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Abstract
We propose a generalized curvature that is motivated by the optimal transport problem onRd

with cost induced by a Tonelli Lagrangian L . We show that non-negativity of the generalized
curvature implies displacement convexity of the generalized entropy functional on the L-
Wasserstein space along C2 displacement interpolants.

Mathematics Subject Classification 35A15 · 49Q22 · 53A99

1 Introduction

Given a Riemannian manifold (M, g), one may consider the optimal transport problem with
cost given by squared Riemannian distance. This induces the 2-Wasserstein distance W2 on
P2(M), the space of probability measures on M with finite second moments (i.e. probability
measures μ such that

∫
M

d(x, x0)
2dμ(x) < ∞

for every x0 ∈ M). The metric space (P2(M), W2) is called the 2-Wasserstein space, and is
known to be a geodesic space ([21] Chapter 7).

In [17], Otto proposed that P2(M) admits a formal Riemannian structure and developed
a formal calculus on P2(M). This later became what is known as Otto calculus [21] and
was made rigorous by Ambrosio-Gigli-Savaré [2]. In particular, Otto calculus allows one to
compute displacement Hessians of functionals along geodesics in P2(M). This is useful for
characterizing a displacement convex functional (i.e. convex along every geodesic) by the
non-negativity of its displacement Hessian. In a seminal work by Otto and Villani [18], it
was shown that the displacement convexity of the entropy functional is related to the Ricci
curvature of (M, g). Since then, the notion of displacement convexity has been useful in
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many other areas. For instance, it has inspired new heuristics and proofs of various functional
inequalities [1, 8].

Further advances have been made towards understanding the relationships between the
geometry of the underlying space and the induced geometry ofP(M), the space of probability
measures on M . In his Ph.D. thesis [19], Schachter studied the optimal transport problem on
R

d with cost induced by a Tonelli Lagrangian. The case d = 1 was considered in [20], and
this work was later used in [3] and [15].

In his work, Schachter developed an Eulerian calculus, extending the Otto calculus.
Among the other contributions of his thesis, Schachter derived a canonical form for the
displacement Hessians of functionals. Using Eulerian calculus, he found a new class of dis-
placement convex functionals on S1 [20], which includes those found by Carrillo and Slepčev
in [7]. In the case when the cost is given by squared Riemannian distance, Schachter proved
that his displacement Hessian agrees with Villani’s displacement Hessian in [21], which is a
quadratic form involving the Bakry–Emery tensor.

Summary of main results: In this manuscript, a generalized notion of curvature Kx

(Definition 5.6) is proposed for the manifold M = R
d equipped with a general Tonelli

Lagrangian L , and is given by

Kx (ξ):= tr

(
∇ξ(x)2 + A(x, ξ(x))∇ξ(x) + B(x, ξ(x))

)

for vector fields ξ ∈ C2(Rd ;Rd). The maps A and B are defined in Lemma 5.1. We prove
that this generalized curvature is independent of the choice of coordinates (Theorem 5.7).
In the case where ξ take a special form (that naturally arises from the optimal transport
problem), we provide an explicit formula for Kx in Theorem 5.8. Lastly, we furnish an
example of a Lagrangian cost with non-negative generalized curvature that is not given by
squared Riemannian distance. This induces a geometry on the L-Wasserstein space where
the generalized entropy functional (4.1) is displacement convex along suitable curves.

This paper is organized as follows: In the first four sections, we will review the opti-
mal transport problem induced by a Tonelli Lagrangian, up to and including the notion of
displacement convexity. The thesis of Schachter [19] provides a good overview of key defini-
tions and results needed. Section2 covers some basic notation. Section3 reviews some ideas
from [19]; chief among them is the relationship between the various formulations of the opti-
mal transport problem. Section4 discusses functionals along curves in Wasserstein space,
including a computation of the displacement Hessian. Section5 introduces the definition and
various properties of the generalized curvature Kx . Lastly, Sect. 6 provides an example of a
Lagrangian with everywhere non-negative generalized curvature.

2 Notation

We will take our underlying manifold to be M = R
d and identify its tangent bundle TR

d ∼=
R

d ×R
d . LetPac = Pac(Rd) denote the set of probabilitymeasures onRd that are absolutely

continuous with respect to the d−dimensional Lebesgue measure (denoted Ld ). An element
of Pac will often be identified by its density ρ. Given ρ ∈ Pac and a measurable function
T : Rd → R

d , T#ρ will denote the push-forward measure of ρ.

Definition 2.1 (Tonelli Lagrangian) A function L : R
d × R

d → R is called a Tonelli
Lagrangian if it satisfies the following conditions:

(i) L ∈ C2(Rd × R
d).
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(ii) For every x ∈ R
d , the function L(x, ·) : Rd → R is strictly convex.

(iii) L has asymptotic superlinear growth in the variable v, in the sense that there exists a
constant c0 ∈ R and a function θ : Rd → [0,+∞) with

lim|v|→+∞
θ(v)

|v| = +∞

such that

L(x, v) ≥ c0 + θ(v) (2.1)

for all (x, v) ∈ R
d × R

d .

Throughout this manuscript, L ∈ Ck(Rd × R
d), k ≥ 3 will be assumed to be a Tonelli

Lagrangian and we will work with the underlying space (Rd , L). We denote the gradient
with respect to the x (position) and v (velocity) variables by ∇x L,∇v L ∈ R

d respectively.
Similarly, the second-order derivatives will be denoted by ∇2

xx L , ∇2
vv L , ∇2

xv L , ∇2
vx L =

∇2
xv L� ∈ R

d×d . We will assume that the Hessian ∇2
vv L(x, v) is positive-definite for every

(x, v) ∈ R
d × R

d . The time derivative of a function f (t) will be denoted by ḟ = d f
dt .

3 Optimal transport problem induced by a Tonelli Lagrangian

3.1 Lagrangian optimal transport problem

The goal of this section is to establish the different formulations of the optimal transport
problem with cost induced by a Tonelli Lagrangian L . In this first subsection, the Lagrangian
optimal transport problem will be presented. We will also briefly recall the classical Monge–
Kantorovich theory. Most of the material in the subsection can be found in [5, 11, 19, 21].
In subsection 3.2 we will present an Eulerian perspective and its connections to viscosity
solutions of the Hamilton–Jacobi equation.

Definition 3.1 (Action functional) Let T > 0 and γ ∈ W 1,1([0, T ];Rd) be a curve. The
action of L on γ is

AL,T (γ ) =
∫ T

0
L(γ (t), γ̇ (t)) dt . (3.1)

This induces a cost function cL,T : Rd × R
d → R given by

cL,T (x, y) = inf{AL,T (γ ) : γ ∈ W 1,1([0, T ];Rd), γ (0) = x, γ (T ) = y}. (3.2)

A curve γ with γ (0) = x, γ (T ) = y is called an action-minimizing curve from x to y if
AL,T (γ ) = cL,T (x, y).

Theorem 3.2 ([11] Appendix B) For any x, y ∈ R
d , there exists an action-minimizing curve

γ from x to y such that

(i) AL,T (γ ) = cL,T (x, y)

(ii) γ ∈ Ck([0, T ];Rd)

(ii) γ satisfies the Euler–Lagrange equation

d

dt
((∇v L)(γ, γ̇ )) = (∇x L)(γ, γ̇ ) (3.3)
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Definition 3.3 (Lagrangian flow) The Lagrangian flow� : [0,+∞)×R
d ×R

d → R
d ×R

d

is defined by {
d
dt ((∇v L)(�)) = (∇x L)(�)

�(0, x, v) = (x, v)

We refer the reader to [11] and [19] for further properties of the cost function cL,T . In
particular, it is locally Lipschitz and thus differentiable almost everywhere by Rademacher’s
theorem. Moreover, if either ∂

∂x cL,T (x0, y0) or ∂
∂ y cL,T (x0, y0) exists at (x0, y0), then the

action-minimizing curve from x0 to y0 is unique. With the cost cL,T , we may state the
Monge problem and the Kantorovich problem.

Definition 3.4 (Monge problem) Let ρ0, ρT ∈ Pac. The Monge optimal transport problem
from ρ0 to ρT for the cost cL,T is the minimization problem

inf
M

{ ∫
Rd

cL,T (x, M(x))ρ0(x) dx : M#ρ0 = ρT , M Borel measurable

}
. (3.4)

Definition 3.5 (Kantorovich problem) Let �(ρ0, ρT ) denote the set of all probability mea-
sures onRd ×R

d withmarginals ρ0 and ρT . Then the Kantorovich optimal transport problem
from ρ0 to ρT for the cost cL,T is the minimization problem

inf
π

{∫
Rd×Rd

cL,T (x, y) dπ(x, y) : π ∈ �(ρ0, ρT )

}
. (3.5)

A minimizer π is called an optimal transport plan. The infimum in (3.5) is denoted
WcL,T (ρ0, ρT ) and it is called the Kantorovich cost from ρ0 to ρT .

If WcL,T (ρ0, ρT ) is finite, then the Monge problem with cost cL,T admits an optimizer
M (called the Monge map) that is unique ρ0−almost everywhere [11]. Note that the Monge
problem is only concernedwith the initial and final states (i.e. ρ0, ρT ). To interpolate between
ρ0 and ρT in a way that respects the cost cL,T , we consider the Lagrangian formulation of
the optimal transport problem induced by L .

Definition 3.6 (Lagrangian optimal transport problem) Let ρ0, ρT ∈ Pac. The Lagrangian
optimal transport problem from ρ0 to ρT induced by the Tonelli Lagrangian L is the mini-
mization problem

inf
σ

{∫ T

0

∫
Rd

L(σ (t, x), σ̇ (t, x))ρ0(x) dx dt

}
(3.6)

where the infimum is taken over all σ : [0, T ] × R
d → R

d such that

(i) σ(·, x) ∈ W 1,1([0, T ];Rd) for every x ∈ R
d

(ii) σ(t, ·) is Borel measurable for every t ∈ [0, T ]
(iii) σ(0, x) = x for every x ∈ R

d

(iv) σ(T , ·)#ρ0 = ρT

In [19], it is shown that if WcL,T (ρ0, ρT ) is finite, then the Lagrangian optimal transport
problemadmits anoptimizerσ such thatσ(·, x) is an action-minimizing curve fromσ(0, x) =
x to σ(T , x) for every x ∈ R

d . Moreover, the map σ(T , ·) coincides with the Monge map
M and so is unique ρ0−almost everywhere. With an optimizer σ , we can define the notion
of displacement interpolation, which is the analogue of a geodesic in Pac.
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Definition 3.7 (Displacement interpolant) Let ρ0, ρT ∈ Pac be such that the Kantorovich
cost WcL,T (ρ0, ρT ) is finite. Let σ be an optimizer of the Lagrangian optimal transport
problem. Then the displacement interpolant between ρ0 and ρT for the cost cL,T is the
measure-valued map

[0, T ] 	 t 
→ μt = σ(t, ·)#ρ0.

Since μt is absolutely continuous with respect to Ld for every t ∈ [0, T ] ([11] Theorem
5.1), we will also identify μt with its density ρt . Subsequently, we will always denote a
displacement interpolant by a function ρ : [0, T ]×R

d → R and use the notation ρt = ρ(t, ·)
whenever the intention is clear. Since the maps σ(t, ·) are uniquely defined (ρ0−almost
everywhere) on the support of ρ0, the displacement interpolant is well-defined. Moreover,
the map σ

∣∣[0,t]×Rd for an intermediary time t ∈ [0, T ] optimizes the Lagrangian optimal
transport problem from ρ0 to ρt , i.e.

WcL,t (ρ0, ρt ) =
∫ t

0

∫
Rd

L(σ (s, x), σ̇ (s, x))ρ0(x) dx ds.

In order to discuss the Eulerian formulation of the optimal transport problem, we need to
introduce the Kantorovich duality. We do so in accordance with the convention of [21].

Theorem 3.8 (Kantorovich duality) The Kantorovich optimal transport problem from ρ0 to
ρT for the cost cL,T has a dual formulation

inf
π

{ ∫
Rd×Rd

cL,T (x, y) dπ(x, y) : π ∈ �(ρ0, ρT )

}

= sup
(u0,uT )

{ ∫
Rd

uT (y)ρT (y) dy −
∫
Rd

u0(x)ρ0(x) dx : (u0, uT ) ∈ L1(ρ0) × L1(ρT ) ,

uT (y) − u0(x) ≤ cL,T (x, y) ∀(x, y) ∈ R
d × R

d
}

Moreover, we may assume that

uT (y) = inf
x∈Rd

{
u0(x) + cL,T (x, y)

}

u0(x) = sup
y∈Rd

{
uT (y) − cL,T (x, y)

}

If (u0, uT ) is an optimizer of the dual problem, then u0 and uT are called Kantorovich
potentials.

Remark 3.9 If the Monge optimal transport problem from ρ0 to ρT for the cost cL,T

admits a minimizer M (unique ρ0−almost everywhere), then any optimal transport plan
π ∈ �(ρ0, ρT ) is concentrated on the graph of M [11]. Moreover, if u0 and uT are Kan-
torovich potentials, then

uT (y) − u0(x) ≤ cL,T (x, y)

for every (x, y) ∈ R
d × R

d and we have equality

uT (M(x)) − u0(x) = cL,T (x, M(x))

for x ρ0−almost everywhere (see [21] Theorem 5.10).
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3.2 Eulerian formulation

The paper by Benamou and Brenier [4] is one of the earliest works establishing the Eulerian
formulation and its connection toHamilton–Jacobi equations. Subsequently, the relationships
between the different formulations of the optimal transport problem were further studied (for
instance, [5]).

In particular, the Eulerian view establishes the displacement interpolant as a solution to
the continuity equation. First, we state some basic facts about the Hamiltonian.

The Hamiltonian associated with the Tonelli Lagrangian L is defined as the Legendre
transform of L with respect to the variable v, i.e.

H(x, p) = sup
v∈Rd

{〈p, v〉 − L(x, v)}. (3.7)

Thus, the Hamiltonian H satisfies the Fenchel-Young inequality

〈v, p〉 ≤ H(x, p) + L(x, v) (3.8)

for all x, v, p ∈ R
d , with equality if and only if

p = (∇v L)(x, v). (3.9)

Moreover, H ∈ Ck(Rd × R
d) and

(∇v L)(x, (∇p H)(x, r)) = (∇p H)(x, (∇v L)(x, r)) = r . (3.10)

Let u0 : Rd → [−∞,+∞] be a function and T > 0.We define the Lax-Oleinik evolution
u : [0, T ] × R

d → [−∞,+∞] of u0 by

u(t, x):= inf
γ

{
u0(γ (0)) +

∫ t

0
L(γ (τ ), γ̇ (τ )) dτ : γ ∈ W 1,1([0, t];Rd) , γ (t) = x

}

= inf
γ

{
u0(γ (0)) + AL,t (γ ) : γ ∈ W 1,1([0, t];Rd) , γ (t) = x

}

= inf
y∈Rd

{
u0(y) + cL,t (y, x)

}
(3.11)

so that u(0, x) = u0(x).

Remark 3.10 Since L is bounded below, if there exists some (t∗, x∗) ∈ (0, T ]×R
d such that

u(t∗, x∗) is finite, then u is finite on all of [0, T ] × R
d .

It is known that if u is finite, then it is a viscosity solution of the Hamilton–Jacobi equation

∂u

∂t
+ H(x,∇u) = 0 (3.12)

(see [9] Section 7.2 and [10] Theorem 1.1).

Definition 3.11 (Calibrated curve) Let f : [t0, t1] × R
d be a function. A curve γ ∈

W 1,1([t0, t1];Rd) is called a ( f , L)−calibrated curve if f (t0, γ (t0)), f (t1, γ (t1)) and∫ t1
t0

L(γ (t), γ̇ (t)) dt are all finite and

f (t1, γ (t1)) − f (t0, γ (t0)) =
∫ t1

t0
L(γ (t), γ̇ (t)) dt . (3.13)
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In the following proposition, we mention some properties of u that are of interest to us.
The proofs can be found in [6, 9, 10].

Proposition 3.12 Let u be defined as in (3.11). If u is finite, then the following hold:

(i) u is continuous and locally semi-concave on (0, T ) × R
d .

(ii) u is a viscosity solution of the Hamilton–Jacobi equation

∂u

∂t
+ H(x,∇u) = 0.

(iii) If [a, b] ⊂ [0, T ] and γ : [a, b] → R
d is a (u, L)−calibrated curve, then u is

differentiable at (t, γ (t)) for every t ∈ [a, b] and we have

∇u(t, γ (t)) = (∇v L)(γ (t), γ̇ (t)). (3.14)

(iv) If u is differentiable at (t∗, x∗), then there is at most one (u, L)−calibrated curve
γ : [a, b] → R

d with t∗ ∈ [a, b] and γ (t∗) = x∗.

We now return to the optimal transport problem from ρ0 ∈ Pac to ρT ∈ Pac induced by
L . Suppose that WcL,T (ρ0, ρT ) is finite and let u0 ∈ L1(ρ0) be a Kantorovich potential.

Proposition 3.13 Let σ : [0, T ] × R
d → R

d be an optimizer of the Lagrangian optimal
transport problem from ρ0 to ρT induced by L. Let (u0, uT ) be the corresponding Kantorovich
potentials and u : [0, T ]×R

d → R be the Lax–Oleinik evolution of u0. Then (∇u)(t, σ (t, x))

exists for all t ∈ [0, T ] and x ρ0−almost everywhere. In addition, σ satisfies the relation

σ̇ (t, x) = (∇p H)(σ (t, x), (∇u)(t, σ (t, x))). (3.15)

Proof By Remark 3.10, u is finite since u(T , ·) = uT ∈ L1(ρT ). By Remark 3.9, the
Kantorovich potentials (u0, uT ) satisfy

uT (σ (T , x)) − u0(x) = cL,T (x, σ (T , x))

⇐⇒ u(T , σ (T , x)) − u(0, σ (0, x)) = cL,T (x, σ (T , x))

for x ρ0−almost everywhere (recall that σ(T , ·) coincides with the Monge map). Thus,
for ρ0−almost every x , the curve t 
→ σ(t, x) is a (u, L)−calibrated curve and so
(∇u)(t, σ (t, x)) = (∇v L)(σ (t, x), σ̇ (t, x)) exists by Proposition 3.12. Using identity (3.10),
we get

σ̇ (t, x) = (∇p H)(σ (t, x), (∇u)(t, σ (t, x))).

��
Remark 3.14 Let V : [0, T ] × R

d → R
d be a time-dependent vector field that agrees with

(∇p H)(x, (∇u)(t, x)) on the set

St :={σ(t, y) ∈ R
d : y ∈ supp(ρ0) , (∇u)(t, σ (t, y)) exists}

for each t ∈ [0, T ]. Using the definition of the displacement interpolant ρt = σ(t, ·)#ρ0, and
the fact that (∇u)(t, σ (t, x)) exists for all t ∈ [0, T ] and ρ0−almost every x ∈ R

d , we have
that the set

{σ(t, y) ∈ R
d : y ∈ supp(ρ0) , u not differentiable at (t, σ (t, y))}
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is a set of zero ρt−measure. Thus, St has full ρt−measure and so V (t, x) = (∇p H)(x, (∇u)

(t, x)) ρt−almost everywhere. By (3.15), σ̇ (t, x) = V (t, σ (t, x)) for all t ∈ [0, T ] and
ρ0−almost every x ∈ R

d . This means that ρt and V solve the continuity equation

∂ρt

∂t
+ ∇ · (ρt V ) = 0 (3.16)

in the sense of distributions ([19] Proposition 3.4.3).

4 Generalized entropy functional and displacement Hessian

Otto calculus and Schachter’s Eulerian calculus both allow for explicit computations, assum-
ing that all relevant quantities possess sufficient regularity. However, the regularity of a
displacement interpolant ρ depends on the Lagrangian L , the initial and final densities
(ρ0, ρT ), and the optimal trajectories σ (or the velocity field V in the Eulerian framework). In
general, the Kantorovich potential u0 arising from an optimal transport problem induced by
a Tonelli Lagrangian L is only known to be semiconcave, differentiable Ld−almost every-
where, and its gradient ∇u0 is only locally bounded (see [13] and [14] Appendix C). This
implies that the initial velocity V (0, x) = (∇p H)(x,∇u0(x)) is only locally bounded. As
such, even if the initial density ρ0 is smooth, its regularity may fail to propagate along the
displacement interpolant.

For our purpose of computing displacement Hessians, we require displacement inter-
polants to be of class C2. Fortunately, such displacement interpolants do exist and we can
construct them if we impose two additional criteria on L .

4.1 C2 displacement interpolants

Let L ∈ Ck+1(Rd × R
d), k ≥ 3 be a Tonelli Lagrangian satisfying two additional criteria

(see [6] Chapters 6.3, 6.4).

(L1) There exists c̃0 ≥ 0 and θ̃ : [0,∞) → [0,∞) with

lim
r→+∞

θ̃ (r)

r
= +∞

such that

L(x, v) ≥ θ̃ (|v|) − c̃0.

In addition, θ̃ is such that for any M > 0 there exists KM > 0 with

θ̃ (r + m) ≤ KM [1 + θ̃ (r)]
for all m ∈ [0, M] and all r ≥ 0.

(L2) For any r > 0, there exists Cr > 0 such that

|(∇x L)(x, v)| + |(∇v L)(x, v)| < Cr θ̃ (|v|)
for all |x | ≤ r , v ∈ R

d .

Some common examples of Tonelli Lagrangians satisfying these criteria include the Rie-
mannian kinetic energy

L(x, v) = 1

2
gx (v, v)
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where gx denotes the underlying Riemannian metric tensor, and Lagrangians that arise from
mechanics

L(x, v) = 1

2
gx (v, v) + U (x)

for some appropriate potential U : Rd → R.
Let H be the corresponding Hamiltonian.

Lemma 4.1 Let u0 ∈ Ck+1(Rd) with u0(x) ≥ −c̃0 for all x ∈ R
d . Let u : [0,+∞)×R

d →
[−∞,+∞] be the Lax–Oleinik evolution of u0, as defined in (3.11). For x ∈ R

d , consider
the Lagrangian flow (introduced in Definition 3.3)

�(t, x, V (0, x)) = (�1(t, x, V (0, x)),�2(t, x, V (0, x))) , t ∈ [0,+∞)

where V : [0,+∞) × R
d → R

d is a time-dependent vector field defined by

V (t, x) = (∇p H)(x, (∇u)(t, x)).

(Here, �1 and �2 are the x and v components of � respectively.) If we let σ(t, x) =
�1(t, x, V (0, x)), then σ̇ (t, x) = V (t, σ (t, x)) for all t ∈ [0,+∞), x ∈ R

d . Moreover,
σ(t, ·) : Rd → R

d is a Ck−diffeomorphism for every t ∈ [0,+∞).

Proof Since L and u0 are both bounded below, we have

u(t, x) = inf
γ

{
u0(γ (0)) +

∫ t

0
L(γ (τ ), γ̇ (τ )) dτ , γ (t) = x

}

≥ −c̃0 − c̃0t

> −∞
and so u is finite. From [10], u is a continuous viscosity solution of the Hamilton–Jacobi
equation (3.12) and we know that for each (t, x) ∈ (0,+∞) × R

d , there exists a unique
(u, L)−calibrated curve γx : [0, t] → R

d such that γx (t) = x . Moreover, (∇u)(s, γx (s))
exists for all s ∈ [0, t] and is given by

(∇u)(s, γx (s)) = (∇v L)(γx (s), γ̇x (s))

⇐⇒ γ̇x (s) = (∇p H)(γx (s), (∇u)(s, γx (s)))

⇐⇒ γ̇x (s) = V (s, γx (s))

Since each γx is necessarily an action-minimizing curve from γx (0) to γx (t) = x , it is the
unique solution curve to the Euler–Lagrange system⎧⎪⎨

⎪⎩
d
dt ((∇v L)(γ, γ̇ )) = (∇x L)(γ, γ̇ )

γ (0) = γx (0)

γ̇ (0) = γ̇x (0)

Therefore, σ(t, ·) : Rd → R
d is a bijection for all t ∈ [0,+∞) and σ̇ (t, x) = V (t, σ (t, x))

for all (t, x) ∈ [0,+∞) × R
d .

Lastly, since L ∈ Ck+1(Rd ×R
d) and u0 ∈ Ck+1(Rd), we have that u ∈ Ck+1([0,+∞)×

R
d) [6]. As∇p H ∈ Ck(Rd ×R

d ;Rd), we have V (t, ·) ∈ Ck(Rd ;Rd) and so σ(t, ·) : Rd →
R

d is a Ck−diffeomorphism for every t ∈ [0,+∞). ��
Proposition 4.2 Let ρ0 ∈ Pac ∩ C2

c (Rd) be a compactly supported density. Then for any
T > 0, there exists a C2 displacement interpolant ρ : [0, T ] × R

d → R with ρ(0, ·) = ρ0.
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Proof Let u0, u, V , σ be defined as in Lemma 4.1 and fix T > 0. For t ∈ [0, T ], define
ρ(t, ·) = σ(t, ·)#ρ0.

We claim that σ is an optimizer of the Lagrangian optimal transport problem from ρ0 to
ρT = ρ(T , ·), which would imply that ρ is indeed a displacement interpolant. Let φ :
[0, T ]×R

d → R
d satisfy the four conditions in Definition 3.6. By Lemma 4.1, t 
→ σ(t, x)

is a (u, L)−calibrated curve for each x ∈ R
d . Thus, for every x ∈ R

d ,

u(T , σ (T , x)) − u(0, σ (0, x)) =
∫ T

0
L(σ (t, x), σ̇ (t, x)) dt

⇐⇒ u(T , σ (T , x)) − u0(x) =
∫ T

0
L(σ (t, x), σ̇ (t, x)) dt

�⇒
∫
Rd

[u(T , σ (T , x)) − u0(x)]ρ0(x) dx =
∫
Rd

∫ T

0
L(σ (t, x), σ̇ (t, x))ρ0(x) dt dx

By the definition of pushforward measure, the LHS of the last equality is∫
Rd

[u(T , σ (T , x)) − u0(x)]ρ0(x) dx =
∫
Rd

u(T , y)ρT (y) dy −
∫
Rd

u0(x)ρ0(x) dx

=
∫
Rd

[u(T , φ(T , x)) − u(0, φ(0, x))]ρ0(x) dx

where the last equality is due to the assumption that φ(T , ·)#ρ0 = ρT and φ(0, x) = x . By
the definition of u (i.e. (3.11)), we have that

u(T , φ(T , x)) − u(0, φ(0, x)) ≤
∫ T

0
L(φ(t, x), φ̇(t, x)) dt

�⇒
∫
Rd

[u(T , φ(T , x)) − u(0, φ(0, x))]ρ0(x) dx ≤
∫
Rd

∫ T

0
L(φ(t, x), φ̇(t, x))ρ0(x) dt dx

for every x ∈ R
d . Thus,

∫
Rd

∫ T

0
L(σ (t, x), σ̇ (t, x))ρ0(x) dt dx ≤

∫
Rd

∫ T

0
L(φ(t, x), φ̇(t, x))ρ0(x) dt dx .

Since φ was arbitrary, σ is indeed an optimizer of the Lagrangian optimal transport problem
from ρ0 to ρT .

By Lemma 4.1, σ(t, ·) : Rd → R
d is a Ck−diffeomorphism for every t ∈ [0, T ] and

σ(·, x) ∈ Ck+1([0, T ];Rd) for every x ∈ R
d . Using the change-of-variables formula,

ρ(t, y) = ρ0(·)
|det∇σ(t, ·)|

∣∣∣∣[σ(t,·)]−1(y)

= ρ0(·)
det∇σ(t, ·)

∣∣∣∣[σ(t,·)]−1(y)

where det∇σ(t, ·) > 0 because σ(0, x) = x �⇒ det∇σ(0, ·) = 1. Since k ≥ 3,
ρ ∈ C2([0, T ] × R

d). ��

4.2 Displacement Hessian

Let F ∈ C2((0,+∞)) ∩ C([0,+∞)) be a function satisfying
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(F1) F(0) = 0,
(F2) s2F ′′(s) ≥ s F ′(s) − F(s) ≥ 0, ∀s ∈ [0,+∞).

If ρ0 ∈ Pac is such that F(ρ0) ∈ L1(Rd), we define the generalized entropy functional

F(ρ0) =
∫
Rd

F(ρ0(x)) dx . (4.1)

This is well-defined at least on Pac ∩ C0
c (Rd) since F(0) = 0 implies

∫
Rd

F(ρ0(x)) dx =
∫
supp(ρ0)

F(ρ0(x)) dx

which is finite.

Remark 4.3 If ρ0 is the density of a fluid and F(ρ0) is the internal energy, then ρ0F ′(ρ0) −
F(ρ0) can be interpreted as a pressure [12, 21].

Definition 4.4 (Displacement convexity) The generalized entropy functional F is said to be
convex along a displacement interpolant ρt , t ∈ [0, T ], if F(ρt ) is finite and

F(ρt ) ≤ T − t

T
F(ρ0) + t

T
F(ρT ) (4.2)

for every t ∈ [0, T ]. F is said to be displacement convex if it is convex along every displace-
ment interpolant (on which F is real-valued).

Remark 4.5 When the displacement interpolant is a “straight line", McCann proved that F
is displacement convex if s 
→ sd F(s−d) is convex and non-increasing on (0,+∞) [16]. In
this context, a “straight line" displacement interpolant refers to one of the form

ρt =
(

T − t

T
id + t

T
M

)
#
ρ0.

where M is the Monge map between ρ0 and ρT .

Along a suitable displacement interpolant ρt , if the map t 
→ F(ρt ) is C2, then the

condition that d2

dt2
F(ρt ) ≥ 0 ensures convexity of F along ρt . The following displacement

Hessian formula is a special case of Theorem 4.3.2 of [19].

Theorem 4.6 (Displacement Hessian formula) Let ρ ∈ C2([0, T ] × R
d) be a displacement

interpolant, with ρ0 = ρ(0, ·) compactly supported. Let σ : [0, T ] × R
d → R

d be an
optimizer of the Lagrangian optimal transport problem from ρ0 to ρT . Let V : [0, T ]×R

d →
R

d be defined as in Remark 3.14 so that ρ, V satisfy the continuity equation ρ̇ = −∇ · (ρV ).
Assume that σ and V are C2 at least on the set⋃

t∈[0,T ]
{t} × supp(ρt ).

Then d2

dt2
F(ρ) exists for every t ∈ [0, T ] and is given by

d2

dt2
F(ρ) =

∫
Rd

(ρG ′(ρ) − G(ρ))(∇ · V )2 + G(ρ)(tr((∇V )2) − ∇ · W ) dx (4.3)
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where G : [0,+∞) → R is defined by

G(s) = s F ′(s) − F(s) (4.4)

G ′(s) = s F ′′(s) (4.5)

and

W = V̇ + ∇V V . (4.6)

Remark 4.7 The requirement that ρ0 is compactly supported serves to ensure that F is finite
along ρ. In addition, the compactness of supp(ρ0) and the continuity of σ together ensures
that the set {σ(t, x) : t ∈ [0, T ] , x ∈ supp(ρ0)} is compact. Thus,

:=
⋃

t∈[0,T ]
supp(ρt )

is bounded, up to a set of zero Ld−measure. This means that d2

dt2
F(ρ) exists for every

t ∈ [0, T ] and satisfies

d2

dt2
F(ρ) = d2

dt2

∫


F(ρ(t, x)) dx

=
∫



d2

dt2
F(ρ(t, x)) dx .

Remark 4.8 By Remark 3.14, for every t ∈ [0, T ], V (t, ·) is uniquely defined on supp(ρt )

ρt−almost everywhere. Thus, (4.3) is well-defined.

Proof The displacement Hessian is

d2

dt2
F(ρ) =

∫
F ′′(ρ)ρ̇2 + F ′(ρ)ρ̈ dx

=
∫

F ′′(ρ)ρ̇2 − F ′(ρ)∇ · (ρ̇V + ρV̇ ) dx

Integrating by parts, the above expression becomes∫
F ′′(ρ)ρ̇2 + 〈∇(F ′(ρ)), ρ̇V + ρV̇ 〉 dx

=
∫

F ′′(ρ)

(
ρ̇2 + 〈∇ρ, ρ̇V + ρV̇ 〉

)
dx .

Using the continuity equation ρ̇ = −∇ · (ρV ), the definitions of W and G, and integration
by parts, this integral can be written as∫

ρG ′(ρ)(∇ · V )2 − G(ρ)∇ ·
(

(∇ · V )V − ∇V V + W

)
dx .

A straightforward computation then yields the desired formula. ��
Remark 4.9 Recall that ρG ′(ρ) − G(ρ) = ρ2F ′′(ρ) − ρF ′(ρ) + F ′(ρ) ≥ 0 and G(ρ) =
ρF ′(ρ) − F(ρ) ≥ 0 by assumption (F2). Thus, the condition that tr((∇V )2) − ∇ · W ≥ 0

would ensure that d2

dt2
F(ρ) ≥ 0. In the case where the cost is given by squared Riemannian

distance, the term tr((∇V )2) − ∇ · W is a quadratic form involving the Bakry–Emery tensor
[19], [21]. In the following section, we will generalize this quadratic form for an arbitrary
Tonelli Lagrangian.
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5 Generalized curvature for Tonelli Lagrangians

The goal of this section is to define a generalized curvature for the space (Rd , L). In principle,
this generalized curvature is similar to the Ricci curvature in the sense that it is related to the
deformation of a shape flowing along action-minimizing curves. The generalized curvature,
however, will not be a tensor because it will depend on both the tangent vector and its gradient.
Throughout this section, we will assume that L is a C3 Tonelli Lagrangian.

Let T > 0 and σ : [0, T ] × R
d → R

d be such that⎧⎪⎨
⎪⎩

d
dt

(
(∇v L)(σ (t, x), σ̇ (t, x))

) = (∇x L)(σ (t, x), σ̇ (t, x)) , ∀(t, x) ∈ [0, T ] × R
d

σ(0, x) = x , ∀x ∈ R
d

σ(t, ·) : Rd → R
d is a C3 − diffeomorphism for every t ∈ [0, T ]

Let V : [0, T ] × R
d → R

d be a time-dependent vector field defined by σ̇ (t, x) =
V (t, σ (t, x)) so that V (t, ·) ∈ C2(Rd ;Rd) for every t ∈ [0, T ]. Following the method
outlined in [21] Chapter 14, we first derive Lemma 5.1, which is an ODE of the Jacobian
matrix ∇σ .

Lemma 5.1 Define A, B : Rd × R
d → R

d×d by

A(x, v) = (∇2
vv L)(x, v)−1

[
d

dt

(
(∇2

vv L)(γx,v(t), γ̇x,v(t))
)∣∣∣∣

t=0
+ (∇2

vx L)(x, v) − (∇2
xv L)(x, v)

]

(5.1)

B(x, v) = (∇2
vv L)(x, v)−1

[
d

dt

(
(∇2

vx L)(γx,v(t), γ̇x,v(t))
)∣∣∣∣

t=0
− (∇2

xx L)(x, v)

]
(5.2)

where γx,v : [0, ε) → R
d is the unique curve satisfying the Euler–Lagrange equation with

initial conditions γx,v(0) = x, γ̇x,v(0) = v. Then the Jacobian ∇σ satisfies a second-order
matrix equation

∇σ̈ + A(σ, σ̇ )∇σ̇ + B(σ, σ̇ )∇σ = 0. (5.3)

Proof Taking the spatial gradient of the Euler–Lagrange equation,

0 = ∇x

(
d

dt

(
(∇v L)(σ, σ̇ )

) − (∇x L)(σ, σ̇ )

)

= d

dt

(
(∇2

vx L)(σ, σ̇ )∇σ + (∇2
vv L)(σ, σ̇ )∇σ̇

)
− (∇2

xx L)(σ, σ̇ )∇σ − (∇2
xv L)(σ, σ̇ )∇σ̇

= d

dt

(
(∇2

vx L)(σ, σ̇ )
)∇σ + (∇2

vx L)(σ, σ̇ )∇σ̇ + d

dt

(
(∇2

vv L)(σ, σ̇ )
)∇σ̇ + (∇2

vv L)(σ, σ̇ )∇σ̈

− (∇2
xx L)(σ, σ̇ )∇σ − (∇2

xv L)(σ, σ̇ )∇σ̇

To conclude, we group by the terms ∇σ,∇σ̇ ,∇σ̈ and multiply by (∇2
vv L)(σ, σ̇ )−1. ��

Lemma 5.2 Define

U(t, x) = (∇V )(t, σ (t, x)). (5.4)

Then

U̇ + U2 + A(σ, σ̇ )U + B(σ, σ̇ ) = 0. (5.5)
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Proof First, we note that since σ̇ (t, x) = V (t, σ (t, x)), we get

(∇σ̇ )(t, x) = (∇V )(t, σ (t, x))(∇σ)(t, x)

�⇒ (∇V )(t, σ (t, x)) = (∇σ̇ )(t, x)((∇σ)(t, x))−1

and so

U(t, x) = (∇σ̇ )(t, x)((∇σ)(t, x))−1.

Using the matrix identity d
dt M−1 = −M−1Ṁ M−1,

U̇ = (∇σ̈ )(∇σ)−1 − (∇σ̇ )(∇σ)−1(∇σ̇ )(∇σ)−1

= (∇σ̈ )(∇σ)−1 − U2.

By Lemma 5.1, ∇σ̈ = −A(σ, σ̇ )(∇σ̇ ) − B(σ, σ̇ )(∇σ) and so

0 = U̇ + U2 +
(

A(σ, σ̇ )(∇σ̇ ) − B(σ, σ̇ )(∇σ)

)
(∇σ)−1

= U̇ + U2 + A(σ, σ̇ )U + B(σ, σ̇ ).

��
We want to show that the term tr((∇V )2) − ∇ · W appearing in the displacement Hessian

formula (4.3) arises from Eq. (5.5). Taking the trace of (5.5), we have

d

dt

(
(∇ · V )(t, σ )

)
+ tr

(
(∇V )(t, σ )2 + A(σ, σ̇ )(∇V )(t, σ ) + B(σ, σ̇ )

)
= 0. (5.6)

On the other hand, direct computation yields

d

dt

(
(∇ · V )(t, σ )

)
= (∇ · V̇ )(t, σ ) + 〈V (t, σ ), (∇(∇ · V ))(t, σ )〉.

Since V (t, σ (t, x)) = σ̇ (t, x) and σ(0, x) = x , we may restate the above equation as

(∇ · V̇ )(t, x) + 〈V (t, x), (∇(∇ · V ))(t, x)〉
+ tr

(
(∇V )(t, x)2 + A(x, V (t, x))(∇V )(t, x) + B(x, V (t, x))

)
= 0. (5.7)

Using the identities

∇ · ((∇ · V )V ) = (∇ · V )2 + 〈V ,∇(∇ · V )〉
and

V̇ = −∇V V + W ,

we see that

∇ · V̇ + 〈V ,∇(∇ · V )〉 = ∇ · (−∇V V + W ) + ∇ · ((∇ · V )V ) − (∇ · V )2.

By the computation of the displacement Hessian from the previous section, this is precisely
tr((∇V )2) − ∇ · W .

At this point, (5.7) holds for all time-dependent C2 vector fields whose integral curves
satisfy the Euler–Lagrange equation (3.3). To show that (5.7) holds for an arbitrary fixed
vector field, we first need to make sense of the term V̇ by introducing Definition 5.4.
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Proposition 5.3 Given any fixed vector field V0 ∈ C2(Rd ;Rd), we may extend it for a short
time to a unique time-dependent vector field V (t, x), t ∈ [0, ε) with the following properties:

(i) V (0, ·) = V0

(ii) The integral curves of V satisfy the Euler–Lagrange equation, i.e.

σ̇ (t, x) = V (t, σ (t, x))

σ (0, x) = x

d

dt
((∇v L)(σ, σ̇ )) = (∇x L)(σ, σ̇ )

Proof We recall Definition 3.3 and the existence of a Lagrangian flow � = (�1,�2) satis-
fying d

dt ((∇v L)(�)) = (∇x L)(�). Set σ(t, x) = �1(t, x, V0(x)). The maps σ(t, ·) : Rd →
R

d are defined for all t ∈ [0,+∞) and there exists ε > 0 such that σ(t, ·) is invertible for
t ∈ [0, ε). Thus, for t ∈ [0, ε), we may define the desired vector field by

V (t, y) = σ̇ (t, σ−1(t, y)). (5.8)

��

Definition 5.4 Given a Tonelli Lagrangian L , we define the operation

�L : C2(Rd ;Rd) → C2(Rd ;Rd)

V0 
→ V̇ (0, ·)
as in Proposition 5.3.

Remark 5.5 By the Euler–Lagrange equation (3.3), we can give an explicit formula for
�L(V0). Suppose σ(t, x) and V (t, x) satisfy the two properties in Proposition 5.3, then

σ̈ (t, x) = V̇ (t, σ (t, x)) + (∇V )(t, σ (t, x))V (t, σ (t, x)).

Since

σ̈ (t, x) = (∇2
vv L)(x, V (t, x))−1

(
(∇x L)(x, V (t, x)) − (∇2

vx L)(x, V (t, x))V (t, x)

)

by the Euler–Lagrange equation, we have

(�L(V0))(x) = V̇ (0, x)

= (∇2
vv L)(x, V0(x))−1

(
(∇x L)(x, V0(x)) − (∇2

vx L)(x, V0(x))V0(x)

)

− (∇V0(x))V0(x).

Definition 5.6 (Generalized curvature) Let ξ ∈ C2(Rd ;Rd). For each x ∈ R
d , we define

the generalized curvature Kx by

Kx (ξ):= tr

(
∇ξ(x)2 + A(x, ξ(x))∇ξ(x) + B(x, ξ(x))

)
(5.9)

where A, B : Rd × R
d → R

d×d are defined as in Lemma 5.1.
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Theorem 5.7 Let ξ ∈ C2(Rd ;Rd). Then

−(∇ · (
�L(ξ)

))
(x) − 〈ξ(x), (∇(∇ · ξ))(x)〉 = Kx (ξ). (5.10)

In particular, the generalized curvature Kx is intrinsic, i.e. does not depend on the choice of
coordinates.

Proof By Proposition 5.3, we may extend ξ for a short time to a time-dependent vector field
V (t, x), with V (0, ·) = ξ , whose integral curves satisfy the Euler–Lagrange equation. Thus,
(5.7) holds for V and we have

Kx (ξ) = Kx (V (0, ·))
(5.7)= −(∇ · V̇ )(0, x) − 〈V (0, x), (∇(∇ · V ))(0, x)〉
= −(∇ · (

�L(ξ)
))

(x) − 〈ξ(x), (∇(∇ · ξ))(x)〉
To show that Kx is intrinsic, we will show that the operator

ξ 
→ −∇ · (
�L(ξ)

) − 〈ξ,∇(∇ · ξ)〉 (5.11)

is invariant under a change of coordinates. By Definition 5.4 and the definition of divergence,
−∇ · (�L(ξ)

)
is coordinate-free. Next, observe that 〈ξ,∇(∇ · ξ)〉 is the directional derivative

of ∇ · ξ (which is coordinate-free) with respect to ξ . Thus,

〈ξ(x),∇(∇ · ξ)(x)〉 = lim
h→0

(∇ · ξ)(x + hξ(x)) − (∇ · ξ)(x)

h

is also coordinate-free. ��
In the case where ξ(x) = (∇p H)(x,∇u(x)) ⇐⇒ ∇u(x) = (∇v L)(x, ξ(x)) for some

potential u : Rd → R (cf. Proposition 3.12, Lemma 4.1), we can derive an explicit formula
for Kx (ξ).

Theorem 5.8 (Formula for Kx (ξ))Let ξ ∈ C2(Rd ;Rd) be such that there exists u ∈ C2(Rd),
with

∇u(x) = (∇v L)(x, ξ(x)) , ∀x ∈ R
d .

Then,

Kx (ξ) = Lik ∂ξ j

∂xk

∂2L

∂v j∂vl

∂ξl

∂xi
− Lim ∂3L

∂vm∂v j∂vk
ξl

∂ξ j

∂xi

∂ξk

∂xl

+ Lim ∂3L

∂vm∂v j∂vk
Lkl ∂L

∂xl

∂ξ j

∂xi
− Lir ∂3L

∂vr∂v j∂vk
Lkl ∂2L

∂xl∂vm

∂ξ j

∂xi
ξm

− Lkl ∂3L

∂xk∂v j∂vl

∂ξ j

∂xi
ξi + Li j ∂3L

∂xi∂v j∂vk
Lkl ∂L

∂xl

− Li j ∂3L

∂xi∂v j∂vk
Lkl ∂2L

∂xl∂vm
ξm − Li j ∂2L

∂x j∂xi

where all terms involving L are evaluated at (x, ξ(x)).

Proof See Appendix. ��
In conclusion, the displacement Hessian formula (4.3) can be written as

d2

dt2
F(ρ) =

∫
Rd

(ρG ′(ρ) − G(ρ))(∇ · V )2 + G(ρ)Kx (V ) dx . (5.12)
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6 Displacement convexity for a non-Riemannian Lagrangian cost

In this section, we provide an example of a Lagrangian cost that is not a squared Rieman-
nian distance. We prove using a perturbation argument that the corresponding generalized
curvature is non-negative and thus the generalized entropy functional is convex along C2

displacement interpolants.
Let g(x) be a positive definite matrix for every x ∈ R

d so that 12 〈v, g(x)v〉, v ∈ R
d defines

a Riemannian metric. Let gi j = gi j (x) denote the i j-th entry of g(x) and gi j = gi j (x)

denote the i j-th entry of the inverse matrix g(x)−1. Further assume that the gi j are bounded
with bounded derivatives, and that the corresponding Bakry–Emery tensor (denoted BEg) is
bounded from below. That is,

BEg = Ric + ∇2
(
1

2
log(det g)

)
≥ kg > 0.

Define the Lagrangian

L(x, v) = 1

2
〈v, g(x)v〉

and the perturbed Lagrangian

L̃(x, v) = 1

2
〈v, g(x)v〉 + ϕ(v)

where ϕ : Rd → R is a smooth perturbation (for instance, take ϕ to be of Schwartz class).
Using Theorem 5.8, the respective generalized curvatures are given by

Kx (ξ) = gik ∂ξ j

∂xk
g jl

∂ξl

∂xi︸ ︷︷ ︸
I

− gkl ∂g jl

∂xk

∂ξ j

∂xi
ξi

︸ ︷︷ ︸
V

+ gi j ∂g jk

∂xi
gkl ∂gmn

∂xl
ξmξn

︸ ︷︷ ︸
V I

− gi j ∂g jk

∂xi
gkl ∂gnm

∂xl
ξnξm

︸ ︷︷ ︸
V I I

− gi j ∂2gkl

∂x j∂xi
ξkξl

︸ ︷︷ ︸
V I I I

and

K̃x (ξ) = L̃ik ∂ξ j

∂xk

∂2 L̃

∂v j∂vl

∂ξl

∂xi︸ ︷︷ ︸
Ĩ

− L̃im ∂3ϕ

∂vm∂v j∂vk
ξl

∂ξ j

∂xi

∂ξk

∂xl︸ ︷︷ ︸
˜I I

+ L̃im ∂3ϕ

∂vm∂v j∂vk
L̃kl ∂gnr

∂xl
ξnξr

∂ξ j

∂xi︸ ︷︷ ︸
˜I I I

− L̃ir ∂3ϕ

∂vr∂v j∂vk
L̃kl ∂gmn

∂xl
ξn

∂ξ j

∂xi
ξm

︸ ︷︷ ︸
˜I V

− L̃kl ∂g jl

∂xk

∂ξ j

∂xi
ξi

︸ ︷︷ ︸
Ṽ

+ L̃i j ∂g jk

∂xi
L̃kl ∂gmn

∂xl
ξmξn

︸ ︷︷ ︸
Ṽ I
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− L̃i j ∂g jk

∂xi
L̃kl ∂gmn

∂xl
ξnξm

︸ ︷︷ ︸
˜V I I

− L̃i j ∂2gkl

∂x j∂xi
ξkξl

︸ ︷︷ ︸
˜V I I I

By Theorem A.3.1 of [19] and (5.7), Kx (ξ) = ||g−1∇ξ�||2HS + BEg(ξ), where || · ||HS
denotes the Hilbert-Schmidt norm. Thus, we have a lower bound

Kx (ξ) = ||g−1∇ξ�||2HS + BEg(ξ) ≥ cg||∇ξ ||2 + kg||ξ ||2

where cg > 0 is a constant depending on g. Fix ε > 0 such that ε ≤ min{ cg
10 ,

kg
12 }. Our goal

is to choose ϕ so that

1. |L̃i j − Li j | = |L̃i j − gi j | is sufficiently small, i.e. ||∇2ϕ|| is close to zero, and

2. | ∂3ϕ
∂vi ∂v j ∂vk

| is sufficiently small.

To this end, we choose ϕ such that

|K̃x (ξ) − Kx (ξ)| ≤ | Ĩ − I | + |Ṽ − V | + |Ṽ I − V I | + | ˜V I I − V I I | + | ˜V I I I − V I I I |
+ | ˜I I | + | ˜I I I | + | ˜I V |

≤ ε||∇ξ ||2 + 2ε||∇ξ ||||ξ || + ε||ξ ||2 + ε||ξ ||2 + ε||ξ ||2
+ ε||∇ξ ||2 + 2ε||∇ξ ||||ξ || + 2ε||∇ξ ||||ξ ||

≤ 5ε||∇ξ ||2 + 6ε||ξ ||2

≤ cg

2
||∇ξ ||2 + kg

2
||ξ ||2

Since Kx (ξ) ≥ cg||∇ξ ||2 + kg||ξ ||2, we conclude that K̃x (ξ) ≥ 0.
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7 Appendix

The generalized curvature Kx (ξ) is given by

Kx (ξ):= tr

(
∇ξ(x)2 + A(x, ξ(x))∇ξ(x) + B(x, ξ(x))

)
.

In the computations below, time derivatives of ξ will be treated by extending ξ for a short
time (in the sense of Proposition 5.3).
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Lemma 7.1

tr

(
∇ξ(x)2 + A(x, ξ(x))∇ξ(x)

)
= Lik ∂ξ j

∂xk

∂2L

∂v j∂vl

∂ξl

∂xi
− Lim ∂3L

∂vm∂v j∂vk
ξl

∂ξ j

∂xi

∂ξk

∂xl

+ Lim ∂3L

∂vm∂v j∂vk
Lkl ∂L

∂xl

∂ξ j

∂xi

− Lir ∂3L

∂vr∂v j∂vk
Lkl ∂2L

∂xl∂vm

∂ξ j

∂xi
ξm

Proof Recall that

A(x, v) = (∇2
vv L)(x, v)−1

[
d

dt

(
(∇2

vv L)(γx,v(t), γ̇x,v(t))
)∣∣∣∣

t=0

+ (∇2
vx L)(x, v) − (∇2

xv L)(x, v)

]
.

By assumption, there exists a potential u(x) satisfying

∇u(x) = (∇v L)(x, ξ).

Since the Hessian

∇2u(x) = (∇2
vx L)(x, ξ) + (∇2

vv L)(x, ξ)∇ξ

is symmetric, we have

(∇2
vx L)(x, ξ) + (∇2

vv L)(x, ξ)∇ξ = (∇2
xv L)(x, ξ) + ∇ξ�(∇2

vv L)(x, ξ)

�⇒ (∇2
vv L)(x, ξ)−1

[
(∇2

vx L)(x, ξ) − (∇2
xv L)(x, ξ)

]
= (∇2

vv L)(x, ξ)−1∇ξ�(∇2
vv L)(x, ξ) − ∇ξ

Next,

d

dt

(
(∇2

vv L)(x, ξ)
)

i j = 〈
(

∇v

∂2L

∂vi∂v j

)
(x, ξ), ξ̇ 〉

= 〈
(

∇v

∂2L

∂vi∂v j

)
(x, ξ),−∇ξξ

+ (∇2
vv L)(x, ξ)−1[(∇x L)(x, ξ) − (∇2

xv L)(x, ξ)ξ
]〉

= − ∂3L

∂vi∂v j∂vk

∂ξk

∂xl
ξl + ∂3L

∂vi∂v j∂vk
Lkl ∂L

∂xl
− ∂3L

∂vi∂v j∂vk
Lkl ∂2L

∂xl∂vm
ξm

��
Lemma 7.2

tr

(
B(x, ξ(x))

)
= −Lkl ∂3L

∂xk∂v j∂vl

∂ξ j

∂xi
ξi + Li j ∂3L

∂xi∂v j∂vk
Lkl ∂L

∂xl

− Li j ∂3L

∂xi∂v j∂vk
Lkl ∂2L

∂xl∂vm
ξm − Li j ∂2L

∂x j∂xi

Proof Recall that

B(x, v) = (∇2
vv L)(x, v)−1

[
d

dt

(
(∇2

vx L)(γx,v(t), γ̇x,v(t))
)∣∣∣∣

t=0
− (∇2

xx L)(x, v)

]
.
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By a similar computation as the previous lemma, we have

d

dt

(
(∇2

vx L)(x, ξ)
)

i j = 〈
(

∇v

∂2L

∂vi∂x j

)
(x, ξ), ξ̇ 〉

= 〈
(

∇v

∂2L

∂vi∂x j

)
(x, ξ),−∇ξξ

+ (∇2
vv L)(x, ξ)−1[(∇x L)(x, ξ) − (∇2

xv L)(x, ξ)ξ
]〉

��
Putting together these two lemmas, we get the formula for Kx (ξ).
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