on

Br ∩ ∂�, for 1 ≤ i ≤ κ , satisfying (1)–(8). Using that the non-negative function η2ui is in
Y 1,2
0 (�r (x)), along with the fact that u is either a solution or a non-negative subsolution of

(3.1) in �r , we may proceed as in the proofs of Theorems 3.1 and 3.2 to obtain (3.17). We
skip the details. ��

Remark 3.4 We would like to note that if b + c ∈ K′(�), we can dominate ϑ�r (|b + c|2, 2r)

by ϑ�(|b + c|2).

3.2 Refined Caccioppoli inequality

Let m = inf∂�∩Br u and M = sup∂�∩Br
u in the sense of Definition 2.2. Define

u−
m(x) :=

{
inf(u(x), m) , x ∈ �

m , x ∈ R
n \ �

and

u+
M (x) :=

{
sup(u(x), M) , x ∈ �

M , x ∈ R
n \ �

Theorem 3.5 Let Br be a ball such that �r = Br ∩ � �= ∅ and assume that either b + c ∈
Ln,q(�r ), q ∈ [n,∞), or |b + c|2 ∈ K(�r ). We also assume that one of the following holds:

(1) divb + d ≥ 0, β ∈ (−∞, 0) and u ∈ Y 1,2(�r ) is a non-negative L-supersolution of
(3.1) in �r ;
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(2) divb + d ≤ 0, β ∈ (0,∞) and u ∈ Y 1,2(�r ) is a non-negative L-subsolution of (3.1) in
�r .

If we set

�̂r =
{

�m
r := {x ∈ �r : u < m} , in Case (1),

�M
r := {x ∈ �r : u > M} , in Case (2),

and for k > 0 we define

ū =
{

u−
m + k , in Case (1),

u+
M + k , in Case (2),

and �̃r =
{

{x ∈ �r : ∇u−
m(x) �= 0} , in Case (1),

{x ∈ �r : ∇u+
M (x) �= 0} , in Case (2),

then, there exist constants C0, C1, C2 depending on β, such that for any non-negative function
η ∈ C∞

c (Br ) we have

‖η ū
β−1
2 ∇u‖2

L2(�̃r )
� C0‖ū

β+1
2 ∇η‖2

L2(�̂r )
+

∫
�̂r

(
C1| f̄ | + C2|ḡ|2) ūβ+1η2, (3.18)

where f̄ = | f |/ū, ḡ = |g|/ū, and the implicit constant depends on λ, �, and also either on
Cs,q and ‖b+c‖Ln,q (�r ), for q ≥ n, or C ′

s and ϑ�r (|b+c|2, r). When |β| > 1, C0 = |β+1|−2,
C1 = |β + 1|−1, and C2 = 1 + |β + 1|−2, while when |β| < 1, C0 = 4κ |β|−2 and C1 =
C2 = 2κ |β|−1, where either κ ≤ 1+ 1

C |β|n ‖b + c‖n
Ln,q (�r )

or κ ≤ 1+ 2 a−2 ρ2−n
0 ‖h‖L1(�r )

.
In the case β = −1, C0 = C1 = C2 = 1.

Proof We first assume that u is a non-negative supersolution of (3.1) and β < −1.
For k > 0 we define the auxiliary function

w = ū
β+1
2 − (m + k)

β+1
2 .

It is clear that w ∈ Y 1,2(�r ) vanishing on ∂� ∩ Br and so, we can apply Lemma 2.34 to w

and�r with p = n, q ≥ n, h = b+c, and a = λ
8Cs,q

,where Cs,q is the constant in Sobolev’s

inequality, to find wi ∈ Y 1,2(�r ) that vanishes on ∂� ∩ Br and �i ⊂ �̃r , 1 ≤ i ≤ κ , so that
(1)–(8) hold.

Since wi vanishes on ∂� ∩ Br . there is a sequence φk ∈ C∞
c (�̄ \ (∂� ∩ Br )) such that

φk → wi in Y 1,2(�). Thus, the sequence η2φk ∈ C∞
c (�r ) converges to η2wi in Y 1,2(�r ),

which implies that η2wi ∈ Y 1,2
0 (�r ). Note also that, by (5), η2wi is non-negative. Thus, for

i = 1, 2, . . . κ ,

λ

∫
�i

|∇w|2 η2 = λ

∫
�r

|∇wi |2 η2

≤
∫

�r

A∇wi∇wi η2 = β + 1

2

∫
�r

A∇u∇wi ū
β−1
2 η2

= β + 1

2

(∫
�r

A∇u∇(wi ū
β−1
2 η2) − 2

∫
�r

A∇u∇η ηwi ū
β−1
2

)

−β + 1

2

(∫
�r

A∇u∇ū
β−1
2 wi η2

)
=: β + 1

2
(J1 − J2 − J3) . (3.19)

Let us point out that

0 ≤ wi ≤ w ≤ ū
β+1
2 (3.20)
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and

∇ū 1�r = ∇u 1�m
r

and {x ∈ �r : wi �= 0} ⊂ {x ∈ �r : w �= 0} = �m
r . (3.21)

Recalling that β < −1 and using (3.21), (1.2), and that ū > 0, we get that

J3 = β − 1

2

∫
�m

r

A∇u∇u ū
β−3
2 η2 ≤ λ

β − 1

2

∫
�m

r

|∇u|2 ū
β−3
2 η2 ≤ 0, (3.22)

and thus, −β+1
2 J3 ≤ 0. Moreover, by (1.3), Hölder’s inequality, (3.20), and (3.21),

|J2| ≤ 2�‖η∇ū
β+1
2 ‖L2(�m

r )‖wi∇η‖L2(�m
r )

≤ 2�‖η∇ū
β+1
2 ‖L2(�m

r )‖ū
β+1
2 ∇η‖L2(�m

r ). (3.23)

Since u is a supersolution of (3.1), β + 1 < 0, and divb − d ≥ 0, we obtain

J1 ≥
∫

�r

(b + c)∇u wi ū
β−1
2 η2 +

∫
�r

f wi ū
β−1
2 η2 +

∫
�r

g∇
(
wi ū

β−1
2 η2

)

=: I1 + I2 + I3, (3.24)

and so β+1
2 J1 ≤ β+1

2 (I1 + I2 + I3). As

∇
(
wi ū

β−1
2 η2

)
= ∇wi ū

β−1
2 η2 + 2∇η wi η ū

β−1
2 + ∇ū

β−1
2 wiη

2,

we may write I3 as the sum of three integrals I31, I32, I33 that correspond to the terms on
the right hand-side of the latter equality. So, by Young’s inequality (for ε small enough to be
chosen) along with (3.20) and (3.21), we get

|β + 1|
2

|I31| ≤ ε‖∇wi η‖2L2(�r )
+ |β + 1|2

16ε

∫
�m

r

|g|2ūβ−1η2, (3.25)

|β + 1|
2

|I32| ≤ ‖ū
β+1
2 ∇η‖2L2(�m

r )
+ |β + 1|2

4

∫
�m

r

|g|2ūβ−1η2. (3.26)

|β + 1|
2

|I33| ≤ ε
|β + 1|2

4
‖ū

β−1
2 ∇ū η‖2L2(�m

r )
+ |β − 1|2

16 ε

∫
�m

r

|g|2ūβ−1η2 (3.27)

|I2| ≤
∫

�m
r

| f |ūβη2. (3.28)

Moreover, by (7),

β + 1

2
I1 =

∫
�r

(b + c)∇w wi η2

=
∫

�i

(b + c)∇wi wi η2 +
i−1∑
j=1

∫
� j

(b + c)∇w j wi η2 =: I i
1 +

i−1∑
j=1

I j
1 . (3.29)

If we apply (2.23) and Young’s inequality,

|I i
1| ≤ Cs,q‖b + c‖Ln,q (�i )‖η∇wi‖L2(�r )

‖∇(ηwi )‖L2(�r )

≤ 3aCs,q

2
‖η∇wi‖2L2(�r )

+ aCs,q

2
‖wi∇η‖2L2(�m

r )
. (3.30)
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Similarly,

i−1∑
j=1

|I j
1 | ≤ Cs,q‖b + c‖Ln,q (�i )‖∇(ηwi )‖L2(�m

r )

i−1∑
j=1

‖η∇w j‖L2(�r )

≤ aCs,q‖η∇wi‖2L2(�r )
+ aCs,q‖wi∇η‖2L2(�m

r )
+ aCs,q

2

⎛
⎝ i−1∑

j=1

‖η∇w j‖L2(�r )

⎞
⎠

2

.

(3.31)

Let us set

x0 = ‖ηū
β−1
2 ∇ū‖L2(�m

r ), x j = ‖η∇w j‖L2(�r )
, y0 = ‖ū

β+1
2 ∇η‖L2(�m

r ),

and also, if γ0 := |β + 1|/2, set

z0 = ‖| f | 12 ū
β
2 η‖L2(�m

r ), z1 = ‖|g|ū β−1
2 η‖L2(�m

r ), and

C(ε, γ0) := [(
(4ε)−1 + 1

)
γ 2
0 + (4ε)−1(1 + γ0)

2] 1
2 .

Then, using this notation, |β −1|/2 ≤ 1+γ0, and choosing α small enough, depending on λ,
�, ‖b + c‖Ln(�), and Cs,q , we can collect the inequalities (3.19)–(3.31) and find a constant
C0 (depending on λ, � and Cs,q ) so that

xi ≤ C0(
√

γ0z0 + C(ε, γ0)z1 + √
ε γ0 x0 + y0) +

i−1∑
j=1

x j .

By the induction argument that appeared in the proof of Theorem 3.1 and (3.21), we can
show that

γ0 x0 = ‖η ∇w‖2L2(�r )
≤ C1(

√
γ0z0 + C(ε, γ0)z1 + √

ε γ0 x0 + y0),

whereC1 depends on λ,�, ‖b+c‖Ln,q (�) andCs,q .Wemay choose ε small enough compared
to C−2

1 and use Young’s inequality with ε to deduce

γ0 x0 ≤ C2 (y0 + √
γ0z0 + (1 + γ 2

0 )1/2z1)

in order to show (3.18). The details are omitted.
We turn our attention to the case that u is a non-negative supersolution of (3.1) and

β ∈ [−1, 0). For k > 0 we define the auxiliary function

w = ūβ − (m + k)β .

Since w ∈ Y 1,2(�) and vanishes on ∂� ∩ Br , we apply Lemma 2.34 as in the previous case
to w and �r , for p = n, h = b + c, and a small enough depending on λ, β, Cs,q (to be
picked later), to find wi ∈ Y 1,2(�) that also vanishes on ∂� ∩ Br and �i ⊂ �̃r , 1 ≤ i ≤ m,
satisfying (1)–(8). By (5) we see that η2wi ∈ Y 1,2

0 (�) is non-negative and we may use it as
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a test function. Therefore,∫
�r

f (η2wi ) +
∫

�r

g∇(η2wi )

≤
∫

�r

A∇u∇(η2wi ) + bu∇(η2wi ) − c∇u(η2wi ) − du(η2wi )

=
∫

�r

A∇u∇(η2wi ) + b∇(η2uwi ) − (b + c)∇uη2wi − dη2uwi

≤
∫

�r

A∇u∇(η2wi ) − (b + c)∇uη2wi , (3.32)

where in the last inequality we used (1.5).
At this point let us recall (3.21) and also record that

0 ≤ wi ≤ w ≤ ūβ (3.33)

and

∇wi = βūβ−1∇u 1�i . (3.34)

Therefore, by (3.34) and β < 0, (3.32) can be written

λ|β|‖ηū
β−1
2 ∇u‖2L2(�i )

≤ |β|
∫

�i

A∇u · ∇uη2ūβ−1 ≤ 2
∫

�r

A∇u · ∇η wiη

−
∫

�r

(b + c)∇uη2wi −
∫

�r

f (η2wi ) −
∫

�r

g∇(η2wi ) =
4∑

i=1

Ii . (3.35)

We apply Hölder’s inequality along with (3.21) and (3.33) to get

|I1| ≤ 2�‖ηū
β−1
2 ∇u‖L2(�m

r )‖ū
β+1
2 ∇η‖L2(�m

r ). (3.36)

By Young’s inequality, (3.33), and (3.34), it is easy to see that

|I3| + |I4| ≤
∫

�m
r

| f |ūβη2 +
(
1 + |β|

4ε

)∫
�m

r

|g|2ūβ−1η2

+ |β| ε
∫

�i

ūβ−1|∇u|2η2 +
∫

�m
r

ūβ+1|∇η|2. (3.37)

It only remains to handle I2. At this point we cannot use (6) or (7) as in previous arguments.
The reason why is that we do not have u and ui but rather two different functions u and wi .
Although, we can recall that {x ∈ �r : wi �= 0} = ∪i

j=1� j and thus, using (2.23), (3.21),

(3.33), ‖b + c‖Ln,q (� j ) ≤ a for any j ∈ {1, 2, · · · m}, and wi ū
1−β
2 η ∈ Y 1,2

0 (�r ), we get

|I2| ≤ Cs,q‖b + c‖Ln,q (�i )‖ηū
β−1
2 ∇u‖L2(∪i

j=1� j )
‖∇(wi ū

1−β
2 η)‖L2(�r )

≤ aCs,q‖ηū
β−1
2 ∇u‖L2(∪i

j=1� j )
‖∇(wi ū

1−β
2 η)‖L2(�r )

. (3.38)

Note that

∇(wi ū
1−β
2 η) 1�r = βηū

β−1
2 ∇u 1�i + wi ū

1−β
2 ∇η + 1 − β

2
wi ū

− β+1
2 η∇u.
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Also, for β ∈ [−1, 0), it holds β−1
2β > 0 and β+1

2 > 0. Thus, by (3.33),

wi ū
− β+1

2 ≤ w

β−1
2β

i ≤ ū
β−1
2 1∪i

j=1� j
and wi ū

1−β
2 ≤ ūβ ū

1−β
2 1∪i

j=1� j
≤ ū

β+1
2 1�m

r
,

which, in turn, implies that

‖∇(wi ū
1−β
2 η)‖L2(�r )

≤ |β|‖ηū
β−1
2 ∇ū‖L2(�i )

+ ‖ū
β+1
2 ∇η‖L2(�m

r )

+ 1 − β

2
‖ηū

β−1
2 ∇ū‖L2(∪i

j=1� j )
. (3.39)

Set now

x0 = ‖ηū
β−1
2 ∇ū‖L2(�m

r ), x j = ‖ηū
β−1
2 ∇ū‖L2(� j )

, y0 = ‖ū
β+1
2 ∇η‖L2(�m

r ),

z0 = ‖| f |1/2ηū
β
2 ‖L2(�m

r ) and z1 = ‖|g|ηū
β−1
2 ‖L2(�m

r ).

With this notation, we can write

‖ηū
β−1
2 ∇ū‖2

L2(∪i
j=1� j )

= x2i +
i−1∑
j=1

x2j

‖∇(wi ū
1−β
2 η)‖L2(�r )

≤ |β|xi + y0 + 1 + |β|
2

⎛
⎝x2i +

i−1∑
j=1

x2j

⎞
⎠

1/2

,

which, in combination with inequalities (1.2) and (3.35)–(3.39), and |β| ≤ 1, implies

|β|λx2i ≤ 2�x0y0 + aCs,q

(
x2i +

i−1∑
j=1

x2j

)1/2(|β|xi + y0 +
(

x2i +
i−1∑
j=1

x2j

)1/2)

+
(
|β|ε x20 + y20 + z20 +

(
1 + |β|

4ε

)
z21

)
.

Therefore, if we choose α small enough (depending linearly on |β|), by Young’s inequality,
we can find a positive constant C0 depending only on λ,�, and Cs,q so that

xi ≤ C0√|β|
(
(x0y0)

1/2 + √|β|ε x0 + (1 + √|β|)y0 + z0 + (1 + √|β|)z1
)

+
i−1∑
j=1

x j ,

The proof of (3.18) is concluded by the same iteration argument as in the proof of Theorem
3.1 along with the facts that ∪κ

i=1�i = �̃r and |β| < 1 obtaining

x0 ≤ C02κ

√|β|
(
(x0y0)

1/2 + √|β|ε x0 + y0 + z0 + 2z1
)

,

where κ ≤ 1+ 1
C |β|n ‖b +c‖n

Ln,q (�r )
. By Young’s inequality and if we choose ε small enough

(depending on λ, �, C0, and κ), we obtain (3.18). The case β > 0 and u positive subsolution
of (3.1) is almost identical and we will not repeat it.

The same reasoning shows (3.18) when |b+c|2 ∈ K(�r ) if we use Lemma 2.35. The only
difference lies on the manipulation of the terms that include b + c and a similar argument
can be found at the end of the proof of Theorem 3.1. The details are omitted. ��

In fact, if we incorporate −div(bu) and du into the interior data, the same proof gives the
following theorem:
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Theorem 3.6 If we use the same notation as in Theorem 3.5 and either c ∈ Ln,q(�r ), for
q ∈ [n,∞) or |c|2 ∈ K(�r ), then for any non-negative function η ∈ C∞

c (Br ), we have

‖η ū
β−1
2 ∇u‖2

L2(�̃r )
� C0‖ū

β+1
2 ∇η‖2

L2(�̂r )
+

∫
�̂r

(C1 f̄ +C1|d|+C2 ḡ2+C2|b|2)ūβ+1η2,

(3.40)

where f̄ = | f |/ū, ḡ = |g|/ū, and C0, C1, and C2 are the constants given in Theorem
3.5. The implicit constant depends on λ, �, and either on Cs,q and ‖c‖Ln,q (�r ), or C ′

s and
ϑ�r (|c|2, r).

The analogue of Theorem 3.5 for the case −divc + d ≥ 0 (or −divc + d ≤ 0) will be
a lot easier to prove, as one does not need to handle either the Ln,q -norm of b + c or the
K-norm of |b + c|2 in a delicate way as before. Instead, we will incorporate |b + c|2 into
the interior data side (as in Theorem 3.6). It may look surprising bearing in mind the special
case β = 1 we proved in Theorem 3.2, but (3.18) cannot hold in this case. The reason is that
it is the main ingredient of the proof of local boundedness and weak Harnack inequality and,
by Example (4.8), we know that if b + c does not have any additional hypothesis, solutions
may not be locally bounded.

Theorem 3.7 If we replace divb + d ≥ 0 (or divb + d ≤ 0) with −divc + d ≥ 0 (or
−divc + d ≤ 0) in the assumptions of Theorem 3.5 and use the same notation, we can find
constants C0, C1, C2 depending on β, such that for any non-negative function η ∈ C∞

c (Br )

we have

‖η ū
β−1
2 ∇u‖2

L2(�̃r )
� C0‖ū

β+1
2 ∇η‖2

L2(�̂r )
+

∫
�̂r

(C1 f̄ +C2 ḡ2+C2|b+c|2)ūβ+1η2,

(3.41)

where f̄ = | f |/ū, ḡ = |g|/ū, and the implicit constant depends λ and �. When |β| > 1,
C0 = |β + 1|−2, C1 = |β + 1|−1, and C2 = 1+ |β + 1|−2, while when |β| < 1, C0 = |β|−2

and C1 = C2 = |β|−1. When β = −1, C0 = C1 = C2 = 1.

Proof We will only give a sketch of the proof. Let us assume that β ∈ [−1, 0). For k > 0 we
define the auxiliary function

w = ūβ − (m + k)β .

Since η2w ∈ Y 1,2
0 (�r ), arguing as in Case β > −1 in the proof of the previous theorem and

using −divc + d ≥ 0, we get
∫

�r

f (η2w) +
∫

�r

g∇(η2w) ≤
∫

�r

A∇u∇(η2w) − (b + c)u∇(η2w).

Because β < 0 and {x ∈ �r : w �= 0} = �m
r , the latter inequality can be written as

|β|
∫

�r

A∇u · ∇uη2ūβ−1 ≤ 2
∫

�r

A∇u · ∇η wη −
∫

�r

(b + c)u∇(η2w)

−
∫

�r

f (η2w) −
∫

�r

g∇(η2w) =
4∑

i=1

Ii .
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Note that if we use 0 ≤ u ≤ ū, then I1, I3 and I4 can be bounded as in (3.36) and (3.37). So,
it only remains to handle I2. But as we do not need to use Lemma 2.34 it will be fairly easy
to do so. Indeed,

I2 = −2
∫

�m
r

(b + c)∇ηwuη + |β|
∫

�m
r

(b + c)∇uη2ūβ−1u,

which, in light ofYoung’s inequalitywith ε small (to be picked),w ≤ ūβ1�m
r
andβ ∈ [−1, 0),

implies

|I2| ≤ (1 + |β|(4ε)−1)

∫
�m

r

|b + c|2ūβ+1η2 +
∫

�m
r

|∇η|2ūβ+1 + ε|β|
∫

�m
r

|∇u|2ūβ−1η2.

If we choose ε small enough we conclude our result. We may handle the case β < −1 and
β ≥ 0 for subsolutions in a similar fashion adapting the argument in the proof of Theorem
3.5. We omit the routine details. ��

Moreover, the proofs of Theorems 3.5, 3.6, and 3.7 can be easily adapted to get a refined
version of Theorems 3.1 and 3.2. We only state the first one.

Theorem 3.8 Let Br be a ball of radius r > 0 so that Br ⊂ � and assume that either
b +c ∈ Ln,q(Br ), q ∈ [n,∞), or |b +c|2 ∈ K(Br ). If u ∈ Y 1,2(Br ) and one of the following
holds:

(1) divb + d ≤ 0 and u is L-subsolution in Br and β ∈ (0,+∞);
(2) divb + d ≤ 0 and u is L-supersolution in Br and β ∈ (0,+∞);
(3) divb + d ≥ 0 and u is a non-negative L-supersolution in Br and β ∈ (−∞, 0).

For k > 0, we set

ū =

⎧⎪⎨
⎪⎩

u+ + k , in Case (1),

u− + k , in Case (2),

u + k , in Case (3).

Then, there exist constants C0, C1, C2 depending on β, such that for any non-negative function
η ∈ C∞

c (Br ) we have

‖η ū
β−1
2 ∇u‖2L2(Br )

� C0‖ū
β+1
2 ∇η‖2L2(Br )

+
∫

Br

(
C1| f̄ | + C2|ḡ|2) ūβ+1η2, (3.42)

where f̄ = | f |/ū, ḡ = |g|/ū, and the implicit constant depends on λ, �, and also either
on Cs,q and ‖b + c‖Ln,q (Br ), or C ′

s and ϑBr (|b + c|2, r). When |β| > 1, C0 = |β + 1|−2,
C1 = |β + 1|−1, and C2 = 1 + |β + 1|−2, while when |β| < 1, C0 = 4κ |β|−2 and C1 =
C2 = 2κ |β|−1, where either κ ≤ 1+ 1

C |β|n ‖b + c‖n
Ln,q (Br )

or κ ≤ 1+ 2 a−2 ρ2−n
0 ‖h‖L1(Br )

.
In the case β = −1, C0 = C1 = C2 = 1.

4 Local estimates and regularity of solutions up to the boundary

In this part we will present the iterating method of Moser to obtain the following results:

• Local boundedness for subsolutions;
• Weak Harnack inequality for supersolutions;
• Hölder continuity in the interior for solutions;
• AWiener criterion for continuity of solutions at the boundary.
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4.1 Local boundedness and weak Harnack inequality

Denote �r0 = Br0 ∩� �= ∅, where r0 ∈ (0,∞], and let f ∈ K(�r0) and |g|2 ∈ K(�r0). Set

γ := β + 1

and

k(r) := ϑ�r0
(| f |, r) + ϑ�r0

(|g|2, r)1/2, for any r ∈ (0, r0].
Define

w =
{

ū
β+1
2 , if β �= −1

log ū, if β = −1,
(4.1)

where ū is either the one given in Theorem 3.5 or in Theorem 3.8, with

k = k(r).

Here Br is a ball of radius r ∈ (0, r0]which is either centered at the boundary (as in Theorem
3.5) or such that Br ⊂ � (as in Theorem 3.8). We will handle both cases simultaneously and
it should be understood from the context what kind of balls we are referring to. Set

f̃ = | f |
k(r)

, g̃ = |g|
k(r)

, and V = f̃ + g̃2.

Notice that for k = k(r), we have that | f̄ | ≤ | f̃ | and |ḡ| ≤ |g̃| and so (3.18), (3.40), (3.41),
and (3.42) hold for f̃ and g̃ instead of f̄ and ḡ. Moreover,

ϑ�r0
(V , r) = 1

k(r)
sup

x∈Rn

∫
B(x,r)∩�r0

| f (y)|
|x − y|n−2 dy

+ 1

k(r)2
sup

x∈Rn

∫
B(x,r)∩�r0

|g(y)|2
|x − y|n−2 dy ≤ 2. (4.2)

Lemma 4.1 Assume that Br be a ball such that �r = Br ∩ � �= ∅, r ≤ r0, and that
either b + c ∈ Ln,q(�r0), q ∈ [n,∞), or |b + c|2 ∈ K(�r0). If w is defined in (4.1), and
η ∈ C∞

c (Br ) is non-negative, then the following hold: If |β| > 1, there exist constants c′
3 > 1

and c′
4 ∈ (0, 1) so that for any 0 < ε ≤ 1,

‖ηw‖L2∗ (Br )
≤ c′

3(1 + |γ |−2)

ϑ−1
ε,�r0

(V , ε c′
4 (1 + |γ |−2)−1)

‖(η + |∇η|)w‖L2(Br )
. (4.3)

and if, in addition, |γ | > 1
2 , there exist c3 > 1 and c4 ∈ (0, 1) such that

‖ηw‖L2∗ (Br )
≤ c3

ϑ−1
ε,�r0

(V , ε c4 |γ |−1)
‖(η + |∇η|)w‖L2(Br )

. (4.4)

If there exists β0 ∈ (0, 1) such that β0 ≤ |β| < 1, then there exist constants c5 > 1 and
c6 = c6(β0) ∈ (0, 1) so that

‖ηw‖L2∗ (Br )
≤ c5

ϑ−1
ε,�r0

(V , ε c6 |γ |)‖(η + |∇η|)w‖L2(Br )
. (4.5)

The implicit constants are independent of ε and gamma.
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Proof If |β| > 1, for ε to be chosen, by (2.15) we have that

∫
�r

(| f̃ | + |g̃|2)w2η2 ≤ c1ε

⎛
⎝

∫
�r

|∇(wη)|2 + 1

ϑ−1
ε,�r0

(V , c−1
2 ε)2

∫
�r

|wη|2
⎞
⎠ . (4.6)

By (4.6), we may rewrite (3.18) or (3.42),
∫

�r

|η∇w|2 ≤ C |γ |−2
∫

�r

|∇η|2w2 + 2 ε C c1 (1 + |γ |−2)

∫
�r

|∇(wη)|2

+ ε C c1 (1 + |γ |−2)
1

ϑ−1
ε,�r0

(V , c−1
2 ε)2

∫
�r

|wη|2.

Therefore, if we choose ε = ε
10Cc1(1+|γ |−2)

< 0.1, we deduce

∫
�r

|η∇w|2 ≤ C |γ |−2
∫

�r

|∇η|2w2 + 1

5

∫
�r

|∇(wη)|2 + 1

10ϑ−1
ε,�r0

(V , c−1
2 ε)2

∫
�r

|wη|2,

which, in turn, since C > 1, implies

∫
Br

|∇(wη)|2 ≤ 10C(1 + |γ |−2)

3

∫
�r

|∇η|2w2 + 1

3ϑ−1
ε,�r0

(V , c−1
2 ε)2

∫
�r

|wη|2. (4.7)

Notice that ε < ϑε,�r0
(V , 1) and so ϑ−1

ε,�r0
(V , ε) ≤ 1. Thus

ϑ−1
ε,�r0

(V , c−1
2 ε) = ϑ−1

ε,�r0

(
V , ε

(
10Cc1c2(1 + |γ |−2)

)−1
)

≤ ϑ−1
ε,�r0

(V , ε) ≤ 1,

which, if we set c′
4 := (10Cc1c2)−1 < 1

10 , in light of (4.7), gives

‖∇(wη)‖L2(�r )
≤ (11C/3)(1 + |γ |−2)

ϑ−1
ε,�r0

(
V , ε c′

4

(
1 + |γ |−2

)−1
)‖(η + |∇η|)w‖L2(�r )

.

Moreover, if |γ | > 1
2 , it holds that

|γ |2
1+|γ |2 ≥ 1

10|γ | , and, if we set c4 := c′
4
10 , we can deduce

that

‖∇(wη)‖L2(�r )
≤ 20C(ϑ−1

ε,�r0
(V , ε c4|γ |−1))−1‖(η + |∇η|)w‖L2(�r )

.

Since ηw ∈ Y 1,2
0 (Br ), (4.3) and (4.4) follow by Sobolev’s inequality.

In a similar fashion, for 0 < |β| < 1, if we choose ε = ε|β|2
10Cc1

< 1
10 , since 4

κ ≥ 1, we
obtain∫

�r

|η∇w|2 ≤ C

|β|2
∫

�r

|∇η|2w2 + 1

5

∫
�r

|∇(wη)|2 + 1

10ϑ−1
ε,�r0

(V , c−1
2 ε)2

∫
�r

|wη|2.

which entails
∫

Br

|∇(wη)|2 ≤ 10C

3

(
1 + 1

|β|2
)∫

�r

|∇η|2w2 + 1

3ϑ−1
ε,�r0

(V , ε c′
4|β|2)2

∫
�r

|wη|2.
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Thus, as 0 < β0 ≤ |β| < 1, we have that c−1
2 ε ≥ ε β2

0c′
4 ≥ ε |γ |β2

0c′
4/2 and so, if we set

c6 := β2
0c′

4/2, since ε c6 < ϑε,�r0
(V , c6) and so ϑ−1

ε,�r0
(V , ε c6) < c6, there exists c5 > 1

(independent of β0) such that

‖∇(ηw)‖L2(�r )
≤ c5

ϑ−1
ε,�r0

(V , ε c6 |γ |)‖(η + |∇η|)w‖L2(Br )
.

We conclude the proof of (4.5) by Sobolev’s inequality. ��

Remark 4.2 Lemma 4.1 can be proved in the cases

(1) −divc + d ≤ 0 (or ≥ 0) and |b + c|2 ∈ K(�r0),
(2) |b|2 ∈ K(�r0) and d ∈ K(�r0), and either c ∈ Ln,q(�r0), q ∈ [n,∞), or |c|2 ∈ K(�r0).

We set

k(r) =
{

ϑ�r0
(| f |, r) + ϑ�r0

(|g|2, r)1/2 + ϑ�r0
(|b + c|2, r)1/2 , in Case (1),

ϑ�r0
(| f |, r) + ϑ�r0

(|g|2, r)1/2 + ϑ�r0
(|b|2, r)1/2 + ϑ�r0

(|d|, r) , in Case (2),

(4.8)

For k as in (4.8), we use Theorem 3.7 and Theorem 3.6 respectively, and set

V =
{

| f̃ | + |g̃|2 + |b + c|2 , in Case (1),

| f̃ | + |g̃|2 + |b|2 + |d| , in Case (2),

in order to obtain the same results as in Lemma 4.1.

We are now ready to prove the local boundedness of subsolutions.

Definition 4.3 Wewill say that the condition (N)r0 is satisfied if one the following conditions
hold:

(1) divb + d ≤ 0 and b + c ∈ Ln,q(�r0), q ∈ [n,∞) or |b + c|2 ∈ K(�r0);
(2) −divc + d ≤ 0 and |b + c|2 ∈ KDini(�r0).

Analogously, we will say that the condition (P)r0 is satisfied if we reverse the inequalities in
condition (N). Here, (N) and (P) stand for the negativity and positivity condition respectively.
We will also say that the condition (D)r is satisfied if |b|2 ∈ KDini(�r ), d ∈ KDini(�r ), and
either c ∈ Ln,q(�r0), q ∈ [n,∞), or |c|2 ∈ K(�r0). If the above conditions hold globally,
i.e., for r0 = ∞ and � instead of �r0 , we will drop the subscript r0 and simply write (N),
(P), and (D).

In the next theorem we borrow ideas from [26], although, some details are different in our
case. For example, we had to introduce the auxiliary modulus ϑ ′

�r
to be able to use Lemma

2.32 and define the appropriate Dini condition that gives constants independent of �.

Theorem 4.4 (Local boundedness) Let Br be a ball such that Br ∩ � �= ∅, for r ≤ r0, and
assume that f , |g|2 ∈ KDini(�r0). If σ ∈ (0, 1), then the following hold:
(1) If u is a subsolution of (3.1) in Br ∩ � and the condition (N)r0 or (D)r0 holds, then

(i) if Br ⊂ �

sup
Bσr

u+ � (1 − σ)−n/p (
r−n/p ‖u+‖L p(Br ) + k(r)

) ; (4.9)
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(ii) if Br is centered at a point ξ ∈ ∂�,

sup
Bσr

u+
M � (1 − σ)−n/p (

r−n/p ‖u+
M‖L p(Br ) + k(r)

)
. (4.10)

(2) If u is a supersolution of (3.1) in Br ⊂ � and the condition (P)r0 or (D)r0 holds, then

(i) if Br ⊂ �

sup
Bσr

u− � (1 − σ)−n/p (
r−n/p ‖u−‖L p(Br ) + k(r)

)
. (4.11)

(ii) if Br is centered at a point ξ ∈ ∂�,

sup
Bσr

(−u−
m) � (1 − σ)−n/p (

r−n/p ‖u−
m‖L p(Br ) + k(r)

)
. (4.12)

The implicit constants depend only on p, σ , n, λ, �, C| f |,�r0
, C|g|2,�r0

and according to our

assumptions, on the following: a) Cs,q and ‖b + c‖Ln,q (�r0 ), or C ′
s and ϑ�r0

(|b + c|2, r), b)

C|b+c|2,�r0
, and c)C|b|2,�r0

,C|d|,�r0
, and eitherCs,q and ‖c‖Ln,q (�r0 ), orC ′

s andϑ�r0
(|c|2, r).

Proof Let us now pick η so that, for 0 ≤ σ1 < σ2 ≤ 1
2 ,

0 ≤ η ≤ 1, η = 1 in Bσ1r , η = 0 in Bσ2r , ‖∇η‖∞ ≤ 2/(σ2 − σ1)r .

If we set χ = n
n−2 and k = k(r), then (4.4) for r ≤ 1 can be written as

‖w‖L2χ (Bσ1r )
≤ 2c3

(σ2 − σ1)r

1

ϑ−1
ε,�r0

(V , ε c4 |γ |−1)
‖w‖L2(Bσ2r )

,

which, in turn, implies that

‖ū‖Lγχ (Bσ1r ) ≤
(

2c3
(σ2 − σ1)r

)2/γ 1

ϑ−1
ε,�r0

(V , ε c4 |γ |−1)2/γ
‖ū‖Lγ (Bσ2r ), (4.13)

if |γ | > 1
2 and u is a subsolution.

For p > 1 and any non-negative integer i , we set

γi := χ i p = (1 + 2
n−2 )

i p ≥ p > 1 and σi := 1

2
+ 1

2i+1 ,

and apply (4.13) with γ = γi , σ1 = σi+1 and σ2 = σi to obtain

‖ū‖Lγi+1 (Bσi+1r ) ≤ (2c32
i+2/r)2/γi

1

ϑ−1
ε,�r0

(V , ε c4γ
−1
i )2/γi

‖ū‖Lγi (Bσi r )

=: (K1/r2/p)1/χ
i

K i/χ i

2
1

ϑ−1
ε,�r0

(V , c7 χ−i )2/pχ i
‖ū‖Lγi (Bσi r ),

where K1 = (8 c3)2/p and K2 = 22/p and c7 := ε c4 p < 1 (we can choose c4 so that
p c4 < 1). Iteration of this inequality leads to

sup
Br/2

ū ≤ (K1r)

∑
i

1
χ i K

∑
i

i
χ i

2

∞∏
i=0

1

ϑ−1
ε,�r0

(V , c7 χ−i )2/pχ i
‖ū‖L p(Br ). (4.14)
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Thus, since

log
∞∏

i=0

1

ϑ−1
ε,�r0

(V , c7 χ−i )2/pχ i
= − 2

ε c4

∞∑
i=0

c7
χ i

logϑ−1
ε,�r0

(V , c7 χ−i ),

we may apply Lemma 2.32 for τ = χ−1 and c = c7, and by Lemma 2.13, we obtain

− 2

ε c4

∞∑
i=0

c7
χ i

logϑ−1
ε,�r0

(V , c7 χ−i ) ≤ 2χ

(χ − 1)ε c4

∫ ϑ−1
ε,�r0

(V ,c7)

0
ϑε,�r0

(V , t)
dt

t

= 2χ

(χ − 1)ε c4

∫ ϑ−1
ε,�r0

(V ,c7)

0
ϑ�r0

(V , t)
dt

t
+ 2χ ε

(χ − 1)ε c4
ϑ−1

ε,�r0
(V , c7)

≤ 2χ

(χ − 1)ε c4

(
C| f |,�r0

ϑ�r0
(| f̃ |, ϑ−1

ε,�r0
(V , c7)) + C|g|2,�r0

ϑ�r0
(|g̃|2, ϑ−1

ε,�r0
(V , c7))

)

+ 2χ ε

(χ − 1)ε c4
ϑ−1

ε,�r0
(V , c7)

≤ 2χ

(χ − 1)ε c4

((
C| f |,�r0

+ C|g|2,�r0

)
ϑ�r0

(V , ϑ−1
ε,�r0

(V , c7)) + εϑ−1
ε,�r0

(V , c7)
)

≤ 2χ

(χ − 1)ε c4
max

((
C| f |,�r0

+ C|g|2,�r0

)
, 1

)
ϑε,�r0

(V , ϑ−1
ε,�r0

(V , c7))

≤ 2χ c7
(χ − 1)ε c4

max
(

C| f |,�r0
+ C|g|2,�r0

, 1
)

= 2χ p

(χ − 1)
max

(
C| f |,�r0

+ C|g|2,�r0
, 1

)
,

where C| f |,�r0
and C|g|2,�r0

stand for the Carleson-Dini constants (2.5).
By the definition of ū, we get

sup
Br/2

u+
M ≤ sup

Br/2

u+
M + k(r) � r−n/p ‖ū‖L p(Br ) � r−n/p‖u+

M‖L p(Br ) + k(r),

from which, (4.10) for r ≤ 1 follows. Replacing u+
M by u+, the same argument shows (4.9)

for r ≤ 1.
To obtain the desired estimates in any ball of arbitrary radius r > 1 we use a rescaling

argument. Note that ur = u(r x) is a subsolution (resp. supersolution) of the equation

−div(Ar∇w + brw) − cr∇w − drw = fr − divgr ,

where

Ar (x) = A(r x), br (x) = rb(r x), cr (x) = rc(r x), dr (x) = r2d(r x),

fr (x) = r2 f (r x), gr (x) = rg(r x).

If we set Dr = 1
r �r0 , by Lemma 2.13, we get that

‖br + cr‖Ln,q (Dr ) = ‖b + c‖Ln,q (�r0 ),

ϑDr ( fr , 1) = ϑ�r0
( f , r) ϑDr (|gr |2, 1) = ϑ�r0

(|g|2, r),

and since the Dini condition is scale invariant, we have

C fr ,Dr = C f ,�r0
C|gr |2,Dr

= C|g|2,�r0
.
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If we apply (4.14) to ur in the domain Dr , by the change of variables y = r x , we obtain the
following estimate:

sup
Br/2

ū = sup
B1/2

ūr � ‖ūr‖L p(B1) ≈ r−n/p ‖ū‖L p(Br ).

Remark that the implicit constants do not depend on r .
Moreover, if 0 < σ < 1/2,

sup
Bσr

ū ≤ sup
Br/2

ū � r−n/p ‖ū‖L p(Br )

� (1 − σ)−n/pr−n/p ‖ū‖L p(Br ).

and if 1/2 < σ < 1, then for any ball B(z, (1 − σ)r) ⊂ Bσr , we get

sup
B(z,(1−σ)r)

ū � (1 − σ)−n/pr−n/p ‖ū‖L p(B(z,2(1−σ)r) ≤ (1 − σ)−n/pr−n/p ‖ū‖L p(Br ).

Thus, for any σ ∈ (0, 1), we have shown that

sup
Bσr

ū � (1 − σ)−n/pr−n/p ‖ū‖L p(Br ),

which trivially implies (4.9) and (4.10). To show (4.11) and (4.12) it suffices to notice that
w = −u is a subsolution of Lw = − f + divg and use (4.9) and (4.10) as divb + d ≤ 0 still
holds.

UsingRemark4.2wecanprove the same result under either condition (D) or−divc+d ≤ 0
and |b + c|2 ∈ KDini(�r ). We omit the details. ��

We turn our attention to the weak Harnack inequality.

Theorem 4.5 (Weak Harnack inequality) Let Br be a ball such that Br ∩ � �= ∅, for r ≤ r0,
and assume that f , |g|2 ∈ KDini(�r0). If u is a supersolution of (3.1) in Br ∩ � and the
condition (P)r or (D)r is satisfied, then for 0 < s < p < χ = n/n − 2, the following hold:

(i) if Br ⊂ �

r−n/p‖u‖L p(Br/2) � r−n/q‖u‖Ls (Br ) + k(r), (4.15)

r−n/p‖u‖L p(Br ) � inf
Br/2

u + k(r/2). (4.16)

(ii) if Br is centered at a point ξ ∈ ∂�,

r−n/p‖u−
m‖L p(Br/2) � r−n/s‖u−

m‖Ls (Br ) + k(r), (4.17)

r−n/p‖u−
m‖L p(Br ) � inf

Br/2
u−

m + k(r/2), (4.18)

The implicit constants depend only on p, s, σ , n, λ, �, C| f |,�r0
, C|g|2,�r0

and according

to our assumptions, on the following: a) Cs,q and ‖b + c‖Ln,q (�r0 ), or C ′
s and ϑ�r0

(|b +
c|2, r), b) C|b+c|2,�r0

, and c) C|b|2,�r0
, C|d|,�r0

, and either Cs,q and ‖c‖Ln,q (�r0 ), or C ′
s and

ϑ�r0
(|c|2, r).

Proof We shall first prove the reverse Hölder inequality for ū. Recall first that γ = β + 1. If
p < χ , there exists δ ∈ (0, 1) such that p = δχ . For any non-negative integer i , we let

γi = χ−i p and σi = 1 − 1

2i+1 ,
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and apply (4.13) (which is still true as β < 0 when 0 < γ = β + 1 < 1) with γ = γi ,
σ1 = σi and σ2 = σi+1. If we argue as in the proof of the previous theorem we obtain

‖ū‖Lγi (Bσi )
≤ K 1/χ i

1 K i/χ i

2
1

ϑ−1
ε,�r0

(V , c6χ−i )2/pχ i
‖ū‖Lγi+1 (Bσi+1 ),

where K1 = (4 c5)2/p and K2 = 22/p and c6 < 1. As q < p, there exists i0 ∈ N such that
γi0−1 ≤ q < γi0−2. Thus, if we iterate the latter inequality i0 times we get

‖ū‖L p(B1/2) � ‖ū‖Lq (B1). (4.19)

If u is a supersolution, then (4.5) for r = 1 implies

‖ū‖L−q (Bσ2 ) ≤ ‖ū‖
L

−γi0−1 (Bσ2 )
≤ K 1/χ i0

1 K i/χ i0

2
1

ϑ−1
ε,�r0

(V , c6χ−i0)2/pχ i0
‖ū‖L

γi0 (Bσ1 )
.

By a similar iteration argument as above we can show that for any q ∈ (0, χ),

‖ū‖L−q (B1) � inf
B1/4

ū. (4.20)

Set noww = log ū and let Br (x) a ball centered at x of radius r ≤ 1/2 so that B2r (x) ⊂ B1.
Let also η ∈ C∞

c (B2r (x)) so that η = 1 in Br (x), η = 0 outside B2r (x) and ‖∇η‖∞ � 1/r .
Then, by Poincaré and Hölder inequalities, along with (3.18) or (3.42) for β = −1 and the
fact that | f̄ ≤ | f̃ |, |ḡ| ≤ |g̃|, and k = k(1), we get

∫
Br (x)

∣∣∣w − −
∫

Br

w

∣∣∣ � r
∫

Br (x)

|∇w| � rrn/2
(∫

Br (x)

|∇w|2
)1/2

≤ rrn/2
(∫

B2r (x)

|η∇w|2
)1/2

� rrn/2
[∫

B2r (x)

|∇η|2 +
∫

B2r (x)

(| f̃ | + |g̃|2)
]1/2

� rrn/2

[∫
B2r (x)

|∇η|2 + rn−2
∫

B2r (x)

| f̃ (y)| + |g̃(y)|2
|x − y|n−2 dy

]1/2

� rn
[
1 + ϑ�r0

(| f̃ |, r) + ϑ�r0
(|g̃|2, r)

]1/2

= rn

[
1 + ϑ�r0

(| f |, r)

k(1)
+ ϑ�r0

(|g|2, r)

k(1)

]1/2

≤ 2rn .

This shows that, w ∈ BMO(B1) and thus, there exists s ∈ (0, 1) such that esw is in the class
of A2 Muckenhoupt weights in B1. That is,

(∫
B1

ūs
)1/s

�
(∫

B1

ū−s
)−1/s

.

This, combined with (4.19) and (4.20), implies that, for any 0 < p < χ ,

‖ū‖L p(B1/2) � inf
B1/4

ū

and so (4.15)-(4.18) hold for r = 1. The general case follows by rescaling. ��
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Remark 4.6 If we impose global assumptions (e.g. |c|2 ∈ K′(�) and |b|2, |d| ∈ KDini(�))
on the coefficients and the interior data, then we may take r0 = ∞ and all of the constants
in Theorems 4.4 and 4.5 are independent of r . In particular, the implicit constants depend on
p, σ , n, λ, �, Cs,q , C| f |,�, C|g|2,� and according to our assumptions, on the following: a)
Cs,q and ‖b + c‖Ln,q (�), for q ∈ [n,∞), or C ′

s and ϑ�(|b + c|2), b) C|b+c|2,�, and c) Cs,q

and ‖c‖Ln,q (�), for q ∈ [n,∞), or C ′
s and ϑ�(|b + c|2), C|b|2,�, and C|d|,�.

Remark 4.7 Let δ > 0, ψδ be as in (2.6), and �δ = {x ∈ � : dist(x, ∂�) > δ} ∩ B(0, δ−1).
Define bδ = (b1�δ ) ∗ ψδ , cδ = (c1�δ ) ∗ ψδ , and dδ = (d1�δ ) ∗ ψ�δ . Let us also define
Lδu = −divA∇u−div(bδu)−cδ∇u−dδu. If (1.5) (resp. (1.6)) holds for b, c and d in�, then
(1.5) (resp. (1.6)) holds in�δ . For a proof see Lemma 6.9 in [16]. Moreover, ‖bδ +cδ‖Ln,q (�)

is dominated by 2‖b + c‖Ln,q ((�) and so, all the constants in the theorems of Sect. 3 are
independent of δ. In the case that (1.5) holds, everything works exactly as before. On the
other hand, if (1.6) is satisfied and |b + c|2 ∈ KDini(�), we should use Corollary 2.17 in the
proof of Lemma 4.1 to obtain bounds which are independent of δ. Theorems (4.4) and (4.5)
for subsolutions and supersolutions of Lδ in �δ will then follow from the same proofs with
estimates uniform in δ.

Example 4.8 Let us now refer to the counterexample constructed in [16, Lemma 7.4]. In
particular, the authors defined the operator

−�u − div(δbu) = 0 in B(0, e−1),

where b(x) = − x
|x |2| ln |x || and δ > 0, and showed that the solution u = | ln |x ||δ ∈

Y 1,2(B(0, e−1)) does not satisfy (4.9) around 0. They proved that b ∈ Lq(B(0, e−1)) for
any q > n but not in Ln(B(0, e−1)). It is not hard to see that |b|2 ∈ K(B(0, e−1)) but
not in KDini(B(0, e−1)), and thus, assuming |b + c|2 ∈ K(�) does not suffice to establish
local boundedness. A modification of this example shows that (4.16) does not hold when
|b + c|2 ∈ K(�). It is important to note that, since δ can be taken as small as we want, this
example shows that assuming the norms to be small is not enough either.

Example 4.9 Adjusting the previous example we can find an operator which does not satisfy
neither (1.5) nor (1.6), for which there exists a non-bounded solution in the ball B(0, e−1).
Indeed, let

− �u − du = 0 in B(0, e−1), where d(x) = n − 2

|x |2| ln |x || . (4.21)

It is not hard to see that d ≥ 0 is in the Lorentz space Ln/2,q(B(0, e−1)), for any q > 1.
But notice that u = | ln |x || is a solution of (4.21) and u ∈ Y 1,2(B(0, e−1)). Since u fails
to be bounded around 0, the necessity of either (1.5) or (1.6) to prove local boundedness
is established. It is interesting to see that d is not in K(B(0, e−1)) (and thus, it is not in
Ln/2,1(B(0, e−1)) either).
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4.2 Interior and boundary regularity

Theorem 4.10 Let u be a supersolution of (3.1) in � with sup� u < ∞ and assume that the
condition (P) or (D) holds. Then u has a lower semi-continuous representative satisfying

u(x) = ess lim inf
y→x

u(y) = lim
r→0

−
∫

B(x,r)

u(y) dy, for all x ∈ �. (4.22)

Proof We follow the proof of [12, Theorem 3.66]. Fix a ball Br centered at x ∈ � so that
B2r ⊂ � and apply Theorem 4.5 (i) to u − mr , where mr = ess infBr u. Then, we have

0 ≤ −
∫

Br

(u − mr ) ≤ C((mr/2 − mr ) + k(r)).

Since C is either a constant independent of r and (mr/2 − mr ) + k(r) → 0 as r → 0, by
taking limits in the inequality above as r → 0, we obtain

lim
r→0

−
∫

Br

(u − mr ) = ess lim inf
y→x

(u − mr ) = 0,

which implies (4.22). ��
Let us now introduce some notation that wewill use in the rest of this section. For r ≤ r0/2

and r0 ∈ (0,∞], set
kε,1(r) := ϑ�r0

(| f |, r) + (
sup
�r

|u|)ϑ�r0
(|d|, r) + εr , (4.23)

lim
ε→0

kε,1(r) = k1(r) := ϑ�r0
(| f |, r) + (

sup
�r

|u|)ϑ�r0
(|d|, r), (4.24)

kε,2(r) := ϑ�r0
(|g|2, r)1/2 + (

sup
�r

|u|)ϑ�r0
(|b|2, r)1/2 + εr , (4.25)

lim
ε→0

kε,2(r) = k2(r) := ϑ�r0
(|g|2, r)1/2 + (

sup
�r

|u|)ϑ�r0
(|b|2, r)1/2, (4.26)

kε,3(r) := ϑ�r0
(|b|2, r)1/2 + ϑ�r0

(|d|, r) + εr , (4.27)

lim
ε→0

kε,3(r) = k3(r) := ϑ�r0
(|b|2, r)1/2 + ϑ�r0

(|d|, r), (4.28)

kε,4(r) := ϑ�r0
(| f |, r) + ϑ�r0

(|g|2, r)1/2 + εr , (4.29)

lim
ε→0

kε,4(r) = k4(r) := ϑ�r0
(|g|2, r)1/2 + ϑ�r0

(| f |, r), (4.30)

k̃ε(r) := kε,1(r) + kε,2(r), (4.31)

k̃(r) := k1(r) + k2(r). (4.32)

If k is defined as in Case (2) of (4.8), then k = k3 + k4. All the functions above with
subscript ε are strictly increasing and from their very definitions we have the following:

Lemma 4.11 If u satisfies

sup
�r

|u| �
(

−
∫

�2r

|u|2
)1/2

+ k(2r), for any r ≤ r0/2. (4.33)

then, if 0 < r1 ≤ r0,

k̃(r) � k3(r)

⎡
⎣
(

−
∫

�r1

|u|2
)1/2

+ k(r1)

⎤
⎦ + k4(r), for any r ≤ r1/2. (4.34)
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Theorem 4.12 (Modulus of continuity in the interior) Let 0 < r ≤ r0/2 and Br be a ball such
that Br ⊂ �. Assume that | f |, |d|, |b|2, and |g|2 ∈ KDini(Br0), and either c ∈ Ln,q(Br0),
q ∈ [n,∞), or |c|2 ∈ K(Br0). If u is a solution of (3.1) in Br , then for every μ ∈ (0, 1), there
exists α ∈ (0, 1) so that

|u(x) − u(y)| �
[( |x − y|

r

)α

+ k3(|x − y|μr1−μ)

][(
1

rn

∫
Br

|u|2
)1/2

+ k(r)

]

+ k4(|x − y|μr1−μ),

for all x, y ∈ Br/2, where k3(r) and k4(r) are given by (4.28). and (4.30). Note that α and the
implicit constants depend only on λ, �, C| f |,�r0

, C|g|2,�r0
and either on Cs,q and ‖c‖Ln,q (�r ),

or C ′
s and ϑ�r0

(|b + c|2, r).

Proof Fix r1 ∈ (0, r0/2) such that Br1 ⊂ � and assume that u is a weak solution of the
equation Lu = f −divg in Br1 . It is easy to see that u is also a weak solution of the equation

L̃u = −divA∇u − c∇u = ( f + du) − div(g − bu). (4.35)

in Br1 . Note that L̃1 = 0 and since d̃ = b̃i = 0, i = 1, . . . , n, we can use Theorems 4.4 and
4.5 with k̃ as in (4.32) to get

sup
Br

(u + k̃(r)) � −
∫

B2r

(u + k̃(r)) � inf
Br

(u + k̃(r)), for any r ≤ r0/2. (4.36)

Now, let

M0 = sup
Br1

|u|, Mr = sup
Br

u and mr = inf
Br

u,

and since Mr − u and u − mr are non-negative solutions of (4.35) in Br0 , by (4.36) for
r ≤ r0/2, we obtain

−
∫

Br

(Mr − u) ≤ C
(
Mr − Mr/2 + k̃(r/2)

)
,

−
∫

Br

(u − mr ) ≤ C
(
mr/2 − mr + k̃(r/2)

)
.

Summing those two inequalities we get

(Mr − mr ) ≤ C
[
(Mr − mr ) − (Mr/2 − mr/2) + 2̃k(r/2)

]
,

which further implies

(Mr/2 − mr/2) ≤ C − 1

C
(Mr − mr ) + 2̃k(r/2).

If we set ω(r) = oscBr u = Mr − mr and γ = 1− C−1 ∈ (0, 1), the latter inequality can be
written

ω(r/2) ≤ γω(r) + 2̃k(r/2),

which implies that for any μ ∈ (0, 1) and for α = −(1 − μ) log γ / log 2 ∈ (0, 1), there
exists a constant C ′ > 0 depending only on γ such that

ω(r) �
(

r

r1

)α

ω(r1) + k̃(rμ r1−μ
1 ),

which, by (4.34), concludes the proof. ��
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The last goal of this section is to develop of aWiener-type criterion for boundary regularity
of solutions. We will follow the proof of Theorem 8.30 in [9]. Several modifications are
required in our case and in particular, we would like to draw the reader’s attention to the
iteration argument at the end of the proof. In [9] it is claimed that the inequality (8.81) on p.
208 can be iterated to produce the desired oscillation bound at the boundary. Unless the CDC
is satisfied, it is not clear to us that the second term on the right hand-side of that inequality
will converge after infinitely many iterations. In fact, the exact term one picks up after m
iterations is⎛

⎝χ(r/2m) +
m−1∑
k=0

χ(r/2k)

m∏
j=k+1

(1 − χ(r/2 j ))

⎞
⎠ osc

∂�∩Br
u =: Sm osc

∂�∩Br
u.

It seems that if we do not have additional information about the behavior of the sequence
ak = χ(r/2k), we could choose different sequences ak so that Sm either converges or diverges
or even have multiple limit points. We resolve this issue by incorporating this term into the
main oscillation term.

Let us first introduce some definitions.

Definition 4.13 We say that a set E is thick at ξ ∈ E if
∫ 1

0

Cap(E ∩ Br (ξ), B2r (ξ))

rn−2

dr

r
= +∞. (4.37)

If � ⊂ R
n is an open set and for ξ ∈ ∂� it holds that

Cap(Br (ξ) \ �, B2r (ξ)) ≥ c0 rn−2, for all r ∈ (0, diam∂�),

for some c ∈ (0, 1) independent of r , we say that � satisfies the capacity density condition
(CDC) at ξ . If this holds for every ξ ∈ ∂� and a uniform constant c, we say that ∂� has the
capacity density condition.

Theorem 4.14 (Boundary oscillation) Let r ≤ r0/2 and Br be a ball centered at ξ ∈ ∂�.
Assume also that u is a solution of (3.1) and ϕ ∈ Y 1,2(�) ∩ C(�) so that u − ϕ vanishes on
∂� ∩ Br in the Sobolev sense. Then, the following hold:

(i) Let | f |, |d|, |b|2, and |g|2 ∈ KDini(�r0), and either c ∈ Ln,q(�r0), q ∈ [n,∞), or
|c|2 ∈ K(�r0). If � satisfies the (CDC) at ξ , then

|u(x) − u(y)| �
[( |x − y|

r

)α

+ k3(|x − y|μr1−μ)

][(
1

rn

∫
�r

|u|2
)1/2

+ k(r)

]

+ k4(|x − y|μr1−μ) + |ϕ(x) − ϕ(y)|, (4.38)

for all x, y ∈ Br/2 and 0 < r ≤ r0/2. Here k3 and k4(r) are given by (4.28). and (4.30),
and the implicit constants depend on the CDC constant c0, C| f |,�r0

, C|g|2,�r0
, C|b|2,�r0

,

C|d|,�r0
, λ, �, and either Cs and ‖c‖Ln,q (�r ) or C ′

s and ϑ�r0
(|c|2, r).

(ii) Let | f |, |d| ∈ KDini,δ(�r0), |b|2, |g|2 ∈ KDini,δ/2(�r0) for some δ ∈ (0, 1), and either
c ∈ Ln,q(�r0), q ∈ [n,∞), or |c|2 ∈ K(�r0). For any 0 ≤ ρ ≤ r/2, it holds

osc
Bρ(ξ)∩�

u ≤ osc
∂�∩Bρ(ξ)

ϕ

+ exp

(
− 1

C

∫ r

2ρ

Cap(Bs(ξ) \ �)

sn−2

ds

s

) (
osc

Br (ξ)∩�
u +

(̃
k(r) + k̃(r0/2)

r0/2
r
))

,

123



Elliptic equations with lower order terms Page 49 of 69 266

where C > 0 depends on λ, �, k0 as defined in (4.43), C| f |,�r0 ,δ, C|g|2,�r0 ,δ/2,

C|b|2,�r0 ,δ/2, C|d|,�r0 ,δ , and either Cs and ‖c‖Ln,q (�r ) or C ′
s and ϑ�r0

(|c|2, r).

Proof If we set Br = Br (ξ) we record that u is a solution of Lu = f − divg in Br ∩ �

and thus, a solution of (4.35). Using the same notation as above, one can prove that for
η ∈ C∞

c (Br ),

‖η∇u−
m‖L2(Br )

� ‖(η + |∇η|)(u−
m + k̃ε)‖L2(Br )

. (4.39)

This follows easily by inspection of the proofs of Theorem 3.5 and Lemma 4.1.
We fix η so that η = 1 in B1/2, 0 ≤ η ≤ 1 and |∇η| ≤ 2. If we set w = η(u−

m + k̃ε(1)),
by (4.39) and (the proof of) (4.18), we deduce that

‖∇w‖2L2(B1)
� ‖(η + |∇η|)(u−

m + k̃ε(1))‖2L2(B1)

� (m + k̃ε(1))
∫

B1

(u−
m + k̃ε(1)) � (m + k̃ε(1))( inf

B1/2
u−

m + k̃ε(1/2)).

If we rescale, the latter inequality is written as

r2−n‖∇w‖2L2(Br )
� (m + k̃ε(r))( inf

Br/2
u−

m + k̃ε(r/2)).

It is easy to see that w

m+k̃ε (r)
is a function in the convex set KBr/2\� in the definition of

capacity. This observation along with the latter inequality implies that

(m + k̃ε(r))2Cap(Br/2 \ �) � rn−2(m + k̃ε(r))( inf
Br/2

u−
m + k̃ε(r/2)).

Therefore, since k̃ε(r) ≥ 0,

m
Cap(Br/2 \ �)

(r/2)n−2 ≤ C( inf
Br/2

u−
m + k̃ε(r/2)). (4.40)

If we set

γ (r/2) = Cap(Br/2 \ �)

C (r/2)n−2 , M = sup
Br ∩∂�

u, and m = inf
Br ∩∂�

u,

we can apply (4.40) to the functions Mr − u and u − mr to obtain

(Mr − M)γ (r/2) ≤ Mr − Mr/2 + k̃ε(r/2) = (Mr − M) − (Mr/2 − M) + k̃ε(r/2),

(m − mr )γ (r/2) ≤ mr/2 − mr + k̃ε(r/2) = (m − mr ) − (m − mr/2) + k̃ε(r/2).

Set

ω(r) = osc
�∩Br

u − osc
∂�∩Br

u,

and sum the above inequalities to get

ω(r/2) ≤ (1 − γ (r/2))ω(r) + 2̃kε(r/2). (4.41)

If γ (r) > c, for every r > 0, we can write (4.41) as ω(r/2) ≤ (1 − c)ω(r) + 2̃kε(r/2)
and take limits as ε → 0. Then, we can repeat the iteration argument in the proof of Theorem
4.12 to show (4.38).
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If γ (r) is not uniformly bounded from below, then for m ∈ N, (4.41) can be iterated to
obtain

ω(2−mr) ≤
m∏

j=1

(1 − γ (2− j r)) ω(r) + 2
m∑

j=1

k̃ε(2
− j r)

m∏
�= j+1

(1 − γ (2−�r))

=: �1 + �2. (4.42)

To handle �2 we adjust the argument in [21, pp. 202-203]. Let us define

k
1

1−δ

0 := sup
t∈(0,r0)

k̃ε(t)

k̃ε(2t)
< 1, (4.43)

for some δ ∈ (0, 1), where we used Lemma 2.33 to deduce that k0 < 1. Define also

b(r) = γ (r)

1 + γ1
, where γ1 = (1 − k0)

−1 sup
r∈(0,r0)

γ (r).

Since b(r) ≤ 1 − k0 for all r ∈ (0, r0), 1 − t ≤ e−t and b(r) ≤ γ (r), we have

�2 ≤ 2
m∏

k=1

e−b(2−kr)
m∑

j=1

k̃ε(2
− j r)

j∏
�=1

(1 − b(2−�r))−1

= 2
m∏

k=1

e−b(2−kr)
m∑

j=1

k̃ε(2
− j r)k− j

0

≤ exp
(

−
m∑

k=1

b(2−kr)
) m∑

j=1

k̃ε(2
− j r)

j∏
�=1

(
k̃ε(2−�+1r)

k̃ε(2−�r)

)1−δ

= k̃ε(r)1−δ exp
(

−
m∑

k=1

b(2−kr)
) m∑

j=1

k̃ε(2
− j r)δ

� k̃ε(r)1−δ exp
(

−
m∑

k=1

b(2−kr)
)

k̃ε(r/2)δ, (4.44)

where in the last inequality we used the fact that | f |, |d| ∈ KDini,δ(�r0) and |b|2, |g|2 ∈
KDini,δ/2(�r0) and the implicit constants depend on the constants of the relevant Carleson-
Dini conditions. If we choose ε = min(2̃k(r0/2)/r0, 1), the latter quantity is dominated
by

(
k̃(r) + 2̃k(r0/2)

r0
r

)
exp

(
−

m∑
k=1

b(2−kr)
)
. (4.45)

Arguing similarly, we get

�1 ≤ exp
(

−
m∑

k=1

b(2−kr)
)
ω(r). (4.46)

Therefore, combining (4.42), (4.44), (4.45) and (4.46), we infer that

ω(2−mr) ≤
(

ω(r) + C
(̃

k(r) + 2̃k(r0/2)

r0
r
))

exp
(

−
m∑

k=1

b(2−kr)
)
. (4.47)
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It is easy to see that

∫ r

2−mr
b(s)

ds

s
≤ 2n−2

m−1∑
j=0

b(2− j r),

which can be used in (4.47) along with K0 γ (s) := 1−k0
1−k0+cn

γ (s) ≤ b(s) (using the fact that

Cap2(B(ξ, s), B(ξ, 2s)) = cnsn−2 for any s > 0) to obtain

ω(2−mr) ≤
(

ω(r) + 2
(̃

k(r) + 2̃k(r0/2)

r0
r
))

exp

(
− K0

2n−2

∫ r

2−mr

Cap(Bs \ �)

sn−2

ds

s

)
.

(4.48)

For any ρ ≤ r ≤ r0/2, there exists m0 ∈ N such that 2−m0−1r ≤ ρ < 2−m0r . Thus, by
(4.48) we deduce that

osc
Bρ∩�

u ≤ osc
∂�∩Bρ

u

+ exp

(
− K0

2n−2

∫ r

2ρ

Cap(Bs \ �)

sn−2

ds

s

) (
osc

Br ∩�
u − osc

∂�∩Br
u + 2

(̃
k(r) + 2̃k(r0/2)

r0
r
))

,

which, by (4.34), concludes the proof of Theorem 4.14, since osc∂�∩Br u ≥ 0 and u = ϕ on
∂� ∩ Br in the Sobolev sense. ��

As a corollary of the previous theorem we obtain the following Wiener-type criterion for
continuity of solutions up to the boundary as well as a modulus of continuity under the CDC.

Theorem 4.15 (Boundary continuity) Under the assumptions of Theorem 4.14, if u is the
unique solution of 5.2 the following hold:

(i) If ξ ∈ ∂� and R
n\� is thick at ξ , then lim��x→ξ u(x) = ϕ(ξ) continuously.

(ii) If ϕ is continuous with a modulus of continuity and ∂� has the CDC, then u is continuous
in � with a modulus of continuity depending on the one of ϕ as well as the Stummel-Kato
modulus of continuity of the data and the coefficients in the definition of k̃.

5 Dirichlet and obstacle problems in Sobolev space

In this section we will need to assume the following standing (global) assumptions:

|b|2, |c|2, |d| ∈ K′(�) or b, c ∈ Ln,∞(�), d ∈ L
n
2 ,∞(�).

5.1 Weakmaximum principle

Theorem 5.1 Let � ⊂ R
n be an open and connected set and assume that either b + c ∈

Ln,q(�), for q ∈ [n,∞), or b + c ∈ K′(�). If u ∈ Y 1,2(�) is a subsolution of Lu = 0, then
the following hold:

(i) If (1.5) holds then

sup
�

u ≤ sup
∂�

u+.
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(ii) If (1.6) holds and u+ ∈ Y 1,2
0 (�), then

sup
�

u ≤ 0. (5.1)

Proof Set � = sup∂� u+ and define w = (u − �)+ ∈ Y 1,2
0 (�). We apply Lemma 2.34 to w,

for p = n, q ∈ [n.∞), h = b + c, and a = λ/2Cs,q , to find wi ∈ Y 1,2
0 (�) and �i ⊂ �,

1 ≤ i ≤ m, satisfying (1)–(8). In light of (5), as w ≥ 0, we have that wi ∈ Y 1,2
0 (�) is also

non-negative. Recall also that∇wi = ∇u in�i . We will now proceed as usual. Indeed, using
that u is a subsolution along with (1.2), (1.5), (8), and (2.23), we infer

λ‖∇wi‖2L2(�)
≤

∫
�

A∇wi∇wi =
∫

�

A∇u∇wi ≤
∫

�

(b + c)∇uwi

=
i∑

j=1

∫
�

(b + c)∇w jwi

≤ aCs,q‖∇wi‖2L2(�)
+ aCs,q‖∇wi‖L2(�)

i−1∑
j=1

‖∇w j‖L2(�),

which implies

‖∇wi‖L2(�) ≤
i−1∑
j=1

‖∇w j‖L2(�).

By the induction argument in the proof of Theorem 3.1, we get that for any i = 1, 2, . . . , κ ,
‖∇wi‖L2(�) = 0, whichwemay sum in i and use the condition (6) to obtain ‖∇w‖L2(�) = 0.

Since w ∈ Y 1,2
0 (�), by Lemma 2.4, w = 0. Therefore, u ≤ �, which concludes the proof of

(i).
To prove of (ii), we argue as above for w = u+ ∈ Y 1,2

0 (�) (i.e., � = 0) and use (1.6)
instead of (1.5), to get

λ‖∇wi‖2L2(�)
≤

∫
�

(b + c)u∇wi =
κ∑

j=i

∫
�

(b + c)w j∇wi

≤ aCs,q‖∇wi‖2L2(�)
+ aCs,q‖∇wi‖L2(�)

κ∑
j=i+1

‖∇w j‖L2(�).

Thus,

‖∇wi‖L2(�) ≤
κ∑

j=i+1

‖∇w j‖L2(�),

which, by the induction argument in Theorem 3.2, implies ‖∇w‖L2(�) = 0, and so, (5.1)
readily follows.

The proof when b + c ∈ K′(�) is analogous and the required adjustments are the same
as in the proof of Theorem 3.1. Details are omitted. ��

A direct consequence of the weak maximum principles proved above is the following
comparison principle:
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Corollary 5.2 Let � ⊂ R
n be an open and connected set and assume that either (1.5) or

(1.6) holds. Assume also either b + c ∈ Ln,q(�), for q ∈ [n,∞), or b + c ∈ K′(�). If
u ∈ Y 1,2(�) is a supersolution of (3.1) and v ∈ Y 1,2(�) is a subsolution of (3.1) such that
(v − u)+ ∈ Y 1,2

0 (�), then we have that

v ≤ u in �.

Proof Since L(v − u) ≤ 0 and (v − u)+ ∈ Y 1,2
0 (�), we apply Theorem 5.1 (either (i) or (ii))

and obtain

sup
�

(v − u) ≤ 0,

which concludes our proof. ��

5.2 Dirichlet problem

Let f : � → R, g : � → R
n and ϕ : � → R, such that f ∈ L2∗(�), g ∈ L2(�), and

ϕ ∈ Y 1,2(�). In this section we deal with the Dirichlet problem
{

Lu = f − divg

u − ϕ ∈ Y 1,2
0 (�).

(5.2)

In particular, we show that it is well-posed assuming either (1.5) or (1.6). In fact, if we set
w = u − ϕ, then, w ∈ Y 1,2

0 (�), and (in the weak sense) it holds

Lw = Lu − Lϕ

= ( f − c∇ϕ − dϕ) − div(g + A∇ϕ + bϕ)

=: f̂ − divĝ.

Thus, (5.2) is readily reduced to the following inhomogeneous Dirichlet problem with zero
boundary data:

{
Lu = f − divg

u ∈ Y 1,2
0 (�).

(5.3)

Well-posedness of the Dirichlet problem (5.3) with solutions u ∈ W 1,2
0 (�) instead of

u ∈ Y 1,2
0 (�) in unbounded domains was shown in [2, Theorem 1.4] for data f , g ∈ L2(�),

but with a stronger negativity assumption than divb + d ≤ 0. Namely, it was assumed that
there exists μ < 0 such that divb +d ≤ μ. This was necessary exactly because they required
the solutions to be in W 1,2

0 (�) as opposed to Y 1,2
0 (�). It is worth mentioning that (1.6) was

not treated at all.
In the following theorem we follow the proof of [2, Theorem 1.4] adjusting the arguments

to the weaker negativity assumption divb+d ≤ 0 and the Sobolev space Y 1,2
0 (�). Moreover,

our argument works for Lorentz spaces as well as the Stummel-Kato class.

Theorem 5.3 Let � ⊂ R
n be an open and connected set and assume that either b + c ∈

Ln,q(�), for q ∈ [n,∞), or |b+c|2 ∈ K′(�). If gi ∈ L2(�) for 1 ≤ i ≤ n, f ∈ L2∗(�), and
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either (1.5) or (1.6) holds, then the Dirichlet problem (5.3) has a unique solution u ∈ Y 1,2
0 (�)

satisfying

‖u‖Y 1,2(�) � ‖ f ‖L2∗ (�) + ‖g‖L2(�), (5.4)

where the implicit constant depends only on λ, �, and either Cs,q and ‖b + c‖Ln,q (�) or C ′
s

and ϑ�(|b + c|2).
Proof To demonstrate that (5.4) holds assuming that such a solution exists, it is enough to
repeat the argument in the proof of Theorem 5.1 applying Lemma 2.34 to u ∈ Y 1,2

0 (�).
The difference is that we should use that u is a solution of (3.1) instead of a subsolution of
Lu = 0 and thus, we pick up two terms related to the interior data exactly as in the proofs
of Theorems 3.1 and 3.2. Similar (but easier) manipulations along with the same induction
argument conclude (5.4). We omit the details.

To show that (5.3) has a unique solution it is enough to apply the comparison principle
given in Corollary 5.2.

Existence of solutions of (5.3) is also based on (5.4). We first assume that � is a bounded
domain and solve the variational problem (5.3) in W 1,2

0 (�) with interior data f ∈ L2(�) ∩
L2∗(�) and g ∈ L2(�).

Let u ∈ W 1,2
0 (�) and note that by (1.2) and divb + d ≤ 0 we have

L(u, u) =
∫

�

A∇u∇u + (b − c)u∇u − du2 ≥ λ‖∇u‖2L2(�)
−

∫
�

(b + c) · ∇u u. (5.5)

If (b + c) ∈ Ln,q(�), for δ > 0 sufficiently small to be chosen, we can find ζ ∈ L∞(�)

which support has finite Lebesgue measure, such that ‖(b + c)2 − ζ‖Ln,q (�) < δ. Thus, by
(2.23),∫

�

(b + c) · ∇u u ≤ Cs,q‖b + c − ζ‖Ln,q (�)‖∇u‖L2(�)‖u‖L2∗ (�) +
∫

�

ζ · ∇u u

≤ δCs,q‖∇u‖2L2(�)
+

∫
�

ζ · ∇u u. (5.6)

If ε > 0 small enough to be chosen, then by (5.5), (5.6), and Young inequality, we infer

L(u, u) ≥ (λ − δCs,q − ε

2
)‖∇u‖2L2(�)

− 1

2ε

∫
�

|ζ |2u2.

We now choose ε = λ
4 and δ = λ

4Cs,q
, and obtain

L(u, u) ≥ λ

2
‖∇u‖2L2(�)

− 2‖ζ‖2L∞(�)

λ
‖u‖2L2(�)

=: λ

2
‖∇u‖2L2(�)

− σ‖u‖2L2(�)
. (5.7)

If |b + c|2 ∈ K(�), then we apply Cauchy-Schwarz and (2.15),
∫

�

(b + c)∇u u ≤
(∫

�

|b + c|2|u|2
)1/2

‖∇u‖L2(�)

≤ ε‖∇u‖2L2(�)
+ Cε‖∇u‖L2(�)‖u‖L2(�)

≤ 2ε‖∇u‖2L2(�)
+ C ′

ε‖u‖2L2(�)
.

If we choose ε = λ
4 , we get

L(u, u) ≥ λ

2
‖∇u‖2L2(�)

− C ′
ε ‖u‖2L2(�)

=: λ

2
‖∇u‖2L2(�)

− σ‖u‖2L2(�)
.
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Let us denote H = L2(�), V = W 1,2
0 (�) and its dual V ∗ = W −1,2(�) and define

Lσ w := Lw + σw.

By (5.7), its associated bilinear form is clearly coercive and bounded in V . As f ∈ H and
g ∈ H , by Lax-Milgram theorem, there exists a unique solution to the problem{

Lσ u = f − divg

u ∈ V .
(5.8)

and so, Lσ has a bounded inverse L−1
σ : V ∗ → V .

If J : V → V ∗ is an embedding given by

Jv =
∫

�

uv, v ∈ V , (5.9)

I2 : V → H is the natural embedding and I1 : H → V ∗ is an embedding given also by (5.9),
we can write J = I1 ◦ I2. It is clear that J is compact as I2 is compact and I1 is continuous.

The interior data naturally induces a linear functional on V by

F(v) =
∫

�

f v + g · ∇v, for v ∈ V ,

so we wish to solve the equation Lu = F . This is is equivalent to Lσ u − σ Ju = F , which
in turn, can be written as

u − σ L−1
σ Ju = L−1

σ F . (5.10)

But L−1
σ J is compact as J is compact and L−1

σ is continuous. Thus, by the Fredholm alterna-
tive, (5.10) has a unique solution if and only if w = 0 is the unique function in V satisfying
w − σ L−1

σ Jw = 0 (or else Lw = 0). But this readily follows from the weak maximum
principle in Theorem 5.1 and thus, a solution of (5.3) exists in bounded domains.

If � be an unbounded domain, we can find a sequence of function fk ∈ C∞
c (�) such that

fk → f in L2∗(�), and then for j ∈ N define

� j := {x ∈ � ∩ B(0, j) : dist(x, ∂�) > j−1}.
Since fk ∈ L2(�) ∩ L2∗(�) and � j is a bounded open set, by (5.8), there exists uk, j ∈
W 1,2

0 (� j ) = Y 1,2
0 (� j ) such that Luk, j = fk −divg in � j . If we extend uk, j by zero outside

� j , by (5.4), we will have

‖uk, j‖Y 1,2(�) � ‖ fk‖L2∗ (�) + ‖g‖L2(�),

that is, uk, j is a uniformly bounded sequence in Y 1,2
0 (�) with bounds independent of j and

k. Thus, since Y 1,2
0 (�) is weakly compact, there exists a subsequence {uk, jm }m≥1 converging

weakly to a function uk ∈ Y 1,2
0 (�). Notice also that if ϕ ∈ C∞

c (�), then for j large enough,
it also holds ϕ ∈ C∞

c (� j ). Therefore, since Luk, j = fk − divg in � j for any j ≥ 0, and
uk, jm → uk weakly in Y 1,2

0 (�) as m → ∞, we obtain

〈 fk, ϕ〉 + 〈g,∇ϕ〉 = L(uk, jm , ϕ)
m→∞−−−−→ L(uk, ϕ), for all ϕ ∈ C∞

c (�),

i.e., Luk = fk −divg in�. In addition, since uk is the weak limit of uk, jm , for k large enough,
it satisfies

‖uk‖Y 1,2(�) � ‖ fk‖L2∗ (�) + ‖g‖L2(�) � ‖ f ‖L2∗ (�) + ‖g‖L2(�),
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with implicit contants independent of k. Once again by the weak compactness of Y 1,2
0 (�),

we can find a subsequence {ukm }m≥1 converging weakly to a function u ∈ Y 1,2
0 (�). Thus,

since Luk = fk − divg in �, ukm → u weakly in Y 1,2
0 (�) and fkm → f in L2∗(�)-norm,

we obtain

L(u, ϕ) = 〈 f , ϕ〉 + 〈∇g, ϕ〉, for all ϕ ∈ C∞
c (�).

The proof is now concluded. ��
An immediate corollary of the last theorem in light of the considerations at the beginning

of this section is the following:

Theorem 5.4 Let � ⊂ R
n be an open and connected set and assume that either b + c ∈

Ln,q(�), for q ∈ [n,∞), or |b + c|2 ∈ K′(�). If ϕ ∈ Y 1,2(�), gi ∈ L2(�) for 1 ≤ i ≤ n,
f ∈ L2∗(�), and either (1.5) or (1.6) holds, then the Dirichlet problem (5.2) has a unique
solution u ∈ Y 1,2(�) satisfying

‖u‖Y 1,2(�) ≤ ‖ϕ‖Y 1,2(�) + ‖ f ‖L2∗ (�) + ‖g‖L2(�), (5.11)

with the implicit constant depending only on λ, �, and either Cs,q and ‖b + c‖Ln,q (�) or C ′
s

and ϑ�(|b + c|2).

5.3 Obstacle problem

In this subsection, we let � be a bounded and open set, and assume that either (1.5) or (1.6)
is satisfied, and also that either b + c ∈ Ln,q(�), for q ∈ [n,∞), or |b + c|2 ∈ K′(�) holds.

Definition 5.5 Let ψ, φ ∈ W 1,2(�) such that φ ≥ ψ on ∂� in the W 1,2 sense. Let us also
define the convex set

K := {v ∈ W 1,2(�) : v ≥ ψ on � in the W 1,2 sense and v − φ ∈ W 1,2
0 (�)}.

We say that u is a solution to the obstacle problem in�with obstacleψ and boundary values
φ and we write u ∈ Kψ,φ(�), if u ∈ K and

L(u, v − u) ≥ 0, for all v ∈ K.

This problem can be reduced to the one with zero boundary data as follows: Let us define
the convex set

K0 := {w ∈ W 1,2
0 (�) : w ≥ ψ − φ on � in the W 1,2 sense}.

Suppose that u ∈ Kψ,φ(�) and write

u = u0 + φ, for v0 ∈ K0

v = v0 + φ, for v0 ∈ K0.

Thus,

L(u0, v0 − u0) ≥ 〈 f , v0 − u0〉 − L(φ, v0 − u0),

and since 〈F, η〉 := 〈 f , η〉 − L(φ, η), η ∈ W 1,2
0 (�), defines an element F ∈ W −1,2(�), it

is enough to prove the following theorem:
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Theorem 5.6 Let ψ be measurable such that ψ ≤ 0 on ∂� in the W 1,2 sense. Define

Kψ := {w ∈ W 1,2
0 (�) : w ≥ ψ in � in the W 1,2 sense}.

Given F ∈ W −1,2(�), there exists a unique u ∈ Kψ such that

L(u, v − u) ≥ 〈F, v − u〉, for all v ∈ Kψ.

Moreover, u is the minimal among all w ∈ W 1,2(�) that are supersolutions of Lw = F and
satisfy w ≥ ψ in � and w ≥ 0 on ∂� in the W 1,2 sense.

Proof By the weak maximum principle proved in Theorem 5.1, our theorem follows from
Theorem 4.27 in [35] and the Corollary right after it. ��

An important consequence of this theorem is the following:

Corollary 5.7 Let � ⊂ R
n be an open set (not necessarily bounded). If u and v are superso-

lutions of Lw = F in �, then min(u, v) is a supersolution of the same equation.

Proof If � is bounded, the proof is a consequence of Theorem 5.6 and can be found in
[17, Chapter II, Theorem 6.6]. Let � be an unbounded open set and assume that u and v

are supersolutions of Lw = F in �. Since they are supersolutions of the same equation in
any bounded open set D ⊂ �, min(u, v) is a supersolution in any such D as well. Using a
partition of unity, this yields that min(u, v) is a supersolution in �. ��

The proof of the following theorem can be found for instance in [17, Chapter II, Theorem
6.9].

Theorem 5.8 Let u be the unique solution obtained in Theorem 5.6 for ψ ∈ W 1,2(�). Then
there exists a non-negative Radon measure so that

Lu = f + μ, in �,

with

supp(μ) ⊂ I := � \ {x ∈ � : u(x) > ψ(x)}.
In particular,

Lu = f in {x ∈ � : u(x) > ψ(x)}.

6 Green’s functions in unbounded domains

Here we construct the Green’s function associated with an elliptic operator given by (1.1)
satisfying either negativity assumption following the approach of Hofmann and Kim [13]
along with its variation due to Kang and Kim [15].

6.1 Construction of Green’s functions

Before we start, we should mention that the equation formal adjoint operator of L is given
by

Lt u = −div(A · ∇u − cu) + b · ∇u − du = 0,
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with corresponding bilinear form

Lt (u, ϕ) =
∫

�

(At∇u − cu)∇ϕ − (du − b∇u)ϕ.

Moreover, if L satisfies (1.5), then its adjoint satisfies (1.6) and vice versa.
In the current section, we will require the following conditions to hold:

|b|2, |c|2, |d| ∈ K′(�) or b, c ∈ Ln,∞(�), d ∈ L
n
2 ,∞(�).

Theorem 6.1 Let � ⊂ R
n be an open and connected set and L be an operator given by (1.1)

so that (1.6) holds. For a fixed y ∈ �, there exists the Green’s function G(x, y) ≥ 0 for a.e.
x ∈ � \ {y} with the following properties:

(1) G(·, y) ∈ Y 1,2(� \ Br (y)) for all r > 0 and vanishes on ∂�.
(2) If f ∈ L

n
2 ,1(�) and g ∈ Ln,1(�), we have that

u(x) =
∫

�

G(y, x) f (y) dy +
∫

�

∇y G(y, x) g(y) dy, (6.1)

is a solution of Lt u = f − divg in � and u ∈ Y 1,2
0 (�) satisfying ‖u‖L∞(�) �

‖ f ‖
L

n
2 ,1

(�)
+ ‖g‖Ln,1(�).

(3) For any other Green’s function Ĝ(x, y) satisfying (3), it holds G(x, y) = Ĝ(x, y) for
a.e. x ∈ �\{y}.

(4) G(·, y) ∈ W 1,1
loc (�) and for any ηy ∈ C∞

c (Br (y)) such that ηy = 1 in Br/2(y), for r > 0,
it holds that

L(G(·, y), (1 − ηy)ϕ) = 0, for any ϕ ∈ C∞
c (�). (6.2)

If we set dy = dist(y, ∂�) (dy = ∞ if � = R
n), the following bounds are satisfied:

‖G(·, y)‖Y 1,2(�\Br (y)) � r1−
n
2 , for any r > 0, (6.3)

‖G(·, y)‖L p(Br (y)) �p r2−n+ n
p , for all r < dy and p ∈ [

1,
n

n − 2

)
, (6.4)

‖∇G(·, y)‖L p(Br (y)) �p r1−n+ n
p , for all r < dy, and p ∈ [

1,
n

n − 1

)
, (6.5)

|{x ∈ � : G(x, y) > t}| � t−
n

n−2 , for all t > 0, (6.6)

|{x ∈ � : ∇x G(x, y) > t}| � t−
n

n−1 , for all t > 0, (6.7)

The implicit constants depend only on λ, �, and either Cs,q and ‖b + c‖Ln,q (�), or C ′
s and

ϑ�(|b + c|2). If we also assume |b + c|2 ∈ KDini(�), then

G(x, y) � 1

|x − y|n−2 , for all x ∈ � \ {y}. (6.8)

where the implicit constant depends also on C|b+c|2,�.
If |b+c|2 ∈ KDini(�), we can construct the Green’s function Gt (x, y) associated with the

operator Lt which is non-negative for a.e. x ∈ �\ {y} and satisfies the analogous properties
(1)–(4) and the bounds (6.3)–(6.8). The implicit constants depend on λ, �, C ′

s and C|b+c|2,�,
and, in the pointwise bounds, on ‖b + c‖Ln,q (�), or C ′

s and ϑ�(|b + c|2) as well. Moreover,
if b, c ∈ Ln,q(�), d ∈ L

n
2 ,q(�), for q ∈ [n,∞), or |b|2, |c|2, |d| ∈ K′(�), it holds that

Gt (x, y) = G(y, x), for a.e. (x, y) ∈ �2 \ {x �= y}, (6.9)
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and

u(x) =
∫

�

Gt (x, y) f (y) dy +
∫

�

∇y Gt (x, y) g(y) dy, for all x ∈ �. (6.10)

Proof Given a point y ∈ �, if �ρ(y) = � ∩ Bρ(y), we define

fρ(x, y) = |Bρ(y)|−11�ρ(y)(x), x ∈ �.

Since L satisfies (1.6) and fρ(·, y) ∈ L∞(�) with bounded support, we may apply Theorem
5.3 (ii) to find a function Gρ(·, y) ∈ Y 1,2

0 (�) so that

L(Gρ(·, y), ϕ) =
∫

fρ(·, y) ϕ, (6.11)

for any ϕ ∈ C∞
c (�), with global bounds

‖Gρ(·, y)‖Y 1,2(�) � |Bρ(y)| 2−n
2n . (6.12)

Note that Gρ(·, y) ∈ Y 1,2
0 (�) and is an L-supersolution. If we apply the maximum principle

given in Theorem 5.1 (ii),we get that Gρ(·, y) ≥ 0 in �.
Let now f ∈ L∞(�) and g ∈ L∞(�) so that | supp( f )| + | supp(g)| < ∞. Then, by

Theorem 5.3, there exists u ∈ Y 1,2
0 (�) such that

Lt (u, ψ) =
∫

f ψ +
∫

g∇ψ for all ψ ∈ C∞
c (�), (6.13)

satisfying

‖u‖Y 1,2(�) � ‖ f ‖L2∗ (�) + ‖g‖L2(�)

≤ | supp( f )| n+2
2n ‖ f ‖L∞(�) + | supp(g)| 12 ‖g‖L∞(�). (6.14)

Remark here that, by the density of C∞
c (�) in Y 1,2

0 (�), both (6.11) and (6.13) can be

extended to test functions ϕ ∈ Y 1,2
0 (�). So, if we set ϕ = u in (6.11) and ψ = Gρ(·, y) in

(6.13), we obtain that∫
Gρ(x, y) f (x) dx +

∫
∇x Gρ(x, y)g(x) dx = −

∫
�ρ(y)

u(x) dx . (6.15)

For r > 0 fixed, assume that supp( f ) ⊂ �r (y), g = 0, and let ρ < r/2. Since u f is in
Y 1,2(�r (y)), vanishes on Br (y) ∩ ∂�, and satisfies Lt u f = f in �r (y), by Theorem 4.4
(1) with M = 0, we obtain

‖u f ‖L∞(� r
2
(y)) � r− n

2 ‖u f ‖L2(�r (y)) + r2‖ f ‖L∞(�r (y)) � r2‖ f ‖L∞(�r (y)),

where in the penultimate inequalitywe usedHölder inequality and (6.14). Similarly, if f = 0,
supp(g) ⊂ �r (y), and ρ < r/2, since ug ∈ Y 1,2(�r (y)) that vanishes on Br (y) ∩ ∂� and
Lt ug = −divg in �r (y),

‖ug‖L∞(� r
2
(y)) � r− n

2 ‖ug‖L2(�r (y)) + r‖g‖L∞(�r (y)) � r‖g‖L∞(�r (y)).

By (6.15), duality considerations, and the latter two estimates, we have that for all r > 0
and ρ < r/2,

‖Gρ(·, y)‖L1(�r (y)) � r2, (6.16)

‖∇Gρ(·, y)‖L1(�r (y)) � r .
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In fact, arguing similarly, we can prove that for all r > 0, ρ < r/2, and q ∈ [1, n
n−2 ),

‖Gρ(·, y)‖Lq (�r (y)) � r2−n+ n
q ,

‖∇Gρ(·, y)‖Lq (�r (y)) � r1−n+ n
q .

To avoid an early use of the pointwise bounds and thus, of the assumption |b + c|2 ∈
KDini(�), we will need the following auxiliary lemma.

Lemma 6.2 Let � ⊂ R
n be an open set and L be the operator given by (1.1) that satisfies

either (1.5) or (1.6). Let Bs = B(x, s) be a ball of radius s centered at x ∈ � such that
3Bs ⊂ � and u ∈ Y 1,2(�\Bs) be a solution of Lu = 0 in �\Bs that vanishes on ∂�. Then
for any r ≥ 4 s we have

∫
�∩(B2r \Br/3)

|u|2 � 1

rn

(∫
�∩(B3r \Br/4)

|u|
)2

, (6.17)

where the implicit constants depend only on λ, �, ‖b + c‖Ln(�;Rn), and Cs,q .

Proof The proof can be found in [16, Lemma 3.19] with the difference that we use Theo-
rems 3.3 instead of [16, Lemma 3.18] that only holds for r ≤ 1. ��

For fixed r > 0 and ρ ∈ (0, r/6) we let η ∈ C∞(Rn) so that

0 ≤ η ≤ 1, η ≡ 1 on R
n \ Br (y), η ≡ 0 on Br/2(y), and |∇η| ≤ 4

r
.

Thus, by Theorem 3.3, since LGρ(·, y) = 0, in �\Br/2(y),

‖∇Gρ(·, y)‖2L2(�\Br (y))
≤

∫
�

|η∇Gρ(·, y)|2
(3.17)

�
∫

�

|Gρ(·, y)∇η|2

� 1

r2

∫
�∩(Br (y)\Br/2(y))

Gρ(·, y)2

(6.17)

� 1

rn+2

(∫
�∩(B2r (y)\Br/4(y))

Gρ(·, y)

)2
(6.16)

� r2−n, (6.18)

which, in turn, by Sobolev embedding theorem, implies that for 0 < ρ < r/6,

‖Gρ(·, y)‖L2∗ (�\Br (y)) ≤ ‖Gρ(·, y)η‖L2∗ (�) � ‖∇(Gρ(·, y)η)‖L2∗ (�) � r1−
n
2 . (6.19)

On the other hand, for ρ ≥ r/6, by (6.12), we have that

‖Gρ(·, y)‖Y 1,2(�\Br (y)) ≤ ‖Gρ(·, y)‖Y 1,2(�) � |Bρ/6(y)| 2−n
n � r2−n . (6.20)

Therefore, if we apply (6.18), (6.19), and (6.20), we obtain that for any r > 0, there exists
a constant C(r) depending on r so that

‖Gρ(·, y)‖Y 1,2(�\Br (y)) ≤ C(r),

uniformly in ρ > 0. So, by a diagonalization argument and weak compactness of Y 1,2
0 , there

exists a sequence {ρm}∞m=1 that converges to zero as m → ∞ such that for all r > 0,

Gρm (·, y)⇀G(·, y) in Y 1,2
0 (� \ Br (y)), as m → ∞, (6.21)
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where G(·, y) ∈ Y 1,2
0 (� \ Br (y)). Moreover, by (6.20),

‖G(·, y)‖Y 1,2(�\Br (y)) � r2−n, for all r > 0.

If we follow the proof of inequalities (3.21) and (3.23) in [13] using the the same consid-
erations that lead to the proof of the estimates for Gρ(·, y) away from the pole, we can show
that

|{x ∈ � : Gρ(x, y) > s}| � s− n
n−2 , for all s > 0, (6.22)

|{x ∈ � : ∇x Gρ(x, y) > s}| � s− n
n−1 , for all s > 0, (6.23)

uniformly in ρ > 0. This yields that Gρ(·, y) ∈ L
n

n−2 ,∞(�) and ∇Gρ(·, y) ∈ L
n

n−1 ,∞(�)

with bounds independent of ρ.
Moreover, in light of (6.22) and (6.23), we can mimic the proof of inequalities (3.24) and

(3.26) in [13] and infer that for any ρ > 0 and r < dy ,

‖Gρ(·, y)‖L p(Br (y)) � r2−n+ n
p , p ∈ (0, n

n−2 ),

‖∇Gρ(·, y)‖L p(Br (y)) � r1−n+ n
p , p ∈ (0, n

n−1 ).

In particular,

‖Gρ(·, y)‖W 1,p(Br (y)) ≤ C(r , p), r < dy, p ∈ [1, n
n−1 ),

uniformly in ρ > 0. Thus, fixing p ∈ (1, n
n−1 ), by a diagonalization argument, we can find

a subsequence of ρm in (6.21) (which we still denote by ρm for simplicity) so that

Gρm (·, y)⇀G̃(·, y) in W 1,p(Br (y)) as m → ∞, (6.24)

for all r < dy . We also have that G̃(·, y) satisfies (6.4) and (6.5) for this particular p. Since
G(·, y) = G̃(·, y) in B(y, dy)\B(y, dy/2), we can extend G̃(·, y) by G(·, y) to the entire �

by setting G(·, y) = G̃(·, y).
Let �t = {x ∈ � : G(x, y) > t}, p = n

n−2 , ε ∈ (0, p − 1). If we apply Chebyshev
inequality, and then use that the L p-norms are weakly lower semicontinuous and |�t | < ∞,
by (6.3) and (6.4), we have

t p−ε|�t | � ‖G(·, y)‖p−ε

L p−ε(�t )
≤ lim inf

m→∞ ‖Gρm (·, y)‖p−ε

L p−ε(�t )

≤ lim inf
m→∞

p

ε
|�t |

ε
p ‖Gρm (·, y)‖p−ε

L p,∞(�)

(6.22)≤ p

ε
|�t |

ε
p C p−ε.

Letting ε → p − 1, we get |�t |
1
p � 1 which proves (6.6). A similar reasoning proves (6.7).

Moreover,

Gρm (·, y)
∗
⇀G(·, y) in L

n
n−2 ,∞(�) as m → ∞, (6.25)

∇Gρm (·, y)
∗
⇀∇G(·, y) in L

n
n−1 ,∞(�) as m → ∞. (6.26)

Therefore, by (6.11) and (6.15), in view of (6.25), (6.26), and (6.21), we can prove (6.2)
and also, (6.1) for f ∈ L∞(�) and g ∈ L∞(�) so that | supp( f )| + | supp(g)| < ∞ (a
detailed but more involved argument can be found after equation (6.33)). To show that (6.1)
holds in general, it is enough to use that simple functions are dense in L p,q(�) if q �= ∞
along with (6.6) and (6.7). Details are left to the reader.
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The proof of inequalities (3.30) and (3.31) in [13] gives us (6.4) and (6.5) for any p (in
the stated range).

We will now demonstrate that for a fixed y ∈ �, G(·, y) ≥ 0 a.e. in �\{y}. Assume that
σn is the sequence converging to zero for which Gσn (·, y) converge to G(·, y) in the sense of
(6.21) and (6.24). If necessary,we can pass to a subsequence so thatσn < min(|x−y|, dy)/10.
Fix x ∈ � so that x �= y and let ρm be a sequence converging to zero so that ρm ≤
min(|x − y|, dx )/10. Therefore, since Gσn (·, y) ≥ 0 in �, we have that

0 ≤ −
∫

Bρm (x)

Gσn (·, y) −→ −
∫

Bρm (x)

G(·, y), as n → ∞,

where we used (6.21) in the case Bρm (y) ⊂ �\Br (x) for some r > 0 and (6.24) in the case
Bρm (x)∩ Bσn (y) �= ∅. By Lebesgue differentiation theorem, if we let m → ∞, we infer that
G(x, y) ≥ 0 for a.e. x ∈ � \ {y}.

To prove uniqueness of the Green’s function, we assume that Ĝ(·, y) is another Green’s
function for the same operator. Then for f ∈ C∞

c (�) and g = 0, we have that for fixed
y ∈ �,

∫
�

Ĝ(·, y) f = û(y) ∈ Y 1,2
0 (�) and Lt û = f .

By the comparison principle Corollary 5.2, u = û in � and so,
∫

�

G(·, y) f =
∫

�

Ĝ(·, y) f .

Since f ∈ C∞
c (�) is arbitrary, this readily implies thatG(x, y) = Ĝ(x, y) for a.e. x ∈ �\{y}.

So far, we have not used the local boundedness of solutions of Lt u = 0 and thus, the
assumption |b + c|2 ∈ KDini(�). It is only for the pointwise bounds we will need it. Indeed,
let x, y ∈ �, x �= y and set r = |x − y|/4. Then, (6.2) yields that LG(·, y) = 0 away from
y. So, by Theorem 4.4 and (6.3) for p = 2, we obtain

|G(x, y)| ≤ sup
�r (x)

|G(·, y)| � r−n/2‖G(·, y)‖L2(�r (x))

� r−n/2r2−n/2 ≈ |x − y|2−n . (6.27)

Notice that, under the additional assumption |b+c|2 ∈ KDini(�),we can apply the previous
considerations to construct the Green’s function Gt (·, y) associated with the operator Lt with
all the properties above. The only thing that remains to be shown is that Gt (x, y) = G(y, x)

for a.e. (x, y) ∈ �2\{x = y}. We will first prove it in the case that solutions of Lu = 0 and
Lt u = 0 are locally Hölder continuous in �\{x} and �\{y} respectively. In this case, all
the properties that hold a.e. in �\{pole}, because of the continuity therein, will actually hold
everywhere in � \ {pole}.

To this end, let σn and ρm be the sequences converging to zero for which Gσn (·, x) and
Gt

ρm
(·, y) converge to G(·, x) and Gt (·, y) in the sense of (6.21), (6.24), and (6.25). If

necessary, we may further pass to subsequences so that

σn < min(|x − y|, dx )/10 and ρm ≤ min(|x − y|, dy)/10.

Because Gσn (·, x) and Gt
ρm

(·, y) are locally Hölder continuous in �\{x} and �\{y} respec-
tively, with constants uniform in σn and ρm and, by Theorem 4.4, they are uniformly bounded
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on compact subsets of the respective domains, we may pass to subsequences so that

Gσn (·, x) → G(·, x) unifomly on compact subsets of � \ {x}, (6.28)

Gt
ρm

(·, y) → Gt (·, y) unifomly on compact subsets of � \ {y}.
We now use Gt

ρm
(·, y) and Gσn (·, x) as test functions in their very definitions to obtain

−
∫

Bσn (x)

Gt
ρm

(·, y) = L(Gσn (·, x), Gt
ρm

(·, y))

= Lt (Gt
ρm

(·, y), Gσn (·, x)) = −
∫

Bρm (y)

Gσn (·, x).

By Lebesgue’s differentiation theorem and continuity of Gσn (·, x) in �\{x},

lim
m→∞ −

∫
Bρm (y)

Gσn (·, x) = Gσn (y, x),

which, in view of (6.28), yields that

lim
n→∞ lim

m→∞ −
∫

Bρm (y)

Gσn (·, x) = G(y, x) for all y ∈ � \ {x}.

On the other hand, the weak convergence of Gt
ρm

(·, y) in Y 1,2(�\Br (y)) for any r > 0
implies

lim
m→∞ −

∫
Bσn (x)

Gt
ρm

(·, y) = −
∫

Bσn (x)

Gt (·, y),

from which, by Lebesgue differentiation theorem and the continuity of Gt (·, y) in �\{y},
we deduce that

lim
n→∞ lim

m→∞ −
∫

Bσn (x)

Gt
ρm

(·, y) = Gt (x, y) for all x ∈ � \ {y}.

Therefore, G(x, y) = Gt (y, x) for all (x, y) ∈ �2\{x = y}, which, combined with (6.1),
implies (6.10).

We are now ready to remove the Hölder continuity assumption. Set

�k = {x ∈ � : d(x, ∂�) > k−1} ∩ B(0, k),

which are open sets such that ∪k≥1�k = �. Let ψ ∈ C∞
c (Rn) so that

0 ≤ ψ ≤ 1, ψ = 0 in R
n \ B(0, 1) and

∫
ψ = 1.

For k ∈ N, set ψk(x) = knψ(kx) and define bk = (b 1�k ) ∗ ψk , ck = (c 1�k ) ∗ ψk and
dk = (d 1�k ) ∗ ψk .

Define

Lku = −divA∇u − div(bku) − ck∇u − dku.

If we fix x �= y ∈ �, there exists k0 large enough such that x, y ∈ �k for every
k ≥ k0 and in particular, x and y are in the same connected component of �k . Therefore,
Remark 4.7 applies, and since, for such k, Theorem 4.4 holds for Lk in �k with bounds
independent of k, we can construct the Green’s functions Gk(·, y) and Gt

k(·, x) associated
with Lk and Lt

k in �k as above, with the additional property that Gk(·, x) and Gt
k(·, y) are
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locally Hölder continuous away from x and y respectively. In the last part we used Theorem
4.12, which applies in this situation, since bk, ck, dk ∈ L∞ with compact support and thus,
|bk |2, |ck |2, |dk | ∈ KDini(�k) (with implicit constants depending in the domain). Extend both
Gk(·, x) and Gt

k(·, y) by zero outside �k and note that (6.3)-(6.7) hold in � with constants
independent of k (seeRemark 4.7). Therefore, repeating essentially the arguments concerning
the convergence of Gρ and the inheritance of the bounds from Gρ , we can find G(·, y)which
is non-negative a.e. in � \ {y} and vanishes on ∂�. Additionally, it satisfies (6.3)-(6.7), and,
after passing to a subsequence,

Gk(·, y)⇀G(·, y) in Y 1,2(� \ Br (y)) for all r > 0,

Gk(·, y)⇀G(·, y) in W 1,p(Br (y)), for all r < dy,

Gk(·, y)
∗
⇀G(·, y) in L

n
n−2 ,∞(�), (6.29)

∇Gk(·, y)
∗
⇀∇G(·, y) in L

n
n−1 ,∞(�), (6.30)

Gk(·, y) → G(·, y) a.e. in �. (6.31)

The considerations above apply to Gt
k as well.

Let f ∈ L∞(�) and g ∈ L∞
� ) which supports have finite Lebesgue measure. Thus, by

virtue of (6.1), we have that

uk(y) =
∫

�

Gk(·, y) f +
∫

�

∇Gk(·, y) g. (6.32)

Since uk ∈ Y 1,2
0 (�k), we can extend it by 0 outside �k . Recall that uk satisfies Lt

kuk =
f − divg in �k and also

‖uk‖Y 1,2(�) = ‖uk‖Y 1,2(�k ) � ‖ f ‖L2∗ (�k ) + ‖g‖L2(�k ) ≤ ‖ f ‖L2∗ (�) + ‖g‖L2(�),

where the implicit constant is independent of k. If we take limits in (6.32) as k → ∞ and
use (6.29) and (6.30) for Gt

k(·, y), we can show that for all y ∈ �,

lim
k→∞ uk(y) = lim

k→∞

∫
�

Gk(x, y) f (x) dx + lim
k→∞

∫
�

∇Gk(x, y) g(x) dx

=
∫

�

G(x, y) f (x) dx +
∫

�

∇G(x, y) g(x) dx =: u(y).

Therefore, since uk → u pointwisely in � and uk is a uniformly bounded sequence in
Y 1,2
0 (�), it holds that uk⇀u in Y 1,2(�) and u ∈ Y 1,2

0 (�). For a proof see for instance [12,
Theorem 1.32]. We will show that u is the unique solution of the Dirichlet problem Lt u = f
and u ∈ Y 1,2

0 (�). If ϕ ∈ C∞
c (�), there exists k1 ≥ k0 such that ϕ ∈ C∞

c (�k) for every
k ≥ k1. Thus,

Lt
k,�(uk, ϕ) = Lt

k,�k
(uk, ϕ) =

∫
�k

f ϕ +
∫

�k

g∇ϕ =
∫

�

f ϕ +
∫

�

g∇ϕ.

To pass to the limit, we need to treat each of the terms of the bilinear form separately. We
first write

∫
�

bk∇ukφ =
∫

�

(bk − b)∇ukφ +
∫

�

b∇ukφ = I k
b,1 + I k

b,2.
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If b ∈ Ln,q(�), by Lemma 2.26 we have that bk → b in Ln,q(�), which, combined with
(2.23) and the uniform Y 1,2-bound of uk , yields that limk→∞ I k

b,1 = 0. To prove that

lim
k→∞ I k

b,2 =
∫

�

b∇uφ, (6.33)

it is enough to notice that, by Hölder inequality in Lorentz spaces and Lemma 2.30, bφ ∈
L2(�), and then use that∇uk⇀∇u in L2(�). If |b|2 ∈ K′(�), we combine Cauchy-Schwarz
inequality, Lemma 2.21, the uniform Y 1,2-bound of uk , and Lemma 2.14, to show I k

b,1 → 0.

By (2.17), we have that bφ ∈ L2(�), and thus, (6.33) follows from the weak-L2 convergence
of ∇uk to ∇u. Let us now prove the limit for the one involving dk . To this end, write∫

�

dkukφ =
∫

�

(dk − d)ukφ +
∫

�

dukφ = I k
d,1 + I k

d,2.

If d ∈ L
n
2 ,q(�), dk → d in L

n
2 ,q(�), which, by Hölder inequality for Lorentz spaces, (2.18),

(2.21), and the uniform Y 1,2-bound of uk , yields that limk→∞ I k
d,1 = 0.Moreover, as uk → u

pointwisely, we can apply the dominated convergence theorem to obtain

lim
k→∞ I k

d,2 =
∫

�

duφ. (6.34)

If |d| ∈ K′(�), we first apply Cauchy-Schwarz inequality, and then use Lemma 2.21 and the
uniform Y 1,2-bound of uk . Finally, in view of Lemma 2.14, we can take limits as k → ∞
to conclude that limk→∞ I k

d,1. The proof of (6.34) follows by dominated convergence. The
integral involving ck can be treated very similarly and the details are left to the reader. We
have thus proved that

Lt
�(u, ϕ) = lim

k→∞Lt
k,�(uk, ϕ) =

∫
�

f ϕ +
∫

�

g∇ϕ,

which, in turn, yields that u is the unique solution of the Dirichlet problem Lt u = f − divg
and u ∈ Y 1,2

0 (�).
Let us now recall thatfrom the first part of the proof (before the approximation) we can

construct a Green’s function Ĝ(·, y) associated with L so that the function

û(y) =
∫

�

Ĝ(x, y) f (x) dx +
∫

�

∇x Ĝ(x, y) g(x) dx,

is also a solution of the Dirichlet problem Lt û = f − divg and û ∈ Y 1,2
0 (�). But since there

is only one such solution we must have u = û, which, as we showed before, implies that
G(x, y) = Ĝ(x, y), for a.e. x ∈ �\{y}. As we have shown that (6.3) holds for Ĝ(x, y), it
also holds for G(x, y).

The same arguments are valid if we replaceG byGt and L by Lt (and vice versa), implying
that

lim
k→∞ ut

k(x) = lim
k→∞

∫
�

Gt
k(y, x) f (y) dy + lim

k→∞

∫
�

∇y Gt
k(y, x) f (y) dy

=
∫

�

Gt (y, x) f (y) dy +
∫

�

∇y Gt (y, x) f (y) dy =: ut (x),

and after passing to a subsequence, ut
k⇀ut in Y 1,2(�), ut ∈ Y 1,2

0 (�), and Lut = f in �.
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For f , g ∈ C∞
c (�) we set

u f ,k(y) =
∫

Gk(x, y) f (x) dx and ut
g,k(x) =

∫
Gt

k(y, x) g(y) dy;

u f (y) =
∫

G(x, y) f (x) dx and ut
g(x) =

∫
Gt (y, x) g(y) dy.

Recall that

u f ,k⇀u f in Y 1,2(�) and u f ∈ Y 1,2
0 (�),

and

ut
g,k⇀ut

g in Y 1,2(�) and ut
g ∈ Y 1,2

0 (�).

By Fubini theorem and Gt
k(x, y) = Gk(y, x) for all (x, y) ∈ �2\{x = y}, we have that

∫
u f ,k(y) g(y) dy =

∫
g(y)

∫
Gk(x, y) f (x) dx dy

=
∫

f (x)

∫
Gt

k(y, x) g(y) dy dx =
∫

ut
g,k(x) f (x) dx . (6.35)

If we take limits as k → ∞ in (6.35),∫
u f (y) g(y) dy =

∫
ut

g(x) f (x) dx,

which implies∫ ∫
G(x, y) f (x) g(y) dx dy =

∫ ∫
Gt

(y, x) g(y) f (x) dy dx .

Since f , g ∈ C∞
c (�) are arbitrary, we conclude that Gt (x, y) = G(y, x) for a.e. (x, y) ∈

�2\{x = y}.
Once we have that (6.4) holds, the proof of (6.8) is the same as in (6.27), while (6.1)

follows by density. ��
Remark 6.3 If ϕ ∈ C∞

c (�) and it holds that b∇ϕ ∈ L
n
2 ,1(�), cϕ ∈ Ln,1(�), and dϕ ∈

L
n
2 ,1(�), then we can show that

L(G(·, y), ϕ) = ϕ(y).

This is straightforward if we use (6.6) and (6.7).

Finally, we can prove that, under certain restrictions, the Green’s function has pointwise
lower bounds as well.

Lemma 6.4 Let � ⊂ R
n be an open and connected set and Lu = −div(A∇u + bu) be

an elliptic operator so that b ∈ KDini(�). Let x, y ∈ �, x �= y, such that 2|x − y| <

dist({x, y}, ∂�). If we set r = |x − y|/4, then the Green’s functions G constructed in
Theorem 6.1 satisfy the following lower bound:

G(x, y) � 1

|x − y|n−2 ,

Gt (x, y) � 1

|x − y|n−2 . (6.36)
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Proof Let us fix x, y ∈ �with x �= y. If we set r = |x−y|
4 and let η ∈ C∞

0 (Br (y)) be a bump
function so that

0 ≤ η ≤ 1, η = 1 in B r
2
(y), and |∇η| � 1

r
.

Then using it as a test function we have that

1 = η(y) = L(G(·, y), η) =
∫

�

A∇G(·, y)∇η +
∫

�

bG(·, y)∇η

� 1

r
‖∇G(·, y)‖L1(Br (y)\B r

2
(y)) + 1

r
‖b‖Ln(�)‖G(·, y)‖

L
n

n−1 (Br (y)\B r
2
(y))

� 1

r2
‖G(·, y)‖L1(B2r (y)\B r

8
(y)),

where we used Hölder, Sobolev and Caccioppoli inequality, along with Lemma 6.2. Thus,
from (4.16), we have that G(x, y) � 1

|x−y|n−2 .

Let v ∈ Y 1,2(�) be a nonnegative function such that Lv = 0 and v(y) > 0, and let η be

the bump function defined above. Then, if we assume ρ ≤ min
( |x−y|

10 ,
dy
10 , dx

10

)
,

−
∫

Bρ(y)

η v = Lt (Gt
ρ(·, y), η v)

=
∫

�

At∇Gt
ρ(·, y)∇η v − At∇η∇v Gt

ρ(·, y) + A∇v∇(Gt
ρ(·, y)η)

+
∫

�

b ∇vGt
ρ(·, y)η −

∫
�

b ∇η Gt
ρ(·, y) v

=
∫

�

At∇Gt
ρ(·, y)∇η v − At∇η∇v Gt

ρ(·, y) − b ∇η Gt
ρ(·, y) v

=: I1 − I2 − I3,

where we used that Gt
ρ(·, y)η is a test function and Lv = 0. We will only estimate I3 since

I1 and I2 can be handled similarly.

|I3| � 1

r
‖b + c‖Ln(Br (y)\B r

2
(y)) ‖Gt

ρ(·, y)‖L2(Br (y)\B r
2
(y)) ‖v‖L2∗ (Br (y)\B r

2
(y))

� 1

r2
‖Gt

ρ(·, y)‖L2(Br (y)\B r
2
(y)) ‖v‖L2(B 3r

2
(y)\B 3r

8
(y)),

where in the first inequality we used Hölder inequality and in the second one the local
bonudedness of v. If ρm is the sequence obtained in (6.21), then by Rellich-Kondrachov
theorem and a diagonalization argument, we may pass to a subsequence so that

Gt
ρm

(·, y) → Gt (·, y), strongly in L2(Br (y) \ B r
2
(y)).
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Thus, if we take m → ∞, by Lemma 6.2, for a.e. y ∈ �,

v(y) = η(y) v(y) = lim
m→∞ −

∫
Bρm (y)

η v

� lim
m→∞

1

r2
‖Gt

ρm
(·, y)‖L2(Br (y)\B r

2
(y)) ‖v‖L2(B 3r

2
(y)\B 3r

8
(y))

= 1

r2
‖Gt (·, y)‖L2(Br (y)\B r

2
(y)) ‖v‖L2(B 3r

2
(y)\B 3r

8
(y))

� 1

rn+2 ‖Gt (·, y)‖L1(B2r (y)\B r
4
(y)) ‖v‖L1(B2r (y)\B r

4
(y)).

So, by (4.16) and Remark (4.2), we get

v(y) � |x − y|n−2 Gt (x, y) v(y),

which implies (6.36). ��
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