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Abstract
We characterise all linear maps A : Rn×n → R

n×n such that, for 1 ≤ p < n,

‖P‖Lp∗ (Rn)
≤ c

(
‖A [P]‖Lp∗ (Rn)

+ ‖Curl P‖Lp(Rn)

)

holds for all compactly supported P ∈ C∞c (Rn;Rn×n), whereCurl P displays thematrix curl.
Being applicable to incompatible, that is, non-gradient matrix fields as well, such inequali-
ties generalise the usual Korn-type inequalities used e.g. in linear elasticity. Different from
previous contributions, the results gathered in this paper are applicable to all dimensions
and optimal. This particularly necessitates the distinction of different combinations between
the ellipticities of A , the integrability p and the underlying space dimensions n, especially
requiring a finer analysis in the two-dimensional situation.

Keywords Korn’s inequality · Sobolev inequalities · Incompatible tensor fields · Limiting
L1-estimates

Mathematics Subject Classification 35A23 · 26D10 · 35Q74/35Q75 · 46E35 2020

1 Introduction

One of the most fundamental tools in (linear) elasticity or fluid mechanics are Korn-type
inequalities. Such inequalities are pivotal for coercive estimates, leading to well-posedness
and regularity results in spaces of weakly differentiable functions; see [12, 14, 16, 25, 27,
29, 33, 34, 39, 40, 48, 61] for an incomplete list. In their most basic form they assert that for
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each n ≥ 2 and each 1 < q <∞ there exists a constant c = c(q, n) > 0 such that

‖Du‖Lq (Rn) ≤ c ‖ε(u)‖Lq (Rn) = c
∥∥∥Du + Du	

∥∥∥
Lq (Rn)

(1.1)

holds for all u ∈ C∞c (Rn;Rn). Here, ε(u) = symDu is the symmetric part of the gradient.
Within linearised elasticity,where ε(u) takes the role of the infinitesimal strain tensor for some
displacement u : �→ R

n , variants of inequality (1.1) imply the existence of minimisers for
elastic energies

u 
→
ˆ

�

W (symDu) dx (1.2)

in certain subsets of Sobolev spaces W1,q(�;Rn) provided the elastic energy density W
satisfies suitable growth and semiconvexity assumptions, see e.g. Fonseca and Müller [24].
Variants of (1.1) also prove instrumental in the study of (in)compressible fluid flows [4, 23, 48]
or in the momentum constraint equations from general relativity and trace-free infinitesimal
strain measures [2, 17, 26, 43, 44, 63, 64].

Originally, (1.1) was derived by Korn [39] in the L2-setting and later on generalised to all
1 < q < ∞. Inequality (1.1) is non-trivial because it strongly relies on gradients not being
arbitrary matrix fields; note that there is no constant c > 0 such that

‖P‖Lq (Rn) ≤ c ‖sym P‖Lq (Rn) , P ∈ C∞c (Rn;Rn×n) (1.3)

holds. As such, (1.3) fails since general matrix fields need not be Curl-free. It is therefore
natural to consider variants of (1.3) that quantify the lack of curl-freeness or incompatibility.
Such inequalities prove crucial in view of infinitesimal (strain-)gradient plasticity, where
functionals typically involve integrands Du 
→ W (sym e) + | sym P|2 + V (Curl P) based
on the additive decomposition of the displacement gradient Du into incompatible elastic and
irreversible plastic parts: Du = e + P and sym e representing a measure of (infinitesimal)
elastic strain while sym P quantifies the plastic strain; see Garroni et al. [28], Müller et al.
[42, 51] and Neff et al. [21, 52, 54, 57, 58, 60] for related models. Another field of application
are generalised continuum models, e.g. the relaxed micromorphic model, cf. [55, 56, 65].
A key tool in the treatment of such problems are the incompatible Korn–Maxwell–Sobolev
inequalities which, in the context of (1.3), read as

‖P‖Lq (Rn) ≤ c
( ‖sym P‖Lq (Rn) + ‖Curl P‖Lp(Rn)

)
, P ∈ C∞c (Rn;Rn×n), (1.4)

where the reader is referred to Sect. 3.1 for the definition of the n-dimensional matrix curl
operator. For brevity, we simply speak of KMS-inequalities. Scaling directly determines q
in terms of p (or vice versa), e.g. leading to the Sobolev conjugate q = n p

n−p if 1 ≤ p < n.
Variants of (1.4) on bounded domains have been studied in several contributions [2, 15, 28,
32, 42–46, 59]. Inequality (1.4) asserts that the symmetric part of P and the curl of P are
strong enough to control the entire matrix field P . However, it does not clarify the decisive
feature of the symmetric part to make inequalities as (1.4) work and thus has left the question
of the sharp underlying mechanisms for (1.4) open.

In this paper, we aim to close this gap. Different from previous contributions, where such
inequalities were studied for specific combinations (p, n) or particular choices of matrix
parts A [P] such as sym P or dev sym P ,1 the purpose of the present paper is to classify
those parts A [P] of matrix fields P such that (1.4) holds with sym P being replaced by
A [P] for all possible choices of 1 ≤ p ≤ ∞ depending on the underlying space dimension
n. We now proceed to give the detailed results and their context each.

1 dev X :=X − tr X
n · 1n denotes the deviatoric (trace-free) part of an n × n matrix X .
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2 Main results

2.1 All dimensions estimates

To approach (1.4) in light of the failure of (1.3), one may employ a Helmholtz decomposition
to represent P as the sum of a gradient (hence curl-free part) and a curl (hence divergence-free
part). Under suitable assumptions onA , the gradient part can be treated by a general version
of Korn-type inequalities implied by the usual Calderón–Zygmund theory [9]. On the other
hand, the div-free part is dealt with by the fractional integration theorem (cf. Lemma 3.4
below) in the superlinear growth regime p > 1. If p = 1, then the particular structure of the
div-free term in n ≥ 3 dimensions allows to reduce to the Bourgain–Brezis theory [3]. As a
starting point, we thus first record the solution of the classification problem for combinations
(p, n) �= (1, 2):

Theorem 2.1 (KMS-inequalities for (p, n) �= (1, 2)) Let n = 2 and 1 < p < 2 or n ≥ 3
and 1 ≤ p < n. Given a linear map A : Rm×n → R

N , with m, N ∈ N, the following are
equivalent:

(a) There exists a constant c = c(p, n,A ) > 0 such that the inequality

‖P‖Lp∗ (Rn)
≤ c

(
‖A [P]‖Lp∗ (Rn)

+ ‖Curl P‖Lp(Rn)

)
(2.1)

holds for all P ∈ C∞c (Rn;Rm×n).
(b) A induces an elliptic differential operator, meaning that Au:=A [Du] is an elliptic

differential operator; see Sect. 3.2 for this terminology.

For the particular choiceA [P] = sym P , this gives us a global variant of Conti and Garroni
[15, Theorem 2] by Conti and Garroni. Specifically, Theorem 2.1 is established by generalis-
ing the approach of Spector and the first author [32] from n = 3 to n ≥ 3 dimensions, and
the quick proof is displayed in Sect. 5. As a key point, though, we emphasize that ellipticity
of A suffices for (2.1) to hold.

As mentioned above, if n ≥ 3, the borderline estimate for p = 1 is a consequence of a
Helmholtz decomposition and the Bourgain-Brezis estimate

‖ f ‖
L

n
n−1 (Rn)

≤ c ‖curl f ‖L1(Rn) for all f ∈ C∞c,div(Rn;Rn). (2.2)

Even if n = 3, interchanging div and curl in (2.2) is not allowed here, as can be seen by
considering regularisations of the gradients of the fundamental solution �(·) = 1

3ω3
| · |−1

of the Laplacian (and ρε(·) = 1
ε3

ρ( ·
ε
) for a standard mollifier ρ): Let (εi ), (ri ) ⊂ (0,∞)

satisfy εi ↘ 0 and ri ↗ ∞ and choose ϕri ∈ C∞c (Rn) with 1Bri (0)
≤ ϕri ≤ 1B2ri (0)

with

|∇lϕri | ≤ 4/rl
i for l ∈ {1, 2}. Putting

fi :=∇gi :=∇
(
ρεi ∗

(
ϕri

1

| · |
))

, (2.3)

we then have supi∈N ‖�gi‖L1(R3) <∞, and validity of the correspondingmodified inequality
would imply the contradictory estimate supi∈N ‖ fi‖

L
3
2 (R3)

= supi∈N ‖∇gi‖
L

3
2 (R3)

<∞.

However, as can be seen from Example 2.2 below, inequality (2.2) fails to extend to n = 2
dimensions. Still, Garroni et al. [28, §5] proved validity of a variant of inequality (1.4) in
n = 2 dimensions for the particular choice of the symmetric part of a matrix, and so one
might wonder whether Theorem 2.1 remains valid for the remaining case (p, n) = (1, 2) as
well. This, however, is not the case, as can be seen from
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Example 2.2 Consider the trace-free symmetric part of a matrix

dev sym P = 1

2

(
P11 − P22 P12 + P21

P12 + P21 P22 − P11

)
for P =

(
P11 P12

P21 P22

)
,

where dev sym induces the usual trace-free symmetric gradient εD(u) = dev symDu which
is elliptic (cf. Section 3.2). Let us now consider for f ∈ C∞c (R2) the matrix field

Pf =
(

∂1 f ∂2 f
−∂2 f ∂1 f

)
.

Then we have

dev sym Pf =
(
0 0
0 0

)
and Curl Pf =

(
0

� f

)
,

If Theorem 2.1 were correct for the combination (p, n) = (1, 2), the ellipticity of εD would
give us

‖∇ f ‖L2(R2) = c
∥∥Pf

∥∥
L2(R2)

!≤ c
( ∥∥dev sym Pf

∥∥
L2(R2)

+ ∥∥Curl Pf
∥∥
L1(R2)

)
= c ‖� f ‖L1(R2) ,

and this inequality is again easily seen to be false by taking regularisations and smooth
cut-offs of the fundamental solution of the Laplacian, �(x) = 1

2π log(|x |).
In conclusion, Theorem 2.1 does not extend to the case (p, n) = (1, 2). As the strength of

Curl decreases when passing from n ≥ 3 to n = 2, one expects that validity of inequalities

‖P‖L1∗ (R2)
≤ c

(
‖A [P]‖L1∗ (R2)

+ ‖Curl P‖L1(R2)

)
, P ∈ C∞c (R2;R2×2), (2.4)

in general requires stronger conditions onA , see Fig. 1. In this regard, our secondmain result
asserts that the critical case (p, n) = (1, 2) necessitates very strong algebraic conditions on
the matrix parts A indeed:

Theorem 2.3 (KMS-inequalities in the case (p, n) = (1, 2)) Let n = 2 and p = 1, then the
following are equivalent:

(a) The critical Korn–Maxwell–Sobolev estimate (2.4) holds.
(b) The part map A induces a C-elliptic differential operator.
(c) The part map A induces an elliptic and cancelling differential operator.
(d) The part map A induces an elliptic differential operator and we have dim(A [R2×2]) ∈

{3, 4}.
Here, we understand by inducing a differential operator A that the associated differential
operator Au = A [Du], u ∈ C∞c (R2;R2), satisfies the corresponding properties. For the
precise meaning of C-ellipticity and ellipticity and cancellation, the reader is referred to
Sect.3.2.

Properties (b) and (c) express in which sense mere ellipticity has to be strengthened in order
to yield the critical Korn–Maxwell–Sobolev inequality (2.4). Working from Example 2.2,
condition (c) is natural from the perspective of limiting L1-estimates on the entire space
(cf. Van Schaftingen [71]). It is then due to the specific dimensional choice n = 2 that C-
ellipticity, usually playing a crucial role in boundary estimates, coincides with ellipticity and
cancellation; see Raiţă and the first author [30] and Lemma 3.1 below for more detail. In
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Fig. 1 Sharp conditions on the non-differential part P 
→ A [P] to yield the optimal KMS-inequalities in
n-dimensions

establishing necessity and sufficiency of these conditions to yield (a) wewill however employ
direct consequences of the corresponding features on the induceddifferential operators,which
is why Theorem 2.3 appears in the above form. Lastly, the dimensional description of C-
ellipticity in the sense of (d) is a by-product of the proof, which might be of independent
interest.

Since A = sym induces a C-elliptic differential operator in n = 2 dimensions whereas
A = dev sym does not, this result clarifies validity of (2.4) for A = sym and its failure for
A = dev sym. If (p, n) = (1, 2), by the non-availability of (2.2), inequalities (1.3) cannot
be approached by invoking Helmholtz decompositions and using critical estimates on the
solenoidal parts. As known from [28], in the particular case of A [P] = sym P one may
use the specific structure of symmetric matrices (and their complementary parts, the skew-
symmetric matrices) to deduce estimate (2.4). The use of this particularly simple structure
also enters proofs of various variants of Korn-Maxwell inequalities. A typical instance is
the use of Nye’s formula, allowing to express DP in terms of Curl P in three dimensions
provided P takes values in the set of skew-symmetric matrices so(3); also see the discussion
in [42, Sect. 1.4] by Müller and the second named authors.

However, in view of classifying the parts A [P] for which (2.4) holds, we cannot utilise
the simple structure of symmetric matrices. To resolve this issue, we will introduce so-called
almost complementary parts for the sharp class of parts A [P] for which (2.4) can hold at
all, and establish that these almost complementary parts have a sufficiently simple structure
to get suitable access to strong Bourgain–Brezis estimates.

2.2 Subcritical KMS-inequalities and other variants

The inequalities considered so far scale and thus the exponent p∗ cannot be improved for a
given p. On balls Br (0), one might wonder which conditions on A need to be imposed for
inequalities

( 
Br (0)

|P|q dx

) 1
q ≤ c

( 
Br (0)

|A [P]|q dx

) 1
q + c r

( 
Br (0)

|Curl P|p dx

) 1
p

(2.5)

for all P ∈ C∞c (Br (0);Rm×n) to hold with c = c(p, q, n,A ) > 0 provided q is strictly
less than the optimal exponent p∗. Since the exponent q here is strictly less than the non-
improvable choice p∗, one might anticipate that even in the case n = 2 ellipticity of the
operator Au:=A [Du] alone suffices. Indeed we have the following

Theorem 2.4 (Subcritical KMS-inequalities) Let n ≥ 2, m, N ∈ N, 1 ≤ p < ∞ and
1 ≤ q < p∗. Then the following hold:

(a) Let q = 1. Writing Du = ∑n
i=1 Ei ∂i u and Au:=A [Du] = ∑n

i=1 Ai ∂i u for suitable
Ei ,Ai ∈ L (Rm;RN ) and all u ∈ C∞c (Rn;Rm), (2.5) holds if and only if there exists a
linear map L : RN×m → R

N×m such that Ei = L ◦ Ai for all 1 ≤ i ≤ n.
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Fig. 2 Sharp conditions on the
non-differential part P 
→ A [P]
to yield subcritical
KMS-inequalities in
n-dimensions

(b) Let 1 < q < p∗ if p < n and 1 < q < ∞ otherwise. Then (2.5) holds if and only if A
induces an elliptic differential operator by virtue of Au = A [Du] (Fig. 2).

Let us remark that Theorems 2.1–2.4 all deal with exponents p < n. Inequalities that address
the case p ≥ n and hereafter involve different canonical function spaces, are discussed
in Sects. 5 and 6. We conclude this introductory section by discussing several results and
generalisations which appear as special cases of the results displayed in the present paper:

Remark 2.5

(i) For the particular choice A [P] = sym P and q = p > 1, Theorem 2.4 yields with
n = 3 the result from [46, Theorem 3] and for n ≥ 2 the result from [45, Theorem 8].

(ii) For the particular choice of A [P] = sym P and (p, n) = (1, 2), Theorem 4.8 yields
[28, Theorem 11] as a special case.

(iii) For A [P] = dev sym P and q = p > 1, Theorem 2.4 yields [44, Theorem 3.5] and
moreover catches up with the missing proof of the trace-free Korn-Maxwell inequality
in n = 2 dimensions.

(iv) For A [P] ∈ {sym P, dev sym P}, Theorems 2.1–2.4 yield the sharp, scaling-optimal
generalisation of [44, Theorem 3.5], [45, Theorem 8] and [46, Theorem 3].

(v) For the partmapA [P] = skew P+tr P ·1n as arising e.g. in the study of time-incremental
infinitesimal elastoplasticity [57], now appears as a special case, cf. Example 5.1.

2.3 Organisation of the paper

Besides the introduction, the paper is organised as follows: In Sect. 3 we fix notation and
gather preliminary results on differential operators and other auxiliary estimates. Based on our
above discussion, we first address the most intricate case (p, n) = (1, 2) and thus establish
Theorem 2.3 in Sect. 4. Theorems 2.1 and 2.4, which do not require the use of almost
complementary parts, are then established in Sects. 5 and 6. Finally, the appendix gathers
specific Helmholtz decompositions used in the main part of the paper, contextualises the
approaches and results displayed in the main part with previous contributions and provides
auxiliary material on weighted Lebesgue and Orlicz functions.

3 Preliminaries

In this preliminary section we fix notation, gather auxiliary notions and results and provide
several examples that we shall refer to throughout the main part of the paper.

3.1 General notation

Wedenoteωn :=L n(B1(0)) the n-dimensional Lebesguemeasure of the unit ball. Form ∈ N0

and a finite dimensional (real) vector space X , we denote the space of X -valued polynomi-
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als on R
n of degree at most m by Pm(Rn; X); moreover, for 1 < p < ∞, we denote

Ẇ1,p(Rn; X) the homogeneous Sobolev space (i.e., the closure of C∞c (Rn; X) for the gradi-
ent norm ‖Du‖Lp(Rn)) and Ẇ−1,p′(Rn; X) := Ẇ1,p(Rn; X)′ its dual. Finally, to define the
matrix curl Curl P for P : Rn → R

n×n , we recall from [41, 44] the generalised cross product

×n : Rn × R
n → R

n(n−1)
2 . Letting

a = (a, an)	 ∈ R
n and b = (b, bn)	 ∈ R

n with a, b ∈ R
n−1,

we inductively define

a ×n b:=
(

a ×n−1 b
bn · a − an · b

)
∈ R

n(n−1)
2 where

(
a1
a2

)
×2

(
b1
b2

)
:=a1 b2 − a2 b1. (3.1)

The generalised cross product a ×n · is linear in the second component and thus can be

identified with a multiplication with a matrix denoted by �a�×n ∈ R
n(n−1)

2 ×n so that

a ×n b =: �a�×n b for all b ∈ R
n . (3.2)

For a vector field a : Rn → R
n and matrix field P : Rn → R

m×n , with m ∈ N, we finally
declare curl a and Curl P via

curl a:=a ×n (−∇) = �∇�×n a, Curl P:=P ×n (−∇) = P�∇�	×n
. (3.3)

3.2 Notions for differential operators

Let A be a first order, linear, constant coefficient differential operator on R
n between two

finite-dimensional real inner product spaces V and W . In consequence, there exist linear
maps Ai : V → W , i ∈ {1, ..., n} such that

Au =
n∑

i=1
Ai∂i u. (3.4)

For � ⊆ R
n open and 1 ≤ q ≤ ∞, we set

WA,q(�):={u ∈ Lq(�; V ) | ‖u‖Lq (�) + ‖Au‖Lq (�) <∞}. (3.5)

With an operator of the form (3.4), we associate the symbol map

A[ξ ] : V → W , A[ξ ]v:=
n∑

i=1
ξiAiv, ξ ∈ R

n, v ∈ V . (3.6)

Following [7], we denote

⊗A : V × R
n → W , ⊗A(ξ, v):=v ⊗A ξ :=A[ξ ]v. (3.7)

In the specific case where V = R
m , W = R

m×n and A = D is the derivative, this gives us
back the usual tensor product v ⊗ ξ = v ξ	; if V = R

n , W = Sym(n) = R
n×n
sym , it gives us

back the usual symmetric tensor product v � ξ = 1
2 (v ⊗ ξ + ξ ⊗ v).

Elements w ∈ W of the form w = v ⊗A ξ are called pure A-tensors. We now define

R(A):=span({ a ⊗A b | a ∈ V , b ∈ R
n}).

Moreover, if {a1, ..., aN } is a basis of RN and {e1, ..., en} is a basis of Rn , then by linearity
the set {a j ⊗A ei | 1 ≤ i ≤ n, 1 ≤ j ≤ N } spansR(A) and hence contains a basis ofR(A).
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For our future objectives, it is important to note that this result holds irrespectively of the
particular choice of bases.

We now recall some notions on differential operators gathered from Breit et al. [7], Hör-
mander [35], Smith [66], Spencer [67] andVanSchaftingen [71].Anoperator of the form (3.4)
is called elliptic provided the Fourier symbolA[ξ ] : V → W is injective for any ξ ∈ R

n\{0}.
This is equivalent to the Legendre–Hadamard ellipticity of W (P) = 1

2 |A [P]|2 in the sense
that the bilinear form D2

P W (P)(ξ⊗η, ξ⊗η) = |A (ξ⊗η)|2 > 0 is strictly positive definite.
A strengthening of this notion is that ofC-ellipticity. Here we require that for any ξ ∈ C

n\{0}
the associated symbol map A[ξ ] : V + i V → W + i W is injective.

Lemma 3.1 ([30, 31, 71]) Let A be a first order differential operator of the form (3.4) with
n = 2. Then the following are equivalent:

(a) A is C-elliptic.
(b) A is elliptic and cancelling, meaning that A is elliptic in the above sense and

⋂

ξ∈R2\{0}
A[ξ ](V ) = {0}.

(c) There exists a constant c > 0 such that the Sobolev estimate ‖u‖L2(R2) ≤ c ‖Au‖L1(R2)

holds for all u ∈ C∞c (R2; V ).

This equivalence does not hold true in n ≥ 3 dimensions (see [31, Sect. 3] for a discussion;
for general dimensions n ≥ 2, one has (b) ⇔ (c), see [71], but only (a) ⇒ (b), see [30,
31]). The following lemma is essentially due to Smith [66]; also see [19, 37] for the explicit
forms of the underlying Poincaré-type inequalities:

Lemma 3.2 An operator A of the form (3.4) is C-elliptic if and only if there exists m ∈ N0

such that ker(A) ⊂Pm(Rn; V ). Moreover, for any open, bounded and connected Lipschitz
domain � ⊂ R

n there exists c = c(q, n,A,�) > 0 such that for any u ∈ WA,q(�) there is
Au ∈ ker(A) such that

‖u −Au‖Lq (�) ≤ c ‖Au‖Lq (�) .

We conclude with the following example to be referred to frequently, putting the classical
operators ∇, ε and εD into the framework of (3.4). For this, it is convenient to make the
identification

(
a b
c d

)
←→

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ , a, b, c, d ∈ R.

Example 3.3 (Gradient, deviatoric gradient, symmetric gradient and deviatoric symmetric
gradient) In the following, let n = 2, V = R

2 and W = R
2×2. The derivative fits into the

framework (3.4) by taking

A1 =

⎛
⎜⎜⎝
1 0
0 0
0 1
0 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ , (∇)
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the deviatoric gradient ∇Du:= devDu = Du − 1
n div u · 1n by taking

A1 =

⎛
⎜⎜⎝

1
2 0
0 0
0 1
− 1

2 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝
0 − 1

2
1 0
0 0
0 1

2

⎞
⎟⎟⎠ , (∇D)

whereas the symmetric gradient is recovered by taking

A1 =

⎛
⎜⎜⎜⎝

1 0
0 1

2

0 1
2

0 0

⎞
⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎝

0 0
1
2 0
1
2 0

0 1

⎞
⎟⎟⎟⎠ . (ε)

Finally, the deviatoric symmetric gradient εD(u):= dev symDu = symDu − 1
n div u · 1n is

retrieved by

A1 =

⎛
⎜⎜⎝

1
2 0
0 1

2
0 1

2− 1
2 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 − 1
2

1
2 0
1
2 0
0 1

2

⎞
⎟⎟⎠ . (εD)

Similar representations can be found in higher dimensions. However, let us remark that
whereas∇,∇D and ε areC-elliptic in all dimensions n ≥ 2, the trace-free symmetric gradient
is C-elliptic precisely in n ≥ 3 dimensions (cf. [7, Ex. 2.2]). Another class of operators that
arises in the context of infinitesimal elastoplasticity but is handled most conveniently by the
results displayed below, is discussed in Example 5.1.

3.3 Miscellaneous bounds

In this section, we record some auxiliary material on integral operators. Given 0 < s < n,
the s-th order Riesz potential Is( f ) of a locally integrable function f is defined by

Is( f )(x):=cs,n

ˆ
Rn

f (y)

|x − y|n−s
dy, x ∈ R

n, (3.8)

where cs,n > 0 is a suitable finite constant, the precise value of which shall not be required
in the sequel. We now have

Lemma 3.4 (Fractional integration [1, Theorem 3.1.4], [18, §2.7],[68, Sect. V.1]) Let n ≥ 2
and 0 < s < n.

(a) For any 1 < p < ∞ with sp < n the Riesz potential Is is a bounded linear operator

Is : Lp(Rn)→ L
np

n−sp (Rn).
(b) Let 1 ≤ p <∞. For any 1 ≤ q <

np
n−sp if sp < n or all 1 ≤ q <∞ if sp ≥ n and any

r > 0 there exists c = c(p, q, n, s, r) > 0 such that we have
∥∥Is(1Br (0) f )

∥∥
Lq (Br (0))

≤ c ‖ f ‖Lp(Br (0)) for all f ∈ C∞(Rn).

In the regime s = 0 we require two other ingredients as follows. The first one is
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Lemma 3.5 (Nečas–Lions [53, Theorem 1]) Let � ⊂ R
n be open and bounded with Lip-

schitz boundary and let N ∈ N. Then for any 1 < p < ∞ there exists a constant
c = c(p, n, N ,�) > 0 such that we have

‖ f ‖Lp(�) ≤ c
(
‖ f ‖W−1,p(�) + ‖D f ‖W−1,p(�)

)
for all f ∈ D ′(�;RN ).

Whereas the preceding lemma proves particularly useful in the context of bounded domains
(also see Theorem 4.8 below), the situation on the entire Rn can be accessed by Calderón–
Zygmund estimates [9] (see [71, Proposition 4.1] or [16, Proposition 4.1] for related
arguments) and implies

Lemma 3.6 (Calderón–Zygmund–Korn) Let A be a differential operator of the form (3.4)
and let 1 < p <∞. ThenA is elliptic if and only if there exists a constant c = c(p, n,A) > 0
such that we have

‖Du‖Lp(Rn) ≤ c ‖Au‖Lp(Rn) for all u ∈ C∞c (Rn; V ).

4 Sharp KMS-inequalities: The case (p,n) = (1, 2)

4.1 Almost complementary parts

Throughout this section, let n = 2. The complementary part of P with respect toA : R2×2 →
R
2×2 is given by P − A [P]. In the present section we establish that, if A induces a C-

elliptic differential operator, then for a suitable linear map L : R2×2 → R
2×2 the image

(Id − LA [·])(R2×2) is one-dimensional, in fact a line spanned by some invertible matrix.
We then shall refer to P − LA [P] as the almost complementary part.

To this end, note that if Au = A [Du] for all u ∈ C∞c (R2;R2) with some linear map
A : R2×2 → R

2×2, then the algebraic relation

A [e⊗ f] = e⊗A f = A[f]e for all e, f ∈ R
2 (4.1)

holds. Within this framework, we now have

Proposition 4.1 Suppose that A is C-elliptic. Then there exists a linear map L : R2×2 →
R
2×2 and some G ∈ GL(2) such that

{X − L(A [X ]) | X ∈ R
2×2} = RG. (4.2)

Proof Let {e1, e2} be a basis of R2. As {ei ⊗ e j | (i, j) ∈ {1, 2} × {1, 2}} spans R2×2, it
suffices to show that there exist a linear map L : R2×2 → R

2×2, G ∈ GL(2) and numbers
γi j ∈ R not all equal to zero such that

(ei ⊗ e j )− L(ei ⊗A e j ) = γi jG for all i, j ∈ {1, 2}. (4.3)

If we can establish (4.3), we express X ∈ R
2×2 as

X =
∑

1≤i, j≤2
xi jei ⊗ e j

and use (4.3) in conjunction with (4.1) to find

X − L(A [X ]) =
∑

1≤i, j≤2
xi j

(
(ei ⊗ e j )− L(ei ⊗A e j )

) =
( ∑
1≤i, j≤2

γi j xi j

)
G. (4.4)
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Since not all γi j ’s equal zero, this gives (4.2).
Let us therefore establish (4.3). We approach (4.3) by distinguishing several dimensional

cases. First note that A [R2×2] is at least two dimensional. In fact,

A[e1](R2) ⊂ A [R2×2], (4.5)

and since A is elliptic, ker(A[e1]) = {0}, whence dim(A[e1](R2)) = 2 by the rank-nullity
theorem. Now, if dim(A [R2×2]) = 2, we conclude from (4.5) that A [R2×2] = A[e1](R2).
We conclude that for all ξ ∈ R

2\{0} we have A[ξ ](R2) = A[e1](R2) and hence A fails to be
cancelling. Since ellipticity together with cancellation is equivalent to C-ellipticity for first
order operators in n = 2 dimensions by Lemma 3.1, we infer that dim(A [R2×2]) ∈ {3, 4}.

If dim(A [R2×2]) = 4, we note that {ei ⊗A e j | 1 ≤ i, j ≤ 2} spans A [R2×2]. Con-
sequently, the vectors ei ⊗A e j , 1 ≤ i, j ≤ 2, form a basis of A [R2×2]. For any given
G ∈ GL(2) we may simply declare L by its action on these basis vectors via

L(ei ⊗A e j ):=(ei ⊗ e j )−G. (4.6)

Then (4.3) is fulfilled with γi j = 1 for all (i, j) ∈ {1, 2} × {1, 2}, and we conclude in this
case.

It remains to discuss the case dim(A [R2×2]) = 3. Then there exists (i0, j0) ∈ {1, 2} ×
{1, 2} such that

ei0 ⊗A e j0 =
∑

(i, j)�=(i0, j0)

ai jei ⊗A e j (4.7)

for some ai j ∈ R not all equal to zero, (i, j) �= (i0, j0). In what follows, we assume that
(i0, j0) = (2, 1); for the other index combinations, the argument is analogous. Our objective
is to show that

G:=
(−a11 −a12

1 −a22

)
(4.8)

is invertible. By assumption, not all coefficients a11, a12, a22 vanish. We distinguish four
options:

(i) If a22 = 0, a12 �= 0, then the matrix G from (4.8) is invertible.
(ii) If a22 �= 0, a12 = 0, then necessarily a11 �= 0 and so G is invertible. Indeed, if a11 = 0,

then (4.1) and (4.7) yield A[e1]e2 = a22A[e2]e2. Since A is of first order and homoge-
neous, themap ξ 
→ A[ξ ]v is linear for anyfixedv.Weconclude thatA[e1−a22e2]e2 = 0,
and since e1 − a22e2 �= 0 independently of a22, this is impossible by ellipticity of A.

(iii) If a12 = a22 = 0, then (4.1) and (4.7) yield A[e1]e2 = a11A[e1]e1. We then conclude
that A[e1](e2 − a11e1) = 0. But e2 − a11e1 �= 0 independently of a11, this is impossible
by ellipticity of A.

(iv) If a22, a12 �= 0, then non-invertibility of the matrix is equivalent to a constant λ �= 0
such that

−a11 = −λa12, 1 = −λa22. (4.9)

Again using linearity of ξ 
→ A[ξ ]v for any fixed v, (4.7) becomes

−λa22A[e1]e2 = a11A[e1]e1 + a12A[e2]e1 + a22A[e2]e2
(4.9)= λa12A[e1]e1 + a12A[e2]e1 + a22A[e2]e2
= λa12A[e1]e1 + A[e2](a12e1 + a22e2),
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whereby

A[−λe1](a12e1 + a22e2) = A[e2](a12e1 + a22e2),

so that

A[λe1 + e2](a12e1 + a22e2) = 0. (4.10)

By assumption, a12, a22 �= 0 and hence a12e1 + a22e2 �= 0. But λe1 + e2 �= 0 indepen-
dently of λ, and hence (4.10) is at variance with the ellipticity of A.

In conclusion, G defined by (4.8) satisfies G ∈ GL(2) and moreover

G = ei0 ⊗ e j0 −
∑

(i, j)�=(i0, j0)

ai jei ⊗ e j , (4.11)

where we recall that (i0, j0) = (2, 1). By assumption and because of (4.7), e1⊗A e1, e1⊗A e2
and e2 ⊗A e2 form a basis of A [R2×2], and we may extend these three basis vectors by a
vector f ∈ R

2×2 to a basis of R2×2. We then declare the linear map L by its action on these
basis vectors via

L(ei ⊗A e j ):=ei ⊗ e j if (i, j) �= (i0, j0),

L(f):=0 ∈ R
2×2. (4.12)

Combining our above findings, we obtain

L(ei0 ⊗A e j0)
(4.7)=

∑
(i, j)�=(i0, j0)

ai jL(ei ⊗A e j )
(4.12)1=

∑
(i, j)�=(i0, j0)

ai jei ⊗ e j

= ei0 ⊗ e j0 −
(
ei0 ⊗ e j0 −

∑
(i, j)�=(i0, j0)

ai jei ⊗ e j

)

(4.11)= ei0 ⊗ e j0 −G,

and so, in light of (4.12), we may choose

γi j =
{
0 if (i, j) �= (i0, j0),

1 if (i, j) = (i0, j0)

to see that (4.3) is fulfilled; in particular, not all γi j ’s vanish, and G ∈ GL(2). The proof is
complete. ��
The next lemma shows that in two dimensions the operator dev sym is indeed a typical
example of an elliptic but not C-elliptic operator:

Lemma 4.2 (Description of first order C-elliptic operators in two dimensions) Suppose that
A is elliptic. Then the operator A given by Au := A [Du] for u : R2 → R

2 is C-elliptic if
and only if dim(A [R2×2]) ∈ {3, 4}.
Proof The sufficiency part is already contained in the proof of the previous Proposition 4.1.
For the necessity part consider for a, b ∈ C

2 with a = (a1, a2)	, b = (b1, b2)	:

a ⊗A b = Re(a1b1) e1 ⊗A e1 + Re(a1b2) e1 ⊗A e2
+ Re(a2b1) e2 ⊗A e1 + Re(a2b2) e2 ⊗A e2

+ i ·[Im(a1b1) e1 ⊗A e1 + Im(a1b2) e1 ⊗A e2

+ Im(a2b1) e2 ⊗A e1 + Im(a2b2) e2 ⊗A e2
]
.
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If dim(A [R2×2]) = 4, then all ei ⊗A e j are linearly independent over R, and the condition
a ⊗A b = 0 implies

Re(a1b1) = Re(a1b2) = Re(a2b1) = Re(a2b2) = 0

and

Im(a1b1) = Im(a1b2) = Im(a2b1) = Im(a2b2) = 0.

Thus, with ai , bi ∈ C we have

a1b1 = a1b2 = a2b1 = a2b2 = 0.

And for b �= 0 we deduce a = 0, meaning that the operator A is C-elliptic in this case.

In the case dim(A [R2×2]) = 3 we assume without loss of generality, that there exist
α, β, γ ∈ R such that

e2 ⊗A e2 = α e1 ⊗A e1 + β e1 ⊗A e2 + γ e2 ⊗A e1. (4.13)

It follows from the ellipticity assumption on A (cf. the invertibility of G from (4.8) in the
proof of Proposition 4.1) that these coefficients satisfy

α(−1)− βγ �= 0 ⇔ α + βγ �= 0. (4.14)

The condition a ⊗A b = 0 with a, b ∈ C then implies

0 = Re(a1b1)+ α Re(a2b2)
α∈R= Re(a1b1 + α a2b2),

0 = Re(a1b2)+ β Re(a2b2)
β∈R= Re((a1 + β a2)b2),

0 = Re(a2b1)+ γ Re(a2b2)
γ∈R= Re(a2(b1 + γ b2)),

0 = Im(a1b1)+ α Im(a2b2)
α∈R= Im(a1b1 + α a2b2),

0 = Im(a1b2)+ β Im(a2b2)
β∈R= Im((a1 + β a2)b2),

0 = Im(a2b1)+ γ Im(a2b2)
γ∈R= Im(a2(b1 + γ b2)).

Hence, ai , bi ∈ C satisfy
⎧⎪⎨
⎪⎩

a1b1 + α a2b2 = 0,

(a1 + β a2)b2 = 0,

a2(b1 + γ b2) = 0.

(4.15)

If b2 = 0, then by b �= 0 we must have b1 �= 0 and we obtain a1 = a2 = 0, meaning that the
operator A is C-elliptic. Otherwise, with b2 �= 0 we have a1 + β a2 = 0. If a2 = 0 then we
are done. We show, that the case a2 �= 0 cannot occur. Indeed, if a2 �= 0 then (4.15) yields:

{
b1 + γ b2 = 0

−β b1 + α b2 = 0
⇔

(
1 γ

−β α

)
b = 0

which cannot be fulfilled since b �= 0 and α + βγ �= 0. ��
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Let us now be more precise and explain in detail where the proof of Proposition 4.1 fails if
A is elliptic but not C-elliptic. Ellipticity implies that for any ξ ∈ R

2, dim(A[ξ ](R2)) = 2
and by the foregoing lemma we must have dim(A [R2×2]) = 2. Hence, ifA is notC-elliptic,
then precisely two pure A-tensors ei ⊗A e j , (i, j) ∈ I:={(i0, j0), (i1, j1)}, are linearly
independent. In order to introduce the linear map L, we define it via its action on these basis
vectors. At a first glance, this seems to only yield two conditions, but this is not so because
of (4.3) as we here pose compatibility conditions for all indices that ought to be fulfilled. In
particular, the definition of L on the fixed basis vectors must be compatible with (4.3) also
for (i, j) /∈ I, and since (4.3) includes all rank-one-matrices, this is non-trivial. As can be
seen explicitly from Example 4.4 below, non-C-elliptic operators do not satisfy this property.

Example 4.3 (Gradient and symmetric gradient) For the (C-elliptic) gradient, the set {ei ⊗A

e j } is just
{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}

and so the gradient falls into the case dim(A [R2×2]) = 4 in the case distinction of the above
proof. For the (C-elliptic) deviatoric or symmetric gradients, the set {ei ⊗A e j } is just

{( 1
2 0
0 − 1

2

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(− 1
2 0
0 1

2

)}
(deviatoric gradient),

{(
1 0
0 0

)
,

(
0 1

2
1
2 0

)
,

(
0 0
0 1

)}
(symmetric gradient),

and so both the deviatoric and the symmetric gradient falls into the case dim(A [R2×2]) = 3
in the case distinction of the above proof.

Example 4.4 (Trace-free symmetric gradient) For the (non-C-elliptic) trace-free symmetric
gradient, the set {ei ⊗A e j } is given by

{( 1
2 0
0 − 1

2

)
,

(
0 1

2
1
2 0

)
,

(− 1
2 0
0 1

2

)}
=: {A, B, C},

and so the first and the third element are linearly dependent. We now verify explicitly that
the relation (4.3) cannot be achieved in this case for some G ∈ GL(2). Suppose towards a
contradiction that (4.3) can be achieved. Then

(
0 0
0 1

)
− γ22G

(4.3)= L(e2 ⊗A e2)
A=−C= −L(e1 ⊗A e1)

(4.3)= γ11G−
(
1 0
0 0

)
(4.16)

and (
0 1
0 0

)
− γ12G

(4.3)= L(e1 ⊗A e2) = L(e2 ⊗A e1)
(4.3)=

(
0 0
1 0

)
− γ21G. (4.17)

From (4.16) we infer that G needs to be a multiple of the identity matrix, whereas we infer
from (4.17) that G is contained in the skew-symmetric matrices, and this is impossible.

4.2 The implication ‘(b) ⇒ (a)’ of Theorem 2.3

Proposition 4.1 crucially allows to adapt the reduction to Bourgain–Brezis-type estimates as
pursued in [28] in the symmetric gradient case. We state a version of the result that will prove
useful in later sections too:
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Lemma 4.5 ([3, 8, 70]) Let n ≥ 2. Then the following hold:

(a) There exists a constant cn > 0 such that

‖ f ‖
Ẇ
−1, n

n−1 (Rn)
≤ cn

(
‖div f ‖

Ẇ
−2, n

n−1 (Rn)
+ ‖ f ‖L1(Rn)

)
(4.18)

holds for all f ∈ C∞c (Rn;Rn). Moreover, if � ⊂ R
n is an open and bounded domain

with Lipschitz boundary, estimate (4.18) persists for all f ∈ C∞(�;Rn) with R
n being

replaced by �.
(b) If n ≥ 3, there exists a constant cn > 0 such that

‖ f ‖
L

n
n−1 (Rn)

≤ cn ‖curl f ‖L1(Rn) for all f ∈ C∞c,div(Rn;Rn). (4.19)

For completeness, let us note that by embedding C∞c (Rn;Rn) into W−1,p′(Rn;Rn) via the
dual pairing 〈 f , ϕ〉

Ẇ
−1,p′×Ẇ1,p =

´
Rn 〈 f , ϕ〉Rn dx , for any 1 < p <∞ and A ∈ R

n×n there

exists c = c(p, n, A) > 0 such that we have the elementary inequality

‖A f ‖
Ẇ
−1,p′

(Rn)
≤ c ‖ f ‖

Ẇ
−1,p′

(Rn)
for all f ∈ C∞c (Rn;Rn). (4.20)

Based on the preceding lemma and the results from the previous section we may now pass
on to

Proof of the implication ‘(b)⇒ (a)’ of Theorem 2.3 Let P ∈ C∞c (R2;R2×2). By Propo-
sition 4.1, there exists a linear map L : R2×2 → R

2×2, G ∈ GL(2) and a linear function
γ : R2×2 → R such that

P = L(A [P])+ γ (P)G everywhere in R
2. (4.21)

Realising that

Curl(γ (P)G) = G

(−∂2γ (P)

∂1γ (P)

)
, (4.22)

the pointwise relation (4.21) gives

Curl P = Curl(L(A [P]))+G

(−∂2γ (P)

∂1γ (P)

)

whence the invertibility of G yields

f:=G−1 Curl P = G−1 Curl(L(A [P]))+
(−∂2γ (P)

∂1γ (P)

)
. (4.23)

In consequence,

div f = div

(
L1(A [P])
L2(A [P])

)
= B(A [P]) (4.24)

for some scalar, linear, homogeneous second order differential operator B. Now, based on
inequality (4.18) and recalling n = 2, we infer

‖f‖
Ẇ
−1,2

(R2)
≤ c

(
‖div f‖

Ẇ
−2,2

(R2)
+ ‖f‖L1(R2)

)

(4.24)= c
(
‖B(A [P])‖

Ẇ
−2,2

(R2)
+ ‖f‖L1(R2)

)

≤ c
( ∥∥D2(A [P])∥∥

Ẇ
−2,2

(R2)
+ ‖f‖L1(R2)

)

≤ c
(
‖A [P]‖L2(R2) + ‖f‖L1(R2)

)
. (4.25)
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By definition of f, cf. (4.23), the previous inequality implies

∥∥G−1 Curl P
∥∥
Ẇ
−1,2

(R2)
≤ c

(
‖A [P]‖L2(R2) +

∥∥G−1 Curl P
∥∥
L1(R2)

)
, (4.26)

and (4.20) then yields by virtue of G ∈ GL(2)

‖Curl P‖
Ẇ
−1,2

(R2)
= ∥∥G(G−1 Curl P)

∥∥
Ẇ
−1,2

(R2)

(4.26)≤ c(G)
(
‖A [P]‖L2(R2) + ‖Curl P‖L1(R2)

)
. (4.27)

Next, put f :=Curl P ∈ C∞c (R2;R2) and consider the solution u = (u1, u2)
	 of the equation

−�u = f obtained as u = �2 ∗ f , where �2 is the two-dimensional Green’s function for
the negative Laplacian. By classical elliptic regularity estimates we have on the one hand

‖Du‖L2(R2) ≤ c ‖�u‖Ẇ−1,2(R2) = c ‖ f ‖Ẇ−1,2(R2) . (4.28)

On the other hand, setting

T :=
(

∂2u1 −∂1u1

∂2u2 −∂1u2

)
,

we find by (4.28) and (4.27)

‖T ‖L2(R2) = ‖Du‖L2(R2) ≤ c(G)
(
‖A [P]‖L2(R2) + ‖Curl P‖L1(R2)

)
(4.29)

and

Curl(T − P) =
(−�u1

−�u2

)
− f = 0.

We may thus write T − P = Dv for some v : R2 → R
2, for which Lemma 3.6 yields2

‖T − P‖L2(R2) = ‖Dv‖L2(R2) ≤ c ‖Av‖L2(R2) = c ‖A [Dv]‖L2(R2)

≤ c ‖A [T − P]‖L2(R2) ≤ c ‖T ‖L2(R2) + c ‖A [P]‖L2(R2) . (4.30)

The proof is then concluded by splitting

‖P‖L2(R2) ≤ ‖P − T ‖L2(R2) + ‖T ‖L2(R2)

and using (4.30), (4.29) for the first and (4.29) for the second term. The proof is complete. ��
Remark 4.6 Note that, despite of the special situation in three dimensions, in n = 2 dimen-
sions we have in general

div Curl P = −∂12(P11 − P22)+ ∂11P12 − ∂22P21 �≡ 0. (4.31)

In fact, it is a crucial step in the previous proof to express div Curl P by a linear combination
of second derivatives of A [P]. This is clearly the case if A [P] = dev P but is not fulfilled
for general C-elliptic operators A. For this reason we need Proposition 4.1 to ensure that
there exists an invertible matrix G such that divG−1 Curl P = L(D2A [P]).
2 Note that T is not compactly supported (and neither is v), but v ∈ Ẇ1,2(R2;R2) and then the Korn-
type inequality underlying the first inequality in (4.30) follows by smooth approximation, directly using the
definition of Ẇ1,2(R2).
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4.3 The implication ‘(a) ⇒ (b)’ of Theorem 2.3

Again, let n = 2 and p = 1. As in [32], one directly obtains the necessity of A being
induced by an elliptic differential operator for (2.4) to hold; in fact, testing (2.4) with gradient
fields P = Du gives us the usual Korn-type inequality ‖Du‖L2(R2) ≤ c ‖Au‖L2(R2) for all

u ∈ C∞c (R2;R2). Then one uses Lemma 3.6 to conclude the ellipticity; hence, in all of the
following we may tacitly assume A to be induced by an elliptic differential operator.

The necessity of C-ellipticity requires a refined argument, which we address now:

Lemma 4.7 In the situation of Theorem 2.3, validity of (2.4) implies that A induces a C-
elliptic differential operator.

Proof Suppose thatA is notC-elliptic, meaning that there exist ξ ∈ C
2\{0} and v = Re(v)+

i Im(v) ∈ C
2\{0} such that A[ξ ]v = 0. Writing this last equation by separately considering

real and imaginary parts, we obtain

A[Re(ξ)]Re(v) = A[Im(ξ)]Im(v),

A[Im(ξ)]Re(v) = −A[Re(ξ)]Im(v). (4.32)

For f ∈ C∞c (R2), we then define xξ :=(〈x,Re(ξ)〉, 〈x, Im(ξ)〉) and
Pf (x):=Re(v)⊗ Re(ξ)(∂1 f )(xξ )− Im(v)⊗ Im(ξ)(∂1 f )(xξ )

+ Re(v)⊗ Im(ξ)(∂2 f )(xξ )+ Im(v)⊗ Re(ξ)(∂2 f )(xξ ). (4.33)

We first claim that there exists a constant c > 0 such that

‖∇ f ‖L2(R2) ≤ c
∥∥Pf

∥∥
L2(R2)

. (4.34)

To this end, we first note that we may assume Re(ξ) and Im(ξ) to be linearly independent
over R. This argument is certainly clear to experts, but since it is crucial for our argument,
we give the quick proof. Suppose that Re(ξ) and Im(ξ) are not linearly independent. Then
there are three options:

(i) If Im(ξ) = 0, then Re(ξ) �= 0 (as otherwise ξ = 0). Then (4.32)1 implies Re(v) = 0 by
ellipticity of A, and (4.32)2 implies Im(v) = 0 by ellipticity of A. Thus v = 0 ∈ C

2,
contradicting our assumption v ∈ C

2\{0}.
(ii) If Re(ξ) = 0, we may imitate the argument from (i) to arrive at a contradiction.
(iii) Based on (i) and (ii), we may assume that Im(ξ),Re(ξ) �= 0 and that there exists λ �= 0

such that Re(ξ) = λIm(ξ). Inserting this relation into (4.32), we arrive at

λA[Im(ξ)]Re(v) = A[Im(ξ)]Im(v) ⇒ A[Im(ξ)](λRe(v)− Im(v)) = 0,

A[Im(ξ)]Re(v) = −λA[Im(ξ)]Im(v) ⇒ A[Im(ξ)](Re(v)+ λIm(v)) = 0.

By our assumption, λ �= 0, and ellipticity of A implies that

λRe(v) = Im(v) and Re(v)+ λIm(v) = 0, so (1+ λ2)Re(v) = 0,

so Re(v) = Im(v) = 0, and this is at variance with our assumption v �= 0.

Secondly, we similarly note that Re(v) and Im(v) can be assumed to be linearly independent
over R. Suppose that this is not the case. Then there are three options:

(i’) If Re(v) = 0, then necessarily Im(v) �= 0. Then (4.32)1 implies that Im(ξ) = 0. Inserting
this into (4.32)2 yields Re(ξ) = 0 and so ξ = 0, which is at variance with our assumption
of ξ ∈ C

2\{0}.
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(ii’) If Im(v) = 0, we may imitate the argument from (i’) to arrive at a contradiction.
(iii’) Based on (i’) and (ii’), we may assume that Im(v),Re(v) �= 0 and that there exists λ �= 0

such that Re(v) = λIm(v). Inserting this relation into (4.32) yields

λA[Re(ξ)]Im(v) = A[Im(ξ)]Im(v) ⇒ A[λRe(ξ)− Im(ξ)]Im(v) = 0,

λA[Im(ξ)]Im(v) = −A[Re(ξ)]Im(v) ⇒ A[λIm(ξ)+ Re(ξ)]Im(v) = 0.

By our assumption Im(v) �= 0, ellipticity of A yields

λRe(ξ) = Im(ξ) and − λIm(ξ) = Re(ξ)⇒ (1+ λ2)Im(ξ) = 0.

But then Im(ξ) = 0 and, by λ �= 0, Re(ξ) = 0, so ξ = 0, in turn being at variance with
ξ �= 0.

Based on (i)–(iii) and (i’)–(iii’), we conclude that the set

{A, B, C, D}:={Re(v)⊗ Re(ξ), Im(v)⊗ Im(ξ),Re(v)⊗ Im(ξ), Im(v)⊗ Re(ξ)}
displays a basis of R2×2, and that

|||P|||:=|a| + |b| + |c| + |d| whenever P = a A + bB + cC + d D ∈ R
2×2

is a norm on R
2×2. This norm is equivalent to any other norm on R

2×2, and hence (4.34)
follows by the definition of Pf and a change of variables, again recalling that Re(ξ), Im(ξ)

and Re(v), Im(v) are linearly independent.
In a next step, we record that for any f ∈ C∞c (R2)

A [Pf (x)] = A[Re(ξ)]Re(v)(∂1 f )(xξ )− A[Im(ξ)]Im(v)(∂1 f )(xξ )

+ A[Im(ξ)]Re(v)(∂2 f )(xξ )+ A[Re(ξ)]Im(v)(∂2 f )(xξ )
(4.32)= 0. (4.35)

To conclude the proof, we will now establish that the Korn–Maxwell–Sobolev inequality in
this situation yields the contradictory estimate

‖∇ f ‖L2(R2) ≤ c ‖� f ‖L1(R2) for all f ∈ C∞c (R2). (4.36)

To this end, note that for any ϕ ∈ C∞c (R2) and any X ∈ R
2×2 we have as in (4.22):

Curl(ϕ X) = X

(−∂2ϕ

∂1ϕ

)
. (4.37)

Moreover, writing Re(ξ) = (ξ11, ξ12)
	 and Im(ξ) = (ξ21, ξ22)

	, we find

∂1
(
(∂1 f )(xξ )

) =
〈
(∇∂1 f )(xξ ),

(
ξ11

ξ21

)〉
,

∂2
(
(∂1 f )(xξ )

) =
〈
(∇∂1 f )(xξ ),

(
ξ12

ξ22

)〉
,

∂1
(
(∂2 f )(xξ )

) =
〈
(∇∂2 f )(xξ ),

(
ξ11

ξ21

)〉
,

∂2
(
(∂2 f )(xξ )

) =
〈
(∇∂2 f )(xξ ),

(
ξ12

ξ22

)〉
. (4.38)

As a consequence of (4.38), we have for j ∈ {1, 2}
(−∂2((∂ j f )(xξ ))

∂1((∂ j f )(xξ ))

)
=

(−ξ12 −ξ22
ξ11 ξ21

)
(∇∂ j f )(xξ ), (4.39)
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Based on (4.37), the previous two identities imply by definition of Pf [cf. (4.33)]

Curl Pf (x) = Re(v) (ξ11, ξ12)

(−ξ12 −ξ22
ξ11 ξ21

)
(∇∂1 f )(xξ )

− Im(v) (ξ21, ξ22)

(−ξ12 −ξ22
ξ11 ξ21

)
(∇∂1 f )(xξ )

+ Re(v) (ξ21, ξ22)

(−ξ12 −ξ22
ξ11 ξ21

)
(∇∂2 f )(xξ )

+ Im(v) (ξ11, ξ12)

(−ξ12 −ξ22
ξ11 ξ21

)
(∇∂2 f )(xξ ).

Now define α:= det

(
ξ11 ξ12
ξ21 ξ22

)
so that

Curl Pf (x) = Re(v) (0,−α)(∇∂1 f )(xξ )− Im(v) (α, 0)(∇∂1 f )(xξ )

+ Re(v) (α, 0)(∇∂2 f )(xξ )+ Im(v) (0,−α)(∇∂2 f )(xξ )

= −αRe(v)(∂21 f )(xξ )− αIm(v)(∂11 f )(xξ )

+ αRe(v)(∂12 f )(xξ )− αIm(v)(∂22 f )(xξ )

= −α(� f )(xξ ) Im(v). (4.40)

Hence, in viewof (4.34), (4.35) and (4.40), startingwith theKorn–Maxwell–Sobolev inequal-
ity and a change of variables (recall that Re(ξ), Im(ξ) are linearly independent), we end up
at the contradictory estimate (4.36). Thus, A has to be C-elliptic and the proof is complete.

��

4.4 Proof of Theorem 2.3

We now briefly pause to concisely gather the arguments required for the proof of Theorem
2.3. The direction ‘(a)⇒ (b)’ is given by Lemma 4.7, whereas the equivalence of (b) and (c)
is a direct consequence of Lemma 3.1. In turn, the equivalence ‘(b)⇔(d)’ is established in
Lemma 4.2. Finally, the remaining implication ‘(b)⇒ (a)’ is proved at the end of Paragraph
Sect. 4.2 above. In conclusion, the proof of Theorem 2.3 is complete.

4.5 KMS inequalities with non-zero boundary values

Even though the present paper concentrates on compactly supported maps, we like to com-
ment on how Proposition 4.1 can be used to derive variants for maps with non-zero boundary
values; its generalisation to higher space dimensions shall be pursued elsewhere.

Theorem 4.8 (Non-zero boundary values, (p, n) = (1, 2)) The following are equivalent:

(a) The linear map A : R2×2 → R
2×2 induces a C-elliptic differential operator A in n = 2

dimensions via Au:=A [Du].
(b) There exists a finite dimensional subspace K of the R

2×2-valued polynomials such that
for any open and bounded, simply connected domain � ⊂ R

2 with Lipschitz boundary
∂� there exists c = c(A ,�) > 0 such that

min
∈K

‖P −‖L2(�) ≤ c
(
‖A [P]‖L2(�) + ‖Curl P‖L1(�)

)
(4.41)
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holds for all P ∈ C∞(�;R2×2).

Proof of Theorem 4.8 Ad ‘(a)⇒ (b)’. As at the end of Paragraph Sect. 4.2, we use Proposi-
tion 4.1 to write P = L(A [P]) + γ (P)G pointwisely for all P ∈ C∞(�;R2×2), suitable
linear maps L : R2×2 → R

2×2, γ : R2×2 → R and a fixed matrix G ∈ GL(2). Let
1 < q < ∞. For � ⊂ R

2 has Lipschitz boundary, we may invoke the Nečas estimate
from Lemma 3.5 to obtain for all P ∈ C∞(�;R2×2)

‖P‖Lq (�) ≤ c
(
‖A [P]‖Lq (�) + ‖γ (P)‖Lq (�)

)

≤ c
(
‖A [P]‖Lq (�) + ‖γ (P)‖W−1,q (�) + ‖∇γ (P)‖W−1,q (�)

)
(4.42)

with a constant c = c(q,�) > 0. We then equally have (4.23), whereby

‖∇γ (P)‖W−1,q (�) =
∥∥∥∥
(−∂2γ (P)

∂1γ (P)

)∥∥∥∥
W−1,q (�)

(4.23)≤ c
( ‖Curl P‖W−1,q (�) + ‖Curl(L(A [P]))‖W−1,q (�)

)

≤ c
( ‖Curl P‖W−1,q (�) + ‖A [P]‖Lq (�)

)
. (4.43)

Combining (4.42) and (4.43), we arrive at

‖P‖Lq (�) ≤ c
( ‖A [P]‖Lq (�) + ‖P − L(A [P])‖W−1,q (�) + ‖Curl P‖W−1,q (�)

)
, (4.44)

where c = c(q,A ,�) > 0. Next let, adopting the notation from (3.5),

P ∈ N:={P ′ ∈WCurl,q(�) | A [P ′] = 0 and Curl P ′ = 0}.
Since� ⊂ R

2 is simply connected and has Lipschitz boundary, Curl P = 0 implies that P =
Du for some u ∈ W1,q(�;R2). Then A [P] = 0 yields Au:=A [Du] = 0. In conclusion,
C-ellipticity of A yields by virtue of Lemma 3.2 that there exists m ∈ N such that N ⊂
∇Pm(R2;R2) ↪→ L2(�;R2×2). We denote m0:= dim(N) and choose an L2-orthonormal
basis {g1, ..., gm0

} of N; furthermore, slightly abusing notation, we set

N⊥:=
{

P ∈ L1(�;R2×2) |
ˆ

�

〈P, g j 〉 dx = 0 for all j ∈ {1, ..., m0}
}

.

Our next claim is that there exists a constant c = c(q,A ,�) > 0 such that

‖P‖Lq (�) ≤ c

⎛
⎝‖A [P]‖Lq (�) +

m0∑
j=1

∣∣∣∣
ˆ

�

〈g j , P〉 dx

∣∣∣∣+ ‖Curl P‖W−1,q (�)

⎞
⎠ (4.45)

holds for all P ∈ WCurl,q(�). If (4.45) were false, for each i ∈ N we would find Pi ∈
WCurl,q(�) with ‖Pi‖Lq (�) = 1 and

⎛
⎝‖A [Pi ]‖Lq (�) +

m0∑
j=1

∣∣∣∣
ˆ

�

〈g j , Pi 〉 dx

∣∣∣∣+ ‖Curl Pi‖W−1,q (�)

⎞
⎠ <

1

i
. (4.46)

Since 1 < q < ∞, the Banach–Alaoglu theorem allows to pass to a non-relabeled sub-
sequence such that Pi⇀P weakly in Lq(�;R2×2) for some P ∈ Lq(�;R2×2). Lower
semicontinuity of norms with respect to weak convergence and (4.46) then implyA [P] = 0.
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Moreover, we have for all ϕ ∈ W1,q ′
0 (�;R2) that the formal adjoint of Curl is given by

Curl∗ ϕ = ϕ�∇�×n ∈ Lq ′(�;R2×2) and therefore

|〈Curl(P − Pi ), ϕ〉W−1,q (�)×W1,q′
0 (�)

| ≤
∣∣∣∣
ˆ

�

〈P − Pi ,Curl
∗ ϕ〉 dx

∣∣∣∣→ 0

as i → ∞ because of Pi⇀P in Lq(�;R2×2). Thus, Curl Pi
∗
⇀ Curl P in W−1,q(�;R2).

By lower semicontinuity of norms for weak*-convergence and (4.46), we have Curl P = 0 in
W−1,q(�;R2). On the other hand, since the g j ’s are polynomials and hence trivially belong

to Lq ′(�;R2×2), we deduce that
⎧
⎪⎨
⎪⎩

Curl P = 0 in D ′(�;R2),

A [P] = 0 in Lq(�;R2×2),
P ∈ N⊥,

so that P ∈ N ∩ N⊥ = {0}. Finally, since L ◦ A : R2×2 → R
2×2 is linear, we have

Pi − L(A [Pi ])⇀P − L(A [P]) = 0 weakly in Lq(�;R2×2), and by compactness of the
embedding Lq(�;R2×2) ↪→↪→W−1,q(�;R2×2), we may assume that Pi−L(A [Pi ])→ 0
strongly inW−1,q(�;R2×2). Inserting Pi into (4.44), the left-hand side is bounded below by
1 whereas the right-hand side tends to zero as i →∞. This yields the requisite contradiction
and (4.45) follows.

Based on (4.45), we may conclude the proof as follows. If P ∈ N⊥, we use Lemma 4.5(a)
for Lipschitz domains and imitate (4.23) to find with f:=G−1 Curl P

‖Curl P‖W−1,2(�) ≤ c ‖f‖W−1,2(�) ≤ c
( ‖A [P]‖L2(�) + ‖f‖L1(�)

)
.

Then (4.45) with q = 2 becomes

‖P‖L2(�) ≤ c
( ‖A [P]‖L2(�) + ‖Curl P‖L1(�)

)
. (4.47)

In the general case,we apply inequality (4.47) to P−∑m0
j=1

´
�
〈g j , P〉 dx g j ∈ N⊥. Hence (b)

follows.

Ad ‘(b)⇒ (a)’. Inserting gradients P = Du into (4.41) yields the Korn-type inequality

min
∈K

‖Du −‖L2(�) ≤ c ‖Au‖L2(�) for all u ∈ C∞(�;R2).

By routine smooth approximation, this inequality extends to all u ∈WA,2(�). In particular,
ifAu ≡ 0 in�, then u must coincide with a polynomial of fixed degree. Since this is possible
only if A is C-elliptic by Lemma 3.2, (a) follows and the proof is complete. ��

5 Sharp KMS-inequalities: the case (p,n) �= (1, 2)

For the conclusions of Theorem 2.1 we only have to establish the sufficiency parts; note that
the necessity of ellipticity follows as in Sect. 4.3.

As in [32], the proof of the sufficiency part is based on a suitableHelmholtz decomposition.
In view of the explicit expressions of these parts [cf. (A.10) in the appendix], we have in all
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dimensions n ≥ 2 for all a ∈ C∞c (Rn;Rn) and all x ∈ R
n :

|acurl(x)| ≤ 1

n ωn

ˆ
Rn
|x − y|1−n · | div a(y)| dy = 1

c1,n n ωn
I1(| div a|)(x),

|adiv(x)| ≤
√

n − 1

n ωn

ˆ
Rn
|x − y|1−n · | curl a(y)| dy =

√
n − 1

c1,n n ωn
I1(| curl a|)(x), (5.1)

where we have used |�b�×n | =
√

n − 1 |b| for any b ∈ R
n as a direct consequence of (3.2).

Now, we decompose P ∈ C∞c (Rn;Rm×n) also in its divergence-free part PDiv and curl-free
part PCurl; for the following, it is important to note that these matrix differential operators
act row-wise. Thus we may write PCurl = Du for some u : Rn → R

m . Then by Lemma 3.6
we have

‖PCurl‖Lp∗ (Rn)
= ‖Du‖Lp∗ (Rn)

≤ c ‖Au‖Lp∗ (Rn)
= c ‖A [Du]‖Lp∗ (Rn)

= c ‖A [PCurl]‖Lp∗ (Rn)
= c ‖A [P − PDiv]‖Lp∗ (Rn)

≤ c ‖A [P]‖Lp∗ (Rn)
+ c ‖PDiv‖Lp∗ (Rn)

. (5.2)

The remaining proofs then follow after establishing

‖PDiv‖Lp∗ (Rn)
≤ c ‖Curl P‖Lp(Rn) . (5.3)

To this end, we consider the rows of our incompatible field P = (P1, . . . , Pm)	. Using
Lemma 3.4 with s = 1 yields

‖PDiv‖Lp∗ (Rn)
≤

m∑
j=1

∥∥∥P j
div

∥∥∥
Lp∗ (Rn)

(5.1)≤ c
m∑

j=1

∥∥∥I1(| curl P j |)
∥∥∥
Lp∗ (Rn)

Lemma 3.4≤ c
m∑

j=1

∥∥∥curl P j
∥∥∥
Lp(Rn)

≤ c ‖Curl P‖Lp(Rn) . (5.4)

Combining (5.2) and (5.3) then yields Theorem 2.1 for 1 < p < n. If n ≥ 3 and p = 1,
estimate (5.3) is now a consequence of Lemma 4.5(b). Indeed, using (4.19), we have

‖PDiv‖L1∗ (Rn)
≤

m∑
j=1

∥∥∥P j
div

∥∥∥
L1∗ (Rn)

Lemma 4.5≤ c
m∑

j=1

∥∥∥curl P j
div

∥∥∥
L1(Rn)

= c
m∑

j=1

∥∥∥curl P j
∥∥∥
L1(Rn)

≤ c ‖Curl P‖L1(Rn) (5.5)

where in the penultimate step we added P j
curl and used the fact that curl P j

curl = 0. Summaris-
ing, the proof of the Theorem 2.1 is now complete.

Example 5.1 (Incompatible Maxwell/div-curl-inequalities) In the context of time-incremental
infinitesimal elastoplasticity [57], the authors investigated the operator A : Rn×n → R

n×n

given by:

A [P] = μc skew P + κ

n
tr P · 1n, with μc, κ �= 0. (5.6)

In n = 1 dimensions this operator clearly induces an elliptic differential operator. We show,
that the induced operator A is also elliptic in n ≥ 2 dimensions. To this end consider for
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ξ ∈ R
n\{0}:

A [v ⊗ ξ ] = A[ξ ]v = μc skew(v ⊗ ξ)+ κ

n
tr(v ⊗ ξ) · 1n

!= 0. (5.7)

Hence,

skew(v ⊗ ξ) = 0 and tr(v ⊗ ξ) = 〈v, ξ 〉 = 0. (5.8)

Since the generalized cross product and the skew-symmetric part of the dyadic product consist
of the same entries, cf. [41, Eq. (3.9)], the first condition here (5.8)1 is equivalent to

v ×n ξ = 0. (5.9)

Furthermore the generalized cross product satisfies the area property, cf. [41, Eq. (3.13)], so
that

0 = |v ×n ξ |2 = |v|2|ξ |2 − 〈v, ξ 〉2 (5.8)2= |v|2|ξ |2 ξ �=0⇒ v = 0, (5.10)

meaning that A induces an elliptic operator A. But since dimA [R2×2] = 2 we infer from
Lemma 4.2 that A is not C-elliptic in n = 2 dimensions. Hence, our Theorem 2.1 and
(anticipating the proof from Sect. 6 below) Theorem 2.4 are applicable to this A :

‖P‖Lp∗ (Rn)
≤ c

( ‖skew P‖Lp∗ (Rn)
+ ‖tr P‖Lp∗ (Rn)

+ ‖Curl P‖Lp(Rn)

)
, (5.11)

provided (n ≥ 3, 1 ≤ p < n) or (n = 2, 1 < p < 2). Inserting P = Du and using that
skewDu and the generalised curl u consist of the same entries, (5.11) generalises the usual
div-curl-inequality to incompatible fields. If n = 2 and p = 1, inequality (5.11) fails sinceA
fails to beC-elliptic. In fact, the induced elliptic operatorA is not cancelling in any dimension
n ∈ N since:

⋂
ξ∈Rn\{0}

A[ξ ](Rn) ⊇ R · 1n . (5.12)

We conclude this section by addressing inequalities that (i) involve other function space scales
and (ii) also deal with the case p ≥ n left out so far. As such, we provide three exemplary
results on the validity of inequalities

‖P‖X(Rn) ≤ c
( ‖A [P]‖X(Rn) + ‖Curl P‖Y (Rn)

)
, P ∈ C∞c (Rn;Rn×n) (5.13)

for n ≥ 2 that can be approached analogously to (5.1)–(5.4) by combining the Helmholtz
decomposition with suitable versions of the fractional integration theorem. To state these
results, we require some notions from the theory of weighted Lebesgue and Orlicz spaces,
and to keep the paper self-contained, the reader is directed toAppendixA.3 for the underlying
background terminology. For the following, let Au := A [Du] be elliptic.
• Weighted Lebesgue spaces. Let n ≥ 2 and w be a weight that belongs to the Mucken-

houpt class A1 on Rn (see e.g. [49]) and denote Lp(Rn;w) the corresponding weighted
Lebesgue space. Given 1 < p < n, the Korn-type inequality ‖Du‖Lp∗ (Rn ,w)

≤
c ‖Au‖Lp∗ (Rn ,w)

for u ∈ C∞c (Rn;Rn) (see e.g. [36, 37] or [16, Cor. 4.2]) and

I1 : Lp(Rn;w p/p∗)→ Lp∗(Rn;w) boundedly (see [50, Theorem 4]) combine to (5.13)
with X(Rn) = Lp∗(Rn, w) and Y (Rn) = Lp(Rn;w p/p∗).

123



182 Page 24 of 33 F. Gmeineder et al.

• Orlicz spaces. Let A, B : [0,∞) → [0,∞) be two Young functions such that B is of
class �2 and ∇2. Adopting the notation from (A.14) and (A.15), let us further suppose
that A dominates B(n) globally and that A(n) dominates B globally, together with

ˆ
0

B(t)

t1+
n

n−1
dt <∞ and

ˆ
0

Ã(t)

t1+
n

n−1
dt <∞. (5.14)

Under these assumptions, Cianchi [11, Theorem 2(ii)] showed that I1 : LA(Rn) →
LB(Rn) is a bounded linear operator. In conclusion, if A, B are as above, we may then
invoke the Korn-type inequality [16, Proposition 4.1] (or [6] in the particular case of the
symmetric gradient) to deduce (5.13) with X = LB(Rn) and Y = LA(Rn).

• BMO and homogeneous Hölder spaces for p ≥ n. If p = n and Y (Rn) = Ln(Rn),
scaling suggests X = L∞(Rn), but for this choice inequality (1.4) is readily seen to
be false for general elliptic operators A by virtue of Ornstein’s Non-Inequality on L∞
[62]. Let ‖·‖BMO(RN ) denote the BMO-seminorm.Wemay use the fact that the Korn-type
inequality from Lemma 3.6 also holds in the form ‖Du‖BMO(Rn) ≤ c ‖Au‖BMO(Rn); this
follows by realising that the map Du 
→ Au is a multiple of the identity plus a Calderón-
Zygmund operator of convolution type. As observed by Spector and the first author
in the three-dimensional case [32, Sect. 2.2] and since Curl as defined in Sect. 3.1 acts
row-wisely, we may combine this with I1 : Ln(Rn)→ BMO(Rn) boundedly. This gives
us (5.13) with X(Rn) = BMO(Rn) and Y (Rn) = Ln(Rn). If n < p < ∞, one may
argue similarly to obtain (5.13) with ‖·‖X(Rn) being the homogeneous α = 1− n

p -Hölder

seminorm. Combining this with I1 : Lp(Rn)→ Ċ0,1−n/p(Rn) boundedly yields (5.13)
with X(Rn) = Ċ0,1−n/p(Rn) and Y (Rn) = Lp(Rn).

Remark 5.2 (n = 1) We now briefly comment on the case n = 1 that has been left out so
far. In this case, the only part maps A : R → R that induce elliptic operators are (non-
zero) multiples of the identity. Since every ϕ ∈ C∞c (R) is a gradient, the corresponding
KMS-inequalities read ‖P‖L∞(R) ≤ ‖A [P]‖L∞(R) for P ∈ C∞c (R) and hold subject to the
ellipticity assumption on A .

These results only display a selection, and other scales such as smoothness spaces e.g. à la
Triebel–Lizorkin [69] equally seem natural but are beyond the scope of this paper. However,
returning to the above examples we single out the following

Open Question 5.3 (On weighted Lebesgue and Orlicz spaces)

(a) If one aims to generalise the above result for weighted Lebesgue spaces to the case
p = 1 in n ≥ 3 dimensions, a suitable weighted version of Lemma 4.5(b) is required.
To the best of our knowledge, the only available weighted Bourgain–Brezis estimates
are due to Loulit [47] but work subject to different assumptions on the weights than
belonging to A1. In this sense, it would be interesting to know whether (5.13) extends to

X(Rn) = L
n

n−1 (Rn, w) and Y = L1(Rn;w n−1
n ) for w ∈ A1.

(b) The readerwill notice that a slightlyweaker bound canbe obtained in the aboveOrlicz sce-
nario provided one keeps the�2- and∇2-assumptions on B but weakens the assumptions
on A. By Cianchi [11, Theorem 2(i)] the Riesz potential I1 maps LA(Rn) → LB

w(Rn)

(with the weak Orlicz space LB
w(Rn)) precisely if (5.14)2 holds and A(n) dominates B

globally. For A(t) = t and hereafter

Ã(t) =
{
0 if 0 ≤ t ≤ 1,

∞ otherwise,
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together with the �2 ∩ ∇2-function B(t) = t
n

n−1 , this gives us the well-known mapping

property I1 : L1(Rn) → L
n

n−1
w (Rn) boundedly. Similarly as this boundedness property

can be improved on divergence-free maps to yield estimate (4.19), it would be interesting
to know whether estimates of the form ‖u‖LB (Rn) ≤ c ‖curl u‖LA(Rn) hold for u ∈
C∞c,div(Rn;Rn) for if n ≥ 3 provided (5.14)2 is in action (which is the case e.g. if

A has almost linear growth) and A(n) dominates the �2 ∩ ∇2-function B. This would
imply (5.13) under slightly weaker conditions on A, B than displayed above.

6 Subcritical KMS-inequalities

We conclude the paper by giving the quick proof of Theorem 2.4. As to Theorem 2.4(a), let
q = 1, ϕ ∈ C∞c (Rn;Rm) be arbitrary and choose r > 0 so large such that spt(ϕ) ⊂ Br (0).
Since c > 0 as in (2.5) is independent of r > 0, we may apply this inequality to P = Dϕ.
Sending r → ∞, we obtain ‖Dϕ‖L1(Rn) ≤ c ‖Aϕ‖L1(Rn) for all ϕ ∈ C∞c (Rn;Rm). By
the sharp version of Ornstein’s Non-Inequality as given by Kirchheim and Kristensen [38,
Theorem 1.3] (also see [13, 22]), the existence of a linear map L ∈ L (RN×m;RN×m) with
Ei = L ◦ Ai for all 1 ≤ i ≤ n follows at once. If 1 < q < n, we may similarly reduce to
the situation on the entire Rn and use the argument given at the beginning of Sect. 4.3 to find
that ellipticity of Au:=A [Du] is necessary for (2.5) to hold.

For the sufficiency parts of Theorem 2.4(a) and (b), we note that by scaling it suffices
to consider the case r = 1. Given P ∈ C∞c (B1(0);Rm×n), we argue as in Sect. 5 and
Helmholtz decompose P = PCurl + PDiv. Writing PCurl = Du, we have ‖PCurl‖Lq (B1(0)) ≤
c (‖A [P]‖Lq (B1(0))+‖PDiv‖Lq (B1(0))); for q = 1 this is a trivial consequence ofEi = L◦ Ai

for all 1 ≤ i ≤ n, whereas for q > 1 this follows as in Sect. 5, cf. (5.2). Finally, the part
PDiv is treated by use of the subcritical fractional integration theorem, cf. Lemma 3.4(b).
This completes the proof of Theorem 2.4.

Remark 6.1 (Variants and generalisations of Theorem 2.4) If n = 2, Korn’s inequality in the
form of Theorem 4.8 (under the same assumptions on � ⊂ R

2)

min
∈K

‖P −‖Lq (�) ≤ c
(
‖A [P]‖Lq (�) + ‖Curl P‖Lp(�)

)
(6.1)

persists for all 1 < p < 2 and all 1 < q ≤ p∗ = 2p
2−p . One starts from (4.45) and estimates

‖Curl P‖W−1,q (�) ≤ c sup
ϕ∈W1,q′

0 (�;R2)

‖Dϕ‖
Lq′ (�)

≤1

ˆ
�

〈Curl P, ϕ〉 dx ≤ c ‖Curl P‖Lp(�)

by Hölder’s inequality and ‖ϕ‖Lp′ (�)
≤ c ‖Dϕ‖Lq′ (�)

for ϕ ∈ W1,q ′
0 (�;R2). If q < 2 and

thus q ′ > 2, this follows by Morrey’s embedding theorem and by the estimate ‖ϕ‖Ls (�) ≤
c ‖Dϕ‖L2(�) for all 1 < s < ∞ provided q = 2. If 2 < q ≤ 2p

2−p , we require p′ ≤ (q ′)∗,
and this is equivalent to q ≤ 2p

2−p .

We conclude with a link between the Orlicz scenario from Sect. 5 and Theorem 2.4:

Remark 6.2 As discussed by Cianchi et al. [5, 10] for the (trace-free) symmetric gradient,
if the Young function B is not of class �2 ∩ ∇2, then Korn-type inequalities persist with a
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certain loss of integrability on the left-hand side. For instance, by Cianchi et al. [10, Ex. 3.8]
one has for α ≥ 0 the inequality

‖Du‖L logα L(�) ≤ c ‖symDu‖L log1+α L(�) for all u ∈ C∞c (�;Rn) (6.2)

with the Zygmund classes L logα L. By the method of proof, the underlying inequalities
equally apply to general elliptic operators. One then obtains e.g. the refined subcritical KMS-
type inequality

‖P‖L logα L(B1(0)) ≤ c
(
‖A [P]‖L log1+α L(B1(0)) + ‖Curl P‖Lp(B1(0))

)
(6.3)

for all P ∈ C∞c (B1(0);Rn×n), where α ≥ 0, p ≥ 1 and c = c(p, α, n,A ) > 0 is a constant.
The reader will notice that this inequality holds if and only if A induces an elliptic operator
A. Note that for α = 0, the additional logarithm on the right-hand side of (6.3) is the key
ingredient for (6.3) to hold for suchA , while without the additional logarithm one is directly
in the situation of Theorem 2.4(a) and this not only forces A = A [Du] to be elliptic but to
trivialise.
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A Appendix

In this appendix, we briefly revisit Helmholtz decompositions in arbitrary space dimensions,
examine another class of part maps A (and hereafter differential operators A) which is
encountered in infinitesimal elasto-plasticity and gather some auxiliary results and terminol-
ogy on weighted Lebesgue and Orlicz spaces as utilised in Sect. 5.
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A.1 Explicit Helmholtz decomposition inRn

Let us first recall the situation in the 3-dimensional case. Let a ∈ R
3 be a fixed vector.

Since the cross product a × · is linear in the second component it can be identified with a
multiplication with the skew-symmetric matrix

Anti(a) =
⎛
⎝

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎞
⎠ , (A.1)

so that

a × b = Anti(a) b for all b ∈ R
3. (A.2)

Hence, with Anti : R3 → so(3):={A ∈ R
3×3 | A	 = −A} we have a canonical identifica-

tion of vectors in R
3 with skew-symmetric (3 × 3)-matrices. It is this identification of the

cross product with a suitable matrix multiplication that allows to generalise the usual cross
product in R

3 to a cross product of a vector b ∈ R
3 and a matrix P ∈ R

m×3, m ∈ N, from
the right

P × b:=P Anti(b) (A.3)

which is seen as row-wise applicationof the usual cross product. In theHamiltonian formalism
the usual curl : C∞c (R3;R3)→ C∞c (R3;R3) expresses as

curl a = ∇ × a = Anti(∇) a for all a ∈ C∞c (R3;R3). (A.4)

Hence, it extends row-wise to a matrix-valued operator Curl:

Curl P:=P × (−∇) = −P Anti(∇) for all P ∈ C∞c (R3;Rm×3) (A.5)

and the minus sign comes from the anti-commutativity of the cross product since we operate
from the right hand side here. This gives rise to the definition of the generalised curl as
displayed in Sect. 3, and in particular in two dimensions it holds

curl

(
a1
a2

)
= ∂1a2 − ∂2a1 = div

(
a2
−a1

)
. (A.6)

The usual Helmholtz decomposition in n = 3 dimensions can then be deduced from the
following decomposition of the vector Laplacian:

�a = ∇ div a − curl curl a for all a ∈ C∞c (R3;R3) (A.7)

and has the form

a(x) = − 1

4π
∇x

ˆ
R3

div a(y)

|x − y| dy + 1

4π
curlx

ˆ
R3

curl a(y)

|x − y| dy (A.8a)

= 1

4π

ˆ
R3

div a(y) · x − y

|x − y|3 dy
︸ ︷︷ ︸

=acurl(x)

− 1

4π

ˆ
R3

x − y

|x − y|3 × curl a(y) dy
︸ ︷︷ ︸

=adiv(x)

(A.8b)

with curl-free part acurl and divergence-free part adiv.
Furthermore, as higher dimensional generalization of the decomposition of the vector

Laplacian it holds (see [41, Eq. (4.28)])

�a = ∇ div a + �∇�	×n
curl a for all a ∈ C∞c (Rn;Rn), n ≥ 2, (A.9)
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and the minus sign in the usual decomposition (A.7) comes from the skew-symmetry of
the associated matrices (A.1). Hence, following essentially the same steps to deduce the
usual Helmholtz decomposition the relation (A.9) allows to decompose any vector field
a ∈ C∞c (Rn;Rn) into a divergence-free vector field adiv and a gradient field acurl, see [41,
Sect. 4.5] for more details, and we end up with an explicit coordinate-free expression of the
Helmholtz decomposition in all dimensions with

acurl(x) = ∇x

ˆ
Rn

�(x − y) · div a(y) dy = 1

n ωn

ˆ
Rn

(x − y) ·
(
div a(y)

|x − y|n
)

dy,

adiv(x) = �∇x �	×n

ˆ
Rn

�(x − y) · curl a(y) dy = 1

n ωn

ˆ
Rn

�x − y�	×n

(
curl a(y)

|x − y|n
)

dy,

(A.10)

where � denotes the fundamental of the Laplacian in n dimensions given by

�(x) =
{

1
2π log |x |, for n = 2,

1
n(2−n) ωn

|x |2−n, for n ≥ 3.

A.2 Connections to incompatible Maxwell-type inequalities and general
terminology

The inequalities studied in this paper are generalisations of well-known coercive estimates
that have been employed e.g. in elasticity or general relativity. This also motivates the ter-
minology of KMS-inequalities used in the main part. As displayed in Fig. 3, the Cartan
decomposition of a matrix field P into its trace-free symmetric and its complementary part
correspond to Korn-type inequalities and Maxwell-type (or div-curl-) inequalities for com-
patible fields. This is exemplarily displayed for the particular choice A [P] = AKorn[P] =
dev sym P and contrasted by the results of the present paper in the incompatible case in
Fig. 3.

Both the Korn-type and Maxwell-type inequalities from Fig. 3 in the compatible case
can be reduced to the Calderón–Zygmund–Korn Lemma 3.6; from a historic perspective,
the Korn-type inequality from Fig. 3 is due to Reshetnyak [63] (also see Dain [17]). In
turn, the Maxwell- or div-curl-inequality is originally due to Korn [39, bottom of p. 707 for
(p, n) = (2, 3)] and can be directly retrieved from Lemma 3.6 by using the elliptic operator
Au = (div u, curl u)	. Since the matrix divergence and matrix curl act row-wise we further
have for all P ∈ C∞c (Rn;Rm×n) with n ≥ 2, m ∈ N and 1 < q <∞:

‖DP‖Lq (Rn) ≤ c (‖Div P‖Lq (Rn) + ‖Curl P‖Lq (Rn)); (A.11)

as an especially important implication, one obtains by virtue of Piola identityDiv Cof Du ≡ 0
that

‖DCof Du‖Lq (Rn) ≤ c ‖Curl Cof Du‖Lq (Rn) for all u ∈ C∞c (Rn;Rn). (A.12)

Equivalently, the div-curl-inequality can also be directly deduced using classical elliptic
regularity estimates and the following decomposition of the Laplacian (n ≥ 2):

�u = ∇ div u + L(Dcurl u), (A.13)

with a constant coefficient linear operator L , cf. (A.9); in our approach, the Maxwell-type
inequality comes as a by-product.
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Fig. 3 The appearing vector valued functions u and tensor valued functions P are compactly supported

A.3 Notions for weighted Lebesgue and Orlicz spaces

Here we gather some background results onweighted Lebesgue andOrlicz spaces as required
for the generalisations of KMS-type inequalities in Sect. 5.

First, given a weight (i.e. a locally integrable non-negative function) w : Rn → R and
1 < p <∞, we say that w belongs to the Muckenhoupt class Ap provided

[w]Ap := sup
Q cube

( 
Q

w dx
)( 

Q
w1−p′ dx

)p−1
<∞.

Moreover, denotingM the non-centered Hardy–Littlewoodmaximal operator, we say thatw
belongs to the Muckenhoupt class A1 provided there exists c > 0 such thatMw ≤ cw holds
L n-a.e. in Rn . The smallest such constant c > 0 then is denoted [w]A1 . If w ∈ Ap for some
1 ≤ p <∞, for 1 ≤ q <∞ the weighted Lebesgue space Lq(Rn;w) then is the Lebesgue
space with respect to the measure μ = wL n . The Muckenhoupt condition w ∈ Ap then
yields boundedness of the usual Hardy-Littlewood maximal operators and singular integrals
on Lp(Rn;w) provided 1 < p < ∞, cf. [20, 49], which is why Korn-type inequalities on
Lp(Rn;w)-spaces are available provided w ∈ Ap; to connect with the results from Sect. 5,
note that A1 is the smallest Muckenhoupt class and is contained in any other Ap .

Second, we say that a function A : [0,∞) → [0,∞] is a Young function provided it can
be written as

A(s) =
ˆ s

0
a(r) dr , r ≥ 0,

for some increasing, left-continuous a : [0,∞)→ [0,∞] such that a does not equal zero or
infinity on (0,∞). Each such Young function A gives rise to the corresponding Orlicz space
LA(Rn) as the collection of all measurable u : Rn → R for which the Luxemburg norm

‖u‖LA(Rn) := inf
{
λ > 0 :

ˆ
Rn

A
( |u(x)|

λ

)
dx ≤ 1

}

is finite.With aYoung function A,we associate itsFenchel conjugatevia Ã(s) := supt≥0(s t−
A(t)).We say that A is of class�2 provided there exists c > 0 such that A(2s) ≤ cA(s) holds

123



182 Page 30 of 33 F. Gmeineder et al.

for all s ≥ 0, and of class∇2 provided Ã is of class�2; exemplary instances of functions that
satisfy both�2- and∇2-conditions are given by the power functions s 
→ s p for 1 < p <∞.
Similarly, given two Young functions A, B, we say that A globally dominates B provided
B(s) ≤ A(cs) holds for all s ≥ 0 and a constant c > 0.

Following Cianchi [11], given a Young function B and 1 < p ≤ ∞, we denote B(p) the
Young function with Fenchel conjugate

B̃(p)(s) =
ˆ s

0
r p′−1(�−1p (r p′))p′ dr with �p(s) :=

ˆ s

0

B(t)

t1+p′ dt . (A.14)

Here, the inverse is understood in the usual generalised sense. Within the context that is of
interest to us, we moreover define for a Young function A and 1 < p ≤ ∞

A(p)(s) =
ˆ s

0
r p′−1(�−1p (r p′))p′ dr with �p(s) :=

ˆ s

0

Ã(t)

t1+p′ dt . (A.15)

These notions are instrumental in stating Cianchi’s sharp embedding result for Riesz poten-
tials [11, Theorem 2] (also see our discussion on p. 18); also compare with [5].
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