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Abstract
Weconsider the vectorial analogue of the thin free boundary problem introduced byCaffarelli
et al. (JEurmathSoc12:1151-1179, 2010) as a realizationof a nonlocal versionof the classical
Bernoulli problem. We study optimal regularity, nondegeneracy, and density properties of
local minimizers. Via a blow-up analysis based on a Weiss type monotonicity formula, we
show that the free boundary is the union of a “regular” and a “singular” part. Finally we use
a viscosity approach to prove C1,α regularity of the regular part of the free boundary.

Mathematics Subject Classification 35R35 · 35B65 · 35N25 · 35R11 · 43A46

1 Introduction

In this paper we are interested in the vectorial version of theminimization problem introduced
in [6]. Precisely, given a regular open set� ⊂ R

n+1, we consider the vectorial free boundary
problem

min

{ˆ
�

|∇G|2 dX + Ln(� ∩ {|G| > 0} ∩ R
n) : G ∈ H1(�, R

m ), G = � on ∂�

}
, (1.1)

with boundary data� = (ϕ1, . . . , ϕm). Since the free boundary lies on the lower dimensional
subspace {xn+1 = 0}, such a problem is usually called a thin free boundary problem. With
a slight abuse of notation, whenever it does not create confusion, we will denote with G
both the local minimizer in R

n+1 and its trace on R
n × {0}. Since we are developing a local

analysis, it is not restrictive to assume� = B1 ⊂ R
n+1. Hence, given a ball B ⊂ B1 ⊂ R

n+1

and the following class of admissible competitors (say � ∈ H1(�)),

K(B) = {G ∈ H1(B, R
m), G = � on ∂ B},
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we say that G is a local minimizer of

J (G, B1) =
ˆ

B1

|∇G|2 dX + Ln(B1 ∩ {|G| > 0} ∩ R
n), (1.2)

in B1 if it minimizes J (G, B) in the class of competitors K(B), for every ball B ⊂ B1.
Similarly G is a global minimizer in R

n+1 if G is a local minimizer on every ball B ⊂ R
n+1.

The scalar one-phase case G = g ≥ 0, was first investigated by Caffarelli, Roquejoffre
and Sire [6] in relation with the theory of semi-permeable membranes and models where
turbulence or long-range interactions occur, for example in flame propagation and also in
the propagation of surfaces of discontinuities (see [6, 16] and references therein). Moreover,
the authors considered this free boundary problem as the local realization of the classical
one-phase problem (also called the Bernoulli type problem) for the fractional Laplacian.

They proved general properties (optimal regularity, non-degeneracy and classification of
global solutions) for local minimizers, corresponding to those proved by Alt and Caffarelli
in their pioneering paper [3] for the standard one-phase Bernoulli problem (see [9, 26] for a
comprehensive survey of the results in this setting).

A major step toward understanding the regularity theory for thin free boundaries was then
obtained in [10], where the first author and Roquejoffre introduced the notion of viscosity
solution to the Euler-Lagrange equation associated to the minimization problem:

{
�g = 0, in B+

1 (g) := B1 \ {(x, 0) : g(x, 0) = 0},
∂g

∂t1/2
= 1, on F(g) := B1 ∩ ∂Rn {(x, 0) : g(x, 0) > 0}, (1.3)

where

∂

∂t1/2
g(x0) = lim

(t,z)→(0,0)

g(x0 + tν(x0), xn+1)

t1/2
, x0 ∈ F(g),

with ν(x0) the unit normal to the free boundary F(g) at x0 pointing toward {g > 0}.
In [10] it was proved that in any dimension if the free boundary F(g) is sufficiently “flat”

then it isC1,α . Afterwards, in a series of paper [11–13] the first author and Savin improved the
known results by answering the question of whether Lipschitz free boundaries are smooth. By
combining variational and nonvariational techniques, they also showed that local minimizers
have smooth free boundary except possibly for a small singular set of Hausdorff dimension
n − 3.

Recently in [17] the authors used the Rectifiable-Reifenberg and quantitative stratification
framework ofNaber-Valtorta to proveHausdorffmeasure and structure results for the singular
set.We remark that in [1] the authors removed the sign assumption by considering a two-phase
problem with thin free boundary, in the same spirit of the classical work of Alt-Caffarelli-
Friedman [2]. While in [2] it is proved the existence of a common free boundary between the
two phases, in [1] the authors showed that positive and negative phases are always separated
by nontrivial dead core.

On the other hand, in [7] the authors initiated the study of free boundary problems where
several flows are involved, and interact whenever there is a phase transition. Indeed, this
problem describes stationary thermal insulation, allowing a prescribed heat loss from the
insulating layer. Similarly, this set-up arose in population dynamics where several species
coexist, and overflow the patches. While in the case of competitive systems it is well known
that competition gives rise to the so-called junction points, under cooperation the solutions
tend to congregate and to show a smooth free boundary.
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In [7, 20], the authors considered the classical Bernoulli problem,

min

{ˆ
�

|∇G|2 dx + Ln+1(� ∩ {|G| > 0}) : G ∈ H1(�, R
m), G = � on ∂�

}
, (1.4)

and applied a reduction method to reduce the problem to its scalar counterpart by assuming
nonnegativity of the components. This assumption was successively removed in [21]. As
expected, in this case the structure of the singular set changes and the set of branching points
Sing2(F(G)) arises, as natural in two-phase problems (see also the recent work [8]).

Recently, in [15] we developed a vectorial viscosity approach to understand the regularity
of the free boundary in (1.4), which takes advantage of the fact that the norm |G| is a viscosity
subsolution to the scalar one-phase problem.

We also remark that as pointed out in [18–20], problem (1.4) is related to a class of shape
optimization problems involving the eigenvalues of the Dirichlet Laplacian.

1.1 Main results and organization of the paper

In the first part of this paper, we consider the classical questions of optimal regularity, non-
degeneracy, and density estimates for local minimizers to (1.2). Then, we derive aWeiss-type
monotonicity formula, which allows us to use a blow-up analysis and characterize global
blow-up limits, which in turn leads to the definition of the regular and singular part of the
free boundary. In the second part of the paper, we prove that local minimizers are viscosity
solutions (see Sect. 5 for the precise definition) of the vectorial thin one-phase problem
(A0 > 0 a precise dimensional constant):{

�G = 0 in B+
1 (|G|) := B1 ∩ {(x, 0) : |G(x, 0)| > 0};

∂
∂t1/2

|G| = A0 on F(G) := B1 ∩ ∂Rn {(x, 0) : |G(x, 0)| > 0}. (1.5)

Thus, the analysis of the regular part of the free boundary can be carried out with the viscosity
methods developed in [10, 15]. Combining the two parts we obtain the following main
theorem.

Theorem 1.1 The problem (1.1) admits a solution G ∈ H1(B1; R
m). Moreover, any solution

is locally C0,1/2-Hölder continuous in B1 and the set {|G| > 0} ∩ {xn+1 = 0} has a locally
finite perimeter in B1 ∩ {xn+1 = 0}. More precisely, the free boundary F(G) is a disjoint
union of a regular part Reg(F(G)) and one-phase singular set Sing(F(G)):

1. Reg(F(G)) is an open subset of F(G) and is locally the graph of a C1,α function.
2. Sing(F(G)) consists only of points in which the Lebesgue density of {|G| > 0}∩{xn+1 =

0} is strictly between 1/2 and 1. Moreover, there is n∗ ≥ 3 such that:

• if n < n∗, then Sing(F(G)) is empty;
• if n = n∗, then Sing(F(G)) contains at most a finite number of isolated points;
• if n > n∗, then the (n−n∗)-dimensional Hausdorff measure of Sing(F(G)) is locally

finite in B1 ∩ {xn+1 = 0}.
As already remarked, in the local analogue [21] the authors proved the existence of a

closed set of locally finite (n − 1)-Hausdorff measure of branching point Sing2(F(G)). This
set consists only of points in which the Lebesgue density of the positivity set {|G| > 0} is 1
and the blow-up limits are linear functions: this blow-up analysis implies that cusps pointing
inwards, might appear. While in the local case this feature is natural, in the thin case the
picture changes. Indeed, as pointed out earlier in the thin two-phase problem the positive and
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negative phases are always separated thus the problem reduces locally back to a one-phase
problem.

The main theorem of the second part is independent of the minimization problem and it
reads as follows.

Theorem 1.2 Let G be a viscosity solution to (1.5) in B1. There exists a universal constant
ε̄ > 0 such that if G is ε̄-flat in the ( f , ν)-directions in B1, i.e. for some unit directions
f ∈ R

m, ν ∈ R
n

|G(X) − U (〈x, ν〉, xn+1) f | ≤ ε̄ in B1,

and

|G|(x, 0) ≡ 0 in B1 ∩ {〈x, ν〉 < −ε̄},
then F(G) ∈ C1,α in B1/2.

In the viscosity setting, differently from the local case treated in [15], the reduction from the
vector valued problem to the scalar one, is almost straightforward and hence most technical
results leading to the proof of Theorem 1.2 follow from slight modifications of those in [10]
(see Subsection 6.1).

Remark 1.3 As in the scalar case, in light of the extension facts related to the half-laplacian
our theory applies, among others, to vectorial Bernoulli type problem involving non local
energies, like, for instance the solutions to the following problem (when s = 1/2):

min

{
m∑

i=1

ˆ
R2n

∣∣gi (x) − gi (y)
∣∣2

|x − y|n+2s dxdy + Ln(B1 ∩ {|G| > 0}) : gi ≡ ϕionR
n \ B1

for i = 1, . . . , m

}
,

where B1 = B1 ∩ {xn+1 = 0},� = (ϕ1, . . . , ϕm) ∈ H1/2(Rn; R
m) is the boundary data in

R
n \ B1. In this regard, our results extend the theory of vectorial free boundary problem to

the fractional case.
In the same spirit of [18–20], since our methodologies are quite robust, we believe that

our results can be extended to the case of almost minimizer of (1.1) (see [14] for the theory of
almost minimizers to the scalar thin-one phase problem) and suitably adapted to the nonlocal
shape optimization problem

min

{
m∑

i=1

λs
i (A) : A ⊂ �s − quasi open , |A| ≤ c

}
, with λs

i (A) = min
u⊥Ei−1

[u]2
Hs (RN )

‖u‖2
L2(RN )

,

where � ⊂ R
n open and bounded, c < |�| and Ei ⊂ Hs

0 (A) is the space spanned by the
first i eigenfunctions (see [4, 25] for more details in this direction). This line of research will
be treated in a subsequent work [24], in which the second author extend Theorem 1.2 to the
case of almost minimizers of a vectorial problem with fractional diffusion s ∈ (0, 1).

The paper is organized as follows: in Sect. 2we study the local behavior ofminimizers near
the free boundary by answering the classical questions of optimal regularity, non-degeneracy
and density estimates for local minimizers. Then, in Sect. 3 we derive a Weiss-type formula
which will allow in Sect. 4 to characterize global blow-up limits. The blow-up analysis of
Sect. 4 will lead to the definition of the regular Reg(F(G)) and singular part Sing(F(G)) of
the free-boundary. Finally, in the remaining part of the paper we will use a viscosity approach
to obtain C1,α smoothness of the regular part Reg(F(G)). First, in Sect. 5 we introduce a
vector valued analogue of the notion of viscosity solution of [10] and we prove that local
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minimizers are viscosity solutions. In Sect. 6 we develop a vectorial Harnack inequality,
which will be the basic tool for our analysis of the regular part of the free boundary. Finally,
in Sect. 7 we prove the improvement of flatness result, from which the C1,α regularity of a
flat free boundary follows by standard arguments.

1.2 Notation

From now on, we denote by {ei }i=1,...,n and { f i }i=1,...,m canonical basis in R
n and R

m

respectively.Unit directions inR
n andR

m will be typically denoted by e and f . TheEuclidean
norm in either space is denoted by | · | while the dot product is denoted by 〈·, ·〉.

A point X ∈ R
n+1 will be denoted by X = (x, xn+1) ∈ R

n × R and we will use the
notation x = (x ′, xn). Moreover, a ball in R

n+1 with radius r > 0 centered at X is denoted
by Br (X) and for simplicity Br = Br (0). Also, we use Br = Br ∩ {xn+1 = 0} to denote the
n-dimensional ball in R

n × {xn+1 = 0}.
We will often consider the following sets: let g be a continuous non-negative function in

Br , then

B+
r (g) := Br \ {(x, 0) : g(x, 0) = 0} ⊂ R

n+1

B+
r (g) := B+

r (g) ∩ {xn+1 = 0} ⊂ R
n .

By abuse of notation, if G = (g1, . . . , gm) is a vector valued continuous function, we
use B+

r (G),B+
r (G) in place of B+

r (|G|),B+
r (|G|) respectively. Also, we will denote with

P and L respectively the half-hyperplane P := {X ∈ R
n+1 : xn ≤ 0, xn+1 = 0} and

L := {X ∈ R
n+1 : xn = 0, xn+1 = 0}.

In regard to the problem (1.3), we remark that if F(g) is C2 then any function g which is
harmonic in B+

1 (g) has an asymptotic expansion at a point x0 ∈ F(g),

g(x, s) = α(x0)U ((x − x0) · ν(x0), s) + o(|x − x0|1/2 + s1/2).

Here U (t, s) is the real part of
√

z which in the polar coordinates

t = r cos θ, s = r sin θ, r ≥ 0, −π ≤ θ ≤ π,

is given by

U (t, s) = r1/2 cos
θ

2
. (1.6)

Then, the free boundary condition in (1.3) requires that α ≡ 1 on F(g).

The function U plays a fundamental role in our analysis.
Throughout the paper we will often used the invariance of a local minimizer of (1.1)

with respect to translations and dilations. More precisely, fixed X0 ∈ F(G) we define as the
blow-up sequence of G centered at X0 the family

G X0,r (X) = 1

r1/2
G(X0 + r X) (1.7)

with r > 0. Indeed, for every R > 0 we get

J (G, BR(X0)) = rnJ (G X0,r , BR/r )). (1.8)

Consequently,G is a localminimizer ofJ (·, BR(X0)) if and only ifG X0,r is a localminimizer
of J (·, BR/r ). As in [10] it is not restrictive to reduce the analysis to the case of minimizers
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that are symmetric with respect to the xn+1-variable. Indeed, if Ge = (g1
e , . . . , gm

e ) is the
even part of G with respect to {xn+1 = 0},

gi
e(x, xn+1) = gi (x, xn+1) + gi (x,−xn+1)

2
, for i = 1, . . . , m

we get

J (G, B1) = J (Ge, B) +
ˆ

B1

|∇Go|2 dX ,

with Go = G − Ge the odd part of G with respect to {xn+1 = 0}. By the minimality of G,
for every V ∈ H1(B; R

m), V = Ge + Go on ∂ B we have

J (Ge, B) ≤ J (V , B) −
ˆ

B1

|∇Go|2 dX ≤ J (V − Go, B),

which proves our claim once we noticed that V − Go = Ge on ∂ B. Thus, throughout the
paper this will be tacitly assumed.

2 Local behavior of solutions

Since the existence of an optimal vector for problem (1.1) is nowadays standard (see
[6][Proposition 3.2]), we start by focusing on the properties of local minimizers and obtain in
this section, optimal regularity, non-degeneracy, and density estimates. We use the notation
from Subsection 1.1.

2.1 Optimal regularity

Our proof follows the lines of the scalar case in [6] and it is based on an harmonic replacement
of each component of the minimizing vector G = (g1, . . . , gm).

First, we make the following basic observation.

Lemma 2.1 If G is a local minimizer in B1, then gi is harmonic in B1\{xn+1 = 0}.
Proof Denote by B+

1 := B1 ∩ {xn+1 > 0}, and similarly B−
1 := B1 ∩ {xn+1 < 0}. Let ϕ be

in C∞
0 (B+

1 ) and call G±
i := (g1, . . . , gi ± εϕ, . . . , gm), for any i = 1, . . . , m. Thus, since

G ≡ G±
i on {xn+1 = 0}, the minimality of G,

J (G, B1) ≤ J (G±
i , B1)

implies ˆ
B1

|∇gi |2dX ≤
ˆ

B1

|∇(gi ± εϕ)|2d X

and hence ˆ
B1

〈∇gi ,∇ϕ〉dX = 0,

that is gi is harmonic in B+
1 . We argue similarly for ϕ ∈ C∞

0 (B−
1 ). ��

We now prove the optimal regularity.
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Proposition 2.2 Let G be a local minimizer, then G ∈ C0,1/2(K ; R
m), for every compact set

K ⊂ B1. Moreover,

|gi (X)| ≤ C1dist (X , ∂{|G| > 0})1/2 in B1/2, (2.1)

for every i = 1, . . . , m, with C1 > 0 a universal constant.

Proof Let K ⊂ B1 be a compact and i = 1, . . . , m. We claim that there exists an universal
constant C > 0 such that, for any X0 ∈ K and r ∈ (0, 1 − |X0|)

1

rn

ˆ
Br (X0)

|∇gi |2dX ≤ C . (2.2)

Then, by a Morrey type embedding, we deduce gi ∈ C0,1/2(K ) (see [22]). Moreover, since
the constant C > 0 is universal, the inequality (2.1) is satisfied for a constant C > 0
independent of the local minimizer.

Since by Lemma 2.1, the components of G are harmonic in B1 \ {xn+1 = 0}, it is not
restrictive to suppose that X0 ∈ {xn+1 = 0}. By the translation invariance of the problem, let
us suppose X0 = 0 and r ∈ (0, 1). Inspired by the proof of [6][Theorem1.1.], let g̃i

r : Br → R

be the harmonic replacement of gi in Br , i.e. be such that{
�g̃i

r = 0 in Br

gi
r = gi on ∂ Br .

By an integration by parts, we easily deduce
ˆ

Br

〈∇ g̃i
r ,∇(gi − g̃i

r )〉dX = 0. (2.3)

Consider now the competitor G̃i = (g1, . . . , g̃i
r , . . . , gm). By the minimality of G we get

J (G, Br ) ≤ J (G̃i , Br ), which implies
ˆ

Br

∣∣∣∇gi
∣∣∣2 dX ≤

ˆ
Br

∣∣∣∇ g̃i
r

∣∣∣2 dX + ωnrn .

Combining the “quasi-minimality” of gi with (2.3), we get
ˆ

Br

∣∣∣∇(gi − g̃i
r )

∣∣∣2 dX ≤ ωnrn .

Thus, for ρ ∈ (r , 1) we get

ˆ
Br

∣∣∣∇gi
∣∣∣2 dX ≤ 2

(ˆ
Bρ

∣∣∣∇(gi − g̃i
ρ)

∣∣∣2 dX +
ˆ

Br

∣∣∣∇ g̃i
ρ

∣∣∣2 dX

)

≤ Cρn + C
ˆ

Br

∣∣∣∇ g̃i
ρ

∣∣∣2 dX

≤ Cρn + C

(
r

ρ

)n+1 ˆ
Bρ

∣∣∣∇ g̃i
ρ

∣∣∣2 dX

≤ Cρn + C

(
r

ρ

)n+1 ˆ
Bρ

∣∣∣∇gi
∣∣∣2 dX ,
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where in the third inequality we used that |∇ g̃i
ρ |2 is subharmonic. Hence, fixed δ < 1/2 such

that q = Cδ < 1, if ρ = δk−1, r = δk and μ = δn we get
ˆ

B
δk

∣∣∣∇gi
∣∣∣2 dX ≤ Cμk−1 + Cμδ

ˆ
B

δk−1

∣∣∣∇gi
∣∣∣2 dX

and iterating the previous estimate

ˆ
B

δk

∣∣∣∇gi
∣∣∣2 dX ≤ Cμk−1

k−1∑
i=0

qi ≤ Cμk−1 1

1 − q
.

hence there exists a universal constant C̃ > 0 such thatˆ
Br

∣∣∣∇gi
∣∣∣2 dX ≤ C̃rn,

for every r ∈ (0, 1/2). By a covering argument we obtain the claimed inequality (2.2). ��
By the continuity, we immediately deduce the following corollary.

Corollary 2.3 Let G be a local minimizer, then the sets

{|G| > 0} and {gi > 0}, {gi < 0} for i = 1, . . . , m,

and their restrictions on {xn+1 = 0} are respectively open in R
n+1 and R

n.

With the continuity at hands, we can easily obtain the harmonicity of the components
away from {|G| = 0}.
Lemma 2.4 Let G be a local minimizer in B1. Then for every i = 1, . . . , m we get

�gi = 0 in B+
1 (G),

and consequently

gi± is subharmonic in B1.

Moreover λi = �gi is a signed Radon measure supported on ∂{|G| > 0} with the total
variation |�gi | satisfying

〈
∣∣∣�gi

∣∣∣ , χK 〉 ≤ C(n, K )

ˆ
B

|∇gi |2dX ,

for every compact set K ⊂ B1.

Proof As in [3], the first part of the result follows by computing the first variation of the
functional J (·, B1) with respect to a direction ξei , with ξ ∈ C∞({|G| > 0}).

More precisely, fixed i = 1, . . . , m, consider the competitor Gε = G + εξei , for some
ξ ∈ C∞

c ({|G| > 0}) and i = 1, . . . , m. By the previous corollary, {|G| > 0} is an open set,
and passing through the first variation, we get

0 = 1

2

d

dε
J (Gε, K )

∣∣∣∣
ε=0

=
ˆ

{|G|>0}∩K
〈∇gi ,∇ξ 〉dX ,

for every compact K ⊂ B1.
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Now, since gi± are both nonnegative subharmonic in B1 and gi is harmonic in {|G| > 0},
then λi = �gi is a signed Radon measure supported in ∂{|G| > 0}. Moreover, by a standard
argument, let η ∈ C∞

c (B1) be such that 0 ≤ η ≤ 1 and η ≡ 1 on K . Then
〈 ∣∣∣�gi

∣∣∣ , χK

〉
≤

〈∣∣∣�gi
∣∣∣ , η〉

=
ˆ

B

〈
∇gi ,∇η

〉
dX ≤ C(n, K )

ˆ
B

|∇gi |2dX ,

as we claimed. ��
Remark 2.5 By explicit computation we now easily deduce

2 |G| �(|G|) = �(|G|2) −
∣∣∇ |G|2∣∣2
2 |G|2 ≥ 0 in B+

1 (G),

and consequently that |G| is subharmonic in B+
1 (G).

As in the scalar case in [6], we can now detail the connection of global minimizer with
the fractional analogue of the Bernoulli one-phase problem.

Corollary 2.6 Let G be a global minimizer in R
n+1 and 0 ∈ F(G). Then, for every i =

1, . . . , m, the trace of gi on {xn+1 = 0} solves{
(−�)1/2gi (·, 0) = 0 in {|G| > 0}
gi (·, 0) = 0 in {|G| = 0}.

2.2 Non-degeneracy

The non-degeneracy of solutions near the free boundary points allows us to obtain several
results on the measure-theoretic structure of the free boundary via the blow-up analysis. We
start by proving the following weak non-degeneracy condition.

Proposition 2.7 Let G be a local minimizer. Then, there exists a universal constant c2 > 0
such that

|G| (X) ≥ c2dist(X , ∂{|G| > 0})1/2 inB+
1/2(G). (2.4)

Proof Up to translation and rescaling, it is enough to show that if G is a local minimizer in
a large ball and

dist(0, ∂{|G| > 0}) = 1, (2.5)

then

|G|(0) ≥ c2 > 0

for some c2 small to be made precise later. Indeed, assume not, then B1 ⊂ {|G| > 0} and
gi is harmonic in B1, gi (0) ≤ c2, for every i = 1, . . . , m.

By the C0,1/2- regularity of minimizers we deduce that the gi ’s are uniformly bounded say
in B3/4 and hence, since they are harmonic

|gi (X) − gi (0)| ≤ K |X |, in B1/2,

123



221 Page 10 of 34 D. De Silva, G. Tortone

for K > 0 universal. Thus,

gi (X) ≤ c2 + K |X |, in B1/2.

Let

Gδ(X) = 1

δ1/2
G(δX), X ∈ B1

with δ > 0 universal to be chosen universal later. Then, for c2 ≤ δ we get

gi
δ ≤ c2δ

−1/2 + K δ1/2 ≤ Cδ1/2 in B1,

for every i = 1, . . . , m.Moreover, since the gi
δ’s are harmonic in B1, the bound above implies

‖gi
δ‖L∞(B1), ‖∇gi

δ‖L∞(B1/2) ≤ Cδ1/2.

Let ϕ ∈ C∞
0 (B1/2), 0 ≤ ϕ ≤ 1 such that ϕ ≡ 1 in B1/4, thenˆ

B1

|∇gi
δ|2dX ≥

ˆ
B1

|∇(gi
δ(1 − ϕ))|2dX − Cδ

and on the other hand

Ln(B+
1 (|Gδ|)) ≥ Ln(B+

1 (|Gδ|(1 − ϕ))) + C0.

In conclusion, by the minimality of Gδ

0 ≥ −Cδ + C0,

and we reach a contradiction for δ (hence c2) sufficiently small. ��
The following result improves the non-degeneracy property of Proposition 2.7, and it will be
fundamental in the proof of existence of non trivial blow-up limits.

Proposition 2.8 Let G be a local minimizer and 0 ∈ F(G). Then, for every r ∈ (0, 1/2)

sup
Br

|G| ≥ cr1/2, (2.6)

for some universal constant c > 0.

In view of Proposition 2.2 and Remark 2.5, Proposition 2.8 follows immediately from the
next lemma.

Lemma 2.9 Let v ≥ 0 be defined in B1 and subharmonic in B+
1 (v). Assume that there is a

small constant η > 0 such that

‖v‖C1/2(B1)
≤ η−1, (2.7)

and v satisfies the non-degeneracy condition on B1,

v(X) ≥ η dist(X , {v = 0})1/2 for every X ∈ B1. (2.8)

Then if 0 ∈ F(v), we get

sup
Br

v ≥ c(η) r1/2, for r ≤ 1.
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Proof The proof follows the lines of [5][Lemma 7] (see also [6][Proposition 3.3]).
Given a point X0 ∈ B+

1 (v) (to be chosen close to the free boundary point 0 ∈ F(v)) we
construct a sequence of points (Xk)k ⊂ B1 such that

v(Xk+1) ≥ (1 + δ)v(Xk), |Xk+1 − Xk | ≤ C(η)dist(Xk, {v = 0}),
with δ small depending on η.

Then, using (2.8) and that (v(Xk))k grows geometrically, we find

|Xk+1 − X0| ≤
k∑

i=0

|Xi+1 − Xi | ≤ C(η)

k∑
i=0

dist(Xi , {v = 0})

≤ C(η)

η2

k∑
i=0

v2(Xi ) ≤ c(η)v2(Xk+1).

Hence for a sequence of radii rk = dist(Xk, {v = 0}), we have that
sup

Brk (X0)

v ≥ cr1/2k

from which we obtain that

sup
Br (X0)

v ≥ cr1/2, for all r ≥ |X0|.

The conclusion follows by letting X0 go to 0 ∈ F(v).
We now show that the sequence of Xk’s exists. After scaling, assume we constructed Xk

such that

v(Xk) = 1.

Let us call with Yk ∈ F(v) the point where the distance from Xk to {v = 0} is achieved. By
(2.7) and (2.8), we get

c(η) ≤ rk = |Xk − Yk | ≤ C(η).

Assume by contradiction that we cannot find Xk+1 in BM (Xk) with M large to be specified
later, such that

v(Xk+1) ≥ 1 + δ.

Then v ≤ 1 + δ + w with w harmonic in B+
M (Xk) and such that

w = 0 on {xn+1 = 0}, w = v on ∂ BM (Xk) ∩ {xn+1 > 0}.
Thus, we have

w ≤ C(n)
xn

M
sup

B+
M (Xk )

v ≤ Cη−1xn M−1/2 ≤ δ in B := Brk (Xk),

for M sufficiently large depending on δ. Thus,

v ≤ 1 + 2δ in B. (2.9)

On the other hand, v(Yk) = 0, Yk ∈ ∂ B. Thus from the Hölder continuity of v we find

v ≤ 1

2
, in Bc(η)(Yk). (2.10)
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If δ is sufficiently small (2.9)-(2.10) contradict that

1 = v(Xk) ≤
 

B
v.

��
The following lemma is on the convergence of sequences of minimizers.

Lemma 2.10 Let (Gk)k be a sequence of local minimizer in B1 uniformly bounded in L2(B1).
Then, up to a subsequence, there exists a limit function G∞ such that

• G∞ ∈ H1
loc(B1) ∩ C0,1/2

loc (B1);
• Gk → G∞ in C0,α

loc (B1), for every α ∈ (0, 1/2);
• Gk⇀G∞ weakly in H1

loc(B1);
• G∞ is a local minimizer in B1.

Proof By Proposition 2.2 we already know that Gk → G∞ uniformly on every compact set
of B1 and in C0,α

loc (B), for every α ∈ (0, 1/2). Moreover, by Ascoli-Arzelá theorem it follows
that G∞ ∈ C0,1/2(B). Now, let us prove that the sequence is uniformly bounded in H1

loc(B1)

in order to ensure the weak convergence of sequence Gk . Fixed i = 1, . . . , m and r ∈ (0, 1),
consider the competitor Gk,ε = Gk − εgi

k,±η2ei , with η ∈ C∞
c (Br ) such that

0 ≤ η ≤ 1, η ≡ 1 on Br/2, |∇η| ≤ C

r

and ε > 0 small enough. Note that Gk,ε = Gk on ∂ Br and {|Gk | > 0} = {∣∣Gk,ε

∣∣ > 0}.
Therefore, from the localminimality ofGk we getJ (Gk, Br ) ≤ J (Gk,ε, Br ), which implies

ˆ
Br

〈∇gi
k,∇(gi

k,±η2)〉dX ≤ ε

2

ˆ
Br

∣∣∣∇(gi
k,±η2)

∣∣∣2 dX .

Finally, letting ε → 0 and proceeding as in the proof of the standard Caccioppoli inequality,
we deduce ˆ

Br/2

∣∣∣∇gi
k,±

∣∣∣2 dX ≤ C

r2

ˆ
Br

(gi
k,±)2dX , (2.11)

with C > 0 universal constant and r ∈ (0, 1). Thus, since the sequence (Gk)k is uniformly
bounded in L2(B1), by (2.11) we get that the sequence is uniformly bounded in H1

loc(B1) and
it weakly converges to some G∞ ∈ H1(B1).

In conclusion, let us show that for every r ∈ (0, 1) we have

J (G∞, Br ) ≤ J (G∞ + �, Br ), for every � = (ψ1, · · · , ψm) ∈ H1
0 (Br ; R

m).

Since we already know by Proposition 2.2 that there exists a local minimizer Hölder contin-
uous of class C0,1/2, we can assume that � is continuous. Therefore, for every k > 0 let us
consider the competitor

Gk,ε =
m∑

i=1

(gi
k + ψ i − εη)+ei − (gi

k + ψ i + εη)−ei ,

with η ∈ C∞
c (B(1+r)/2) such that 0 ≤ η ≤ 1 and η ≡ 1 on a neighbourhood of Br .

Hence, by the local minimality of Gk in B(1+r)/2, namely J (Gk, B(1+r)/2) ≤ J (Gk,ε,
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B(1+r)/2), we have

Ln(B(1+r)/2 ∩ {|Gk | > 0}) ≤
m∑

i=1

ˆ
B(1+r)/2

∣∣∣∇ψ i
∣∣∣2 + 2〈∇ψ i ,∇gi

k〉dX+

+ ε

m∑
i=1

ˆ
suppη\Br

ε |∇η|2 + 2〈∇η,∇(gi
k + ψ)〉dX+

+ Ln(B(1+r)/2 ∩ {|Gk,ε| > 0}).
In particular, localizing the measure of the positivity set in Br , we get

Ln(Br ∩ {|Gk | > 0}) ≤
m∑

i=1

ˆ
B(1+r)/2

∣∣∣∇ψ i
∣∣∣2 + 2〈∇ψ i ,∇gi

k〉dX + Cε+

+
ˆ
B(1+r)/2

χ{|Gk,ε |>0}dx −
ˆ
B(1+r)/2\Br

χ{|Gk |>0}dx,

where we used that (Gk)k is uniformly bounded in H1(B(1+r)/2). Since

{gi
k − εη > 0} \ Br ⊆ {gi

k > 0} \ Br

{gi
k + εη < 0} \ Br ⊆ {gi

k < 0} \ Br

and by the uniform convergence

{gi
k + ψ i − ε > 0} ∩ Br ⊆ {gi∞ + ψ i > 0} ∩ Br

{gi
k + ψ i + ε < 0} ∩ Br ⊆ {gi∞ + ψ i < 0} ∩ Br ,

we deduce

Ln(Br ∩ {|Gk | > 0}) ≤
ˆ

B(1+r)/2

(|∇�|2 + 2〈∇�,∇Gk〉
)
dX

+ Ln(Br ∩ {|G∞ + �| > 0}) + Cε.

Now, using that Gk⇀G∞ weakly in H1
loc(B1) and uniformly on Br , we obtain

J (G∞, Br ) ≤
ˆ

Br

|∇(G∞ + �)|2 dX + Ln(Br ∩ {|G∞ + �| > 0}) + Cε

for every ε > 0, which implies the desired inequality. ��
Finally, we conclude the section by proving the first corollaries of the non-degeneracy

results Proposition 2.8. These density estimates for the positivity set of |G| are a obtained
by a straightforward combination of the non-degeneracy condition (2.6) and the optimal
regularity of local minimizer.

Corollary 2.11 Let G be a local minimizer in B1 and 0 ∈ F(G). Then, for every r ∈ (0, 1/2)
there exists Xr ∈ Br be such that

BC0r (X0) ⊂ B+
r (G),

for some universal constant C0 > 0. Equivalently, there exists ε0 > 0 such that

Ln(Br ∩ {|G| > 0}) ≥ ε0ωnrn .

123



221 Page 14 of 34 D. De Silva, G. Tortone

Proof The proof of the interior corkscrew condition is a combination of Proposition 2.2 and
Proposition 2.8. More precisely, on one hand for r small enough there exists Xr ∈ B+

r (G)

such that |G| (Xr ) ≥ Cr1/2. On the other one, since |G| is of class C0,1/2, by setting

C0 = min

{
1,

C

[|G|]C0,1/2

}
,

we have that |G| > 0 in B+
C0r (|G|), which proves the claimed lower bound. ��

Remark 2.12 The following estimate is a specific feature of the non-local attitude of the
vectorial thin one-phase problem. Indeed, for the local case [21, Remark 2.2] the authors
highlight that, unlike in [7, 20] where it was assumed at least one component gi to be
positive, they cannot hope to have a density estimate from above on the positivity set.

Instead, since in our case the traces are (−�)1/2-harmonic in {|G| > 0}, the upper bound
holds true thanks to the different local regularity of (−�)1/2-harmonic functions near their
zero set depending on whether or not they change sign.

Corollary 2.13 Let G be a local minimizer in B1 and 0 ∈ F(G). Then, for every r ∈ (0, 1/2)

Ln(B+
r (G)) ≤ (1 − ε0)ωnrn, (2.12)

for some universal constant ε0 > 0.

Proof Since |G| is non-negative, up to rescaling, condition 2.12 is equivalent to

Ln(B1 ∩ {|G| = 0}) ≥ ε0.

Thus, suppose there exists a sequence (Gk)k of local minimizers in B1 such that 0 ∈ F(Gk)

and

lim
k→∞Ln(B1 ∩ {|Gk | = 0}) = 0.

By Proposition 2.2 and Lemma 2.10, we already know that Gk → G∞ weakly in H1(B1/2)

and uniformly on every compact set of B1/2. Moreover, G∞ ∈ H1
loc(B+

1/2) ∩ C0,1/2
loc (B1/2) is

a local minimizer in B1/2. Now, let g̃i
k : B1 → R be the harmonic replacement of gi

k in B1,
i.e. be such that {

�g̃i
k = 0 in B1

g̃i
k = gi

k on ∂ B1.

By the minimality of Gk , given the competitor G̃k = (g1
k , . . . , g̃i

k, . . . , gm
k ), from (2.3) we

deduce ˆ
B1

∣∣∣∇(gi
k − g̃i

k)

∣∣∣2 dX ≤ Ln(B1 ∩ {|Gk | = 0}) → 0, (2.13)

as k → ∞. Thus, up to a subsequence, the sequence (G̃k)k do converge uniformly on every
compact set of B1/2 to some function G̃∞ ∈ H1

loc(B+
1/2) which is harmonic in B1/2. Finally,

by applying Fatou’s Lemma to (2.13), we getˆ
B1/2

∣∣∣∇(gi∞ − g̃i∞)

∣∣∣2 dX = 0,

namely for every i = 1, · · · , m we deduce that gi∞ is harmonic in B1/2 such that 0 ∈ F(G∞).
Hence, we already know that gi∞ ∈ C0,α

loc (Rn+1), for every α ∈ (0, 1), in contradiction with
Proposition 2.8 for α > 1/2. ��
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3 Weiss monotonicity formula

In this section we establish a Weiss type monotonicity formula in the spirit of [20, 21]. In the
case m = 1, our result recovers the one in [1] for the scalar case. As it is well known in the
literature, this result will imply the convergence of a blow-up sequence to an homogenous
global minimizer.

For a vector-valued function G ∈ H1(B1; R
m), let us consider

W (X0, G, r) = 1

rn
J (G, Br (X0)) − 1

2rn+1

ˆ
∂+ B+

r (X0)

|G|2 dσ (3.1)

The monotonicity of r �→ W (X0, g, r) is a fundamental tool for the classification of the
blow-up limits.

Theorem 3.1 Let G be a local minimizer of (1.2) and X0 ∈ F(G). Then, the Weiss type
functional r �→ W (X0, G, r) is monotone non-decreasing for every r ∈ (0, 1− |X0|). More
precisely, we have

d

dr
W (X0, G, r) ≥ 1

rn+2

m∑
i=1

ˆ
∂ Br (X0)

(
〈∇gi , X − X0〉 − 1

2
gi

)2

dσ . (3.2)

Moreover, W (X0, G, ·) is constant in (0,+∞) if and only if G is s-homogeneous with respect
to X0.

Through the paper we will always denote with W (X0, G, 0+) the limit of the Weiss mono-
tonicity formula as r → 0+.

In order to simplify the notation, since the problem is invariant under translation, in the
following computations we will assume X0 = 0 and denote W (r) = W (0, G, r).

Lemma 3.2 Let G be a local minimizer of (1.2) and 0 ∈ F(G). Then, we get
ˆ

Br

|∇G|2 dX + Ln(B+
r (G)) ≤ 1

n

ˆ
∂ Br

(
r |∇Sn G|2 + 1

4

|G|2
r

)
dσ+

+ r

n
Hn−1(∂Br ∩ {|G| > 0}),

for every r ∈ (0, 1).

Proof Let us consider now the 1/2-homogeneous extension G̃ = (g̃1, · · · , g̃m) of the trace
of G on ∂ Br , defined by

G̃(X) = |X |1/2
r1/2

G

(
X

r

|X |
)

.

Then, for every i = 1, . . . , m we get

|∇ g̃i |2 (X) = 1

4

1

r |X | gi
(

X
r

|X |
)2

+ r

|X |
∣∣∣∇Sn gi

∣∣∣2
(

X
r

|X |
)

.

Integrating over B+
r and summing for i = 1, . . . , m, we obtainˆ

Br

|∇G̃|2dX =
ˆ r

0

1

ρ

ˆ
∂ Bρ

(
1

4

1

r
|G|2

(
X

r

ρ

)
+ r |∇Sn G|2

(
X

r

ρ

))
dσdρ

= r

n

ˆ
∂ Br

(
1

4

|G|2
r

+ r |∇Sn G|2
)
dσ,
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while for the measure term we have that

Ln(Br ∩ {|G| > 0}) = r

n
Hn−1(∂Br ∩ {|G| > 0})

Finally, since G̃ = G on ∂ Br , the minimality assumption J (G, Br ) ≤ J (G̃, Br ) gives the
claimed inequality. ��
Proof of Theorem 3.1 By the estimate of Lemma 3.2, we immediately get

W ′(r) = 1

rn

(ˆ
∂ Br

|∇G|2 dX + Hn−1(∂Br ∩ {|G| > 0})
)

+

− n

rn+1

(ˆ
Br

|∇G|2 dX + Ln(Br ∩ {|G| > 0})
)

+

− 1

rn+1

m∑
i=1

ˆ
∂ Br

gi∂r gidσ + 1

2rn+2

ˆ
∂ Br

|G|2 dσ

≥ 1

rn

m∑
i=1

ˆ
∂ Br

(∣∣∣∂r gi
∣∣∣2 − gi∂r ui + 1

4r2

∣∣∣gi
∣∣∣2

)
dσ

= 1

rn

m∑
i=1

ˆ
∂ Br

(
∂r gi − 1

2r
gi

)2

dσ .

Finally, since the right hand side of (3.2) is non-negative, we deduce that W ′(r) ≡ 0 for
r ∈ (0,+∞) if and only if〈

∇gi (X),
X

|X |
〉

= 1

2 |X | gi (X) in R
n+1,

i.e. the components gi are 1/2-homogeneous in R
n+1. ��

4 Compactness and convergence of blow-up sequences

This section is dedicated to the convergence of the blow-up sequences and the analysis of the
blow-up limits, both being essential for determining the local behavior of the free boundary
and for the characterization of the Regular and Singular sets.

Let us recall the notion of blow-up sequence associated to a local minimizer G in B1.
Given (Xk)k ⊂ F(G) and rk ↘ 0+ such that Brk (Xk) ⊂ B1, we define a blow-up sequence
by

G Xk ,rk (X) = 1

r1/2k

G(Xk + rk X). (4.1)

Then the sequence (G Xk ,rk )k is uniformly Hölder continuous in the class C0,1/2 and locally
uniformly bounded inR

n+1. Thus, by Lemma 2.10, up to a subsequence, (G Xk ,rk )k converges

locally uniformly on every compact set to a function G0 ∈ H1
loc(B1) ∩ C0,1/2

loc (B1) such that,
for every R > 0 the following properties hold

• G Xk ,rk → G0 in C0,α
loc (BR), for every α ∈ (0, 1/2);

• G Xk ,rk ⇀G0 weakly in H1(BR);
• G0 is a local minimizer in BR .
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Moreover, by the non-degeneracy results of the previous section, we can guarantee the exis-
tence of a non-degenerate blow-up limit.

Proposition 4.1 Let G be a local minimizer in B1. Given (Xk)k ⊂ F(G) and rk ↘ 0+
such that Brk (Xk) ⊂ B1, for every R > 0 the following properties hold (up to extracting a
subsequence):

• G Xk ,rk → G0 strongly in H1(BR; R
m);

• the sequence of the characteristic functions

χ({|G Xk ,rk | > 0}) → χ({|G0| > 0})
strongly in L1(BR);

• the sequence of the closed sets B+
R (G Xk ,rk ) and its complement in R

n, converge in the

Hausdorff sense respectively to B+
R (G0) and R

n\B+
R (G0)

• the blow-up limit G0 is non-degenerate at zero, i.e. there exists a dimensional constant
c0 > 0 such that

sup
Br

|G0| ≥ c0r1/2 for every r > 0.

Proof For notational simplicity, we set Gk = G Xk ,rk . Since |Gk | converges locally uniformly
to |G0|, we get

χ({|G0| > 0}) ≤ lim inf
k→∞ χ({|Gk | > 0})

Now, let us prove that Gk converges strongly in H1
loc(R

n+1; R
m) to G0 and that the charac-

teristic functions χ({|Gk | > 0}) converge to χ({|Gk | > 0}) in L1. Namely, fixed a radius
R > 0, it is sufficient to prove that

lim
k→∞

ˆ
BR

|∇Gk |2 dX + Ln(B+
r (Gk)) =

ˆ
BR

|∇G0|2 dX + Ln(B+
r (G0)).

Consider now η ∈ C∞
c (Rn+1), 0 ≤ η ≤ 1 such that η ≡ 1 on BR , and the competitor

G̃k ∈ H1(B1; R
m) defined by

G̃k = ηG0 + (1 − η)Gk .

For the sake of notational simplicity, let us set:

�k = {|Gk | > 0} ∩ R
n, �̃k = {|G̃k | > 0} ∩ R

n and �0 = {|G0| > 0} ∩ R
n .

Since G̃k = Gk on {η = 0}, by the optimality of Gk we getˆ
{η>0}

|∇Gk |2 dX + Ln(�k ∩ {η > 0}) ≤
ˆ

{η>0}
|∇G̃k |2dX + |�̃k ∩ {η > 0}|

≤
ˆ

{η>0}
|∇G̃k |2dX + Ln(�0 ∩ {η = 1}) + Ln({0 < η < 1}).

(4.2)

On {η > 0} we calculate
|∇Gk |2 − |∇G̃k |2 = |∇Gk |2 − |η∇G0 + (1 − η)∇Gk + (G0 − Gk)∇η|2

= (1 − (1 − η)2) |∇Gk |2 − η2|∇G0|2 − |G0 − Gk |2|∇η|2+
− 2(G0 − Gk)〈∇η, η∇G0 + (1 − η)∇Gk〉 − 2η(1 − η)〈∇G0,∇Gk〉.

123



221 Page 18 of 34 D. De Silva, G. Tortone

Since Gk converges strongly in L2(BR; R
m) and weakly H1

loc(R
n+1; R

m) to G0, we can
estimate

lim sup
k→∞

ˆ
{η>0}

(
|∇Gk |2 − |∇G̃k |2

)
dX

= lim sup
k→∞

ˆ
{η>0}

(
(1 − (1 − η)2) |∇Gk |2 − η2|∇G0|2 − 2η(1 − η)〈∇G0,∇Gk 〉

)
dX

= lim sup
k→∞

ˆ
{η>0}

(1 − (1 − η)2)
(
|∇Gk |2 − |∇G0|2

)
dX

≥ lim sup
k→∞

ˆ
{η=1}

(
|∇Gk |2 − |∇G0|2

)
dX ,

where in the last inequality we used that |∇Gk | weakly converges in L2({0 < ϕ < 1}) to
|∇G0|.

Combining this fact with inequality (4.2), we obtain

lim sup
k→∞

(ˆ
{η=1}

(
|∇Gk |2 − |∇G0|2

)
dX + Ln(�k ∩ {η = 1}) − Ln(�0 ∩ {η = 1})

)

≤ lim sup
k→∞

(ˆ
{η>0}

(
|∇Gk |2 − |∇G̃k |2

)
dX + Ln(�k ∩ {η = 1}) − Ln(�0 ∩ {η = 1})

)

≤ lim sup
k→∞

Ln(�k ∩ {η = 1}) − Ln(�k ∩ {η > 0}) + Ln({0 < η < 1})

≤ Ln({0 < η < 1}).

Finally, since η is arbitrary outside BR , the right hand side can be made arbitrarily small, and
this implies the desired equality.

By Corollary 2.11 and Corollary 2.13, we already know that

ε0ωnrn ≤ Ln(Br ∩ {|Gk | > 0}) ≤ (1 − ε0)ωnrn, for r < r0/rk, (4.3)

and for every k > 0. Now, it is well-known that the convergence of the sequence of char-
acteristic functions in the strong topology of L1, together with (4.3), implies the Hausdorff
convergence of �k ∩ BR to �0 ∩ BR locally in R

n . Obviously, the same result holds for the
complements �c

k .
Finally, the non-degeneracy of the blow-up limit is a straightforward combination of the

uniform convergence and the non-degeneracy condition (2.6). Namely, by Proposition 2.8,
for every k > 0 the rescaled function Gk is non-degenerate in the sense

for every y ∈ �k, r ≤ 1

2rk
sup

Br (y)∩Rn
|Gk | ≥ c0r1/2.

The previous inequality is obtained by applying (2.6) in Brkr (y) for the local minimizer G.
Finally, by the uniform convergence of Gk and the Hausdorff convergence of �k ∩ Br in R

n ,
for every y ∈ �0 we get

sup
Br (y)∩Rn

|Gk | ≥ c0r1/2, for every r > 0.

��

The following is a straightforward application of the Weiss monotonicity formula to the
blow-up limit.

123



A vectorial problem with thin free boundary... Page 19 of 34 221

Corollary 4.2 Let G be a local minimizer and X0 ∈ F(G). Then every blow-up limit G0 =
(gi

0, · · · , gm
0 ) of G at X0 is 1/2-homogeneous in R

n+1, i.e.〈
∇gi

0(X),
X

|X |
〉

= 1

2 |X | gi
0(X) in R

n+1,

for every i = 1, · · · , m. Moreover, the Lebesgue density of F(G) exists finite at every
X0 ∈ F(G) and it satisfies

{|G| > 0}(γ ) =
{

X0 ∈ F(G) : lim
r→0+

Ln(Br ∩ {|Gk | > 0})
Ln(Br )

= γ

}

= {
X0 ∈ F(G) : W (X0, G, 0+) = ωnγ

}
.

(4.4)

Proof Let X0 ∈ F(G) and G0 a blow-up limit of G at X0 associated to a sequence rk ↘ 0+.
By Lemma 2.10 and Proposition 4.1, we already know that G0 is a global minimizer of the
vectorial Bernoulli problem. On the other hand, by the definition of the Weiss formula, for
every ρ, r > 0 we get

W (X0, G, rρ) = W (0, G X0,r , ρ).

Fixedρ > 0, since up to a subsequenceG X0,rk → G0 uniformly and strongly in H1(Bρ, R
m),

we deduce

W (0, G0, ρ) = lim
k→∞ W (0, G X0,rk , ρ) = lim

k→∞ W (X0, G, ρrk) = lim
r→0+ W (X0, G, r),

where the last limit is unique and it does not depend on the sequence (rk)k by themonotonicity
result Theorem 3.1. Finally, since W (0, G0, ρ) is constant we get that the blow-up limit is
1/2-homogeneous.
Moreover, the homogeneity of the blow-up limits and the strong convergence of the blow-up
sequences imply

Ln(B1 ∩ {|G0| > 0}) = W (0, G0, 1) = lim
r→0+ W (X0, G, r)

= lim
r→0+

Ln(Br (X0) ∩ {|G| > 0})
rn

. (4.5)

Hence, the density W (X0, G, 0+) coincides, up to a multiplicative constant, with the
Lebesgue density of the free boundary. ��
Remark 4.3 By (4.5), we note that for every X0 ∈ F(G), the measure of the positivity set in
B1 of the blow-up limit does not depend on the blow-up limit itself.

Remark 4.4 In the classification of the blow-up limits, we will use some results related to
eigenvalues of the Laplace-Beltrami operator

�Sn = divSn (∇Sn ),

with divSn and ∇Sn respectively the tangential divergence and gradient on Sn and xn+1 =
r sin(θn). In particular, the following results hold true.

Let ω ⊂ Sn−1 × {0} be an open subset of the (n − 1)-sphere and let �ω = {rθ : θ ∈
ω, r > 0} × {0} be the cone generated by ω in {xn+1 = 0}. Then, g is a α-homogeneous
solution of ⎧⎪⎨

⎪⎩
−�g = 0 in R

n+1+
∂xn+1g = 0 on �ω

g = 0 on {xn+1 = 0} \ �ω,
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if and only if its trace ϕ = g|Sn on the sphere satisfies⎧⎪⎨
⎪⎩

−�Sn ϕ = λ(α)ϕ in Sn+
∂θn ϕ = 0 on ω

ϕ = 0 on (Sn−1 × {0}) \ ω,

(4.6)

with λ(α) = α(α+n−1) the characteristic eigenvalue associated to the sectionω. Moreover,
both the map ω �→ α(ω) and ω �→ λ(α(ω)) are monotone with respect to the inclusion of
spherical sets.

In particular, if α < 1, then ϕ cannot change sign and it is indeed amultiple of the principle
eigenvalue. Finally, for every spherical set ω ⊂ Sn−1 such that Hn−1(S) ≤ nωn/2 we have
the inequality

λ1 ≥ 1

2

(
n − 1

2

)
,

and the equality is achieved if and only if, up to a rotation, ω = Sn−1 ∩ {xn > 0}.
The proof of these claims uses the monotonicity of the eigenvalue with respect to the

inclusion of spherical set and the Pólya-Szegö inequality for the Schwarz symmetrization
applied to the eigenvalue problem (4.6) (see [23] for further details).

The following Lemma characterizes the structure of the blow-up limits. In particular,
we can prove that the norm of every blow-up limit is a global minimizer of the scalar thin
one-phase functional.

Proposition 4.5 Let G be a local minimizer and X0 ∈ F(G). Then, every blow-up limit G0

is of the form

G0(X) = ξ |G0| (X) where ξ ∈ R
m, |ξ | = 1

and |G0| is a global minimizer of the scalar thin one-phase functional

J (g, BR) =
ˆ

BR

|∇g|2 dX + Ln(BR ∩ {g > 0}), for R > 0. (4.7)

Moreover, there exists a dimensional constant δ ∈ (0, 1/2) such that one of the following
possibilities holds:

1. The Lebesgue density of {|G| > 0} at X0 is 1/2 and every blow-up limit G0 is of the
form

G0(X) = ξ AU (〈x, ν〉, xn+1) where ξ ∈ R
m, |ξ | = 1, ν ∈ Sn−1 × {0} (4.8)

and A > 0 a specific constant depending only on n.
2. The Lebesgue density of {|G| > 0} at X0 satisfies

1

2
+ δ ≤ lim

r→0

|Br (X0) ∩ {|G| > 0})|
|Br | ≤ 1 − δ, (4.9)

and |G0| is a nonnegative global minimizer of (4.7) with singularity in zero.

Proof Let X0 ∈ F(G) and G0 a blow-up limit of G at X0. By Corollary 4.2 the limit G0 is
an 1/2-homogeneous global minimizer such that

|B+
1 (G0)| = γ |B1|,
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for some γ ∈ (0, 1) (because of the density estimates). By Lemma 2.4 and Corollary 2.6, we
have that the blow-up limit satisfies

⎧⎪⎨
⎪⎩

�gi
0 = 0 in R

n+1+
∂xn+1gi

0 = 0 on {|G0| > 0} ∩ R
n

gi
0 = 0 on R

n \ {|G0| > 0}.
Hence, in view of Remark 4.4 all the components are equal up to a multiplicative constant.
Moreover by nondegeneracy, G0 cannot be identically zero.

Thus, there exists ξ ∈ R
m such that |ξ | = 1 andG0 = ξu, where |G0| = g and g is a global

minimizer of (4.7). Indeed, for every R > 0 let g̃ ∈ H1
loc(R

n) be such that supp(g − g̃) ⊆ BR .
Then, given the competitor G̃ = ξ g̃, we easily get thatJ (G0, BR) ≤ J (G̃, BR) is equivalent
to ˆ

BR

|∇g|2 dX + Ln(BR ∩ {g > 0}) ≤
ˆ

BR

|∇ g̃|2 dX + Ln(BR ∩ {g̃ > 0}).

The desired claims now followby the known results for the scalar case, see [12, Proposition
5.3]. ��

The previous analysis allows us to extend the results from the scalar case to our vectorial
counterpart. In particular, the problem of the existence of singular global minimizer for (1.1)
coincides with its scalar counterpart. Indeed, by [12] we have

n∗ = inf{k ∈ N : there exists an1/2
−homogeneous global minimizer with singularity in zero} ≥ 3.

Corollary 4.6 Let G0 be a global minimizer in R
n+1 with n < n∗. Then G0 is of the form

(4.8).

Finally, we introduce the notion of regular and singular part of F(G). The rest of the paper
will be devoted to analyzing the smoothness of the regular part of the free boundary.

Definition 4.7 Let X0 ∈ F(G). We say that

• X0 is a regular point in Reg(F(G)), if the Lebesgue density of {|G| > 0} at X0 is 1/2;
• X0 is a singular point in Sing(F(G)), if X0 /∈ Reg(F(G)).

5 Viscosity formulation around Reg(F(G))

In this short section we recall some basic facts about the scalar thin one-phase free boundary
problem, and we state the viscosity formulation of the vector valued analogue. We show that
local minimizers are indeed viscosity solutions. Hence, the analysis of the regular part of the
free boundary can be performed with the viscosity methods of [10, 15]. However, as pointed
out in the introduction, differently from the local case, the reduction from the vector valued
problem to the scalar one is now almost straightforward. For this reason, we start by recalling
definitions and basic property for the scalar problem.
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5.1 The scalar problem

In this subsection we collect basic definitions and results for the scalar thin one-phase free
boundary problem{

�g = 0, in B+
1 (g) := B1 \ {(x, 0) : g(x, 0) = 0},

∂g
∂t1/2

= 1, on F(g) := B1 ∩ ∂Rn {(x, 0) : g(x, 0) > 0}, (5.1)

where

∂g

∂t1/2
(x0) := lim

t→0+
g(x0 + tν(x0), 0)√

t
, X0 = (x0, 0) ∈ F(g), (5.2)

with ν(x0) the unit normal to the free boundary F(g) at x0 pointing towardB+
1 (g). For further

details and proofs, we refer the reader to [6, 10–13].
First, we state the notion of viscosity solutions to (5.1), as introduced in [10].

Definition 5.1 Given g, v continuous, we say that v touches g by below (resp. above) at
X0 ∈ B1 if g(X0) = v(X0), and

g(X) ≥ v(X) (resp.g(X) ≤ v(X)) in a neighbourhood O of X0.

If this inequality is strict in O \ {X0}, we say that v touches g strictly by below (resp. above).

Definition 5.2 We say that v ∈ C(B1) is a (strict) comparison subsolution to (5.1) if v is a
non-negative function in B1 which is even with respect to xn+1 = 0 and it satisfies

(i) v is C2 and �v ≥ 0 in B+
1 (v);

(ii) F(v) is C2 and if x0 ∈ F(v) we have

v(x0 + tν(x0), 0) = α(x0)
√

t + o(
√

t), as t → 0+,

with

α(x0) ≥ 1,

where ν(x0) denotes the unit normal at x0 to F(v) pointing toward B+
1 (v);

(iii) Either v is not harmonic in B+
1 (v) or α(x0) > 1 at all x0 ∈ F(v).

Similarly one can define a (strict) comparison supersolution.

Definition 5.3 We say that g is a viscosity solution to (5.1) if g is a continuous non-negative
function in B1 which is even with respect to xn+1 = 0 and it satisfies

1. �g = 0 in B+
1 (g);

2. Any (strict) comparison subsolution (resp. supersolution) cannot touch g by below (resp.
by above) at a point X0 = (x0, 0) ∈ F(g).

5.1.1 The function g̃

In this subsectionwe recall the notion of ε-domain variation from [10].Via this transformation
the problem (5.1) can be “linearized", as long as an appropriate Harnack type inequality is
established. This is the heart of the strategy developed in [10] and that we plan to adapt to
the vectorial context.
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Recall that we denote by P the half-hyperplane

P := {X ∈ R
n+1 : xn ≤ 0, xn+1 = 0}

and by

L := {X ∈ R
n+1 : xn = 0, xn+1 = 0}.

Also, we call U (X) := U (xn, xn+1), where U is the function defined in (1.6).
Let g be a continuous non-negative function in Bρ . We define the multivalued map g̃

which associate to each X ∈ R
n+1 \ P the set g̃(X) ⊂ R via the formula

U (X) = g(X − wen), ∀w ∈ g̃(X). (5.3)

We write g̃(X) to denote any of the values in this set.
This change of variables has the same role as the partial Hodograph transform for the

standard one-phase problem. Our free boundary problem becomes a problem with fixed
boundary for g̃, and the limiting values of g̃ on L give the free boundary of g as a graph in
the en direction.

Recall that if g satisfies

U (X − εen) ≤ g(X) ≤ U (X + εen) in Bρ, for ε > 0 (5.4)

then g̃(X) �= ∅ for X ∈ Bρ−ε\P and |g̃(X)| ≤ ε, hence we can associate to g a possibly
multi-valued function g̃ defined at least on Bρ−ε \ P and taking values in [−ε, ε] which
satisfies

U (X) = g(X − g̃(X)en). (5.5)

Moreover if g is strictly monotone in the en-direction in B+
ρ (g), then g̃ is single-valued. See

[10, Section 3] for the basic properties of g̃.

5.2 TheVector Valued Case

We consider now the vector valued thin problem:{
�G = 0 in B+

1 (|G|);
∂

∂t1/2
|G| = 1 on F(G).

(5.6)

Here and henceforth, for notational simplicity we use B+
1 (G) in place of B+

1 (|G|).
Definition 5.4 We say that G = (g1, . . . , gm) ∈ C(B1, R

m) is a viscosity solution to (5.6)
in B1 if each gi is even with respect to {xn+1 = 0},

�gi = 0 in B+
1 (G), ∀i = 1, . . . , m, (5.7)

and the free boundary condition is satisfied in the following sense. Given X0 ∈ F(G), and a
continuous function ϕ in a neighborhood of X0, then

(i) If ϕ is a strict comparison subsolution to (5.1), then for all unit directions f , 〈G, f 〉
cannot be touched by below by ϕ at X0.

(ii) If ϕ is a strict comparison supersolution to (5.1), then |G| cannot be touched by above
by ϕ at X0.
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Remark 5.5 We remark that if G is a viscosity solution to (5.6) in Bλ, then

Gλ(X) = λ−1/2G(λX), X ∈ B1

is a viscosity solution to (5.6) in B1.

Remark 5.6 Notice that, if G is a viscosity solution to (5.6), then |G| is a viscosity subso-
lution to the scalar thin one-phase problem (5.1). Indeed, by the free boundary condition in
Definition 5.4, we easily deduce the validity of its scalar counterpart in Definition 5.3 (see
also Remark 2.5).

In the next proposition we prove that local minimizers are indeed viscosity solutions.

Proposition 5.7 Let G be a local minimizer in B1. Then, up to a scalar multiple, G is a
viscosity solution of (5.6) in B1.

Proof Since the constant A > 0 in (4.8) depends only on the dimension n, up to a scalar
multiplication it is not restrictive to assume that A = 1 in Theorem 4.5.

By Lemma 2.4 we already know that (5.7) is satisfied. Hence, let ϕ be a strict comparison
subsolution to (5.1), and suppose by contradiction that there exists a unit direction f in R

m

such that 〈G, f 〉 is touched by below by ϕ at Y0 ∈ F(G).
Consider now the blow-up sequences centered in the touching point

Gk(X) = 1

r1/2k

G(Y0 + rk X) and ϕk(X) = 1

r1/2k

ϕ(Y0 + rk X),

for some sequence of radii rk → 0+. Up to a subsequence, they converge respectively to
some G0 and ϕ0 uniformly on every compact set of R

n+1. By Definition 5.2, we get, up to
rotation, that

ϕ0(X) = αU (xn, xn+1) withα > 1, (5.8)

On the other side, by Proposition 4.5 the norm |G0| is a 1/2-homogeneous global minimizer
of the scalar thin one-phase functional (4.7) such that {|G0| > 0} ∩ {xn+1 = 0} ⊃ {xn+1 =
0, xn > 0}. By Remark 4.4, we deduce that {|G0| = 0}∩ {xn+1 = 0} = P and consequently

G0(X) = ξU (xn, xn+1) where ξ ∈ R
m, |ξ | = 1.

Hence, we immediately deduce that

ϕ0(X) = αU (xn, xn+1) ≤ 〈G0, f 〉 = 〈ξ, f 〉U (xn, xn+1),

in contradiction with the hypothesis (5.8).
On the other hand, let ϕ be a comparison strict supersolution and let us assume that |G|

is touched by above by ϕ at some Y0 ∈ F(G). By the same blow-up procedure we get, up to
rotation, that

ϕ0(X) = αU (xn, xn+1) withα < 1,

and that |G0| is a 1/2-homogeneous global minimizer of the scalar thin one-phase functional
(4.7) such that {|G0| = 0} ∩ {xn+1 = 0} ⊂ P . As before, we get

|G0|(X) = U (xn, xn+1) .

Since |G0| ≤ ϕ0, the absurd follows from the fact that α < 1. ��
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6 Flat free boundaries: the Harnack inequality

In this section we develop the basic tools for our analysis of the regular part of the free
boundary. In view of Definition 4.7, Proposition 5.7, and non-degeneracy, this boils down to
understanding ”flat” viscosity solutions defined below.

Definition 6.1 Let G be a viscosity solution to (5.6) in B1. We say that G is ε-flat in the
( f , ν)-directions in B1, if for some unit directions f ∈ R

m, ν ∈ R
n ,

|G(X) − U (〈x, ν〉, xn+1) f | ≤ ε in B1, (6.1)

and

|G|(x, 0) ≡ 0 in B1 ∩ {〈x, ν〉 < −ε}. (6.2)

6.1 Key lemmas.

Below is the key proposition that allows us to reduce our analysis to the scalar case. As already
remarked, this is different from the approach we followed for the local vectorial one-phase
problem in [15] where we did not reduce to the scalar counterpart. In this case such reduction
just requires the construction of an appropriate barrier. In the local case a "component-wise"
strategy has been used by the authors in [21], however it required delicate geometric measure
theory tools.

Proposition 6.2 Let G be a viscosity solution to (5.6) in B1. There exists ε0 > 0 universal
such that, if G is ε0-flat in the ( f 1, en)-directions in B1, then

g1 > 0 in B+
1 (G).

Proof Let ε0 > 0 to be chosen later, by the flatness assumption (6.1) we deduce that

U (X) − ε0 ≤ g1(X) ≤ U (X) + ε0 in B1.

For δ0 > 0 to be made precise later, x0 ∈ B1, set �x0(X) = δ0(�x2n+1 − |x − x0|2) with
� > 0 universal such that �� > 0 in B1. We aim to show that g1 ≥ �0 on ∂ B+

1 (G), which
implies by the comparison principle that g1 > 0 on the xn+1-axis minus the origin. Hence,
by comparing g1 with �x0 and varying x0 in B1 we get that g1 > 0 in B1 \ {xn+1 = 0}. Our
claim then follows by continuity.

Clearly, on the set {|G| ≡ 0} ∩ {xn+1 = 0} we have g1 = 0 ≥ �0. On the other hand on
∂ B1\({|G| ≡ 0} ∩ {xn+1 = 0}) we argue as follows: given �′ > � let

C = {(x, xn+1) ∈ R
n+1 : �′x2n+1 − |x |2 > 0} ⊃ {� > 0}

be a slighter larger cone in R
n+1. Since g1 ≥ U − ε0, there exists an universal constant

c0 > 0 such that {
g1 ≥ c0 > 0 on ∂ B1 ∩ C

g1 ≥ −ε0 on ∂ B1 \ C
.

Finally, fixed

M0 = max
∂ B1∩C

�, m0 = max
∂ B1\C

|�| ,
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let us choose δ0 > 0 so that

δ0M0 ≤ c0 on ∂ B1 ∩ C .

Then, up to choose ε0 > 0 small enough, we get

−m0δ0 ≤ −ε0 on ∂ B1 \ C .

Thus, g1 ≥ �0 on ∂ B+
1 (G) as desired. ��

The following lemma allows us to translate the flatness assumption on the vector-valued
function G into the property that one of its components is trapped between nearby translation
of a one-plane solution, while the remaining ones are small.

Lemma 6.3 Let G be a viscosity solution to (5.6) in B1. There exists ε0 > 0 universal such
that, if G is ε0-flat in the ( f 1, en)-directions in B1, then

1. for i = 2, . . . , m,

|gi | ≤ Cε0U (X + ε0en) in B1/2; (6.3)

2.

U (X − Cε0en) ≤ g1 ≤ |G| ≤ U (X + Cε0en) in B1/2, (6.4)

with C > 0 universal.

Proof For the bound (i), let v be the harmonic function in B1\{X ∈ B1 : xn < −ε0} such
that

v = ε0 on ∂ B1, v = 0 on {X ∈ B1 : xn ≤ −ε0}.
Since

∣∣gi
∣∣ is subharmonic in B1 and it satisfies∣∣∣gi

∣∣∣ ≤ ε0, gi ≡ 0 on {X ∈ B1 : xn ≤ −ε0},
by comparison principle

∣∣gi
∣∣ ≤ v in B1. Then by the boundary Harnack inequality, say for

X̄ = 1
2en , we deduce

v(X) ≤ C̄
v(X̄)

U (X̄ + ε0en)
U (X + ε0en) ≤ Cε0U (X + ε0en) in B1/2,

with C > 0 universal.
For the bounds in (i i), let ε0 > 0 be as in Proposition 6.2. Then, g1 is strictly positive

and harmonic in B+
1 (g1) and it satisfies

U (X) − ε0 ≤ g1(X) ≤ U (X) + ε0 in B1,

and (for ε0) possibly smaller,

{X ∈ B1 : xn ≤ −ε0} ⊂ {X ∈ B1 : g1 = 0} ⊂ {X ∈ B1 : xn ≤ ε0}
Thus, by [10][Lemma 5.3.], there exists C > 0 universal such that

U (X − Cε0en) ≤ g1(X) ≤ U (X + Cε0en) in B1/2.

According to the proof of [10][Lemma 5.3.], since the norm |G| is subharmonic in B1, and
|G| = 0 on {xn ≤ −ε0}, the claimed bound for |G| also follows. Details are omitted as they
apply verbatim. ��
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6.2 Harnack Inequality

In this subsection we state and prove a Harnack type inequality which is crucial for our
method.As in the local case (see [15, Lemma2.4]), in the proofweuse the observation that |G|
is a subsolution for the scalar one phase problem in B1. The key difference here is that we also
have that g1 > 0, which means that the strategy of the scalar case applies straightforwardly
in this context. Most details are omitted as the results of [10] can be applied directly, after
observing that in their proofs it is enough for the function to be either a subsolution or
a supersolution of (5.1) (depending on the desired bound), or simply a positive harmonic
function away from its zero set on the plate {xn+1 = 0}.
Theorem 6.4 There exists a universal constant ε > 0 such that, if G solves (5.6) in B1 and

U (X + εa0en) ≤ g1 ≤ |G| ≤ U (X + εb0en) in Br (X0) ⊂ B1, (6.5)

with

ε(b0 − a0) ≤ ε̄r ,

and

|gi | ≤ r1/2
(

b0 − a0
r

ε

)5/8

in B1/2(X0), i = 2, . . . , m, (6.6)

then

U (X + εa1en) ≤ g1 ≤ |G| ≤ U (X + εb1en) inBηr (X0), (6.7)

with

a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 = (1 − η)(b0 − a0),

for a small universal constant η > 0.

The following key corollary is immediately obtained. Here g̃1
ε and |̃Gε| are the ε-domain

variations associated to g1 and |G| respectively and

aε := {
(X , g̃1

ε (X)) : X ∈ B1−ε \ P
}

and Aε :=
{
(X , |̃Gε|(X)) : X ∈ B1−ε \ P

}
.

Since domain variations may be multivalued, we mean that given X all pairs (X , g̃1
ε (X))

belong to aε for all possible values of g̃1
ε (X), and similarly for Aε.

Corollary 6.5 There exists a universal constant ε > 0 such that, if G solves (5.6) in B1,

U (X − εen) ≤ g1 ≤ |G| ≤ U (X + εen) in B1,

and

|gi | ≤ ε3/4 in B1/2, i = 2, . . . , m,

with ε ≤ ε̄/2 and m0 > 0 such that (C universal)

4ε(1 − η)m0η−m0 ≤ ε, ε ≤ C(1 − η)5m0 , (6.8)

then the sets aε ∩ (B1/2 × [−1, 1]) and Aε ∩ (B1/2 × [−1, 1]) are trapped above the graph
of a function y = aε(X) and below the graph of a function y = bε(X) with

bε − aε ≤ 2(1 − η)m0−1,
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where aε, bε have modulus of continuity bounded by the Hölder function αtβ , with α, β

depending only on η.

Indeed, we can apply repeatedly the Harnack inequality for m = 0, . . . , m0 (the second
inequality in (6.8) guarantees that (6.6) is preserved), and obtain

U (X + εamen) ≤ g1 ≤ |G| ≤ U (X + εbmen) in Bηm (6.9)

with bm − am = 2(1 − η)m . Thus, by the properties of the ε-domain variations (see [10,
Lemma 3.1]) we get

am ≤ g̃1
ε ≤ |̃Gε| ≤ bm in Bηm−ε,

and

aε ∩ (Bηm−ε × [−1, 1]) ⊂ Bηm−ε × [am , bm ], Aε ∩ (Bηm−ε × [−1, 1]) ⊂ Bηm−ε × [am , bm ],
for m = 0, . . . , m0.

We are left with the proof of the Harnack inequality, that follows easily from the next
lemma.

Lemma 6.6 There exists ε0 > 0 universal such that if G is a solution to (1.5) in B1 such that
for 0 < ε ≤ ε0,

U (X) ≤ g1(X) ≤ |G|(X) in B1/2,

and at X ∈ B1/8(
1
4en) we have U (X + εen) ≤ g1(X), then

U (X + τεen) ≤ g1(X) ≤ |G|(X) in Bδ,

for universal constants τ, δ > 0. Similarly, if

g1(X) ≤ |G|(X) ≤ U (X) in B1/2

and

|gi | ≤ ε5/8 in B1/2, i = 2, . . . , m, (6.10)

then if g1(X) ≤ U (X − εen), we get

g1(X) ≤ |G|(X) ≤ U (X − τεen) in Bδ.

Proof of Lemma 6.6 The first statement follows immediately from the fact that g1 is a super-
solution to (5.1) hence we can apply [10, Lemma 6.3].

Now, let us consider the case

g1(X) ≤ |G|(X) ≤ U (X) in B1/2

and

|gi | ≤ ε5/8 in B1/2, i = 2, . . . , m.

Since |G| is a subsolution, in order to apply again in [10, Lemma 6.3], we need to check that

|G|(X̄) ≤ U (X̄ − cεen)

for some c > 0 universal. Since g1(X) ≤ U (X − εen), we get

g1(X) − U (X) ≤ U (X − εen) − U (X) = −∂tU (X − λen)ε ≤ −cε, λ ∈ (0, ε)

(6.11)
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and

|G|(X) − U (X) ≤ g1(X) + Cε5/4 − U (X) ≤ − c

2
ε.

The desired bound follows arguing as in (6.11). ��
We are now ready to sketch the proof of Theorem 6.4.

Proof of Theorem 6.4 Without loss of generality, let us assume a0 = −1 and b0 = 1. Also,
up to rescaling, we can take r = 1 (hence 2ε ≤ ε). Moreover, we denote with ε0 and δ the
universal constants in Lemma 6.6, and choose ε̄ = ε0.

We distinguish two cases depending on the position of Br (X0).
Case 1. If dist(X0, {xn = −ε, xn+1 = 0}) ≤ δ/2 we aim to apply Lemma 6.6. Assume

that for X = 1/4en (the other case is analogous to the scalar counterpart [10, Theorem 6.1])

g1(X) ≤ U (X).

Since,

g1 ≤ |G| ≤ U (X + εen) in B1/2(−εen) ⊂ B1(X0),

and for ε small enough, it holds X ∈ B1/8((−ε + 1/4)en), by (6.6) we can apply Lemma 6.6
and conclude that

g1 ≤ |G| ≤ U (X + (1 − η)εen) in Bδ(−εen).

Finally, the improvement follows by choosing η < δ/2, which implies that Bη(X0) ⊂
Bδ(−εen).

Case 2. If dist(X0, {xn = −ε, xn+1 = 0}) > δ/2, thenwe can apply directly [10, Theorem
6.1], as in this case we only use that g1 is a positive harmonic function in B+

1 (g1), thus the
conclusion

U (X + εa1en) ≤ g1 ≤ U (X + εb1en) in Bη(X0), (6.12)

does hold for η small. On the other hand, reasoning as in Lemma 6.3-(i) we have in the same
ball,

|G| ≤ U (X + εb1en) + Cε5/8U (X + εen) ≤ U (X + b̄1εen),

and our claim is proved. ��

7 The improvement of flatness lemma

In this section we prove our main lemma, from which the C1,α regularity of a flat free
boundary follows by standard arguments (see for example [15]). In view of Lemma 6.3 the
flatness can be expressed as in (7.1)-(7.2).

Lemma 7.1 [Improvement of flatness] Let G be a viscosity solution to (5.6) in B1 with
0 ∈ F(G), satisfying

U (X − εen) ≤ g1 ≤ |G| ≤ U (X + εen) in B1, (7.1)

and

|G − g1 f 1| ≤ ε3/4 in B1. (7.2)
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If 0 < ρ ≤ ρ0 for a universal ρ0 > 0 and 0 < ε ≤ ε0 for some ε0 depending on ρ, then for
unit vectors ν ∈ R

n and f̄ 1 ∈ R
m,

U
(
〈x, ν〉 − ε

2
ρ, xn+1

)
≤ G · f̄ 1 ≤ |G| ≤ U

(
〈x, ν〉 + ε

2
ρ, xn+1

)
in Bρ, (7.3)

and

|G − (G · f̄ 1) f̄ 1| ≤
( ε

2

)3/4
ρ1/2 in Bρ, (7.4)

with |ν − en |, | f 1 − f̄ 1| ≤ Cε, i = 1, . . . , m, for a universal constant C > 0.

Proof Following the strategies of [10, 15], we proceed by contradiction. Once the argument
reduces to the scalar case, we omit the details and refer the reader to the corresponding steps
in the proof of [10, Theorem 7.2].

Step 1 - Compactness and linearization. Fix ρ ≤ ρ0 to be made precise later. Let us
suppose there exist εk → 0 and a sequence of solutions (Gk)k of (5.6) such that 0 ∈ F(Gk)

and (7.1) and (7.2) are satisfied for every k,

U (X − εken) ≤ g1
k ≤ |Gk | ≤ U (X + εken) in B1, (7.5)

and

|Gk − g1
k f 1| ≤ ε

3/4
k in B1, (7.6)

but either of the conclusions (7.3) or (7.4) does not hold. Let g̃1
k and |̃G|k be the εk-domain

variations of g1
k and |Gk | respectively. In view of (7.5)-(7.6), we can apply Corollary 6.5 and

Ascoli-Arzelà to conclude that, up to a subsequence, the sets

ak := {
(X , g̃1

k (X)) : X ∈ B1−εk \ P
}

and Ak :=
{
(X , |̃Gk |(X)) : X ∈ B1−εk \ P

}
,

converge uniformly, with respect to the Hausdorff distance, in B1/2 \ P to the graphs

a∞ := {
(X , g̃1∞(X)) : X ∈ B1/2 \ P

}
and A∞ :=

{
(X , |̃G∞|(X)) : X ∈ B1/2 \ P

}
,

with g̃1∞ and |̃G∞| Hölder continuous functions in B1/2. Moreover,

|̃G∞| ≡ g̃1∞ in B1/2. (7.7)

Since g1
k is a sequence of supersolutions to the scalar thin one-phase problem (5.1), while

|Gk | is a sequence of subsolutions to the same problem, we conclude by the arguments in
Step 2 of [10, Theorem 7.1] that |̃G∞| ≡ g̃1∞ satisfies (in the viscosity sense) the linearized
problem {

�(Unw) = 0 in B1 \ P,

|∇rw| = 0 on B1 ∩ L,
(7.8)

where we recall that

|∇rw|(X0) = lim
(xn ,xn+1)→(0,0)

w(x ′
0, xn, z) − w(x ′

0, 0, 0)

r
, r = |(xn, xn+1)|.

In particular, since (g̃1
k )k and (|̃Gk |)k are uniformly bounded in B1, we get a uniform bound on

g̃1∞ ≡ |̃G∞|, hence by [10, Lemma 4.2], since g̃1∞(0) = 0, we deduce that for C0 universal,∣∣g̃1∞(X) − 〈ξ ′, x ′〉∣∣ ≤ C0ρ
3/2 in B2ρ, (7.9)
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for some vector ξ ′ ∈ R
n−1. Details are omitted as we reduced to the scalar case, hence the

arguments of [10, Theorem 7] apply verbatim.
Step 2 - Improvement of flatness. In view of (7.9), for ρ < 1/(8C0) small enough, we get

〈ξ ′, x ′〉 − 1

8
ρ ≤ g̃1∞(X) ≤ 〈ξ ′, x ′〉 + 1

8
ρ in B2ρ

and, for k sufficiently large, we deduce from the uniform convergence of ak to a∞ and of Ak

to A∞ that

〈ξ ′, x ′〉 − 1

4
ρ ≤ g̃1

k (X) ≤ |̃Gk |(X) ≤ 〈ξ ′, x ′〉 + 1

4
ρ in B2ρ \ P. (7.10)

The argument of Step 2 in [10, Theorem 7.1] then gives (again details are omitted):

U
(
〈x, ν〉 − εk

4
ρ, xn+1

)
≤ g1

k ≤ |Gk | ≤ U
(
〈x, ν〉 + εk

4
ρ, xn+1

)
in B 3

2 ρ, (7.11)

for a unit vector ν with |ν − en | ≤ Cεk .

On the other hand, by (7.5)-(7.6) we conclude that, up to a subsequence, gi
k/ε

3/4
k → gi∗

uniformly, with gi∗ harmonic in B1/2\P and gi∗ = 0 on L ∩ B1/2, i = 2, . . . , m. Thus, for k
large, |Mi | ≤ M universal,

|gi
k − Mi Uε

3/4
k | ≤ Cε

3/4
k ρU in B 3

2 ρ.

From the properties of the function U and (7.5), we conclude that (C universal)

|gi
k − Mi g

1
k ε

3/4
k | ≤ Cε

3/4
k (ρ3/2 + ε

1/2
k ) ≤ (

εk

8
)3/4ρ1/2 in B 3

2 ρ, (7.12)

by choosing ρ ≤ ρ0 small enough universal and then k large.
Now, set

ξ1k := f 1 + ε
3/4
k

∑
i �=1

Mi f i , f̄ 1k := ξ1k

|ξ1k | .

Notice that,

f̄ 1k = ξ1k + O(ε
3/2
k ). (7.13)

We claim that

U
(
〈x, ν〉 − εk

2
ρ, xn+1

)
≤ Gk · f̄ 1k ≤ |Gk | ≤ U

(
〈x, ν〉 + εk

2
ρ, xn+1

)
in Bρ, (7.14)

and

|Gk − (Gk · f̄ 1k ) f̄ 1k | ≤ (
εk

2
)3/4ρ1/2 in Bρ, (7.15)

thus reaching a contradiction. Indeed, the upper bound in (7.14) is also a straightforward
consequence of (7.11). For the lower bound, we observe that by (7.5), (7.6) and (7.13),

|Gk − U f̄ 1k | → 0, as k → ∞,

while

|Gk | ≡ 0 in {xn ≤ −εk}. (7.16)

Proposition 6.2 then gives

Gk · f̄ 1k > 0 in B+
1
2
(Gk). (7.17)
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Moreover, by the definition of f̄ 1k , (7.13) and (7.17),

Gk · f̄ 1k ≥ (U
(
〈x, ν〉 − εk

4
ρ, xn+1

)
− Cε

3/2
k )+. (7.18)

Call

h(X) := (U
(
〈x, ν〉 − εk

4
ρ, xn+1

)
− Cε

3/2
k )+.

Let V be the harmonic function in B 3
2 ρ\{〈x, ν〉 ≤ εk

4 ρ} with

V = h on ∂ B 3
2 ρ, V = 0 on {〈x, ν〉 = εk

4
ρ}.

Then, by (7.11)-(7.17)-(7.18) and the comparison principle, we conclude that

Gk · f̄ 1k ≥ V in B 3
2 ρ.

On the other hand, by Boundary Harnack,

V ≥ (1 − Cε
3/2
k )U

(
〈x, ν〉 − εk

4
ρ, xn+1

)
on Bρ,

for C > 0 universal, from which the required lower bound follows for k large.
We are left with the proof of (7.15). In view of (7.13), we need to show that

|Gk − (Gk · ξ1k )ξ1k | ≤
(εk

4

)3/4
ρ1/2 in Bρ.

Call

Ḡk := Gk − (Gk · ξ1k )ξ1k .

Then,

|ḡ1
k | = ε3/4|

∑
i �=1

Mi g
i | ≤ Cε

3/2
k ,

in view of assumption (7.6). For the remaining components we use (7.12), hence

|ḡi
k | = |gi

k − ε
3/4
k Mi g

1
k − ε

3/2
k Mi

∑
j �=1

M j g
j
k | ≤

(εk

8

)3/4
ρ1/2 + Cε

9/4
k ,

and the desired bound follows for k large. ��
The proof of our main result Theorem 1.1 now follows combining Proposition 4.7 (and

its corollary), Definition 4.7, Proposition 5.7, and Theorem 1.2. The statements about n∗ and
the fact that {|G| > 0} ∩ {xn+1 = 0} has locally finite perimeter follow exactly as in the
scalar case (see [12, Section 5] and [17, Theorem 1.2.]).
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