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Abstract
We study a nonlinear evolutionary partial differential equation that can be viewed as a gener-
alization of the heat equation where the temperature gradient is a priori bounded but the heat
flux provides merely L1-coercivity. Applying higher differentiability techniques in space
and time, choosing a special weighted norm (equivalent to the Euclidean norm inRd ), incor-
porating finer properties of integrable functions and flux truncation techniques, we prove
long-time and large-data existence and uniqueness of weak solution, with an L1-integrable
flux, to an initial spatially-periodic problem for all values of a positivemodel parameter. If this
parameter is smaller than 2/(d+1), where d denotes the spatial dimension, we obtain higher
integrability of the flux. As the developed approach is not restricted to a scalar equation, we
also present an analogous result for nonlinear parabolic systems in which the nonlinearity,
being the gradient of a strictly convex function, gives an a-priori L∞-bound on the gradient
of the unknown solution.
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1 Introduction

1.1 Problem setting andmain result

This paper concerns a parabolic-like problem involving nonlinear elliptic operators that can
be viewed as regularizations of the ∞-Laplacian. More precisely, for fixed L > 0 and
T > 0 we set � := (0, L)d ⊂ R

d and Q := (0, T ) × � and investigate the following
problem: for given �-periodic functions g : [0, T ] × R

d → R, u0 : Rd → R and a given
parameter a > 0, find an�-periodic function u : [0, T ]×R

d → R and a vectorial�-periodic
function q : [0, T ] × R

d → R
d such that

∂t u − div q = g in Q, (1.1a)

∇u = q

(1 + |q|a) 1
a

in Q, (1.1b)

u(0, ·) = u0 in �. (1.1c)

The motivation for investigating such type of problems is given below. The main result of
this paper is the following: for sufficiently smooth initial data u0,which satisfies a reasonable
compatibility condition, and for sufficiently smooth right-hand side g, there exists a unique
couple (u, q) solving (1.1) in the sense of distributions. To formulate the result precisely, we
need to fix the notation, the appropriate function spaces and the concept of solution to (1.1).
Since we are dealing with a spatially periodic problem, we recall the definition of periodic
Sobolev spaces

Wk,p
per (�) :=

{
u = ũ∣∣�, ũ ∈ C∞(Rd) is �-periodic

}‖·‖k,p
,

where k ∈ N0 and p ∈ [1,∞) are arbitrary (note that L2
per (�) = L2(�) and that these

spaces, as closed subspaces of reflexive Banach spaces, are reflexive as well provided that
p ∈ (1,∞)). The space Wk,∞

per is then defined as

Wk,∞
per (�) := Wk,2

per (�) ∩ Wk,∞(�).

Throughout the paper, we use standard notation for Lebesgue, Sobolev and Bochner spaces
equipped with the usual norms. Unless stated otherwise, bold letters, e.g. q, are used for
vector-valued functions to distinguish them from scalar functions. The symbol “∂t" stands
for the partial derivative with respect to the time variable t ∈ (0, T ), while the operators “∇"
and “div" take into account only the spatial variables (x1, . . . , xd) ∈ �. Later, we also use
“∂ j” to abbreviate partial derivative with respect to x j . The shortcut “a.e." abbreviates almost
everywhere and “a.a." stands for almost all.

Next, we define the notion of a weak solution to (1.1) and formulate the main result.

Definition 1.1 Let u0 ∈ L2(�), g ∈ L2(Q) and a > 0. We say that a couple (u, q) is a weak
solution to problem (1.1) if

u ∈ W 1,2 (
0, T ; L2(�)

) ∩ L2
(
0, T ;W 1,2

per (�)
)

,

q ∈ L1
(
0, T ; L1

(
�;Rd

))
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and∫
�

∂t u ϕ + q · ∇ϕ dx =
∫

�

g ϕ dx for all ϕ ∈ W 1,∞
per (�) and a.a. t ∈ (0, T ), (1.2a)

∇u = q

(1 + |q|a) 1
a

a.e. in Q, (1.2b)

‖u(t, ·) − u0‖L2(�)

t→0+−−−→ 0. (1.2c)

Theorem 1.2 Let a > 0, g ∈ L2
(
0, T ; L2(�)

)
and u0 ∈ W 1,∞

per (�) satisfy

‖∇u0‖L∞(�) =: U < 1. (1.3)

(i) Then there exists a unique weak solution to problem (1.1) in the sense of Definition 1.1.
Moreover, the solution satisfies

u ∈ L2
(
0, T ;W 2,2

per (�)
)

. (1.4)

(ii) Furthermore, if g ∈ W 1,2
(
0, T ; L2(�)

)
and u0 ∈ W 2,2

per (�), then the solution u to (1.1)
fulfills u ∈ W 1,∞(0, T ; L2(�)). If, in addition, the parameter a satisfies

a ∈
(
0,

2

d + 1

)
, (1.5)

then

q ∈ Lb(Q;Rd) for

{
b = (1−a)(d+1)

d−1 > 1 if d ≥ 2,

b arbitrary if d = 1.
(1.6)

The paper is structured in the following way. In the rest of this section, we describe the
main novelties of our result in detail. We also add a physical motivation for studying such
problems and show the key difficulties of the studied problem. Section2 contains several
auxiliary results needed in the proof of Theorem 1.2. In Sect. 3, we prove the uniqueness
result. Sections4 and 5 concern the existence result. In Sect. 4, we introduce a suitable ε-
approximation of the problem (1.1), which is then treated by the standard Faedo-Galerkin
method in combinationwith a cascade of energy estimates that helps to establish the existence
of a weak solution to the ε-approximation for arbitrary fixed ε ∈ (0, 1). Finally, we derive and
summarize the whole cascade of estimates that are uniformwith respect to ε. Then, in Sect. 5,
letting ε → 0+, we incorporate the flux truncation technique together with a special choice
of weigthed scalar product (equivalent to the standard scalar product in R

d ) to identify a
weak solution of the original problem. Section6.2 is devoted to the proof of higher regularity
(integrability) of the flux q for the values of a satisfying (1.5), which concludes the proof
of the second part of Theorem 1.2. In the final section, we formulate a generalization of the
results stated in Theorem 1.2.

1.2 State of the art andmain novelties

In order to put our result in an appropriate context,we introducenonlinear (quasilinear) elliptic
and parabolic problems characterized by the presence of p-Laplacian or its generalizations
of various forms. Thus, for d ∈ N, a > 0, δ ∈ {0, 1} and p satisfying 1 < p ≤ ∞, we define
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f p′ : Rd → R
d by

f p′(q) := (δ + |q|a) p′−2
a q, where p′ =

{
p

p−1 if p ∈ (1,∞),

1 if p = ∞.
(1.7)

Similarly, now for p satisfying 1 ≤ p < ∞, we set g p : Rd → R
d as

g p(z) := (δ + |z|a) p−2
a z. (1.8)

Replacing the Eq. (1.1b) by

∇u = f p′(q) with f p′ introduced in (1.7), (1.9)

we obtain

∂t u − div q = g in Q,

∇u = (
δ + |q|a) p′−2

a q in Q,

u(0, ·) = u0 in �,

(1.10)

while replacing (1.1b) by

q = g p(∇u) with g p introduced in (1.8), (1.11)

we end up with

∂t u − div
(
(δ + |∇u|a) p−2

a ∇u
)

= g in Q,

u(0, ·) = u0 in �.
(1.12)

Next, let us first restrict ourselves to the case p ∈ (1,∞). Then, the mappings f p′ and g p

are strictly monotone for all a > 0 and δ ∈ {0, 1}. In addition, when δ = 0, f p′ = (g p)
−1

and (1.10) and (1.12) coincide. Note that when δ = 1 the (q,∇u)-relations are smoothed out
near zero (thus eliminating the degeneracy/singularity of the corresponding elliptic operator)
and the problems (1.10) and (1.12) do not describe the same (q,∇u)-relation anymore. In
all these cases the natural function spaces for the solution are as follows:

u ∈ L p
(
0, T ;W 1,p

per (�)
)

∩ W 1,p′ (
0, T ;W 1,p

per (�)∗
)

,

q ∈ L p′ (
0, T ; L p′ (

�;Rd
))

,

provided that the data satisfy u0 ∈ L2
per (�) and g ∈ L p′

(0, T ;W 1,p
per (�)∗). Within this func-

tional setting, the existence and uniqueness theory for such problems is nowadays classical,
see [20, 23] including and extending the monotone operator theory invented by Minty for
the elliptic setting in Hilbert spaces (see [25]). It turns out that one can develop a rather com-
plete theory for such problems and we refer to the classical monograph [15] for additional
regularity results. Furthermore, one can introduce a much more general class of possible
relationships between q and ∇u that goes far beyond (1.9) or (1.11) and where q and ∇u are
related implicitly. This means that instead of (1.1b) one considers the equation g(q,∇u) = 0
in Q with g : Rd × R

d → R
d continuous. Under suitable assumptions imposed on g, pro-

viding among others p-coercivity for ∇u and p′-coercivity for q, a self-contained large-data
mathematical theory within the above functional setting has been recently developed, also
for the systems, in [12] (including, but also extending the results established in [10, 11] in
the context of fluid mechanics).
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Fig. 1 If p ∈ (1, ∞), then q =
|∇u|p−2 ∇u ⇔ ∇u = |q|p′−2 q
with p′ = p

p−1 . Selected graphs
are drawn (for values
p = 3

2 , 2, 3). The limiting cases
p = 1 and p = ∞ (i.e. p′ = 1)
are sketched as well

|∇u|

|q|

p = 11

1

p = 3
2

p = 2p = 3p = +∞

A natural and interesting question is what happens when p → 1+ or p → ∞. In the case
δ = 0, we formally obtain from (1.11) for p = 1 that

q = ∇u

|∇u| .

Then, the governing equation for the time-independent (stationary) problem being of the
form − div(∇u/|∇u|) = g formally represents the Euler-Lagrange equation corresponding
to the minimization of the total variation functional. Analogously, and again for δ = 0, it
follows from (1.9) that for p = ∞ (i.e. p′ = 1) one has

∇u = q
|q| ,

which, together with the governing equation − div q = g, corresponds to the so-called ∞-
Laplacian, see also Fig. 1.

Both limiting cases have attracted attention in the scientific community. Not only is the
understandingof these limiting cases interesting as amathematical problemper se, but also the
total variation equation or ∞-Laplacian are frequently used when studying sharp interface-
like problems, image recovering, etc. Let us point out that, in the elliptic (i.e. stationary)
setting, one faces serious difficulties with defining a proper concept of solution and usually
one has to introduce a new one. While for p = 1 this has led to the theory of BV spaces, see
e.g. [19], for p = ∞ the concept of viscosity solution was introduced in [3]. In principle,
one can say that the expected L1-regularity for ∇u (when p = 1) or the L1-regularity for
q (when p = ∞) must be relaxed and one is led to work in the “weak∗ closure of L1" or,
more precisely, in the space of Radon measures. In the parabolic setting, there is a certain
mollification effect coming from the presence of the time derivative and therefore the case
p = 1 is not so difficult to treat provided that the initial data are sufficiently regular, see e.g.
[2]. However, for p = ∞, one seems to be forced to keep the notion of a viscosity solution,
see [1, 26]. Furthermore, it is also well known that the viscosity solution is in principle
the best object one can deal with, which is well documented by the existence of a singular
solution (see [4] or the monograph [22]).
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|∇u|

|q|

1
p = 1

p = 3
2

p = 2
p = 3

p = 10

|∇u|

|q|

1

p′ = 1 p′ = 3
2

p′ = 2

p′ = 3

p′ = 10

Fig. 2 On the left, the graphs of q = (1 + |∇u|2) p−2
2 ∇u are sketched for selected values of p ∈ [1,∞),

namely p = 1, 3
2 , 2, 3, 10.On the right, the graphs of∇u = (1+|q|2) p′−2

2 q are shown for p′ = 1, 3
2 , 2, 3, 10.

The above discussion was focused on the case δ = 0, which leads to certain singular
behaviour near zero. For a mollified problem with δ = 1, the limiting cases take the form

q = ∇u

(1 + |∇u|a) 1
a

for p = 1,

∇u = q

(1 + |q|a) 1
a

for p = ∞,

which may have better properties since both equations represent strictly monotone mapping
unlike the case δ = 0, see also Fig. 2. Nevertheless, even in this regularized case, one
encounters difficulties. The most famous example concerns the case a = 2 and p = 1, i.e.
the minimal surface problem. Due to Finn’s counterexample (see [16]), it is known that even
for smooth data one can obtain an irregular solution that is not a Sobolev function. However,
such a singularity appears only on (the Dirichlet part of) the boundary. This follows from two
results: the interior regularity established for the stationary problem with p = 1 and a ≤ 2
in [9] and the existence result established in [8] showing that the solution of the Neumann
problem (for p = 1 and a > 0 arbitrary) is indeed a Sobolev function and there is no need
to involve BV spaces. As this paper documents, a similar situation occurs the problems with
p = ∞ and δ = 1.

Apparently, one could follow the procedure developed for ∞-Laplacian and try to treat
the problem with the notion of viscosity solution. However, it is not clear how to adopt
the theory of viscosity solution to our setting since we are dealing with a different elliptic
operator (compare the limiting behaviour for p = ∞ and δ = 0 or δ = 1 depicted at Figs. 1
and 2). More importantly, it turns out (and this is one of the main messages of this paper)
that we do not need to introduce the concept of viscosity solution as we are able to establish
the existence of a standard weak solution. Our method builds on the approach developed in
[13] and [6], where a similar elliptic problem arising in solid mechanics is analyzed. In this
paper, we generalize the approach proposed in [6, 13] (and used in some sense also in [8])
and adopt it to the parabolic setting.

An interesting problem might be the study of the limit a → ∞. In such a case

(1 + |q|a) 1
a ↘ max{1, |q|} as a → ∞
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Fig. 3 The graphs of
∇u = q

(1+|q|a )
1
a

are drawn for

selected values of parameter
a ∈ (0, ∞). The limiting case
a = ∞ is sketched as well.

|q|

|∇u|

1

a = 1
2

a = 1
a = 2
a = 6

a = +∞

and consequently (for f1 introduced in (1.7))

f1(q) = q

(1 + |q|a) 1
a

↗ q
|q| min {1, |q|} as a → ∞.

However, the limitingmapping is not strictlymonotone (see Fig. 3) and themethod developed
in this paper cannot be applied.

To summarize and emphasize the novelty of our result once again, we show the existence
of a weak solution to the evolutionary problem (1.1) for all a > 0 with no need to introduce
the concept of viscosity solution and with q being an integrable function.

It is worth mentioning that our proof of Theorem 1.2, as presented below, is based on
two properties of the nonlinear function f1 defined in (1.7), namely, its radial structure,
i.e. f1(q) = α(|q|)q, and the existence of strictly convex potential to f1. Consequently,
the specific form of the Eq. (1.1b) is not essential and we can develop a satisfactory theory
for a general class of relations behaving like mollified ∞-Laplacian (provided that there is
a strictly convex potential behind). We state such a generalized result in Theorem 7.1 in
Sect. 7 but do not provide the proof for simplicity here. However, an interested reader can
compare our proof with the general methods invented in [7] for the elliptic setting. In fact, by
adopting these methods and combining them with the proof of Theorem 1.2, one can prove
Theorem 7.1.

1.3 A fluid mechanics problemmotivating this study

Consider an incompressible fluid with constant density flowing, at a uniform temperature,
in a three-dimensional domain. In the absence of external body forces, unsteady flows of
such a fluid are described by the following set of equations for the unknown velocity field
v = (v1, v2, v3) and the pressure p:

div v = 0, ∂tv +
3∑

k=1

vk∂kv = −∇ p + div S, (1.13)

where S, the deviatoric part of the Cauchy stress tensor, enters the additional (so-called
constitutive) equation relating S to the symmetric part of the velocity gradient denoted by
D and characterizing the material properties of a particular class of fluids. While for the
Newtonian fluids one has S = 2ν∗D, where ν∗ > 0 is the kinematic viscosity, there are many
viscous fluids and fluid-like materials in which the relation between S and D is nonlinear.
There are fluids (see for example [17, 18, 21, 27, 29]) in which the constitutive relation
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capable of describing experimental data can be of the form

2ν∗D = S(
1 +

(
1√
2

|S|
)a) 1

a

for some a > 0 and ν∗ > 0. (1.14)

Thegeneral goal is to understandmathematical properties associatedwith the systemofpartial
differential Eqs. (1.13)–(1.14). A possible natural approach is to look first at a geometrically
simplified version of the problem. For example, one can investigate simple shear flows taking
place between two infinite parallel plates located at x2 = 0 and x2 = L . Time-dependent
simple shear flows are characterized by the velocity field of the form v(t, x1, x2, x3) =
(u(t, x2), 0, 0). Note that such velocity field fulfills div v = 0. We also infer that the only
nontrivial components of D are D12 = D21 = 1

2∂2u. Hence it follows from (1.14) that also
all components of S other than S12 = S21 =: σ = σ(t, x2) vanish. Then the second equation
in (1.13) together with (1.14) leads to:

∂t u = −∂1 p + ∂2σ, 0 = −∂2 p, 0 = −∂3 p, (1.15a)

ν∗∂2u = σ

(1 + |σ |a) 1
a

. (1.15b)

It follows from the second and the third equation in (1.15a) that p = p(t, x1). After inserting
this piece of information into the first equation of (1.15a) we can decompose this equation
and obtain

(∂t u − ∂2σ)(t, x2) = g(t) and − ∂1 p(t, x1) = g(t) (1.16)

for some function g depending only on time.When studying the unsteady Poiseuille flow, the
function g, corresponding to the pressure drop,must be given. Then the first equation in (1.16)
together with (1.15b) represents a one-dimensional version of the governing equations of the
problem (1.1) studied in this paper (with the caveat that in (1.1) the function g may also
depend on the spatial variable).

1.4 Difficulties andmain idea

As mentioned above, the key difficulty is due to a weak a priori estimate for q compensating
the fact that ∇u is bounded a priori. To be more explicit, let us recall the definition (1.7)
with δ = 1, i.e. f1(q) := q

(1+|q|a) 1a
. Obviously,

∣∣ f1(q)
∣∣ = |q|

(1+|q|a) 1a
< 1 for all q ∈ R

d .

This directly yields that ∇u ∈ L∞(Q;Rd), but it also brings the restriction that the inverse
function of (the injective function) f1 cannot be defined outside of the unit ball in R

d and
hence we may not simply write q as a function of ∇u and directly apply the Faedo–Galerkin
approximation method.

Next, standard energy estimates are not sufficient to establish the existence of a weak
solution. Indeed, multiplying the linear Eq. (1.1a) by the solution u, integrating by parts with
respect to the spatial variables (the spatial periodicity ensures that the boundary terms vanish)
and substituting for ∇u from (1.1b) we conclude that

∫
Q

|q|2
(1 + |q|a) 1

a

dx dt < ∞.

However, this implies merely that q belongs to L1(Q;Rd) which is not a reflexive Banach
space (it does not even have a predual). Hence, when constructing a solution, we may not
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identify a weak limit of a subsequence of {qn}∞n=1, a sequence of some approximations
bounded in L1(Q;Rd). Similar difficulties occur if one aims to investigate the limiting
behaviour when converging from the p-Laplacian to the ∞-Laplacian, i.e. when studying
the limit p′ → 1+ in (1.7).

At this point one might consider a priori estimates involving higher derivatives. Let us
denote by s a general time or spatial variable, i.e. s can represent t, x1, . . . , xd . Let us
differentiate the Eq. (1.1a) with respect to s, multiply the result by ∂su and integrate over �.
Finally, in the integral involving q, we integrate by parts and obtain

1

2

d

dt
‖∂su‖2L2(�)

+
∫

�

∂sq · ∂s(∇u) dx =
∫

�

∂s g∂su dx .

Hence, if the data are sufficiently regular, one can hope for an a priori estimate for q of the
form

∫
Q

∂sq · ∂s(∇u) dx dt < ∞. (1.17)

Let us now focus on the information coming from (1.17) for general f p′ with p′ ∈ [1,∞).
Using (1.7) (cf. Lemma 2.1) one obtains

∂sq · ∂s(∇u) = (1 + |q|a) p′−2−a
a

(|∂sq|2 (1 + |q|a) + (p′ − 2) |q|a−2 (q · ∂sq)2
)
.

(1.18)

For p′ > 1 we have p′ − 2 > −1 and we can employ the Cauchy–Schwarz inequality for
the last term to obtain the estimate

∂sq · ∂s(∇u) ≥ C(1 + |q|a) p′−2
a |∂sq|2 ,

where C := min{p′ − 1, 1} > 0 and this can be exploited to control ∂sq in Ls(Q;Rd) for
some s > 1. However, in the critical case p′ = 1, there is a sudden loss of information as
one then deduces merely the estimate

∂sq · ∂s(∇u) ≥ (1 + |q|a)−1−a
a |∂sq|2 . (1.19)

Consequently, the power of |q| in this weighted estimate drops by a. For small values of a,
namely for those satisfying (1.5), it can be deduced from (1.17) and (1.19) using Sobolev
embedding that q is bounded in Lb(Q;Rd) for some b > 1, see (1.6). This is shown in
the proof of the second part of Theorem 1.2. However, for large values of a, the estimate
(1.19) seems to be useless at the first glance. We will however show that it implies almost
everywhere convergence for a selected subsequence of {qm}. This is still not sufficient to take
the limit in the governing equation (due to L1-integrability of {qm}). This is why we truncate
a suitablem-approximating problem with respect to the flux qm and then, in order to take the
limit from the truncated formulation of the approximate problem to the weak formulation of
the original problem, we shall work directly with the quantity ∂sq ·∂s(∇u) (or more precisely
with the right-hand side of (1.18)), which in some sense still generates an estimate for ∂sq
in some scalar product in R

d induced by q itself.
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2 Preliminaries

Here and in the remaining parts of this text we set, for a > 0,

f (q) := q

(1 + |q|a) 1
a

where q ∈ R
d . (2.1)

The aim of this section is to collect basic properties of f as well as its ε-approximation f ε

defined, for ε > 0, as:

f ε(q) := f (q) + εq = q

(1 + |q|a) 1
a

+ εq. (2.2)

Lemma 2.1 The following assertions hold true:

(i) f , f ε ∈ C1(Rd ;Rd) and for all i, j = 1, . . . , d and arbitrary q ∈ R
d there holds:

(∇q f (q)
)
i j := ∂ fi (q)

∂q j
= (1 + |q|a)δi j − |q|a−2 qiq j

(1 + |q|a)1+ 1
a

and

(∇q f ε(q)
)
i j = (∇q f (q)

)
i j + εδi j , (2.3)

where δi j is the Kronecker delta.
(ii) Introducing the scalar functions f (s) := s

(1+sa)
1
a
and fε(s) := f (s) + εs we have the

following “radial" representations for f and f ε:

f (q) = f (|q|) q
|q| and f ε(q) = fε(|q|) q

|q| for every q �= 0. (2.4)

(iii) For ε > 0 the function f ε is a diffeomorphism from R
d onto R

d , while f is a diffeo-
morphism from R

d onto the open unit ball B1(0) ⊂ R
d .

Proof For q �= 0 we have

∂ f ε
i (q)

∂q j
= ∂

∂q j

(
qi

(1 + |q|a) 1
a

)
+ εδi j = (1 + |q|a)δi j − |q|a−2 qiq j

(1 + |q|a)1+ 1
a

+ εδi j .

This result can be easily extended to q = 0. Indeed, the above formula for partial derivatives
is clearly continuous on Rd \ {0} and since a > 0 and

∣∣qiq j
∣∣ ≤ |q|2 for all i, j ∈ {1 . . . , d},

we conclude |q|a−2 qiq j → 0 as q → 0. Thus f , f ε ∈ C1(Rd ;Rd). This proves the first
assertion.

As the vectors q and f ε(q) have the same direction, the formulae (2.4) follow. Further-

more, lims→0+ f (s) = 0, lims→∞ f (s) = 1 and f ′(s) = (1 + sa)− 1+a
a > 0. Consequently,

f is a strictly increasing C1-function mapping [0,∞) onto [0, 1) and, for any ε > 0, fε is a
strictly increasing C1-function mapping [0,∞) onto [0,∞). Hence the functions

f−1( y) := f −1 (| y|) y
| y| and

(
f ε

)−1
( y) := ( fε)

−1 (| y|) y
| y|

are well defined inverse functions of f and f ε, respectively. It is straightforward to check
that f−1 and

(
f ε

)−1 are continuously differentiable, which completes the proof of (ii) and
(iii). ��
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Next, we set

A(q) := ∇q f (q) i.e. A(q) = (1 + |q|a)I − |q|a−2 q ⊗ q

(1 + |q|a)1+ 1
a

(2.5)

andwe focus on its (finer) properties. (In (2.5), I stands for the identitymatrix and (q⊗q)i j =
qiq j .)

Lemma 2.2 (Scalar product generated by ∇q f (q)) Let q ∈ R
d be arbitrary. The bilinear

form on R
d given by

(v,w)A(q) := v · A(q)w =
d∑

i, j=1

vi
∂ fi (q)

∂q j
w j = (1 + |q|a)v · w − |q|a−2 (q · v)(q · w)

(1 + |q|a)1+ 1
a

(2.6)

is a scalar product on R
d satisfying

(v,w)A(q) ≤ 2 |v| |w| for every v,w ∈ R
d . (2.7)

The corresponding quadratic form v 2
A(q) := (v, v)A(q) fulfills

|v|2 ≥ |v|2
(1 + |q|a) 1

a

≥ v 2
A(q) ≥ |v|2

(1 + |q|a)1+ 1
a

for every v ∈ R
d (2.8)

Hence, · A(q) is for fixed q ∈ R
d the norm on R

d equivalent to the Euclidean norm | · |.
Proof The proof follows from the definition of f , the formula (2.3) for its derivatives, (2.6)
and the Cauchy-Schwarz inequality. The inequalities in (2.8) are direct consequences of (2.6).

��
The last essential property we need in the proof is the strict monotonicity of f , the strong
monotonicity of f ε and, consequently, the Lipschitz continuity of its inverse function ( f ε)−1.

Lemma 2.3 The mappings f , f ε : R
d → R

d defined in (2.1) and (2.2) satisfy, for all
ε ∈ (0, 1),(

f (q1) − f (q2)
) · (q1 − q2) > 0 for all q1, q2 ∈ R

d , q1 �= q2, (2.9)(
f ε(q1) − f ε(q2)

) · (q1 − q2) ≥ ε|q1 − q2|2 for all q1, q2 ∈ R
d . (2.10)

Moreover, for any ε > 0, the inverse function
(
f ε

)−1
is uniformly Lipschitz continuous on

R
d , namely,

∣∣( f ε)−1( y1) − ( f ε)−1( y2)
∣∣ ≤ 1

ε

∣∣ y1 − y2
∣∣ for all y1, y2 ∈ R

d . (2.11)

Proof We first observe, using also (2.5), that (for q1 �= q2)

(
f ε(q1) − f ε(q2)

) · (q1 − q2) =
∫ 1

0

d

ds
f ε(q2 + s(q1 − q2)) ds · (q1 − q2)

=
∫ 1

0
A(q2 + s(q1 − q2))(q1 − q2) · (q1 − q2) ds + ε|q1 − q2|2 > ε|q1 − q2|2,
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which gives the strong monotonicity of f ε and strict monotonicity of f . Since
(
f ε(q1) − f ε(q2)

) · (q1 − q2) ≤ ∣∣ f ε(q1) − f ε(q2)
∣∣ ∣∣q1 − q2

∣∣ ,
we conclude from the last two inequalities that ε

∣∣q1 − q2
∣∣ ≤ ∣∣ f ε(q1) − f ε(q2)

∣∣, which is
equivalent to (2.11). ��

3 Proof of uniqueness

In this short section, we shall prove that there is at most one weak solution to the problem
(1.1).

Let us assume that there are two weak solutions (u1, q1) and (u2, q2) to the problem (1.1)
with the same initial value u0 ∈ L2(�) and the same right-hand side g ∈ L2(Q). Note that
the constitutive Eq. (1.2b) implies that ∇u1,∇u2 ∈ L∞(Q) and consequently u1 and u2 are
admissible test function in (1.2a). Subtracting (1.2a) for (u2, q2) from the same equation for
(u1, q1) and taking ϕ = u1(t, ·) − u2(t, ·) as a test function, we obtain∫

�

(∂t u1 − ∂t u2)(u1 − u2) + (q1 − q2) · (∇u1 − ∇u2) dx = 0 for a.a. t ∈ (0, T ).

(3.1)

By (1.2b), ∇u1 − ∇u2 = f (q1) − f (q2). Inserting this relation into (3.1), we obtain

1

2

d

dt
‖u1 − u2‖2L2(�)

+
∫

�

( f (q1) − f (q2)) · (q1 − q2) dx = 0.

Integrating this with respect to time t ∈ (0, T ] and using u1(0, x) − u2(0, x) = 0 a.e. in �

we arrive at

1

2
‖u1(t, ·) − u2(t, ·)‖2L2(�)

+
∫ t

0

∫
�

(
f (q1) − f (q2)

) · (q1 − q2) dx ds = 0.

By taking t = T and using the strict monotonicity of f , see (2.9), the second term leads
to the conclusion that q1 = q2 a.e. in (0, T ) × �. The first term then implies that, for all
t ∈ (0, T ], u1(t, ·) = u2(t, ·) a.e. in �. This completes the proof of uniqueness.

4 "-approximations and their properties

In this section, we introduce, for any ε ∈ (0, 1), an ε-approximation of the problem (1.1) and
show, by means of the Galerkin method and regularity techniques performed at the Galerkin
level, that this ε-approximation admits a unique weak solution with second spatial derivatives
in L2(Q).

Let ε ∈ (0, 1) and a > 0. We say that a couple of �-periodic functions (u, q) = (uε, qε)

solves the ε-approximation of the problem (1.1) if

∂t u − div q = g in Q, (4.1a)

∇u = q

(1 + |q|a) 1
a

+ εq = f (q) + εq = f ε(q) in Q, (4.1b)

u(0, ·) = u0 in �. (4.1c)
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In accordance with the assumptions of Theorem 1.2, we assume that u0 ∈ W 1,∞
per (�)

satisfies (1.3) and g ∈ L2(Q). We say that a couple (u, q) = (uε, qε) is weak solution to
(4.1) if

u ∈ L2
(
0, T ;W 2,2

per (�)
)

,

∂t u ∈ L2 (
0, T ; L2(�)

)
,

q ∈ L2
(
0, T ; L2

(
�;Rd

)) (4.2)

and

∫
�

∂t u ϕ + q · ∇ϕ dx =
∫

�

g ϕ dx for all ϕ ∈ W 1,2
per (�)and a.a. t ∈ (0, T ), (4.3a)

∇u = f ε(q) a.e. in Q, (4.3b)

‖u(t, ·) − u0‖L2(�)

t→0+−−−→ 0. (4.3c)

Uniqueness of such a solution follows from the same argument as in Sect. 3. To establish the
existence of the solution, we apply the Galerkin method combined with higher differentiabil-
ity estimates that we will perform at the level of Galerkin approximations. These estimates
and the limit from the Galerkin approximation to the continuous level represent the core of
this section. In Sect. 4.6, we establish and summarize the estimates that are uniform with
respect to ε.

4.1 Galerkin approximations

Consider the basis {ωr }∞r=1 in W 1,2
per (�) consisting of solutions of the following spectral

problem:

∫
�

∇ωr · ∇ϕ dx = λr

∫
�

ωrϕ dx for all ϕ ∈ W 1,2
per (�). (4.4)

It is well-known (see e.g. [28] or [24, Appendix A.4]) that there is a non-decreasing sequence
of (positive) eigenvalues {λr }∞r=1 and a corresponding set of eigenfunctions {ωr }∞r=1 that are

orthogonal in W 1,2
per (�) and orthonormal in L2

per (�). Moreover, the projections PN defined

through PN (u) = ∑N
i=1

(∫
�
uωi dx

)
ωi are continuous both as mappings from L2

per (�) to

L2
per (�) and from W 1,2

per (�) to W 1,2
per (�). Also, due to �-periodicity and elliptic regularity,

the �-periodic extensions of ωr belong to C∞(Rd).
Before introducing the Galerkin approximations of the problem (4.3) we recall, referring

to Lemma 2.1, that the relation∇u = f ε(q) is equivalent to q = ( f ε)−1(∇u)where ( f ε)−1

is a Lipschitz mapping from R
d to R

d .
For an arbitrary, fixed N ∈ N, we look for uN in the form

uN (t, x) =
N∑

r=1

cNr (t) ωr (x),

123



188 Page 14 of 31 M. Bulíček et al.

where the coefficients cNr , r = 1, . . . , N , are determined as the solution of the system of
ordinary differential equations of the form
∫
�

∂t u
Nωr + qN · ∇ωr dx =

∫
�
g ωr dx, r = 1, . . . , N , where qN := ( f ε)−1(∇uN ),

(4.5a)

uN (0, ·) = PN (u0) ⇐⇒ cNr (0) =
∫
�
u0ωr dx r = 1, . . . , N .

(4.5b)

The local-in-time well-posedness of the above problem (4.5) directly follows from
Caratheodory theory (recall here that

(
f ε

)−1 is a Lipschitz mapping). In addition, thanks to
the first uniform estimates established in the next subsection, we deduce that the Galerkin
system (4.5) is well-posed on (0, T ].

4.2 First uniform estimates

Multiplying the r -th equation in (4.5a) by cr and summing these equations up for r =
1, . . . , N , we obtain

1

2

d

dt

∥∥∥uN
∥∥∥2
L2(�)

+
∫

�

qN · ∇uN dx =
∫

�

g uN dx .

Using the one-to-one correspondence between qN and ∇uN , see (4.5a), the second term on
the left-hand side can be evaluated explicitly and the above equation takes the form

1

2

d

dt

∥∥∥uN ∥∥∥2
L2(�)

+
∫
�

∣∣∣qN
∣∣∣2

(
1 + ∣∣qN ∣∣a) 1

a

+ ε

∣∣∣qN ∣∣∣2 dx =
∫
�
g uN dx ≤ 1

2
‖g‖2

L2(�)
+ 1

2

∥∥∥uN ∥∥∥2
L2(�)

.

Integrating over time, using then the Gronwall inequality and the fact that ‖PNu0‖L2(�) ≤
‖u0‖L2(�), we obtain

sup
t∈(0,T )

∥∥∥uN (t, ·)
∥∥∥2
L2(�)

+
∫ T

0

∫
�

∣∣∣qN ∣∣∣2
(
1 + ∣∣qN ∣∣a) 1

a

+ ε

∣∣∣qN
∣∣∣2 dx dt ≤ C

(
‖u0‖L2(�),‖g‖L2(Q)

)
.1

(4.6)

In addition, it also directly follows from ∇uN = f ε(qN ) (see the second equation in
(4.5a)) and the above estimates on qN that

∫ T

0

∫
�

∣∣∣∇uN
∣∣∣2 dx dt ≤ C(‖u0‖L2(�) , ‖g‖L2(Q)

)
. (4.7)

1 By symbols such as C
(
‖u0‖L2(�) , ‖g‖L2(Q)

)
we indicate the dependence of the finite upper bound on

“relevant" parameters (i.e. u0, g, a and auxiliary parameters introduced in the proof such as ε). The value of
this bound can change from luad ine to line.
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Indeed, the second equation in (4.5a), see also the Eq. (4.1b), implies that

∣∣∣∇uN
∣∣∣2 ≤ 2

∣∣∣ f (qN )

∣∣∣2 + 2ε2
∣∣∣qN

∣∣∣2 = 2

∣∣∣qN ∣∣∣2
(
1 + ∣∣qN ∣∣a) 2

a

+ 2ε2
∣∣∣qN

∣∣∣2 ≤ 2

∣∣∣qN ∣∣∣2
(
1 + ∣∣qN ∣∣a) 1

a

+ 2ε
∣∣∣qN

∣∣∣2 ,

where we used the facts that ε2 < ε and (1 +
∣∣∣qN

∣∣∣a)− 1
a ≤ 1. By integrating the obtained inequality over

(0, T ) × � and using (4.6), we get (4.7).

4.3 Time derivative estimate (uniformwith respect to N)

Multiplying the r -th equation in (4.5a) by d
dt cr and summing these equations up for r =

1, . . . , N , we obtain

∫
�

∣∣∣∂t uN
∣∣∣2 + qN · ∂t

(
∇uN

)
dx =

∫
�

g ∂t u
N dx .

Applying Young’s inequality to the term on the right-hand side, we get

∫
�

∣∣∣∂t uN
∣∣∣2 + 2qN · ∂t

(
∇uN

)
dx ≤

∫
�

|g|2 dx . (4.8)

Next, we focus on the second term on the left-hand side. Since ∇uN = f ε(qN ), it follows
from the definition of f ε that

qN · ∂t

(
∇uN

)
= ∂t

(
qN · ∇uN

)
− ∂tqN · ∇uN

= ∂t

⎛
⎝

∣∣qN
∣∣2

(
1 + ∣∣qN

∣∣a) 1
a

+ ε

∣∣∣qN
∣∣∣2

⎞
⎠ − ∂tqN ·

⎛
⎝ qN

(
1 + ∣∣qN

∣∣a) 1
a

+ εqN

⎞
⎠

= ε

2
∂t

(∣∣∣qN
∣∣∣2

)
+ ∂t

⎛
⎝

∣∣qN
∣∣2

(
1 + ∣∣qN

∣∣a) 1
a

⎞
⎠ − ∂t

(∣∣∣qN
∣∣∣)

∣∣qN
∣∣

(
1 + ∣∣qN

∣∣a) 1
a

= ε

2
∂t

(∣∣∣qN
∣∣∣2

)
+ ∂t

∫ ∣∣qN ∣∣
0

⎛
⎝

∣∣qN
∣∣

(
1 + ∣∣qN

∣∣a) 1
a

− s

(1 + sa)
1
a

⎞
⎠ ds.

Inserting the outcome of this computation into (4.8), integrating the result over (0, T ) and
using the fact that the function

s �→ s

(1 + sa)
1
a
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is increasing (implying that
∣∣qN

∣∣ (1+ ∣∣qN
∣∣a)− 1

a −s(1 + sa)− 1
a ≥ 0 on (0,

∣∣qN
∣∣)), we obtain

∫ T

0

∫
�

∣∣∣∂t uN
∣∣∣2 dx dt ≤

∫ T

0

∫
�

|g|2 − 2qN · ∂t

(
∇uN

)
dx dt

=
∫ T

0

∫
�

|g|2 dx dt −
[∫

�

[
ε

∣∣∣qN (t, x)
∣∣∣2

+2
∫ ∣∣qN (t,x)

∣∣
0

⎛
⎝

∣∣qN (t, x)
∣∣

(
1 + ∣∣qN (t, x)

∣∣a) 1
a

− s

(1 + sa)
1
a

⎞
⎠ds

⎤
⎦ dx

⎤
⎦
t=T

t=0

≤
∫ T

0

∫
�

|g|2 dx dt +
∫

�

[
ε

∣∣∣qN (0, x)
∣∣∣2

+ 2
∫ ∣∣qN (0,x)

∣∣
0

⎛
⎝

∣∣qN (0, x)
∣∣

(
1 + ∣∣qN (0, x)

∣∣a) 1
a

− s

(1 + sa)
1
a

⎞
⎠ ds

]
dx .

Noticing that
∣∣qN

∣∣ (1 + ∣∣qN
∣∣a)− 1

a − s(1 + sa)− 1
a ≤ 1 on (0,

∣∣qN
∣∣) we conclude that

∫ T

0

∫
�

∣∣∣∂t uN
∣∣∣2 dx dt ≤ ‖g‖2L2(Q)

+ ε

∥∥∥qN (0, ·)
∥∥∥2
L2(�;Rd)

+ 2
∥∥∥qN (0, ·)

∥∥∥
L1(�;Rd )

,

(4.9)

where

qN (0, x) = (
f ε

)−1
(∇PN (u0(x))) ⇐⇒ ∇PN (u0) = qN (0, ·)(

1 + ∣∣qN (0, ·)∣∣a) 1
a

+ εqN (0, ·).

(4.10)

Consequently,
∣∣∣qN (0, ·)

∣∣∣ ≤ 1

ε

∣∣∣∇PN (u0)
∣∣∣ ,

which implies that

‖qN (0, ·)‖L1(�;Rd ) ≤ |�|1/2‖qN (0, ·)‖L2(�;Rd) ≤ 1

ε
|�|1/2‖∇PN (u0)‖L2(�;Rd).

The fact that ‖PN (u0)‖W 1,2
per (�)

≤ ‖u0‖W 1,2
per (�)

thus finally yields

∫ T

0

∫
�

∣∣∣∂t uN
∣∣∣2 dx dt ≤ C

(
ε−1, ‖g‖L2(Q), ‖u0‖W 1,2

per (�)
, |�|

)
. (4.11)

4.4 Spatial derivative estimates

This time, we multiply the r -th equation in (4.5a) by λr cr and sum the obtained identities up
for r = 1, . . . , N . Since, due to (4.4) and the smoothness of ωr ,

λr

∫
�

ωrϕ dx =
∫

�

∇ωr · ∇ϕ dx = −
∫

�

�ωrϕ dx for all ϕ ∈ W 1,2
per (�),
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we get ∫
�

∂t∇uN · ∇uN + ∇qN · ∇2uN dx = −
∫

�

g�uN dx .

Hence,

d

dt

∥∥∥∇uN
∥∥∥2
L2

(
�;Rd

)

+2
∫
�

∇qN · ∇2uN dx = −2
∫
�
g�uN dx ≤ 2‖g‖L2(�)

∥∥∥∇2uN
∥∥∥
L2(�;Rd×d )

.

(4.12)

Since ∇uN = f ε(qN ), recalling (2.5) we get

∇2uN = A(qN )∇qN + ε∇qN .

Hence, by Lemma 2.2, we get

∇qN · ∇2uN = ∇qN · A(qN )∇qN + ε|∇qN |2 = ∇qN 2
A(qN ) + ε|∇qN |2 (4.13)

and also, by means of the Cauchy-Schwarz inequality and (2.8),

∣∣∣∇2uN
∣∣∣2 = A(qN )∇qN · ∇2uN + ε∇qN · ∇2uN

≤ ∇qN
A(qN ) ∇2uN

A(qN ) + ε

∣∣∣∇qN
∣∣∣
∣∣∣∇2uN

∣∣∣
≤ ∇qN

A(qN )|∇2uN | + ε|∇qN | |∇2uN |,
which, using ε2 < ε, implies that

∣∣∣∇2uN
∣∣∣2 ≤ 2

(
∇qN 2

A(qN ) + ε

∣∣∣∇qN
∣∣∣2

)
. (4.14)

Incorporating (4.13) and (4.14) into (4.12), integrating the result with respect to time and
using Young’s inequality and the continuity of PN in W 1,2

per (�), we arrive at estimates that
are uniform with respect to both N and ε:

sup
t∈(0,T )

∥∥∥∇uN (t, ·)
∥∥∥2
L2(�;Rd)

+
∫ T

0

∫
�

∇qN 2
A(qN ) + ε

∣∣∣∇qN
∣∣∣2 +

∣∣∣∇2uN
∣∣∣2 dx dt

≤ C
(
‖g‖L2(Q), ‖u0‖W 1,2

per (�)

)
. (4.15)

4.5 Limit N → ∞

Due to the reflexivity and separability of the underlying function spaces and the Aubin-Lions
compactness lemma, it follows from the estimates (4.6), (4.7), (4.11) and (4.15) that there is
a subsequence of

{
(uN , qN )

}∞
N=1 (which we do not relabel) such that

uN⇀u weakly in L2
(
0, T ;W 2,2

per (�)
)

, (4.16a)

∂t u
N⇀∂t u weakly in L2 (

0, T ; L2(�)
)
, (4.16b)

uN → u strongly in L2
(
0, T ;W 1,2

per (�)
)

∩ C
([0, T ]; L2(�)

)
, (4.16c)
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qN⇀q weakly in L2
(
0, T ;W 1,2

per

(
�;Rd

))
. (4.16d)

Letting N → ∞ in (4.5), it is simple to conclude from the above convergence results that∫
�

∂t u ϕ + q · ∇ϕ dx =
∫

�

g ϕ dx for all ϕ ∈ W 1,2
per (�) and a.a. t ∈ (0, T ]. (4.17)

Since uN (0, ·) = PN (u0), PN (u0)
N→∞−−−−→ u0 in L2(�) and u ∈ C

([0, T ]; L2(�)
)
, we

observe that (4.3c) holds.
By virtue of (4.16c) there is a subsequence (that we again do not relabel) so that

∇uN N→∞−−−−→ ∇u a.e. in Q. (4.18)

As
(
f ε

)−1 is (Lipschitz) continuous, it follows from the second equation in (4.5a) and (4.18)
that

qN = (
f ε

)−1
(
∇uN

)
N→∞−−−−→ (

f ε
)−1

(∇u) a.e. in Q.

Since the weak limit in L2(Q) coincides with the pointwise limit a.e. in Q (provided that
these limits exist), we conclude that(

f ε
)−1

(∇u) = q a.e. in Q �⇒ ∇u = f ε(q) a.e. in Q. (4.19)

Thus, the existence and uniqueness of a weak solution to the ε-approximation (4.1) in the
sense of definition (4.3) is completed.

In the next subsection, we establish and summarize the estimates associated with the
ε-approximation (4.1) that are uniform with respect to ε.

4.6 "-independent estimates for (u", q")

Observing that uε is an admissible test function in (4.17), we set ϕ = uε in (4.17). Then,
proceeding step by step as at the Galerkin level, we obtain

sup
t∈(0,T )

∥∥uε(t, ·)∥∥2L2(�)
+

∫ T

0

∫
�

|qε|2(
1 + |qε|a) 1

a

+ ε
∣∣qε

∣∣2 dx dt ≤ C(‖u0‖2 , ‖g‖L2(Q)

)
.

(4.20)

It is easy to conclude from the boundedness of the second term, by applyingHölder’s inequal-
ity, that ∫ T

0

∫
�

∣∣qε
∣∣ dx dt ≤ C(|�|, ‖u0‖2 , ‖g‖L2(Q)

)
. (4.21)

Further estimates are obtained in this subsection by taking the limit N → ∞ in the estimates
obtained at the Galerkin level. In order to simplify the notation, we drop the ε label for objects
depending also on N . In particular, if such an object appears in a statement together with
another one depending only on ε, they both correspond to the same ε.

We define qε
0 through the equation

∇u0 = f ε(qε
0) = qε

0

(1 + |qε
0|a)1/a

+ εqε
0.
2 (4.22)

2 Under stronger assumptions on data it can be proved that actually qε
0(·) = qε(0, ·), but we do not need it.
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As ∇PN (u0) = f ε(qN (0, ·)), see (4.10), ∇PN (u0) → ∇u0 strongly in L2
(
�;Rd

)
, and

( f ε)−1 is Lipschitz continuous, we conclude that

qN (0, ·) N→∞−−−−→ qε
0 strongly in L2

(
�;Rd

)
.

Consequently, we can take the limit N → ∞ in (4.9) and conclude, using also the weak
lower semicontinuity of the L2-norm together with (4.16b), that∫ T

0

∫
�

∣∣∂t uε
∣∣2 dx dt ≤ ‖g‖2L2(Q)

+ ε
∥∥qε

0

∥∥2
L2(�;Rd)

+ 2
∥∥qε

0

∥∥
L1(�;Rd )

. (4.23)

It follows from (1.3) and (4.22) that

U ≥ |∇u0| =
(

1

(1 + |qε
0|a)

1
a

+ ε

)
|qε

0| ≥ |qε
0|

(1 + |qε
0|a)

1
a

a.e. in Q.

This implies that

|qε
0| ≤ U

(1 −Ua)
1
a

.

As U < 1 (see (1.3)), we get

‖qε
0‖L1(�;Rd ) ≤ C(a,U , |�|) and ‖qε

0‖L2(�;Rd ) ≤ C(a,U , |�|). (4.24)

The bound C(a,U , |�|) diverges as a → 0+, U → 1− or |�| → ∞. Inserting (4.24) into
(4.23), we get ∫ T

0

∫
�

∣∣∂t uε
∣∣2 dx dt ≤ C (

a,U , ‖g‖L2(Q) , |�|) . (4.25)

Finally, we let N → ∞ in (4.15). Recalling (4.16d) and also (4.18) together with (4.19),
we have

∇qN⇀∇qε weakly in L2
(
Q;Rd×d

)
,

qN → qε a.e. in Q.

This implies (see the next subsection for the proof in a slightly more general setting) that∫ T

0

∫
�

∇qε 2
A(qε) dx dt ≤ lim inf

N→∞

∫ T

0

∫
�

∇qN 2
A(qN ) dx dt .

Consequently, letting N → ∞ in (4.15), we get

sup
t∈(0,T )

∥∥∇uε(t, ·)∥∥2L2(�;Rd)
+

∫ T

0

∫
�

∇qε 2
A(qε) + ε

∣∣∇qε
∣∣2 + ∣∣∇2uε

∣∣2 dx dt
≤ C

(
‖g‖L2(Q), ‖u0‖W 1,2

per (�)

)
. (4.26)

4.7 Weak lower semicontinuity of the weighted L2-norm

Here, we shall prove the following statement: if

zn⇀z weakly in L2
(
Q;Rd

)
as n → ∞, (4.27)

qn → q a.e. in Q as n → ∞, (4.28)
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then
∫
Q

z 2
A(q) dx dt ≤ lim inf

n→∞

∫
Q

zn 2
A(qn) dx dt . (4.29)

To prove it, we first recall that z 2
A(q) = z ·A(q)z, whereA is introduced in (2.5). Observing

that

0 ≤ zn − z 2
A(qn) = zn 2

A(qn) − z 2
A(qn) − 2(z, zn − z)A(qn),

we get

∫
Q

zn 2
A(qn) dx dt ≥

∫
Q

z 2
A(qn) dx dt + 2

∫
Q
(z, zn − z)A(qn) dx dt . (4.30)

Since |A(qn)| ≤ C(d) and (4.28) holds, Lebesgue’s dominated convergence theorem implies
that

lim
n→∞

∫
Q

z 2
A(qn) dx dt = lim

n→∞

∫
Q
z · A(qn)z dx dt =

∫
Q

z 2
A(q) dx dt . (4.31)

Furthermore, noticing that

∫
Q
(z, zn − z)A(qn) dx dt

=
∫
Q
z · (A(qn) − A(q))(zn − z) dx dt +

∫
Q
z · A(q)(zn − z) dx dt

=: I n1 + I n2 ,

(4.32)

we see that, as n → ∞, I n2 vanishes by virtue of (4.27). To conclude that I n1 vanishes as well,
we first apply Hölder’s inequality to get that

∣∣I n1 ∣∣ ≤ ‖zn − z‖L2(Q;Rd)

(∫
Q

|z|2 ∣∣A(qn) − A(q)
∣∣2 dx dt

)1/2

,

and thenwe notice that ‖zn−z‖L2(Q;Rd ) is bounded due to (4.27) and the last integral vanishes
again by Lebesgue’s dominated convergence theorem. Thus, limn→∞(I n1 + I n2 ) = 0 and the
assertion (4.29) follows from (4.30)-(4.32).

5 Limit " → 0+
5.1 The attainment of∇u = f (q) a.e. inQ

In Sect. 4, assuming that u0 ∈ W 1,∞
per (�) satisfies (1.3) and g ∈ L2(Q), we established, for

any a > 0 and ε ∈ (0, 1), the existence of unique weak solution to (4.1) satisfying (4.3).
Furthermore, particularly in Sect. 4.6, we showed that {(uε, qε)}ε∈(0,1) satisfies the estimates
(4.20), (4.21), (4.25) and (4.26). As a consequence of these estimates (that are uniform w.r.t.
ε) and the Aubin-Lions compactness lemma, one can find εm → 0 and the corresponding
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sequence (um, qm) := (uεm , qεm ) such that

um⇀u weakly in L2
(
0, T ;W 2,2

per (�)
)

, (5.1a)

∂t u
m⇀∂t u weakly in L2 (

0, T ; L2(�)
)
, (5.1b)

∇um → ∇u strongly in L2
(
0, T ; L2

per (�;Rd)
)

, (5.1c)

∇um → ∇u a.e. in Q, (5.1d)

and also, using (5.1d) and Egoroff’s theorem on one side and (4.21) and Chacon’s biting
lemma (see [5]) on the other side, there is a q ∈ L1(Q;Rd) such that for each δ > 0 there
exists a Q̃δ ⊂ Q fulfilling Q̃δ2 ⊂ Q̃δ1 if δ1 ≤ δ2 as well as |Q\Q̃δ| ≤ δ such that

qm⇀q weakly in L1(Q̃δ;Rd),

∇um → ∇u strongly in L∞(Q̃δ;Rd).
(5.2)

Further, we denote

Qδ := Q̃δ ∩
{
(t, x) ∈ Q; |q(t, x)| ≤ 1

δ

}

and it follows from (5.2) that

|Q \ Qδ| ≤ |Q \ Q̃δ| + | {(t, x) ∈ Q; |q(t, x)| > δ−1} | ≤ δ

(
1 +

∫
Q

|q| dx dt
)

≤ Cδ.

Hence, using the (strict)monotonicity of f , seeLemma2.3, the facts that f (q) ∈ L∞(Q;Rd)

and f (qm) = ∇um −εmqm , see (4.3b), the convergence properties (5.2), the obvious relation
Qδ ⊂ Q̃δ , and the fact that q is bounded (depending on δ) on Qδ , we observe that

0 ≤ lim sup
m→∞

∫
Qδ

(
f

(
qm

) − f (q)
) · (qm − q) dx dt = lim sup

m→∞

∫
Qδ

f (qm) · (qm − q) dx dt

= lim sup
m→∞

∫
Qδ

∇um · (qm − q) − εmqm · (qm − q) dx dt

= lim sup
m→∞

∫
Qδ

(∇um − ∇u) · (qm − q) + ∇u · (qm − q) − εm |qm |2 + εmqm · q dx dt
≤ 0.

This implies that there is a subsequence (that we again denote by qm) such that

lim
m→∞

(
f

(
qm

) − f (q)
) · (qm − q) = 0 a.e. in Qδ.

As f is strictly monotone, we conclude (referring for example to Lemma 6 in [14]) that

qm → q a.e. in Qδ.

However, as δ > 0 is arbitrary and |Q\Qδ| ≤ Cδ, this yields

qm → q a.e. in Q. (5.3)

As f is continuous, letting m → ∞ in f (qm) = ∇um − εmqm (valid a.e. in Q) and using
(5.1d) and (5.3), we conclude that (1.2b) holds.
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5.2 Limit in the governing evolutionary equation

It remains to show that (1.2a) holds. Towards this goal, we “truncate" the Eq. (4.3a) for
εm-approximation with the help of smooth, compactly supported approximations of unity
denoted by τk , which are the functions of |qm |. The required Eq. (1.2a) is then obtained by
a careful study of the limiting process as m → ∞ and k → ∞.

It follows from (4.3a) that, for all m ∈ N,∫
Q

∂t u
m ϕ + qm · ∇ϕ dx dt =

∫
Q
g ϕ dx dt for all ϕ ∈ L2

(
0, T ;W 1,2

per (�)
)

. (5.4)

In order to make use of these relations in the absence of weak convergence of qm in L1(Q),
we consider

ψ ∈ L∞ (
0, T ;W 1,∞

per (�)
)

,

and set as a test function ϕ in (5.4)

ϕ := τk(
∣∣qm∣∣)ψ, (5.5)

where τk , k ∈ N, “approximates unity”, i.e. τk ∈ C∞
0 ([0,∞)) satisfies for all k ∈ N the

following conditions: 0 ≤ τk(s) ≤ 1 for all s ∈ [0,∞), τk(s) = 1 on [0, k], τk(s) = 0 on
[k+1,∞) and−2 ≤ τ ′

k(s) ≤ 0 for all s ∈ (k, k+1). Note that, for fixedm, the test function
specified in (5.5) is an admissible test function due to (4.26).

Inserting (5.5) into (5.4), we obtain∫
Q

∂t u
m τk(

∣∣qm ∣∣)ψ dx dt +
∫
Q
qmτk(

∣∣qm∣∣) · ∇ψ dx dt =
∫
Q
g τk(

∣∣qm ∣∣)ψ dx dt

−
∫
Q
qm · ∇τk(

∣∣qm∣∣)ψ dx dt . (5.6)

Letting m → ∞ and k → ∞ in (5.6), our aim is to show that we can remove m and replace
τk by 1 in the first three integrals, while the last integral vanishes. Each term requires a special
treatment.

To treat the term involving the time derivative, we first observe that

Im,k
1 : =

∫
Q

(
∂t u

m τk(|qm |)ψ − ∂t uψ
)
dx dt =

∫
Q

∂t u
m (

τk(|qm |) − τk(|q|))ψ dx dt

+
∫
Q

(
∂t u

m − ∂t u
)
τk(|q|)ψ dx dt −

∫
Q

∂t u (1 − τk(|q|))ψ dx dt

=: Jm,k
1 + Jm,k

2 − Jm,k
3 .

(5.7)

By Hölder’s inequality, (4.25), (5.3) and Lebesgue’s dominated convergence theorem, we
observe that

|Jm,k
1 | ≤ ‖∂t um‖L2(Q)‖ψ‖L∞(Q)

(∫
Q

∣∣τk(|qm |) − τk(|q|)∣∣2 dx dt
)1/2

→ 0 as m → ∞.

By (5.1b), Jm,k
2 → 0 as m → ∞. Using Levi’s monotone convergence theorem we also get

|Jm,k
3 | ≤

∫
Q

|∂t u| |ψ | (1 − τk(|q|)) dx dt → 0 as k → ∞.
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Consequently, it follows from (5.7) and the above arguments that

lim
k→∞ lim

m→∞

∫
Q

∂t u
m τk(

∣∣qm ∣∣)ψ dx dt =
∫
Q

∂t u ψ dx dt .

Even simpler arguments give

lim
k→∞ lim

m→∞

∫
Q
g τk(

∣∣qm ∣∣)ψ dx dt =
∫
Q
gψ dx dt . (5.8)

Since, by (5.3) and Lebesgue’s dominated convergence theorem,

∣∣∣∫Q (qmτk(|qm |) − qτk(|q|)) · ∇ψ dx dt
∣∣∣ ≤ ‖∇ψ‖L∞(Q)

∫
Q |qmτk(|qm |)

−qτk(|q|)| dx dt → 0 as m → ∞,

we also observe (again using Levi’s monotone convergence theorem) that

lim
k→∞ lim

m→∞

∫
Q
qmτk(|qm |) · ∇ψ dx dt =

∫
Q
q · ∇ψ dx dt .

It remains to show that the last term in (5.6) tends to zero as m, k → ∞. To prove this, we
will incorporate the weighted L2-estimates for ∇qm , see (4.26). Before starting to treat this
term, we introduce, for every k ∈ N, an auxiliary function Gk through

Gk(t) :=
∫ t

0
τ ′
k(s)(1 + sa)

1
a ds for t ∈ [0,∞)

and observe that Gk(t) = 0 on [0, k] and

|Gk(t)| ≤
∫ k+1

k

∣∣τ ′
k(s)

∣∣ 2 1
a s ds ≤ 2

a+1
a (1 + k) ≤ C(a)t for every t ≥ k. (5.9)

Let us now rewrite the last term in (5.6) in the following manner:

∫
Q

ψqm · ∇τk(
∣∣qm∣∣) dx dt =

∫
Q

ψ
qm · ∇(|qm |)
(1 + |qm |a) 1

a

τ ′
k(

∣∣qm∣∣) (
1 + ∣∣qm ∣∣a) 1

a dx dt

=
∫
Q

ψ f (qm) · ∇Gk(
∣∣qm ∣∣) dx dt

= −
∫
Q

∇ψ · f (qm)Gk(
∣∣qm ∣∣) dx dt −

∫
Q

ψGk(
∣∣qm ∣∣) div f (qm) dx dt

=: Jm,k
4 + Jm,k

5 .

(5.10)

To show that Jm,k
4 vanishes as m → ∞ and k → ∞, we first employ, for any fixed k, (5.3)

and Lebesgue’s dominated convergence theorem (noticing that |∇ψ · f (qm)|Gk(|qm |) ≤
2

a+1
a (1 + k)‖∇ψ‖L∞(Q;Rd )) and obtain

lim
m→∞

∫
Q

∇ψ · f (qm)Gk(
∣∣qm∣∣) dx dt →

∫
Q

∇ψ · f (q)Gk(|q|) dx dt .
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Since Gk(t) = 0 on [0, k], we conclude from the estimate (5.9) and the fact that q ∈
L1(Q;Rd) that∣∣∣∣

∫
Q

∇ψ · f (q)Gk(|q|) dx dt
∣∣∣∣ ≤

∫
Q∩{|q|>k}

|∇ψ · f (q)Gk(|q|)| dx dt

≤ C(a)‖∇ψ‖L∞(Q;Rd )

∫
Q∩{|q|>k}

|q| dx dt k→∞−−−→ 0.

Hence, limk→∞ limm→∞ Jm,k
4 = 0.

In order to show that also the term Jm,k
5 vanishes as m → ∞ and k → ∞ we need to

proceed more carefully. First, recalling (2.5), we notice that

div
(
f (qm)

) = (A(qm))i j∂i q
m
j = (A(qm))i j∂sq

m
j δis =

d∑
s=1

(
∂sqm, es

)
A(qm )

a.e. in Q,

where es ∈ R
d is the sth vector of the canonical basis in Rd , s = 1, . . . , d . This allows us to

rewrite and estimate Jm,k
5 introduced in (5.10) as follows:

∣∣∣Jm,k
5

∣∣∣ =
∣∣∣∣∣
∫
Q

d∑
s=1

(
∂sqm, ψGk(|qm |)es

)
A(qm )

∣∣∣∣∣ dx dt

≤ ‖ψ‖L∞(Q)

d∑
s=1

∫
Q

∂sqm A(qm ) Gk(|qm |)es A(qm ) dx dt

≤ ‖ψ‖L∞(Q)

d∑
s=1

(∫
Q

∇qm 2
A(qm ) dx dt

) 1
2
(∫

Q
Gk(|qm |)es 2

A(qm ) dx dt

) 1
2

(4.26)≤ C
(
‖g‖L2(Q), ‖u0‖W 1,2

per (�)

)
‖ψ‖L∞(Q)

d∑
s=1

(∫
Q

Gk(|qm |)es 2
A(qm ) dx dt

) 1
2

(2.8)≤ C
(
d, ‖g‖L2(Q), ‖u0‖W 1,2

per (�)

)
‖ψ‖L∞(Q)

(∫
Q

|Gk(|qm |)|2
(1 + |qm |a)1/a dx dt

) 1
2

.

Letting m → ∞ in the last term, using (5.3), (5.9) and Lebesgue’s dominated convergence
theorem, we get

lim sup
m→∞

∣∣∣Jm,k
5

∣∣∣ ≤ C
(
d, ‖g‖L2(Q), ‖u0‖W 1,2

per (�)

)
‖ψ‖L∞(Q)

(∫
Q

|Gk(|q|)|2
(1 + |q|a)1/a dx dt

) 1
2

.

(5.11)

However, as Gk(s) = 0 on [0, k] and (5.9) holds, we further observe that∫
Q

G2
k(|q|)

(1 + |q|a)1/a dx dt =
∫
Q∩{|q|>k}

G2
k(|q|)

(1 + |q|a)1/a dx dt

≤ C(a)

∫
Q∩{|q|>k}

|q|2
1 + |q| dx dt ≤ C(a)

∫
Q∩{|q|>k}

|q| dx dt → 0 as k → ∞.

Hence limk→∞ limm→∞
∣∣∣Jm,k

5

∣∣∣ = 0 and, taking all computations starting at (5.10) into

consideration, the last term in (5.6) vanishes as m → ∞ and k → ∞. The proof of the first
part of Theorem 1.2 is complete.
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6 Improved time derivative estimates and higher integrability of the
flux for a ∈ (0, 2/(d + 1))

In order to prove the second part of Theorem 1.2, we will combine the uniform spatial
derivative estimates established in (4.26) for (uε, qε) togetherwith the uniform timederivative
estimates that we are going to prove next.

6.1 Improved time derivative estimates

Consider, for any ε ∈ (0, 1), the unique weak solution (uε, qε) to (4.1) satisfying (4.2) and
(4.3). It follows from (4.3a), (4.3c) and the assumption u0 ∈ W 1,2

per (�) that, for τ ∈ (0, T ],
∫

�

(uε(τ, ·) − u0)u0 dx +
∫ τ

0

∫
�

qε · ∇u0 dx ds =
∫ τ

0

∫
�

g u0 dx ds. (6.1)

By setting ϕ = uε in (4.3a), followed by integration over time between 0 and τ , we also have

‖uε(τ, ·)‖2L2(�)
− ‖u0‖2L2(�)

+ 2
∫ τ

0

∫
�

qε · ∇uε dx ds = 2
∫ τ

0

∫
�

g uε dx ds. (6.2)

Step 1. For any z : [0, T ] × � → R and for τ ∈ R such that t + τ ∈ [0, T ], we set

δτ z(t, x) := z(t + τ, x) − z(t, x)

τ
.

Taking the weak formulation (4.3a) at t + τ , followed by subtracting (4.3a) at t , and taking
then ϕ = 1

τ
δτuε as a test function in the resulting equation, we obtain

1

2

d

dt
‖δτu

ε‖2L2(�)
+

∫
�

δτ qε · ∇δτu
ε dx =

∫
�

δτ g δτu
ε dx . (6.3)

Using (4.3b) (or (4.1b)) and (2.5), we observe that

δτ qε · ∇δτu
ε = δτ qε · δτ∇uε =

∫ 1

0
δτ qε · A(qε

θ,τ )δτ qε dθ + ε|δτ qε|2

=
∫ 1

0
δτ qε 2

A(qε
θ,τ ) dθ + ε|δτ qε|2, (6.4)

where

qε
θ,τ (t, x) := qε(t, x) + θ

(
qε(t + τ, x) − qε(t, x)

)
for θ ∈ (0, 1).

Inserting (6.4) into (6.3) and using the Cauchy-Schwarz inequality to estimate the right-hand
side and the Gronwall lemma, we conclude that for a.a. t ∈ (0, T ] the following estimates
holds:

‖δτu
ε(t, ·)‖2L2(�)

+
∫ t

0

∫
�

∫ 1

0
δτ qε 2

A(qε
θ,τ ) dθ + ε|δτ qε|2 dx ds

≤ C eT
(

‖δτu
ε(0, ·)‖2L2(�)

+
∫ T

0
‖δτ g‖2L2(�)

ds

)
. (6.5)

This would lead to the required ε-independent estimates provided that we can control
‖δτuε(0, ·)‖2

L2(�)
uniformly w.r.t. ε.
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Step 2. Towards this aim, we start by noticing that trivially

‖δτu
ε(0, ·)‖2L2(�)

= 1

τ 2
‖uε(τ, ·) − u0‖2L2(�)

and

‖uε(τ, ·) − u0‖2L2(�)
= ‖uε(τ, ·)‖2L2(�)

− ‖u0‖2L2(�)
− 2

∫
�

(uε(τ, ·) − u0) u0 dx .

(6.6)

Inserting (6.1) and (6.2) into (6.6) we get

1

2
‖uε(τ, ·) − u0‖2L2(�)

=
∫ τ

0

∫
�

guε dx ds −
∫ τ

0

∫
�

qε · ∇uε dx ds

−
∫ τ

0

∫
�

gu0 dx ds +
∫ τ

0

∫
�

qε · ∇u0 dx ds.

This can be rewritten as

1

2
‖uε(τ, ·) − u0‖2L2(�)

+
∫ τ

0

∫
�

(qε − qε(0, ·)) · (∇uε − ∇u0) dx ds

=
∫ τ

0

∫
�

(g − g(0, ·)(uε − u0) dx ds +
∫ τ

0

∫
�

g(0, ·)(uε − u0) dx ds

+
∫ τ

0

∫
�

div qε(0, ·) (
uε − u0

)
dx ds,

(6.7)

where qε(0, ·) is defined, in accordance with Sect. 4.6, through

∇u0 = f ε(qε(0, ·)) = qε(0, ·)
(1 + |qε(0, ·)|a)1/a + εqε(0, ·). (6.8)

Since ∇uε = f ε(qε) and f ε is monotone, the second term at the left-hand side of (6.7) is
nonnegative. Introducing the notation

y(τ ) := 1

2

∫ τ

0
‖uε(s, ·) − u0‖2L2(�)

ds

and

A(s) := ‖g(s, ·) − g(0, ·)‖L2(�) + ‖g(0, ·)‖L2(�) + ‖∇qε(0, ·)‖L2(�;Rd×d ),

we conclude from (6.7), using Hölder’s inequality, that

y′(τ ) = 1

2
‖uε(τ, ·) − u0‖2L2(�)

ds ≤
∫ τ

0
A(s)‖uε(s, ·) − u0‖L2(�) ds

≤
(∫ τ

0
A2(s) ds

)1/2

2y(τ )1/2. (6.9)

This (together with relabelling s on v and τ on s) implies that

(y1/2)′(s) ≤
(∫ s

0
A2(v) dv

)1/2

. (6.10)
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Since y(0) = 0, integrating (6.10) over (0, τ ) and using then Hölder’s inequality, we get

y(τ ) ≤
(∫ τ

0

(∫ s

0
A2(v) dv

)1/2

ds

)2

≤ τ

∫ τ

0

∫ s

0
A2(v) dv ds ≤ τ 2

∫ τ

0
A2(s) ds,

which implies that

(y(τ ))1/2 ≤ τ

(∫ τ

0
A2(s) ds

)1/2

.

Using this to estimate the last term in (6.9), it follows from (6.9) that

‖uε(τ, ·) − u0‖2L2(�)
ds ≤ 4τ

∫ τ

0
A2(s) ds. (6.11)

Recalling the definition of A, (6.11) leads to (using also 1/τ 2 ≤ 1/s2)

‖uε(τ, ·) − u0‖2L2(�)

≤ Cτ

∫ τ

0
‖g(s, ·) − g(0, ·)‖2L2(�)

+ ‖g(0, ·)‖2L2(�)
+ ‖∇qε(0, ·)‖2L2(�;Rd×d )

ds

≤ Cτ2
(

‖∇qε(0, ·)‖2L2(�;Rd×d )
+ ‖g(0, ·)‖2L2(�)

+ τ

∫ τ

0
‖δs g(0, ·)‖2L2(�)

ds

)
.

This finally gives

‖δτ uε(0, ·)‖2L2(�)
≤ C

(
‖∇qε(0, ·)‖2L2(�;Rd×d )

+ ‖g(0, ·)‖2L2(�)
+ τ

∫ τ

0
‖δs g(0, ·)‖2L2(�)

ds

)
.

As g ∈ W 1,2
(
0, T ; L2(�)

)
and W 1,2

(
0, T ; L2(�)

)
↪→ C([0, T ]; L2(�)), the second and

the third terms on the right-hand side are bounded.3 Hence, we finally get

‖δτu
ε(0, ·)‖L2(�) ≤ C (‖g‖W 1,2(0,T ;L2(�))

) + C‖∇qε(0, ·)‖L2(�;Rd×d ). (6.12)

In order to estimate ‖∇qε(0, ·)‖L2(�;Rd×d ), we first recall that it follows from (1.3) and
(6.8) that

U ≥ |∇u0| =
(

1

(1 + |qε(0, ·)|a) 1
a

+ ε

)
|qε(0, ·)| ≥ |qε(0, ·)|

(1 + |qε(0, ·)|a) 1
a

a.e. in Q,

which implies that

|qε(0, ·)|a ≤ Ua

1 −Ua
and (1 + |qε(0, ·)|a)1+ 1

a ≤ 1

(1 −Ua)1+ 1
a

. (6.13)

Next, applying the partial derivative w.r.t. x j to (6.8) and using also (2.5) we get

∇∂ j u0 = A(qε(0, ·))∂ jqε(0, ·) + ε∂ jqε(0, ·).
Taking the scalar product of this identity with ∂ jqε(0, ·) and summing the result over j ,
j = 1, . . . , d , we arrive at

ε|∇qε(0, ·)|2 + ∇qε(0, ·) 2
A(qε(0,·)) = ∇2u0 · ∇qε(0, ·) ≤ |∇2u0| |∇qε(0, ·)|.

3 Note that it would be sufficient to assume that g ∈ Wβ,2
(
0, T ; L2(�)

)
for some β > 1/2.
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By virtue of (2.8), this leads to

|∇qε(0, ·)|2
(1 + |qε(0, ·)|a)1+ 1

a

≤ |∇2u0| |∇qε(0, ·)| �⇒ |∇qε(0, ·)| ≤ |∇2u0|(1 + |qε(0, ·)|a)1+ 1
a

(6.13)≤ |∇2u0| 1

(1 −Ua)1+ 1
a

,

which implies that

‖∇qε(0, ·)‖L2(�;Rd×d ) ≤ 1

(1 −Ua)1+ 1
a

‖∇2u0‖L2(�;Rd×d ).

Consequently, using (6.5) and (6.12), we conclude that

‖δτu
ε(t, ·)‖2L2(�)

+
∫ t

0

∫
�

∫ 1

0
δτ qε 2

A(qε
θ,τ ) dθ + ε|δτ qε|2 dx ds

≤ C (‖g‖W 1,2(0,T ;L2(�)), ‖u0‖W 2,2(�), a,U
)
. (6.14)

Step 3. Letting τ → 0 in (6.14) (ε ∈ (0, 1) being fixed) we claim that

‖∂t uε(t, ·)‖2L2(�)
+

∫ t

0

∫
�

∂tqε 2
A(qε) + ε|∂tqε|2 dx ds

≤ C (‖g‖W 1,2(0,T ;L2(�)), ‖u0‖W 2,2(�), a,U
)
. (6.15)

While the limits in the first and third terms of (6.14) are standard and are based on weak
lower semicontinuity of the L2-norm, the limit in the second term follows from the facts that,
as τ → 0,

qε
θ,τ → qε a.e. in Q,

δτ qε⇀∂tqε weakly in L2(Q;Rd),

followed by the convergence arguments established in Sect. 4.7. Thus, (6.15) holds. Conse-
quently, we conclude that ∂t u ∈ L∞(0, T ; L2(�)), which is the first statement of part (ii) of
Theorem 1.2.

6.2 Higher integrability result

It follows from (4.26) and (6.15) that∫
Q

∂tqε 2
A(qε) + ∇qε 2

A(qε) ≤ C (‖g‖W 1,2(0,T ;L2(�)), ‖u0‖W 2,2(�),U
) =: C∗.

Introducing the time-spatial gradient ∇t,xu := (∂t u, ∂ j u, . . . , ∂du), we can rewrite the last
estimate as ∫

Q
∇t,xqε 2

A(qε) ≤ C∗.

Using the last inequality in (2.8), it implies that4∫
Q

|∇t,xqε|2
(1 + |qε|)a+1 dx dt ≤ C∗,

4 C∗ is a generic constant, whose value can change from line to line.
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and by simple manipulation also∫
Q

|∇t,x (1 + |qε|) 1−a
2 |2 dx dt ≤ C∗.

Hence, using also (4.21), we conclude that, for a ∈ (0, 1),

‖(1 + |qε|) 1−a
2 ‖W 1,2(Q) ≤ C∗,

and it then follows from Sobolev embedding that

‖(1 + |qε|) 1−a
2 ‖L p(Q) ≤ C∗,

where p < ∞ is arbitrary if d = 1 and p = 2(d+1)
d−1 if d > 1. Thus if d = 1 and a < 1 we

have a bound in any Lebesgue space. In the case of d > 1, the above computation gives that∫
Q
(1 + |qε|) (1−a)(d+1)

d−1 dx dt ≤ C∗,

which improves the integrability of {qε}, uniformly w.r.t. ε, provided that

(1 − a)(d + 1)

d − 1
> 1 ⇔ 2

d + 1
> a.

For εm → 0, this piece of information is preserved. Thus, the second assertion of Theorem1.2
is established.

7 Generalization to systems of nonlinear parabolic equations

Finally, we generalize our problem and formulate the existence and uniqueness results for
such a generalization. A detailed proof is not provided as it follows from the combination of
the arguments developed in the proof of Theorem 1.2 above and from the arguments used
when proving the result established in [7], where the stationary case is treated.

Theorem 7.1 Let �, Q be as before and let F : R → R+ be a strictly convex C1,1 function
fulfilling F(0) = 0. Assume in addition that there exists a positive constant C such that for
all s ∈ R there holds

C−1|s| − C ≤ F(|s|) ≤ C(1 + |s|).
For N ∈ N arbitrary, set

f (q) := ∂qF(|q|), where q ∈ R
d×N .

Let g ∈ L2
(
0, T ; L2

(
�;RN

))
, u0 ∈ W 1,2

per
(
�;RN

)
and there exist a compact set K ⊂

R
d×N such that

∇u0(x) ∈ f (K ) for a.a. x ∈ �.

Then, there exists a unique couple (u, q) such that

u ∈ W 1,2
(
0, T ; L2

(
�;RN

))
∩ L2

(
0, T ;W 2,2

per

(
�;RN

))
,

q ∈ L1
(
0, T ; L1

(
�;Rd×N

))
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and∫
�

∂t u · ϕ + q · ∇ϕ dx =
∫

�

g · ϕ dx for all ϕ ∈ W 1,∞
per (�;RN ) and a.a. t ∈ (0, T ),

(7.1a)

∇u = f (q) a.e. in Q, (7.1b)

‖u(t, ·) − u0‖L2(�;RN )

t→0+−−−→ 0. (7.1c)
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