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Abstract

Starting from a particle system with short-range interactions, we derive a continuum model for
the bending, torsion, and brittle fracture of inextensible rods moving in three-dimensional
space. As the number of particles tends to infinity, it is assumed that the rod’s thickness
is of the same order as the interatomic distance. For this reason, discrete terms and energy
contributions from the ultrathin rod’s lateral surface appear in the limiting functional. Fracture
energy in the I'-limit is expressed by an implicit cell formula, which covers different modes
of fracture, including (complete) cracks, folds, and torsional cracks. In special cases, the cell
formula can be significantly simplified—we illustrate this by the example of a full crack and
also show that the energy of a mere fold is strictly lower for a class of models. Our approach
applies e.g. to atomistic systems with Lennard—Jones-type potentials and is motivated by the
research of ceramic nanowires.

Mathematics Subject Classification 74K10 - 49J45 - 74R10 - 70G75

1 Introduction

Ceramic and semiconductor nanowires (composed of Si, SiC, Si3Ny, TiO;, or ZnO etc.) under
loading exhibit large deflections, but also brittle or ductile fracture. [29] Their mechanical
behaviour is often very different from that of bulk materials, size- and structure-dependent,
and influenced by surface energy. Laboratory testing at the nanoscale still poses various
challenges, so modelling and simulation play an important role in the advancement of nan-
otechnology. [37]

To set off on a path towards elastic-fractural modelling of nanowires, in this article we
derive from three-dimensional atomistic models a continuum theory for ultrathin rods whose
elastic energy is of the order corresponding to bending or torsion. After treating the purely
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elastic case in [71], here we extend our model considerably by adding liability of the material
to develop brittle cracks.
Our work stands at the crossroads of three paths of research in applied analysis which are:

(DR) rigorous derivation of elasticity theories for thin structures (often referred to as dimen-
sion reduction).
(D-C) discrete-to-continuum limits.
(F) fracture mechanics.

An important tool in all these three branches is I"-convergence. [19, 20]

In (DR) the aim is to understand the relation between three-dimensional elasticity theory
and effective theories for lower-dimensional bodies, such as plates, rods or beams. [9, 30,
62] With the pioneering contributions of L. Euler and D. Bernoulli, the journey started more
than two centuries before the first nanowires were manufactured. Yet, most mathematically
rigorous derivations of such theories first appeared no sooner than in the 1990s. [1, 10, 58]
A decade later, the famous discovery of a quantitative rigidity estimate in [49] brought forth
an abundance of works on bending theories. [49, 50, 61]

As for (D-C), ‘establishing the status of elasticity theory with respect to atomistic models’
was listed by Ball among outstanding open problems in elasticity. [13] Research has been
devoted to studying the Cauchy—Born rule [35, 51], pointwise limits of interaction energies
[17] and their I"-limits [3, 25, 69], or to finding atomistic deformations approximating a given
solution of the equations of elasticity [24, 26, 63]. See also [16] for a survey.

The interest of mathematicians in (F) was particularly ignited after Francfort and Marigo
[41] elaborated on the influential model by Griffith, using modern variational methods (see
e.g. [18, 40] for further references). In variational models of fracture, be it brittle or cohesive
[14], we typically find functionals involving the sum of elastic and fracture energy:

/ W (Vy(x))dx + / K(yT(x) =y~ (), ve))dH T (). (1.1)
Q |

Jy

In the above, W: R3*3 — [0, 0o) stands for the stored energy density of a material body
Q c R4, d e {2,3}, yt — y~ is the jump of the deformation y : @ — R? across the
crack set Jy, v denotes the normal vector field to Jy, and « : (R?)2 — [0, co] is the fracture
toughness.

Given the myriads of physical situations that emerge in modern materials science, it seems
natural that researchers have made efforts to bridge some of the gaps between (DR), (D-C)
and (F).

Combining (DR) and (D-C) is motivated by the need of accurate models for thin structures
in nanoengineering, such as thin films or nanotubes. [2, 48, 67, 68] Interestingly, when the
thickness & of the reference crystalline body is very small (i.e. comparable to the interatomic
distance ¢), the simultaneous I'-limit as ¢ — 04, h — 0+ gives rise to new ultrathin plate
or rod theories which could not be obtained by (DR) in the purely continuum setting. [27,
66, 71]

Atomistic effects also lie at the core of crack formation and propagation. [15, 28] However,
up to now combinations of (D-C) and (F) have only been explored in specific situations such
as one-dimensional chains of atoms [21, 55, 65], scalar-valued models [23], or cleavage in
crystals [45—47].

Similarly, despite the recent progress, theories uniting (DR) and (F) are still under devel-
opment. In linearized elasticity, models for brittle plates [6, 12, 42, 59], beams [52] or shells
[4] have been derived mostly using a weak formulation in SBD or GSB D function spaces
[7, 34]. The nonlinear setting of membranes [5, 11, 22], on the other hand, employs the
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Fig.1 Fracture of a thin rod
composed of atoms

more regular spaces SBV and GSBYV. [8] As for nonlinear bending theories, the lack of a
piecewise quantitative rigidity estimate in 3D presents an obstacle, so the result of [70] with
a dimension reduction from 2D to 1D seems rather isolated; we also refer to [44, 64] for
materials with voids.

In this article, we treat a problem that falls into all three branches (DR), (D-C) and (F).
Our main Theorem 4.1 provides the I'-limit of atomic interaction energies defined on cubic
crystalline lattices in the shape of a slender rod. Unlike in the purely elastic model from [71],
we now replace the interaction potentials (expressed by a cell energy function W likeine.g.
[31, 51, 66]) with a sequence ( Wc(fl)l),fil of cell energies to ensure that elastic deformations
(bending and torsion) are comparably favourable in terms of energy as cracks (see Fig. 1 for
an illustration). This is specifically expressed in condition (W5) for the constants (Eik) Voo 1
which give a lower bound on the cost of placing atoms far away from each other (see Sect.
2.3). Physically we can interpret this as considering a sequence of materials that are mutually
similar but are characterized by different values of material parameters. The limiting strain
energy has, just like in (1.1):

1. A bulk part that coincides with its counterpart in [71] and features an ultrathin correction
and atomic surface layer terms, neither of which appears in the corresponding rod theory
[61] derived by (DR) without (D-C). These traits might make a model better-suited for
the description of nanostructures.

2. A fracture part which turns out to be a weighted sum over the singular set of a lim-
iting deformation. The weights are given by an implicit cell formula ¢ = @(y™ —
vy, (R7)7'RY), where y* — y~ € R? denotes the jump of the deformation mapping
at a specified crack point and (R7)"'Rt € SO(3) is related to kinks/folds or torsional
rupture.

Implicit cell formulas arise in I"-convergence problems in homogenization [20] or phase
transitions [32, 33, 56].

To comment on some important aspects of the proofs, in the liminfinequality we first derive
a preliminary cell formula by a blowup technique reminiscent of [8, 39] and then relate it to a
more simple asymptotic formula which uses rigid boundary values (cf. [43]). The atomistic
setting allows us to circumvent the unavailability of a 3D piecewise rigidity theorem in SBV
(in fact, it is enough to work with piecewise Sobolev functions here). The main challenge of
our analysis is, however, to provide a matching limsup inequality. Due to the k-dependency
of the interaction potential Wc(fl)l, it is a priori not clear how to construct a global recovery
sequence (y®) that not only works for a specific subsequence. We resolve this difficulty by
establishing a localization of cracks on the atomic length scale, which appears to be of some
independent interest. More precisely, we argue that an approximative minimizing sequence
(y ®) for ¢ can be chosen with cracks confined to a fixed number of atomic slices (Lemma
6.1), which lets us transfer 4y ® to a lattice with different interatomic distances (Proposition
6.1) and thus define (y®) for every k € N. I'-convergence problems involving brittle fracture
often have to deal with pieces of the deformed body escaping to co. As our limiting theory
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is one-dimensional we can sidestep working on GSBV -type spaces and instead obtain a
limiting functional on piecewise H? functions. By an explicit construction using assumption
(W9) in Lemma 6.2 we show that L° (or weaker) bounds could be imposed energetically
so as to ensure matching compactness properties of low-energy sequences.

After describing our discrete model in Sect.2, we prove a compactness theorem for
sequences of bounded energy in Sect. 3. The lower bound in the I'-convergence result from
Sect. 4 is shown in Sect. 5 and then followed in Sect. 6 by an analysis of the cell formula and
the construction of recovery sequences for Theorem 4.1(ii). Section 7 provides examples of
interatomic potentials to which our approach applies. In Sect. 8, we show that for full cracks
and a class of mass-spring models there is an explicit expression for the cell formula. More-
over, it is proved that in such models, the energy needed to produce a full crack is strictly
greater than the energy of a mere kink. The last short discussion section gives some hints on
possible future research.

1.1 Notation

We write dist(By, By) = inf{x" —x@|; x® e B;, x® e B} for By, B, c R3.
Whenever the symbol + appears in an equation, we mean that the equation holds both in the
version with + in all occurrences and in the version with —. The letter C denotes a positive
generic constant, whose value may be different in different instances. One-sided limits are
written as f(o%) = limy_.o+ f(x). Further, Ry = {A € R>*3; A = —AT}. The symbol
A ; denotes the i-th column of a matrix A and H" is the n-dimensional Hausdorff measure. The

restriction u L K of ameasure u to the measurable set K isdefinedby o L K(U) = n(UNK).

2 Model assumptions and preliminaries
2.1 Atomic lattice and discrete gradients

In our particle interaction model, Ay = ([0, L] x %S‘) N %23, k € N, is a cubic atomic
lattice—the reference configuration of a thin rod of length L > 0. The interatomic distance
1/k is directly proportional to the thickness of the rod.

The rod’s cross section is represented with a bounded domain @ # § C R%. We assume
that there is a set £ C (% + 7)? such that

, 1 172
= Int U (X + I:—E, E] )
x'el!
Moreover, should it happen that x" + {—j, 3}2 L := SN 72 itis assumed that x" € L.
The symbol A, is used for the lattice of midpoints of open lattice cubes with sidelength 1/k
and corners in Ak.

Our lattice Ay undergoes a static deformation y® : A; — R3. The main aim of this paper
is to investigate the asymptotic behaviour as k becomes large and to establish an effective
continuum model as k — +o0.

Sometimes it will be advantageous to work with a rescaled lattice that has unit distances
between neighbouring atoms. The points of this lattice are written with hats over their coordi-
nates, i.e.if x = (x1, x2, x3) € Ax weintroduce X1 := kx1, %' = (X2, £3) :=kx’ = k(xz x3)
and y(k)(xl X2, X3) 1= ky(k)(kxl kx’) so that y(k) kA; — R3. Then Ak and Ak denote
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the sets of all x = (X1, X2, X3) such that the corresponding downscaled points x are elements
of the sets Ay and A}, respectively. We will frequently use these eight direction vectors

2.

1 1
1 T 5 T
= = _17_13_]‘ b = = 17_17_1 b
¢ 2( ) < 2( )

1 1
22 5(—1,—1,+1>T, z8 5(+1,—1,+1)T,

1 1
2 5(—1,+1,+1)T, 7 5(+1,+1,+1)T,

1 1
= (=1, 41, =D, 2= —(+1,+1,-D".
2( .+, =1 z 2(+ + )

With these vectors we can describe the deformation of a unit cell x + {—%, %}3 cen-
tred at £ € A} — let y“%e) = P& + |- PPGE + ) e R>*3. Further

we introduce (y(k)(x) 1 Z | 9O + z) and the discrete gradient Vi®) (%) =
GO GE4+H =R @) - |y(") (x—i—zg)—()?(k)()?))) € R3X8.Adi§crete gradient has the sum
of columns equal to 0 and an important special case is the matrix Id := (z!| - - - |z%) € R3*8,

which satisfies Id = Vid. Further we define two noteworthy subsets of R3*8, later used for
characterizing rigid motions:

SO@3) :={RId; R € SOQB)}, Vo:={(c|---|c) e R¥*3: ¢ e R?}.

2.2 Rescaling, interpolation and extension of deformations

To handle sequences of deformations defined on a common domain Q2 = (0, L) x S, we set
y<’<>(x1, X2, X3) 1= y(k)(xl, %x’) for (x1, %x’) € Ay and interpolate y<’<> as follows so that it
is defined even outside lattice points.

Write 2 1= (L2}, 25, z5) and Q%) = ¥ + (— 5, 30) x (=1, D)2 for¥ € A} = (£ €
Q; (k&1, &) € Al). First, we set 70 (%) := 3 Y8 3042 ) and for each face F of the
block Q()E) and the corresponding centre x ; of the face F, define y<k> (xp) = 1 Z )7(") (x+
z7), where the sum runs over all j such that x + 7/ is a corner of F. Now we 1nterp01ate y(k)
in an afﬁne way on every simplex T = conv{x, x + 2z, x + 2/, xp}, where [z' — 2| =
and X 4+ %', X + 2/ € F (there are 24 simplices within O (%)). Like this, *) is dlfferentlable

- 55®) (00 )
almost everywhere, so we can define V3 5% = (aay)” |k 8(;)62 Ikav

Q(E) with face centre x 3, the piecewise affine interpolation satlsﬁes
F p p

). For any face F of

TP = £, 50 and 3 ) = ][Q | e @1

Wealsoset Vi 5®) (%) := k(50 (&4 1 2], f/+(Zi)’)—Z§=1 O +%Z{’ N
For the following reasons we now extend deformations to certain auxiliary surface lattices:

e surface energy needs to be modelled;

e in part we would like to apply I'-convergence results from [71];

e a fixed domain on which the convergence of (j(k)) is formulated sometimes does not
match with its inscribed crystalline lattice (specifically in the x| -direction).
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We present here the necessary tools, without too much emphasis on this technical issue later,
referring to [71, Subsection 2.3] for more details and a proof, adapted from [69]. Consider a
portion (a,b) x S C (0, L) x S of the rod. Let ay = 1 [kal, by =  |kb], and

LM = £+ (1,0, 1), A = {ak — Foag, ... b+ 3} x L,
£ =L+ {=1,0, 1), AP ={ag — gpo k4 gp. - b+ ) x G L0,
S =S4 (=1, 1%, Q' = (& — . b + ) x S,

AP =Har — goak, b+ 1) x L5 A ={ax — gp.ax + gp. - b+ o) x L0

Lemma 2.1 There are extensions y® : AP — R3 such that their interpolations 3% satisfy
ess sup gext dist (ka(k) SO(3)) < Cesssup 4 p,)xs dist (ka(k) SO(3))

and

/ dist? (V¢ 53%, SO(3))dx < € / dist? (V5% , SO(3))dx.
Qex (ag,br)xS

/,ext

For x € Q%, we denote by X an element of A that is closest to x. In what follows

we always understand the symbols AZ’“, A,’(eXl etc. with a := 0 and b := L, unless stated
otherwise. We also set Q' := (0, L) x S,

2.3 Energy

Let Ly = LkL) AP = (L, kL — Ly s (2902, and AP = {— L kLy + 1) x
L We give this definition of strain energy E®:

k) (= PN k) (a1 =
OO = 2 W (T 0) + 3 W (5 0)
ted; Ryt

k Aoar o A
b0 Wl (s m)

o / end
X€e

(2.2)

with W) : R3S 10,001, Wh: (crom gy x RS = [0, 00 and Wend 1= 3¢ L+

i} x L/ x R3*8 [0, 0o]. The terms with Wg(fr)f and W, end are useful for incorporating

surface energy (see [71] for further clarification)—while WS(ur models contributions from

the rod’s lateral surface, the terms involving We(nc)1 come from the front and rear bases of the

rod and vanish as k — oco. For convenience we assume that for every y € R3*3, g(llfr)f( y)

is extended to a piecewise constant function on S\ § which is equal to Wsur)f( ,y) on
X+ (—%, %)2. Sometimes it will be useful to group the terms, so for y € R3*8 we set

=>
EIJI

k
wh G, 5) = W%{l;l( y)
t Al A R
Ol 5urf( / ) x/ c (Sext \ S)

In our I'-convergence statement, we consider the rescaled energy lfk E® = kE® where

k3 is the order of the number of particles per unit volume in a bulk system and 1/k* is the

@ Springer



A continuum model for brittle nanowires... Page70f37 243

appropriate power of a rod’s thickness for studying the bending/torsion energy regime (see
e.g. [60] for more context).
Assumptions on the cell energy functions Wc(ﬁl)l, Ws(l]fr)f, and W(k)

Hereafter 7 *) stands for Wéﬁﬁ, S(I.Il(r)f( -) with 2" € £\ L', and for W(ka( ")
with £ € A} end,

(W1) Frame-indifference: W ® (RY + (c| - - - [¢)) = W& (F) forall R € SO(3), y € R3*8,
ceR3 andk e N.

(W2) Energy well: For every k € N, % %) attains a minimum (equal to 0) at rigid deforma-
tions, i.e. deformations y = (91| - - - |Js) with $; = Rz’ +c foralli € {1, ..., 8} and
some R € SO(3), ¢ € R3.

(W3) Independence of k in the elastic regime: There are parameters cffac ¢ O such that

limg s oo k(cfmc)2 € (0, oo) and an elastic stored energy function Wy : £/ x R3*8 —
[0, 0o] such that we have Vk € NV y € R3*8 vx/ e £/ext:

WR K ) = Wox, §) if dist(V$,S0(3)) < )

frac*

Further, there exists a C > 0 independent of k € N such that
W8 Lk, &, 5) < Cdis?(V§, SO(3)) for any & € Ay,

F= Gl 159 € R*S,and V5 = (X8, 5,)(1. ... D withdist(V5, SO(3)) <
(k)

Cfrac®
(W4) Regularityink: W™ (', 5) = A5 WS (v, 5) forallk e NV§ € R3S va’ e £/,
(W5) Non-degeneracy in the elastic and the fracture regime: The function Wyl g3xs is
independent of x’ (hence we omit it from the notation in this region) and satisfies

Wo(3) > ewdist*(V$, SO3)) Vi e R¥?

for a constant cw > 0. Writing Wc(fl)l(ﬁ) = W® ) if dist(V3, SO(3)) > ctgfa)c, we
assume that the mappings W® can be chosen such that

WO G) = vieNvVyeR>S

for a sequence (Eik)),f‘; | of positive numbers with limy_, oo kc_‘gk) € (0, 00).

(W6) W® s everywhere Borel measurable and Wo(x',-), X' € £ s of class C2 in a
neighbourhood of SO(3).

(W7) Ifi € {1,2,...,8}, % € £\, and § = ($1]- - |9s), then 3 > WEL(&, §) may
depend on §; only if ' + (z') € £.1f x| € {—ﬁ, Li+ ﬁ},then} = We(ﬁ(xl X', y)
may depend on §; only if (x1, £') + Z € Ay.

The quadratic form associated with V2w (x’, Id) is denoted by Qsurf (X', -).

surf
Throughout we will assume that Assumptions (W1)—(W7) are satisfied. We also intro-

duce conditions which imply that long-range interactions of atoms are bounded or even are
negligible.

(W8) We say that inelastic interactions are bounded if

WHOGF) <CP VkeNVyeR>S

for a sequence (c {k)),fil of positive numbers with limg_, oo kC ik) € (0, 00).
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(W9) We say that the cell energies have maximum interaction range scaling with (My)72 ,,
where My — 0, Myk — oo, if the following holds true: If there is a partition
{1,...,8 = JULU.--. UJ,,C such that for some ¥, 3’ € R3*8 one has

min  dist({$;, }i;e s> (i Jimes,) = Mixk and

1<t<m=<nc

min_ dist({3;, }ije s> {37, Yinesn) = Mik

1<l<m<nc
and there are rigid motions given by R, € SO(3) and ¢,, € R3 such that
)A’,'/m = Rm)?im +om Vip €Jy, m=1,...,nc,

then

Cfar

g ® 57y — @
| o - Ml = YA

for a uniform constant Cg,, > 0.

Remark 2.1 We remark that the assumption in (W4) is a monotonicity assumption only for
kWt(Okt) (x’, -) but not for Wt(okt) (x, +) itself. It is in line with our assuming that the elastic energy
is independent of k in (W3) and the fracture toughness scales with %, cf. (W5).

Remark 2.2 By (W2), (W3), and (W6) we have
W R (F) < eydist?(V§, SO3))

for a constant ¢y, and all y € R3*3 such that dist(V$, SO3)) < ctrac Moreover, by (W2),
(W5) and (W6) the quadratic form Q3 associated with VZWo(1d), is positive definite on
span{Vp U R3X Id}J-

skew

2.4 Piecewise Sobolev functions

We work with the linear spaces P-H™ (0, L; RY, m = 1,2, £ € N, of functions that are
piecewise Sobolev in the following sense:

P-H™(0, Ly RY) := {§ € L' ((0, L); R®); 3 partition (o)1} of [0, L]
Vie{l,2,....n+1}: 3,0 € H"((0i—-1, 0}); ]R[)}. (2.3)
Here we say that (¢! ) o 1sapartitionof [0, L]if 0 = 0% <ol <... <" = L. Suppose
ye P-H™"(,L; Rg) and {o }”H is the minimal set with property (2.3). For m = 1 one has

n+1

={o0 € (0,L); (o) # TP} ={o'}1Ty.

For m = 2 we have {G’A};’=l = S5 U Sy, which is the set of points at which y or §’ jumps.

3 Compactness

Theorem 3.1 Suppose the sequence (y(k)),foz | of lattice deformations fulfils

lim sup(kE® (y®) + 11y® ]l (a,:3)) < +00. 3.1)

k—00
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Then after applying the extension scheme from Sect. 2.2 we can find an increasing
sequence (kj)72, C N, functions § € P-H2(0,L; R%), dr,d3s € P-HY0, L; R?) with

R = (axly|d2|d3) € SO(3) a.e., and a partition (o' )"t+1 of [0, L] such that for any
ne (0, 3 mm0§l§nf ottt — o)) and every 0 <i < ng we have:
(i) y(kj) N )’; in LZ(Qext; R3X3),’
(i) Vi, 7% = R = (3, Fldalds) in L2((0" +n, o™+ — ) x § RISy,
(iii) dist(@kjy(kf), SO3)) < cga)c on (o' +1n, 0"t — ) x S for j sufficiently large;
(iv) if we define the measures py on [0, L] by
(A= > kWS (#. 5P @),
ReAP™,
X1€kA

Jor Borel sets A, then ju; —*u for a Radon measure |

Proof By propertles of the extension scheme from Sect. 2.2 (see [71 Remark 2. 1]) there is a

constant C, > 1 such that for any x € AP, setting U (x) = (fxi— g x1x1+ ¢ Ny )ﬂA/
we have

dist?(V; 3% (x), SO@3)) < €2 Z dist? (V3% (£), SO(3)). (3.2)
el (x)
Let Sk (x1) denote a slice of the rod at the point x;:

1 1 1 ext
Sk (x1) = (EUOHJ, ELkXIJ + E) x 87, x1 €[0, L].

A slice Si(x1) is regarded as broken if there is an x” € S such that
~ _ C(k)
dist(V3® (kxy, x'), SO3)) > —L2_
V3L Ce
Like this, for any x such that the slice Sk (x) and, if existent, the neighbouring slices S (x % %)
are not broken, V;5® (x) is at most cga)c-far from SO(3) even if x € Q¥\(0, L) x S,
Write X gk) for the set of all midpoints of the x|-projections of broken slices:

x® =[x e (21k + lch) [0, L); Si(x1) is broken).

We have §X ik) < Ct with Cr > 0 independent of k, since by Assumptions (W3) and (W5)

C(k) CW(C(k) )2 " c
min W ): 5 € RIS, dist(V5,S0(3)) = — e} > min {2 Cmel | 50} >
V3EL'C, 3L/ C2 k
for a constant ¢ > 0 and so
CzkeE®p®) = Y kWl (#.5% @) (3.3)
FeAp™
>eixV+k Y wRE.PW). (3.4)

ReAp™, figkx V)

elastic part (>0)
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If we pass to a subsequence {kj}?"=1 C N,wefindnf € N,0 < ng < C/c, such that for every
J € N, there are always precisely n¢ broken slices, i.e. Vj € N: X ikj ) = nf, and

(kj) 1 2 ng 1 2 nf

X1 {sj,sj,...,sj 1 §j <87 <o <s
We observe that the location s’ of the i-th broken slice, 1 <i < nf, remains in the cornpact
interval [0, L], so we construct a further subsequence, which we still denote by (k ;)22

that

PDj=18

Vie{l,2,...,ne}: lim s;‘. =s' €0, L].
Naturally it can be that some of the limiting positions of cracks s?, i = 1,2, ... ny, coincide
or appear at the endpoints of the rod, hence we rewrite

X :={si; O<si<L, 1<i<ns}={c' }l 1

where the number ny < < ns. Further, a = 0 and o™t = L.
Suppose 0 < n < 2 mmog,gnf loitl—o |.Ifj is large enough, then foralli,0 < i < ny,

: : 3 3
i i+1
+n, - + — A.
lo n,o nlN (x1 2k] , X1 2 )

Thus the regions [o? + 1, o't — ] x S are intact, so we can replace Wc(el)1 by Wy and safely
apply our results about purely elastic rods here (see [71, Theorem 2.4]). Specifically, 7%/ —
yinL2((o' +n, o' =) x S RY), Vi, 5% — R = (9y, F|da|d3) in L2 (0" +7n, 0! —
n) x St R3X3), and the x’-independent limit satisfies y € Hz((ai + 7, it — n); R3),
dy,d3 € H' (6" +1n, o't —1); R3), and R € SO(3) a.e. (We extracted another subsequence
without changing the subindices.) By passing to a diagonal sequence we find a single sequence
that satisfies convergence properties (i)—(ii) for any choice of 1. Moreover, the L*> bound
in (3.1) and the uniform energy bound in (3.4) show that indeed ¥ € P-H?(0, L; R3) and
R € P-H'(0, L; R3*3). Finally passing to yet another subsequence (not relabelled), we find
HE; —*u for some Radon measure p since (3.3) implies sup;, ux ([0, L]) < oo. ]

4 Main result

Recall the Hessian quadratic forms Q3 and Qs (x', -) of Wy and W,
tively.

Surf (x -) at Id, respec-

Theorem 4.1 If k — oo, we have E® EN Elim, more precisely:

(i) (liminf inequality) Let (y(")),i’oz1 be a sequence of lattice deformations such that their
piecewise dffine interpolations and extensions (f(k))]fi C H I(QE’“; R3), defined in
Sect. 2.2, converge in L*>(Q%*; R3) 10 § € L>((0, L); R?) for which there is a partition
(¢! )”erl of [0, L] such that 3| i ci1y € H' (', ¢™1) x SGR?), 0 < i < 7y
Assume further that for any n > 0 sufficiently small, we have ko, 7O - dy €
L2((0,L);R3) in L2((c' 4+ n, 't — ) x SR, s = 2,3,0 < i < fip (L
convergence). Then

loc”™

Eiim(3, da, d3) < liminf kE® (y®).
k—o00

@ Springer



A continuum model for brittle nanowires... Page110f37 243

(ii) (existence of a recovery sequence) Let y € L2((0, L); R3) be such there is a parti-
tion (g")f’;gl of 10, L] for which 3| w1y € H' (', ¢ R?), and let dy, d3 €
L2((0, L); R?). Then there exists a sequence of lattice deformations (y(k)),fil such that
their piecewise affine interpolations and extensions (i(k))ii] c H! QY R3) satisfy
30 — §in L*(QG R?), kag—;“ — dyin L{ (7, ¢ x S™GR3) for s = 2,3,
0<i<nys and

Jim kEQ D) = Ein (5, o, d3).
Moreover, if ||3 1| L (0,1):r3) < M and the cell energies satisfy the maximum interaction

range property (W9), then for any (§1)72, C (0, 1) with & \ 0 and ¢/ My — oo one
can choose y(k) such that ||y(k)||€oc(Ak;R3) <M+ .

The limit energy functional is given by
Elim (y, d2, d3) =
1 L 1 pT
3 /0 05 (R' 9y, R)dx;

+ Y e(Fo+) —F-). (Re=)""R(e+))
o€eS;USR
+00 otherwise,

if(y,da,d3) € A,

where R := (0x, y|d2|d3), Sg := Sy U Sa, U Su;, and the class of admissible deformations

A= {()7, da, d3) € (LY(Q: R*)3; 3, d, d3 do not depend on x, x3,
(y,dar,d3) € P—H2(O, L; ]R3) X (P—HI(O, L; IR3))2 as functions of x1 only,

(;Tyl ‘dz ‘ d3) € SOB3) a.e. in (0, L)}

The relaxed quadratic form Qgel : ]Rkaeiv — [0, +00) is defined as

0
oFl(A) = min Y Qtot<x’,%(A X —I—g)(—],—],—],—l,l,l,l,l)
00 000 000
Al 1 =1-1-1-111 +(62da|62da))
I—1—11 —111-1

_|_

N

“4.1)
with Quor(x', ) = Q3 + Quut(x', ), and ¢ : R x SO(3) — [0, 0] is introduced in (5.3).

Remark 4.1 1t follows from the positive semidefiniteness of Qo that the minimum in (4.1)
is attained. Basic code for approximating a minimizer of (4.1) can be found in [72].

Remark 4.2 The elastic part of our limiting functional includes a matrix expressing what
we call an ultrathin correction—it is the first term on the second line of (4.1). The term is
responsible for atomic effects that a continuum theory merely based on the Cauchy-Born
rule would not capture.
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Remark 4.3 Assumptions (W3), (W5) and the compactness result [71, Theorem 2.4] in the
elastic case imply that ¢ > ¢; for some constant ¢; > _O on R3 x SO(32\{(O, 1d)} (and
(0, Id) = 0). If (W8) holds true, then we also have ¢ < C; for a constant C; < oo.

Remark 4.4 The universality of the sequence ¢ obtained in (ii) would allow to impose an
L™ constraint energetically by simply setting E® (y®)) = +00if ||y®||oo > M + . One
then has a directly matching compactness result in Theorem 3.1.

Remark 4.5 The convergence of deformations used in Theorem 4.1 is equivalent to
3R, x") = §in L((0, L); R?) for every x" € £ and
Viy® > RIdin L2 ((¢', ¢ x §; R¥>*®) for 0 < i < iy,

loc

which shows the limit’s independence of our interpolation scheme.

5 Proof of the lower bound

The proof is divided into four parts.

5.1 First step—elastic part

Since the conclusion is immediate if the liminf is infinite, let us assume the contrary; ¥ — §
in Lz(Q; R3) and after extracting a subsequence,

lim kE® (y®) = liminf kE® (y) < oco. (5.1
k—00 k—00

Let (Ui)?igl s ijjz(k/), Wk, 1 be as in Theorem 3.1 and fix n > 0 small. Then by the results
about purely elastic rods ( [71, Theorem 3.1]), the bound

o R 1 oitl
lim inf > kw b (x’, y(k)(x)> > = / O (RT3, R)dxy,
k—00 ~ 2 Joigy
FeAp™
frek[o’+n,0 1 —n]
i =0,1,...,n¢, holds true. Since this is fulfilled for any 5, we can let n — 0+ and use the

monotone convergence theorem, as we will see later.

5.2 Second step—w*-limit in measures

For the crack contribution to the strain energy, we use the blow-up method of Fonseca
and Miiller [39]. We will not make a notational distinction between (y<’<>) and its hitherto
constructed subsequence (%)) any more, as this is not relevant for our I'-convergence proof.
Now note that S;USg C X1, where X| = {o! };’il is from the proof of Theorem 3.1. Write
H:=H1L (S5 U Sg). Decomposing u into an absolutely continuous part and a singular
part, we have
du

o a7 Ms
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with g > 0. The w*-convergence then gives (cf. [36, Th. 1.40])

ng

hfglcgfz Z kW(k)(A/ "(k)(x)) > (U(O-i _ r}’gl’ + 77)) > Z j—%(o’)

i=1 XGA’\CX[ i=1 UES;USR
R1ek(o—n,0+n)

The goal now is to find the asymptotic minimal energy ¢ = (3t —35~, (R™) "' R*) necessary
to produce a crack or kink and for every 1 < i < n¢, show that

du ~ i ~ i i -1 i
dﬂ(a )= @(3(0'+) — J(0' =), (R(c'=)'R(c'+)).

Let us expand the definition of the derivative of u:

r—0+ ’}:[([gi —r,ol + r]) r—0+ 1

By [38, Prop. 1.15] and [36, Th. 1.40], we can find r,, N\ O such that

A jow o oplo'—r.ol 4+  pllet —r,0l +7])
~(0') = lim = lim .

d
L o) = tim lim (o’ =0’ + 1)

dH

N ® (2 =02

= Jim, fim > kWl (2.5 O (@)
FeAp™

Riek(o —ry 0l +ry)

5.3 Third step—preliminary cell formula obtained by blowup

ol 4+r)toa
fixed interval (cf. [8, proof of Theorem 5.14, Step 3]) There is a sequence (k)2 | such that
ky, > n, rpyk, — 00,

du . n o= N
i (") = lim Z ky, thkl”)(x’, y(k”)(x)),
)Ee[\,’;;x‘

X1€ky (0! —rp, 0t +ryp)

as well as

5% — 52 dx;dx’

/(0"'—2r,,,tr"—}—2r,,)><Sexl

+/ Vi, 7% — R2dx < r? (5.2)
(o7 (=20, — 2 ra)U(E i 2rn) 1} x S5t

rn_ 2

and o? — ~ 2+ k < sk <ol + for every n € N and each of the (ﬁnitely many)

sequences (sk )52, of midpoints of broken slices satlsfymg lim,,— o sk = o'. Since the

restrictions of  and R to left and right neighbourhoods of o are H', we get for the rescaled
functions

Yy (wy) i= (o' + rawy),

R¥™(wy) := R(o" + rywy), wy € [—1,1],
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the convergences y*" — ypc in L2([—1, 1]; R3) and R*" — Rpc in L>([—1, 1]; R3*3) for
n — oo, where the piecewise constant functions ypc, Rpc are defined through

R(oi—) =R w; <0,
R(0'+)=RT w; >0.

J'=)=35" w <0,

wi) ‘= .
ypc(wi) i) = 5w >0,

and Rpc(wy) := {

We also set, for w; € [—1, 1],

5 (kn

y I wy, x") = 5% (6] +rwi,x'),

1 i .
Vit tt 5 (wy, x7) 1= (}jaw]u("")lknanu(k”)Ikn3X3y"‘")) = Vi, 7% (o) + rawi, x),

n
where U,f" = kfl,, lk,o! |. Then using (5.2), we getg(k") — ypc in L2([—1, 1] x $%t; R3) and

Vi kot — Recin LA, UL;1x S RP3), where I, = [—1, —3]and I} =[§, 1].
This gives the preliminary estimate with ‘converging boundary conditions’:

d : -
ad (e > min{lim sup Z k,,Wl(okt”)(x/, Y (k")(U)l,X/))§
dH n—>00 /

(wl,x’)eArn‘kn

y &) e PAFE(A,, 1), 70 \ O, ruky, — 00,

| |u (kn) (kn)

= ¥yG .3 R, RY),

- YPC||L2(1$xsEXt) =0, IV, 0™ — RPC”LZ(Ilfoe’“) - 0}

where

45wy, x) = e (y ) (

L)
n

Ak ;=( Lz Ly 2 ))xﬂe’“,

Tnkn Tk Tukp
N gy o= (o )N (1= 1)) e
ok N2k ik 2rpkn’ " 2k ’
and PAff(A,, ,) denotes the class of piecewise affine mappings v: [—1 — r,,]T,, 1+ ﬁ] X

Sext s R3 which are generated by interpolating their values from A, x, by the scheme from
Sect. 2.2. The minimum in ¥ runs over all sequences {r,} C (0, 00), {k,} C N and (g(k”))
with the above properties.

It can be shown by a diagonalization argument that the minimum is attained' this is
also the case in (5.3). From the translation and rotation invariance of chll we see that
VG, 5T, R, RY) = ¢ (3T —§7, (R7)™'RT) for a function ¥ : R? x SO(3) — [0, oc].

5.4 Fourth step—rigid boundary conditions in the cell formula

At last, we relate the preliminary cell formula i to the final cell formula which uses rigid
boundary conditions instead of L?-converging ones:

o3t =5 (R 'RT) = min{lim sup Z knWt(Okt”)(x/, 7 ®(wy, x));
n—o0

A
(wy,x )EAm kn

(w2 Gy (32)) € Vi L pype |
5.3)
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with

Vs

o re = [ (00 ()i 432 ) € (0,000 x N x PAFF(A, 1)

1 -

y &) (wy, x) = R(k" (rawi, k—x/)T + yf") on It x St r, \, 0,
n

rakn > 00, yE e B3, REV € 503), v - 5%, RE > RE],

“=[-1-3land IT =[3,1].

Remark 5.1 The particular choice

4wy, x') = RS (rywy, A )T +y(k”) ifw; <0,
1,X)= .
R(f")(rnwl, X NT 4+ i ) wy; >0

for given 37, 5~ € R and R™, R™ € SO(3) shows that, in case (W8) holds true, one has
¢ < C for some C; < oo.

We now show that we have ¢ > ¢. Suppose ¢ > 0 and that (1{.4("'1));:0:1 is a sequence
PAff(Ar, k,) such that

||14(k") - yPC”LZ(]élfxsexl) — 0, ||Vr,, kn u(k" RPC||L2([$><SGX1) -0 (5.4
and
limsup &, (y * . [-1, 1) < ¥ GT =57, (R T'RY) +e,
n—o0

where for any I C [—1, 1] we set

kn 7 (Kn
&, D= 3" da W (¢ G 4w, )
wieZ) ()
X/EL/,EXI

and £, (1) = (Zrl—kn + ﬁZ) N I. The definition of a rod slice in this section reads

) x S where w; = [rnkawy | +

Sk, (wi) = [i1 — 5. :
kn (wy) [wl 2k, wy + 2k Tnkn 2rnkn

Our goal now is to find a sequence v%#) which is admissible as a competitor in the definition
of ¢ and has asymptotically lower energy than y %), We provide the construction only

for v(k")l[il’o]xﬁ, as for v |(O x5 We could proceed analogously. Writing Iy, =
ﬁ(l_—%r,,knj + 1, I_—%rnknj) for a discrete approximation of 11// \ I~ from inside and
o= I_—%rnknj — I_—%rnknj -3 = jiif”(l(;n) — 2 for the number of (interior) slices

intersecting [, , ¥ Sext we introduce the sets

W = {wl € L', wi % o € £y,

V - 12

kn . n .

Z Z kn Wt(ot )(x/, V"nskny-(k )(wl + r,llkn , x’)) = ngn (y(k ), Io,n)},
ie{—1,0,1} x’eLhext -

(5.5a)
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Wi = [wl € L5, wi % € LI,

4
\% (kn) — R 2du) d,x/ < — ||V, (kn) — R™ 2 ~ },
/L;k" (w1) | rnwkny | 1 = N; || rn,kny ||L2(10’nxsexl;R3><3)
(5.5b)
Wy = {w1 e Z'(Uy,); wi + T € £'(g,),

4
(kn) _ 5—2 e () _ =—112 }
/Sk () |y— y | dlUldX =N~ ||1.L y ||L2(1(;,1XSQXl;R3) )

n
(5.5¢)
where V,, g,y i x) = k(G0 + S 8 4+ @) = iy +
ﬁz{, X+ (Zj)’))le. The sets Wi("), i = 1,2,3, are comprised of the midpoints of the
wi-projections of slices on which, loosely speaking, a certain quantity is below four times
its average. By Lemma 5.2 (see p. 19 below) with p = 4 we see that for every i € {1, 2, 3}

and n € N, the set Wi(") contains at least [(3/4)N, ] elements. The pigeonhole principle
then implies that for every n large enough there is w™ e Wl(") n Wz(”) N W3(n). Since
N, > %rnkn — 4, the inequality in (5.5a) and the finiteness in (5.1) imply an estimate in
integral form:

_ 48 _
Z rnkn/ ( leWl(oktn)(x/s Vr,,,kny_(k”))dwldx/ < kigkn(y—(kn)’ qun)
ie{~1,0.1) Sty W+ 2E) Tnkn — 16
C
<— (5.6)
nky

for a constant C. > 0. Hence we can employ the growth assumption on the elastic cell energy
Wo, properties of the extension scheme (cf. (3.2)), and [49, Theorem 3.1] (in unrescaled

variables) to get RY“”) € SO(3) such that

) _ glka) 2 < wk) (' ¥ ) duwy dx’
- IILz(sk"(w(,"));Rﬁx.?) = Z Sk”(ujgl)Jrﬁ) tot ( » Vi kn Y ) 1

1
- I Ivr,, Jn Y
¢ ie{—1,0,1}

for a constant C > (0. Combining the previous inequality with (5.6) we deduce that

kn k" 1
||Vr,,,k,,y.( ) - R(— )||L2(Skn(w(:”));R3x3) = 0<73/2> (57)
nky

Setting

1
yg{n) :f ‘la,[_(k")(wl,x/) — R@”)(rnwl, fx/)TdU)ldx/,
St (™) k

n

we achieve that a Poincaré inequality is satisfied, witha C > 0:

1
/ ly @) (wy, x) — RE (rywy, —x') T = y* 2dw; dx’
Sk (w(_")) k’l (58)

1
k) _ plkn)
S Ckn ||v’nxkng R— ||L2(Sk” (w(:‘));]R3><3)'
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Define v*n): [—1, 0] x St — R3 as follows:

(kn)(rnwl, i X )T + y(kn) —1< wy < w(_") _ 21‘:]%
v®) (wy, x") = { pew. affine (24 simplices/cell) w™ — 2r;k,, <w <w"™ + erkn
y & wy, x) 0= w zw(_")+ﬁ.
We claim that
lim sup &, (v%, [-1,0)) < limsup &, (", [—1,0)), (5.9)
n—oo n—oo
lim y* =5, 1im R* = g~. (5.10)
n—oo n—o0o

Concerning (5.9), we notice that for all n € N,

1 1
(k) (4™ ) _ ( Kn) (7, @)
&k, (y , (w_ + ok O) Ek, (-1, (w_ + S 0))

and that &, (v®) (=1, w"™ — ) = 0 since Yyt 0 &) = R*) {4 ¢ SO®3) on

(-1, w™ — 2r1k ) x S, Hence it remains to show that the energy on the transition slice

Sk, (w@) vanishes in the limit.

Lemma 5.1 The following is true:

tim_ g, (&), w® + LA D) + &, (0, 0 + %k (-1.1)) =o.
n

n— 00 2rnkn

Proof The proof is divided into several steps. Let Q = [w ™ _ 2r1k , w™ 4 2r,11 "] x Q,

where Q' = x’' + [—f 7]2 for some x” € £**, be any atomic cell contained in the slice
(n)
Sk, (w™).
Step 1. Using [69, Lemma 3.5] and (5.7), we can obtain the relation
_ 1
|V oy S ™, xy — R*Td1? < ryky / 1V, 5y & — R 2w, dw’ = o( k2)
(5.11)

with a constant ¢ > 0.
Step 2. We now compare Q(k")(wl, x’) and G %) (wy, x'). By construction we have
[g%)]; = [0%)],; fori = 5,6, 7,8 and from Step 1 we get, fori = 1,2, 3, 4,

(5% (wi, )i = 5% (i, x4
1 :
S )
o) () 4 L &
— RY (ryw "+k21, k*(x‘f‘Z)) )‘
< |V @ 61 = R

=00 "k

k| (g ®) — RS (1, (_n),kix/)T_

n

Property (2.1) of our piecewise affine interpolation, Holder’s inequality, (5.8) and (5.7) give
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ko 1
kot ©) = REV (™, =

n

)c’)T — y(_k")

1
= "nkg‘/ y & w) - R(_k")("nwl, Fw,)T — (_k")dwldw/
n
o

1 kn) !
< V1Qlraky —11Vr, 5y 4 — REV)) oy = (=)
Qlra 1 Wby L2(Sg, (w™);R3*3) rkn
-1/2

so that |4 ® (wy, x") — ¢ ®)(wy, x")| = O(r, "k, ") and, in particular,

_ _ 1
Vs it S ™ X'y = V080 (™, X)) = 0( )

rnkn

since V,,, k@ (", x) = 4 ®) (wy, 1) — § T8 15 @) (wi, x)14(1, ..., 1) and like-
wise for v &n) Together with (5.11) this shows that also v kn) gatisfies

19,0040 @, 5y = RETd) = o ) (5.12)

1
Srnkn
Step 3. Now we use that thkt") is independent of k,, on a tubular neighbourhood of

SO(3) of size O (k,; 1) and, by Taylor expansion, satisfies an estimate of the form Wé,kt”) <
Cdist?(-, SO(3)) there. Thus, (5.11) and (5.12) give

_ - 1
kn n kﬂ n J—
k"WtE)t )(x/, Vrn,kny(k )) + k"WtEn )(x/, vrn,knv(k )) - 0<r k )
n“n

This implies the assertion. O

The second convergence in (5.10) is a consequence of (5.5b), (5.4), and (5.7):

Tukp
IS Js, ™)

2rnk _
< |st:; (/ AR =y, gy ) Py
Sty ")

- / R =, 4,y 0 Pdw dv')
St W)

_ 2rnky 4

= |Sext| ) %Vnkn—4

|Rg€n) _ R—|2 — |R(kn) _ R—|2dwldx/

V5 a0y = R7II +o(r) —0
rnkn Y Lz(I(;nXS;R3X3) rnk% .

The first convergence in (5.10) follows similarly from (5.5¢) and (5.4) if we use (5.8) and
(5.7) to show that

27‘ k k
ISZXIT / |y — gy &0 2da, dx’

Sk (W

(kn) (k)12
< C[rn”Vrn,kn'g_ - R_ ||L2(Skn(w(l1));R3><3)

1 1.
S T
|Sext|rnk”|( ! ky kn)| ]

(n))

+ IR Pryk,
with a constant C > 0.
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In the same way, we could construct (R(k ))n 15 (y(k ))o":l, and v &) [(0.1]x sext and prove

a version of (5.9)—(5.10) on (0, 1]. Thus, as

¢(9+_97,(R*)*1R+)glimsupé’k( ) 11, 1)

n— oo

< lim sup &, (y(k”), [—1, 1]) < w(§+ -y, (R_)_1R+) + ¢

n—oo

and ¢ > 0 was arbitrary, the claim that ¢ < i is proved.

Lemma5.2 Letcy, ¢y, ..., cy be nonnegative reals and p > 1. Then
P o 1

je{l,...,N}; ¢; < — ]> 1—— .

sliet b NZ L= )N

Proof We denote by ¢ the average N ! > i€ If the statement were not true, the number of
c;j’s such that ¢; > pc would be greater than or equal to N /p. Hence

_ 1 I _N _
Zﬁ Z cj>ﬁpc;=

Ji ¢j>pc

but that is a contradiction. O

Summing up the elastic and crack energy contributions, we get

g
tim kE®®) > lim inf [E (2.5 w)
R R N
i=0 FeAp™

f1eklol +n,0i T —n]

+z > oWl (i)
EA/exl

Riek(i—n,0i+n)

i+ _
nf o n

>

i=0

O (R, R)dx;

N =

+ Z (y(a+> —§(@-), (R@—=)"'Re+).
oeS;US,
To obtain the I'-liminf inequality, we apply the monotone convergence theorem with n — 0+.

6 Proof of the upper bound

For a construction of recovery sequences it is crucial to first analyze the cell formula more
precisely. In particular, we will need to prove that the crack set is essentially localized on the
atomic scale.
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6.1 Analysis of the cell formula

Lemma 6.1 (localization of crack) Let =, 5+ € R and R—, RT € SO(3). Then for any
&+ > 0, there is an Ny € N, sequences {k,};2 | C N, {r,} C (0 00) and mappings g(k") IS
PAff (A, k,), n € N, with the following properties:

. + ~ ~ -
lim sup &, (y “, [=1, 1) < o(§7 = 37, (R ™'RY) + &, (6.1)
n—0o0
T(kn ) 3 (kn) (k ) fnde o
Tn N 0, ryky, — o0, and, for suitable yi" € R°, RY" e SOQ) with yy" — y=,
RED 5 R,

R (rwr, £)T 439 on (1=1, 01\ 1) x 5o,

g(k")(wl,x/) =1+4 k) —_—
Rsr”)(rnwl, ) + y( " on ((0, 17\ IC(")) X Sext,

”\*\?\*

where I(n) k [—Ny, Nyl

Proof Find (k,)>2, C N, (r)52, C (0, 00) with r, N\, 0 and lim, s 74k, = oo, and
(y %)% | C PAFf(A,, x,) such that

lim &, (u*, [=1,1) = o(5* = 57, (RD)™'R)
n—o0
and, for some y € R?, R%) € SO(3) with y& — %, RE 5 RE,

1 —
y &) (wy, x) = Rif”)(rnwl, k—x/)T + yi‘") on I% x Sext,
n

Recalling assumption (W5) on W, c(el”l) and passing to a subsequence (without relabelling it),

we can assert that there is an Ny € Ny, Ny < Co(G+t — 5, (R_)_1R+), such that for every
n, only the slices

. . 1 . 1 —
Se (s i=[s) — —— . 5/ Sexto o jed{l,..., Ng},
o (51) = s oSt Zrnkn) x Jjed t}

are broken in the sense from the proof of Theorem 3.1, where s,l < < s,l,v f are the

midpoints of the wi-projections of the broken slices and lim,,_, o s,{ =g/ e[-3 /4, 3/4].
This means that Vr” kn g(k") on the remaining ‘intact’ slices is cﬁ”)—close to SO(3). Then

=(n) LZ"nknJ 1 1 1
Il = [_7 »Sp — ]
rnky rnky, 2rnky,
- 1 1 - L LGk
n) _ 1.1 2 n) _ [ Nt a"nkn ]
1 - 3 - 3 ey 1 . - I
2 [Sn + 2rnkn Sn zrnkn] N+l S * 2rnkn rnkn

are the wi-projections of elastically deformed parts of the region surrounding the crack. We
fix a number N, € N (to be determined below) and denote by {I (")} io1 C {I jm }NH'l those

intervals f}l_") for which rnkn|l~j(.l_") | > 2N, + 4. On extracting a further subsequence, Ny =
Nuy(N)) is independent of n. We assume Ny > 0, since otherwise the next ‘rigidification’

procedure is redundant and it is enough to construct ¢ %») directly from y %) later. To shorten

I(") [a(”) rlk , bl(n)+rnkn]

As an 1ntermed1ate step, we now construct mappings g(k ») (illustrated in Fig.2b) which
have the property that middle parts of the segments II.(") x S§eXt are only subject to a rigid

notation, we set I [ —
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Fig.2 Main steps in the proof of

Lemma 6.1. Rigid parts of the rod (a) ’
are drawn in grey. a The original

mapping y(k"). b Rigidification

of rod segments to construct

a(k"). ¢ Subsequent shorte+ning
of the rigid parts to obtain g(k")

¢
o "

motion, instead of an elastic deformation. The complements of these middle parts contain
no more than 2N + 2 slices, where N, := |2N;Cg/¢x] + | and Cg is a positive constant
(independent of n and €,) that will be introduced in (6.5). The rigidifying procedure below
is presented for an arbitrary but fixed i € {1, ..., Ny}.

Procedure (R). As in [71, Theorem 2.4] (which is a reformulation of the compactness the-
orem in [61]), we get piecewise constant mappings R*»): I l.(") — SO(3) with discontinuity
set contained in ﬁZ, fulfilling

r,,/ IV, ki, y &) — R 2dw dx’
Skn(i)l)

Z Cra / f "ol dist2(V,., 1,4 %, SOB3)dwidx’ < 3Cr,|Sk, (B1)[(cX))? <
wi

m=—1

(6.2)

forallw; € [ai("), b;")) by [49, Theorem 3.1], growth assumptions on Wy, and bounds related
to our extension scheme (cf. (3.2)). Moreover, [71, Theorem 2.4] implies

1 2
R&D () — R®) (w +
Tk ( 'n n)
<C / dist?(V,, 1,y %, SO(3))dw;dx’ (6.3)
U]sk,,(w1+,nk )
for all wy € [a(") b("))
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We now define points that delimit the middle part of /; ) 5 gext (where y %) has to be

‘rigidified’) and the sets wm, W_ﬁ_ ") containing the wj-coordinates of cell midpoints left of
or right of this middle part:

NONRSON Ny o _ o Ny
0,i a; rnkn 70,1 i rnkn
1 1
(n) (n) (n)
14 —_— Z) N (a;
- (2rnkn + ks ) @ ag,7)
1 1
() (n) 4 (n)
Wy’ = Z) N (by:,b:").
+ (2rnkn * Fnky ) ( 0.i> ™ )

The next few steps, till (6.5), are similar to the proof of the inequality ¢ < v (cf. Sect. 5.4),
5o not all computations will be described in full here. We find w™ € W and wS:’) € WJ(F")
such that

ki) n 3 n
Z Z k Wti)t x Vrn kny(k )(wgl)—‘,—ﬁ,x/)) =< ﬁgkn (y(k ), (ai(n)’ag,li)))’

l=—1 x'eL/-ext *
k) ’ 3 g
Z Z k Wl(ot ()C Vrn kny(k )(w(n) l;cn ’ .X'/)) = ﬁgkn (y~(k )’ (b(()r,ll)’ bl(n)))
{=—1 x'eL/-ext *

Writing R{* in place of R*) (w{") for short and using that all the slices centred in W."
are intact, from the first inequality in (6.2) we get

Jkn
1V, sy & — RES)]

1
s = O /N;rnkn)'

Choosing vectors ¢ ch) as

e =]£ ( <n))g(k")(w1,x/) — RES (ry (wy — w), *x ) dwdv’,
ky (W.

we get Poincaré inequalities

\// o, ly &) (wy, x') — R( n )(rn(w] (n)) )T — c$)|2dw1dx/
Sty W n

(kn) _ (l kn)
<C— n
—= Ckn ||vrn,kny ||L2(Sk” (w( )) R3><3)

with a constant C > 0.
With the rotated and shifted version of y %), given by

. (n) (n)
(kn)(w x) = R(’ kn) [(Ri’k"))T(u(k")(wlax/) (n)) + ("n(w 0 — ))] —|—c(f),

6.4)
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set

y(k”)(wl,x/) alfn) _ ﬁ <w < w( n 1

= 2rnk,
w (:1) _ 1 (n)

pcw. affine (24 simplices/cell) e <wi <wll+ ﬁ
(n) 1

4w = P RED aun =), £ Tk w? i swr sl - pp

pew. affine (24 31mp11ces/cell) wﬂf) - erk <wp < w(+) + 2,:,(

(k”)(wl x") wr) + <wy < bl(") + rnlk"

2rn n

so that 11; *kn) s defined on Ii(") x Sext Besides, to prepare future rigidification on possible
next intervals, we redefine y *») by ¢y ®») := g(k”) on [b-(”)—i-#, 1] x St

After some calculations we deduce that on any atomic cell Q suchthatInt Q C Sk, (w(k”) ),

Wrmkny(k””Q - Rg’k")l_d| = O( ) and consequently,

«Kn

)

Nlk,/'

which implies that for all n sufficiently large, the energetic error occurring on the transition
slice S, (w(_k")) is controlled by our choice of N:

¥t 1o = RO = 0

() ™ 1Ly Z e (0 @ <G
€k, (u), w’ +2rnkn( 1,1) =&, ("), w! 2r”( 1,D)| < N (6.5)

*

It should be stressed that the constant Cg above does not depend on n or &,. Due to the

(kn)

definition of y; "/, an analogous computation reveals that (6.5) also holds if w™ s replaced

with w(”).

Later we will have to check that (y(k ))°° is an admissible competitor of (y %» ))"O in
the cell formula. Therefore we now show that the error incurred by the boundary condmon
due to the previous steps of Procedure (R) tends to zero.

By our interpolation scheme, on any atomic cell Q contained in Il.(") x S we have (cf.
[69, Lemma 3.5])

Ve u® 10|, <24 . Vst |dwidx’ < €|V, 1, y® 10| < €

since dist?(V,, 1, 4%, SO(3)) < (c(k”))2 This proves that the mappings y * ")I 2

frac are

X SCX[
Lipschitz with the uniform constant Cr,,. In particular,

lim ¢ —c™|=0
n—00

Since by iterating (6.3) we derive a ‘pointwise curvature estimate’ (as in [49, 61])

IR{S — RGP < o2k / o dis(V, g,y ), S0G)dwidy’ = 0 ()
Il." xS
we obtain for y(k”) from (6.4) that |gr(k") — y®)| — 0 uniformly.
This finishes Ppcedure (R) for tEe chosen i.
We construct y &) by letting y % (wy, x") = y%)(wy, x’) for every —1 < w; <

(m)_ 1
al rnkn

1,2, ..., Ny (it should be kept in mind that after each invocation of Procedure (R), g(k") is

and x’ € S and then by successively applying Procedure (R) for i =
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redefined on [b\" -1-r s 1% St g0 that in Step i + 1 we get the modified mapping y *»)
from Step i as input).

On( - |_4rnk ], 1] x §°x, we define g(/‘ ") as g(k ) =y ®) where y %) is understood
as the transformed mapping after the Ny-th step of rlgrdrﬁcatron

As we have seen above, the affine transformations given by (6.4) at each step vanish in
the limit. Hence, ((r,)52 . (kn)o. P (y(k )) ~1) € Vit —5- ()1 R+

To summarize, the sequence (1(4(]‘"))Oo satisfies

o(3" -5 (RT )*1R+)<11msupgk( ®n) [-1,1])
<e(3T -3 . (R)T'RT) +2Ny—

<o(FT =5 (R)T'R) + &,

(k)l

Now we proceed to construct the modifications 4 %) of 11 (k) which will have more

localized non-rigid parts (as depicted in Fig. 20)

kn)

k) . .
Since no confusion arises, we again use Ri and y( "’ to denote the rigid deformations

near the interval boundaries, i.e.

” ko LT o
y ) = RE (. ) 4

n

on [* x Sext,

Now we first extend Q ) rigidly to a function on R x Sext by requiring this formula to hold
true on (—oo, —%) x St and (%, 00) x S with the obvious interpretation of the + sign.

@ ") ﬁ’”) in place of w@( u))ﬂl)
i,n

If j = ji forsomei € {1, 2, ..., Ny}, then we write w_

from Procedure (R), respectively, to stress the dependence on i. We set d")
@in)
w

—L_ and also recall the definition of R“**" on this interval. Now consecutlvely do

the followmg steps fori € {1, 2, ..., Ny}, in reverse order starting with i = Ny:
y & )= y(kn)(wl’ *) wi < w4 %0
(i, x) =12 Gm) oy e glin) pliskn) @) '
y ™ (wy +d, XD —rpd WV RTT e wy > w5

¥ (wy, 2y = 4% (wy, 1), wy > w4 Sl x e s
This finally results in a configuration with

1
kn) kn)
4% (wy, x') = 3wy, x') = R (rnwl,k—x) +y¢

ifw; < —3,x" € S and
+ ‘~
y 0w, x") =y * i +d", x") = rpc™
I 7
— Ry_{n)(rnwh Fx/) + rnd(”)R_(,,]_(”)el _|_ y_(fn) _ rnc(”)
n
where d = "M, d@" and ¢ = Z,NU1 dCMRERD oy iy > 3 — g and ¥’ € SoX,

Observe that &, (g(k") [—1,1]) = &, (g(k") [—1, l]) for every n € N as we have only
shortened the intermediate rigid parts. Also, the length of the non-rigid part now satisfies

rnlk,, E’"""J —d® - %(—Ernknj +1) = r,,lkn (@N,+4) (Nt + 1) + Ny).

Setting N, = (2N,+4)(Nr 4+ 1) + Nt and shifting we finally obtain 11("") asclaimed. O

@ Springer



A continuum model for brittle nanowires... Page250f37 243

Remark 6.1 Lemma 6.1 shows that the choice of I in the definition of ¢ was arbitrary and
that a different positive length of 7% which still leaves a nonempty middle interval for fracture
would give the same value of ¢.

Our next task is to prove that the passages to subsequences (k,) can be avoided when
approximating the value of the cell formula.

Proposition 6.1 Suppose that 3~,5% € R3 and R~,R* € SOQ). Then for any
e« > 0 and any nonincreasing sequence {pk},fil C (0, 00) with limg_o pxr = 0 and

limg— oo pxk = 00 there exist deformations g<k): ([-1,1] x §) — R3 such that
(P> Oy, (AN € Vys 5 (g-y-1 g+ and
limsup & (g%, [-1,1) < 93T =5, (R T'RT) + &,

k— 00

Proof For a given &, > 0 we choose N, € N, a (without loss of generality nondecreasing)
sequence (k,)°° ,, and mappings y(k") € PAff(A,, k,) as in Lemma 6.1 so that

n=1>

limsup &, (4 ), (=1, 1) <p(57 =57, (R)'RY) + .,
n—oo
+ +
and, for suitable Y& e B3, R% € s03) with y& — 3%, R — R*, after a rigid
extension to the left and to the right,

/ —
(k")(wl x') = R( ”)(rnwl, Z ) + yg;" on (R \ IC(”)) x Sext
n
where 1V = ﬁ[—N*, Nyl
For each k € N find n; € N such that k;kl <k l< k' Set

— “ngp—1°

kny + Pk
Ko )

79w, x) =
k Tngkn,

wi,x'), (wi,x') € [—1,1] x §.
Like this, 4 ® is well-defined (as far as the boundary condition on / * x @ is con-
cerned), at worst for all k larger than a certain £ € N. If it is the case that k > 1, we

define y @V, ..., g(lg’l) as we like, e.g. by extending the boundary rigid motions to all of
[—1, 1] x St Then for k > k,

- - + Pk
Vﬂksky-(k) (U)1 ’ )C/) = Vrrtk’knk y-(knk)( wi, X/)
Ty Kny
and
- (kny) + oxk
ng?(x’, Vpk,kg(k)(wl,x’)) A AN ( V,nk,knku(k"k)(iwl,x/))
rnkknk
by assumption (W4) on the cell energy. This yields
(37 =57, (RDHT'RT) < limsup & (4 ©, [-1,1])
k— 00
< limsup &, (%), [~1.1]) < o(5+ — 5. (R)T'R") +e,
k—00

[}

The approximating sequence (y ¥)) around crack points can be chosen to be bounded in
L in a universal way—this is the content of
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Proposition 6.2 Suppose that 3~,53T € R3, R—, Rt € SOQ3) and ()2, C (0,00)
is a nonincreasing sequence with limg_ o ry = 0 and limg_, rgk = o0o. Assume that
y®: (=1,1] x 8% — R is such that ((r)f2 ;. ()21, (4 *)52 ) € Vv _5- g1+
with

1 —

y @y, 1) = RY (rawr, zx/)T + P on 1F x 5
for Rgf) — R*, Yi{) — % If the maximum interaction range property (W9) with rate
(M2, holds true, then there exists a modification 4 with (r)32,, ()32, (G *)2)) €

Vi+_5- (r-)-1 g+ such that

_ C
&GP, 1,1 = &P, [-1,1])] < msk(y“‘), [—1, 1]),
k

g(k) = y(k) on (I"UIT) x Sext and
. — k k
Idist(G ©, (v, y D lloo < CriMik&(y®, [—1,11).

Proof We write D(x) = x + {(r,%kzil’ (Z)); i =1,...,8)} for the corners of the cell with
midpoint X € A;k - Our strategy is to move back all pieces of the rod that are too far from

{y(_k), yﬁf)}. Fix k € N and consider the undirected graph & = (U, &), where U = A,,
and

roxtee e @ieA, ixx" e DO AP @) —yPahH < Mp).

Let &1, 8,,..., 6, be the connected components of &, numbered in such a way that
I~ x ﬁ) N Ay, € 61 and (It x ﬁ) N Ak € Gpg. Accordingly we partition
{2 2%, 28 = ZIHUZa(R)U - - - UZ, (%) for every X € Al ., where Z;(%) # 0, 50
that z/, 2" € Z,(%) for some € € {1,2,...,nz} if and only if there is iv € {1,2,...,ng}
such that x + %zj L X+ %zm € U, , the set of vertices of &;,,. Then the induced components
of atomic cells are far apart: for any x € A;k’k and 1 <i < j < ng, we have dist(y® (x +
Zi(x), yO (X + Z; (%)) = My.

Similarly as before we observe that the number of atomic cells ‘broken’ by y % is con-
trolled by the energy so that the number ng of connected components of & satisfies a bound
of the form

ng < C1&y®, [—1,1])

with a constant C1 > 0. The construction further implies that the diameter of each component
after deformation is bounded by

diamy X (V;) < CoMyrik, i=1,...,ng,

with another constant C, > 0.
For the first and last component we have

dist(y © (0)), (y®)) < CsMprek and dist(y® (V). YD < C3Merik.

If ng > 3, we can shift graph components &;, i = 2,...,ng — 1, without considerably
changing the total energy, provided we do not put the components at a distance less than M.
Specifically, for y = 2My + (Co + C3)Myrik < (2 + Co + C3)Myrik and |e|] = 1 with
® _ y(f) () 4+ (@ —1Dye,i =2,...,ng — 1, have a distance > y from

e lyy the points y*°
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each other and from { yﬁ(), y(k)} We then define 4 ® by shifting &; rigidly in such a way

that y* + (i — Dye e g0 @), i =2,....ng — L.
Then indeed the shifted components have the required minimal distances and moreover

dist(y ® (D), YP) < ngy < C1&W P, [-1, 1)@ + C2 + C3)Myrik,

i =2,...,nG— 1. The assertion follows now by noting that 4 ® = 3 ® on U, U U, and
C‘
&GO, (=1, 1) = & ®, -1, 1)) = Cay®, (-1, 1) -,
kM
as only broken cells have been altered. O

6.2 Construction of recovery sequences

Proof of Theorem 4.1(ii) 1t is known from the theory of I'-convergence that for any ¢ > 0
it suffices to find a recovery sequence with lim sup;_, o, kE® (y®)) < Ejin (5, da, d3) + ¢,
which is trivial if (y, d2,d3) ¢ A. In the case that (y,d»,d3) € A, let (¢! )"‘_ng be the
partition of [0, L] such that {o* }l 1 = S5 U Sg, where Sg := S5 U Sy, U Sy;. Depending on
the assumptions on y, d», d3, we treat two different cases separately.

First additionally suppose that 3| ,i-1 ,i) € C*((6"!, o) R?), dy|(yi-1 i) €
C2((c'~1,6");R3), s = 2,3, forall i € {1,2,...,7f + 1} and that R = (8;F|d>|d3)
is constant on the sets (00,00 + 7)), (ai -, ob), (of, 0! + n) i € {1 2 ...,ﬁf}, and
(aﬁf+1 n, o™+ for some n > 0. If k € N, write I} := [—+, ko' |1, IF = [{ ko' ] +
£ plko™ Tfori =1,2,.... s — land I} :=[{ ko™ | + 1, L + k].

Our analysis of elastic rods in[71, Section 3.4] shows that for a suitable choice of (-, x') €
¢l ([0, L]; R3) for each x’ € £ and of ¢ € C?([0, L]; R3), by setting

1 1 1 1
FO () = F) + L () + 2xad () + g () + 5 A),

x €{0, f. ..., L} x £, (6.6)
appropriately extended and interpolated on [—%, R %] x S one has 7% - Fin
L?on (0, L) x St as well as

> kW (1, 1, Vi3 ® () —

xe{—ﬁ,Lk-ﬁ-ﬁ}xL’“‘

and

k / W& Vi 5®)dx
Sext

‘“f, / Qtot(x RT ) (o 0. 7207+ 2L ()] Ta

- RT(xl)a—m(xl)[z'i(o, BT + RT(xl)(ﬁzdmxwz‘iﬁ(x)))dx (6.7)

=3 . [ 05 (RT e g oY 4o ©8)
-2 ol gext 3 8)(1 ' '
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Indeed one can choose 8 = 0 and ¢ = 0 on (¢, ¢! + Hu (oit! — %,cri*l) as R by
assumption is constant on a neighbourhood of these sets. So we have

FO ) + RO —of 1T forxi € (o, 0" + 1),

f(k)(x)=~-1 1 i1 T i+1 i+1
V') + R () =TT forxg € (07— J. 0.

We now update 7* by replacing portions near the jumps o’ (and matching all parts by
applying suitable rigid motions). Fix a sequence (r¢)7; such that rp — 0 and rik — oo.

By Proposition 6.1 foreachi = 1, ..., ny we can choose gl.(k): ([—1, 1] x S§ext) — R such
that ((Vk)]?ip (k)]?il’ (g(k))zil) S V§(0i+)7§(gi7),(R(O'i7))71R(O'i+) with

: 1 , _
y® @i, x) = RE? (rywy, FC/)T + 350 on I x s
for REY — R(o'+), y&? — §% which satisfies the energy estimate
limsup & (), [=1,11) < pG@'+) = 5(0'=), Re'-) 'R +) +e. (69
k— 00

Let Hy r(x) := (l(xl — o), x’) for any r > 0. Noticing that )7(") is rigid near a jump as

are the 745( near £1, we can now define a modification yt((lft) of % by setting

7P (x) % x; <o} — Tk,

~(k)( )= 0(,]“)14,(]{) e () + &P ol —re<x1 <ol +re i=1,.... 0,

Yot X _

ot Of’)y(k)(x)—}—cgfl) ok—i—rk < X1 fa,i+1—rk, i=1,...,nr—1,
Of’”f)jz(k)(x) + cf’nf) ot e <x1 <L+ %,

where 07 € SO(3) and ¢*” € R3 are such that

ki—1) ~ k,i—1 i i
PNCOINCIN ki) _ 0L V50 4 &0 on (of — 1o = Fr) x 57,
_ Y, + (kz) (k) (kl) i3 i ext
o +c 0n(0k+4rk,ok+rk)xS

fori = 1,...,nt (and we have set O(k 0 =1d, c (k 0. = 0). Since Ri RN R(oi4),

yED 5% we get 05 5 Td and ¢ — 0 as k — 0. Thus we still have ﬁt((];t) — ¥

in L2((0, L) x SeX). By (6.8) and (6.9) the sequence yt(ot) satisfies the envisioned energy
estimate

lim sup kE(k)(ft(é?) < Eiim(3, d2, d3) + Ce.
k— 00
It remains to observe that in case (W9) holds true with some sequence of rate functions

(M2, and ||¥]|co < M, then for any ()72, C (0, 1) with & \ 0 and & /M — oo one

can choose it(ol) such that ||yt((lft) [loo < M + &. This is clear by construction for i(k) in (6.6)

instead of y ymt since ¢ > k The bound is indeed preserved by the passage to jzl((ft) due to
Proposition 6.2 once we have ry Mk < ¢;. As Proposition 6.1 allows us to choose r; N\ 0
as fast as we wish as long as riyk — o0, the claim follows.

Now let us assume that y, do, d3 are general as in Theorem 4.1(ii). Interestingly, a related
approximation problem was treated recently by P. Hornung. [54] However, a more elementary
construction is sufficient in our case. By a density argument, it is enough to show that there

are sequences (ytl))] 15 (d(’)) s = 2, 3, such that:

j=r
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(i) for every j and all i .e {1,2,.‘.,ﬁf + 1}, the functions satisfy yf({l)|((,f71,(,f») €
@ 0 RY, dy i1 iy, 4 it gy € CA((@' ! 07 RY) with Ry =
(00, 7212571457 constanton (o7 —n;, o) fori € {1, ..., ag+1}andon (o7, o' +7;)

fori €{0,..., 7}, and (52, di”, d) e A;

i) 5 — §in L2((0, L); R3), RY) — R = (3,,5|da|d3) in H' ((0'!, o); R3*3) for
any i € _{1, e l’_lf'+ 1}

(i) EimG&, dS, d\") — Eim (3, da, d3), j — oc.

Let (n;) be a positive null sequence. For each i € {1, 2, ..., nf + 1} we find an approx-
imating sequence (Ié(j)l((,[—lﬁi)) C C3([o'7!, 61]; R3*3), such that RY) is constant on
(7', ¢'=! + 1)) and (¢' — nj,0%) and RY — R in H'((c'~!, o"); R>*3) so that
RY) — R uniformly in (¢'~!, %) by the Sobolev embedding theorem. Then we project
RYD (x1) for every x; € (6'~!, o) smoothly onto SO(3) and get a sequence {RV)} C
Cl(oi Y, oi); R3*3) of mappings with values in SO(3). This implies that RY) - Rin
H' (07!, o), R¥3) fori = 1,2,...,7i¢ + 1.

We write RV = (3, 5D|d1dy") for di,d e C2(jo'!, 6']; R?) and 5 €
C3(lo'~", o']; R3) such that 39 (o'~ '4) = §(o'~'+); thus we have (77143 |d\) € A.
To avoid issues with crack terms, we rigidly move the pieces of the rod so as to obtain a
Jj-independent contribution from the cracks that is exactly equal to the limiting crack energy.
We set

5l 0) = 09 D5D () 4 cUD and aV = 0UDaY, s = 2,3,

ifol™! <x; <o’ i=1,2,....71+ 1, where 0V € SO(3) and ¢/ € R? are defined
consecutively by 0U-? =1d, ¢U:? = 0, and requiring that

Fol (') = 55 (0’ -) = F(o'+) = §(o'-)
and [Ry! ('™ RG) (0'+) = [Re' )17 R(o'+)
fori = 1,....71 RY) = (3,52 1dy”1dy"), j € N. By frame indifference, the elastic
energy is not changed by such an operation. Noting that 0Y-)) — 1d and ¢+ — 0 for
J — oo, we see that these mappings are such that (i)-(iii) hold (for (iii) observe that the
integral in (6.7) behaves continuously in R with respect to the topologies used here). O

7 Examples
Finally, we list a few examples of mass-spring models treatable by our methods: a model with
rather general pair interactions, the so-called truncated and shifted Lennard—Jones potential

(LJTS), ‘truncated harmonic spring’, and a simplified highly brittle model.

Example 7.1 As general nearest-neighbour (NN) and next-to-nearest-neighbour (NNN) inter-
actions on a cubic lattice, we can consider

1
EOG) =5 3 WRIIE) = 5@

f*ai**EAk
[ s —Xsr | =1
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1 [P(E) — P (E)]
+5 Z W&N(M—M)Jr?fk(y), (7.1
2 L N ﬁ
X, X € A
|/€*_)€**|=\/§

where y: Ay — R3, $(%) = ky(%)%), % € Ay, and WIEI];)I WIEII;)IN satisfy the following list of
assumptions:

PD) WIEI];)I(N) : [0, 00) — [0, o0o] is continuous and finite on (0, co) and WIEI];)I(N) (r)y=0if
andonly if r = 1;
(P2) there is a sequence (C]Sk));:il with clfk) N\ 0 and limy— oo k[cgk)]2 € (0, co) such that

k
WIEH\),(N) (r) = Wonnew (r)

forallr € (1 — cék), 1+ clgk)), where Wonn) is of class €2 and Wé’NN(N)(l) > 0;

(P3) Wina @ = Wymeo@ if 1 € [0.1 = 10 [1 + ¢, 00): the function
WIEI];)I(N) is bounded from below by EI(\I;KI(N) such that kEﬁ(K](N) — NNy > 0 and
(k+ I)WIEI];IJF(II\I)) > kWIg;)I(N) for every k € N;
(P4) Wi () = oy + £ () if r > kM for My — 0 with kM, — oo,
RN (1) = 01, r — 00, and limy o0 kg ) € (0. 00).
To guarantee preservation of orientation, in (7.1) we have included a nonnegative term X (y)

that gives rise to X(k) below. Thus E%) can be written in the form (2.2) as a sum of cell
energies with

PR ISP 1 o (19— ¥l -
Wc(el)l(Y)=g ) WIEH\)I(|yi_yj|)+Z > WIEH\)IN(il J)+X(k)(y)

lzi—z/|=1 FEENG) V2
(7.2)
for y = (91| - - - |$3) € R3*3 and the functions Ws(fr)f’ Wéﬁ constructed in a similar manner

to account for surface contributions to atomic bonds lying on the rod’s boundary (see [71,
Subsection 2.4]). The frame-indifferent term x ®, C/k > x® > 0, penalizes deformations
that are not locally orientation-preserving, i.e. it is greater than or equal to ¢/k, ¢ > 0, on a
k-independent neighbourhood of O(S)IH\S_O(B) and vanishes otherwise (see [46, 66]). An
alternative to penalties such as Xy and 5% is cell energies with O(3)-invariance, see [27,
Section 2.4].

It can be shown that potentials erﬁ\)l, WIEI];)]N as above make the corresponding Wc(§1)1
admissible, i.e. (W1)—(W6), and (W9) hold (W9) is a consequence of (P4)). In particular,
the truncated and splined Lennard—Jones potential from [53] and versions thereof fall under
this case, with appropriately chosen parameters.

Example 7.2 Let

1 2
WLi(r) =d (m - 76) +d,

where r € (0,00) and d > 0 is a parameter (note that lim,_.o Wrj(r) = d and
argmin, ., Wrj(r) = 1). Further we set

Wri(r) re(,1)

(k) —
Wilirs ) = {min{Wu(r), 1 rell,00)
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We again consider pair interactions, so the cell energy function takes the form (7.2) with
WL(J)TS in place of WIEI];)I and WIEI];)IN The property (k + l)W(kH) > ch(:l)l can be proved by
discussing for each bond if it is deformed elastically or if the truncation is active. Computing
the value of r beyond which truncation applies in WE’;)TS, we observe that assumptions (W3)
and (W5) hold with cﬁfa)c = [Jd + Jd]k — §d = ({1]k)]/(2Yd — (1/k)) and W being the
sum of Lennard—Jones interactions with no truncation. By the properties of V2 Wy (Id), the
estimate CWo(y) > dlstz(Vy SO(3)) holds with a constant C > 0 and the usual symbol
Vy denoting the discrete gradient of y € R3*8 (¢f. [66, Lemma 3.2 and Section 7]).

Moreover, we claim that if dlst(Vy, SO@3)) > cg(;c, then Wc(fl)l(y) > min{1/(8k),
cﬁfa)c /C} =: Eik). Indeed, as long as Wc(é?l@) < Eik), the cutoff is not active in any

interatomic bond (the arguments of WL(]})TS are close enough to 1) and thus W C(fl)l ) = Wo(y)
so that dist(@&, SO3)) < ¢®  This shows the second part of assumption (W5).

frac*

Example 7.3 For the functions

4
min{ Wharm (), 2} r > 1
Wharm (r) = K (r — 1)2, W{,’I‘_;(r) — harm T

min{ Waam (1), 8} r < 1

with positive constants K, chH, Cyyy» One can similarly find cér d)c and c(k) so that Wc(el)l defined

by (7.2) with WIEI];)I and WNNN replaced by Wq(]f{) is an admissible cell energy.
Example 7.4 Another simplified model can be obtained if we set
k) - . o —(k
W) = min{Wo(5), &)
and cw, Egk), and frame-indifferent Wy are as in assumptions (W3), (W5). This corresponds
to Wk = Egk) and the cell formula then reduces to ¢(u, R) = (#£')cwcy, where ¢ =
limg_ oo kEgk), for any u € R3 and R € SO(3) except (u, R) = (0,1d) (specifically, we

use sublevel sets c_)f Wy instead of distz(ﬁﬁ, SO(3)) to define the threshold distinguishing
between Wy and W& but our findings remain valid in this case as well).

8 Explicit calculation of crack energy

For mass-spring models, it is possible to simplify further (5.3) in specific situations.
Proposition 8.1 If EX) is given by (7.1) and assumptions (P1)—(P4) hold, together with
(P5) limy_ oo le%\)I(N) (rr) = wNN(N) for any sequence ry — o0,
for WIEII;\)] and WIEII;)IN, then
o, R) = (200NN + 30, %)) € £7 ¥ — x| = Donnn
forany 0 # u € R and R € SO(3).
Proof Step 1. The mapping v® defined as
® oy 5"y = {R(_k)(rkwl, LenT 4% on[—1,0] x s

Rf)(rkwl, )T+ ySf) on [r; k=1, 17 x $°
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RY €503), y¥ e R, R¥)TIRY - R, ¥ — ¥ = u; 17! - 0 asolb),
and interpolated to be piecewise affine (+*) € PAff(A,, x)) has the property that
Jlim &0 ® =1, 1D) = @Oowy + 3G ) € £% 13 = x| = Honnn.
— 00

Thus we find that ¢ (u, R) is less than or equal to the right-hand side in the above equation.
Step 2. Given ¢ > 0, we find sequences ((rx)72 |, (k)72 |, (g(k))}fo:l) € V. r such that

limsup & (y®, [—1,11) < o, R) + &, (8.1)

k— 00

using Proposition 6.1. Set

- 1 3 5 1
Wl(k) = rkik{L_rkkJ‘i‘E! L_rkkJ+§v R erkJ_E]

We show that the nature of our pair interactions causes at least one large gap in the spacing
of atoms within each fibre which the rod consists of.

Claim 1: For each x’ € £ and every T > 1 there is a ko € N such that whenever k > ko,
we can find some w; € Wl(k) satisfying

@1+ gz, ¥ =y ® @1 = g X

>T.
1/k

Proof of claim: 1f the converse were true, there would be a T > landan increasing sequence
{kn}52, C N such that for all w; € Wl(k"):

(kn x| < T.

K|y ) (g + ) =y ® @@y —

1
21k, kn 21k, kn

Then we would get
0 # lul
_ 1 B
= ’u(kn)(max Wl(kn) X — g(k")(min Wl(k,,) _

2rknk,1’
Z |y.(k”)(a)l +

ﬁ)lewl(k")

!
: G
gl o)

IA

x) =y &)@y — x|+ 0nsoe (1)

1
21k, kn 2rk, kn

ky ~
=< zrk,,le + 0p—soo(1) = 0,
n

which is a contradiction.

Step 3. A similar argument applies to NNN bonds (‘diagonal springs’)—if we use zigzag
chains of atoms instead of straight atomic fibres. We state the corresponding claim without
proof.

Claim +/2: Foreach (x', x.,) € £ x L with |x, —x'| = 1 andevery T > 1 thereisakg € N
such that whenever k > ko, we can find a j € N and w; = rkik(L—rkkJ + 2j2—+1) € Wl(k)
such that g(k) from (8.1) satisfies:

[y O @1+ D g ) — g V@ CY gl
>

V2/k
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Step 4. Since Claims 1 and +/2 hold for every approximating sequence (y *)2 | fulfilling
(8.1), we get

(ELoNN + (X, x]) € L% |x' — x| = Jonnn < 9(u, R) +¢.

As this is valid for any ¢ > 0, the desired conclusion follows. O

Proposition 8.2 Under the assumptions of Proposition 8.1 and further supposing
(P6) WIEIIE\)I, WIEIkI\)IN are nondecreasing on [1, 00),
we have
0 < (0, R) < ¢(u, R)
for any R, R € SO(3), R #£1dand 0 # u € R3.

Proof The first inequality was shown in Remark 4.3.

As to the second inequality, Proposition 8.1 implies that for a nonzero u, the crack energy
¢(u, R) is independent of R, hence we limit ourselves to the case R = R without loss of
generality. If R € SO(3) and u € R3 \ {0} are fixed, it is enough to find a sequence (v(()k))gil
of deformations admissible in the definition of ¢ (0, R) such that

limsup & (v; [—1, 1) < (EL)onn + B, x1) € £25 |x' — xL| = Jonnn

k—00

by Proposition 8.1. Fix k € N and let v ®, R(ik ), rk, and yi( ) be as in the proof of Proposition
8.1 with our new definitions of R and u. We define

111,
FEi= R (% o o) 40P e )
sl Egppy) T
and observe that dist(F T, F7) = Iyﬁf) - y(_k)l + O(%) = |u| 4+ 0k—o0(1). Now we choose
x;, € L and consider configurations with shifted right parts, given by

R (rewy, 1) T 4 y® on [—1, 0] x §&

(k) logy —
v (wy, x5 1) =
( ) :Rglf)(rkwl, %x’)—r + yﬁc) — c(()k)(t) on [r,:lk_l, 1] x S,

where ¢ (1) = t[v® (L. xp) — 2@, x{)1, ¢ € [0, 1]. We then define 1§ to be the
smallest ¢ € [0, 1] such that

1 1 1 V2

k . k ) k . k .

|v()(rk—k,x’, t)—v()(O,x’, t)|:% or |v()(—,x;,t)—v()(O,x;*,fﬂ =7
forsomex’ € £, orelse, x}, x}, € £ with |x, —x],| = 1, respectively. By construction such
ték) € (0, 1) exists if k is large enough and we have |c(()k) (t(gk))
v(()k) =uv®(.: ték)) and recalling (P6) we find

— u|— 0 as k — oo. Setting

&P =1, 1) < Lo + 8, xL) € £2; |x' — xL| = 1}onnn — min{oxn, oxand-
(8.2)

We still need to check that the sequence (v(()k)),‘:‘;l thus constructed satisfies the correct
boundary conditions for ¢ (0, R). But this is clear, since | yff) — cék) (to(k)) — y(_k) |— 0. O
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9 Discussion

Our work makes a contribution to the modelling of elastic-brittle ultrathin structures, but as
such, it could be certainly extended in various directions.

We remark that the situation becomes considerably more difficult for plates due to a much
richer phenomenology of crack and kink patterns. For bending-dominated configurations
also severe geometric obstructions that result from the isometry constraints are encountered.
A first step has recently been achieved in [64], where a ‘Blake—Zisserman—Kirchhoff theory’
has been derived for plates with soft inclusions.

From the point of view of applications, it would be interesting to extend our findings to
other crystallographic lattices (such as diamond cubic as in [57] or zincblende), heterogeneous
nanostructures with several different types of atoms, or to study the influence of lattice defects.

The model could also be studied computationally (e.g. numerical approximations of the
cell formula could be implemented).
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