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Abstract
Given a three-dimensional Riemannian manifold with boundary and a finite group of
orientation-preserving isometries of this manifold, we prove that the equivariant index of a
free boundary minimal surface obtained via an equivariant min–max procedure á la Simon–
Smith with n-parameters is bounded above by n.
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1 Introduction

The aim of this paper is to show that, through an equivariant min–max procedure á la Simon–
Smith [33] and Colding–De Lellis [7] in a three-dimensional manifold with boundary, it is
possible to obtain a free boundary minimal surface with equivariant index bounded above by
the number of parameters of the sweepouts.

The min–max theory developed by Simon–Smith and Colding–De Lellis differs from
the one by Almgren–Pitts [5, 31] and Marques–Neves [26, 28] since, in the former one,
stronger regularity and convergence conditions are imposed on the sweepouts (cf. [26, Section
2.11]) and the ambient dimension is assumed to be equal to three. This makes the Simon–
Smith approach less flexible; indeed, note for example that the sweepout constructed by
Marques and Neves in [26] to prove the Willmore conjecture does not satisfy the Simon–
Smith assumptions.

On the other hand, the stronger regularity makes proofs easier and enables to obtain
a partial control on the topology of the resulting surface. This has been an advantage of
the Simon–Smith approach when one wants to construct a minimal surface with a certain
topological type. Indeed, the only way we know so far to obtain some information on the
topology of the resulting minimal hypersurface in the Almgren–Pitts min–max theory is to
first control the index and then use that the index bounds the topology (see for example [2,
3, 25, 34] for the free boundary case), although such bounds (even when effective) are far
from sharp.

Luckily, many proofs working in the Almgren–Pitts setting can be adapted to the Simon–
Smith one. This is also the case for the upper bound on the index, proved in [27] for the
Almgren–Pitts min–max theory (see also [16, 29] for the free boundary setting). Indeed, this
paper consists in adapting those arguments to our “smoother” setting (see [27, Section 1.3]),
but with the additional presence of a group of isometries imposed to the min–max procedure.
What we obtain is an upper bound on the equivariant index of the surface resulting from this
equivariant min–max procedure. Let us now describe precisely the statement of this result.
To this purpose, we first give some preliminary definitions.

1.1 Setting and definitions

The equivariant min–max theory considered in this paper has been mostly developed by
Ketover in [19] for the closed case and in [20] for the free boundary one, as proposed by Pitts–
Rubinstein in [32]. One of its primary goals is to construct new families of minimal surfaces
in S3 and of free boundary minimal surfaces in B3. Indeed, encoding the right symmetry
group in themin–max procedure allows us to produce surfaces with fully controlled topology,
as done by the author in joint work with Carlotto and Schulz in [10].

Our setting is a three-dimensional compact Riemannian manifold (M3, γ ) with strictly
mean convex boundary and with a finite group G of orientation-preserving isometries of M .

Remark 1.1 We assume the manifold M to have strictly mean convex boundary because we
want it to satisfy the following property.

(P) If �2 ⊂ M is a smooth, connected, complete (possibly noncompact), embedded
surface with zero mean curvature which meets the boundary of the ambient manifold
orthogonally along its own boundary, then ∂� = � ∩ ∂ M .
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Here we ask for more, namely, the strict mean convexity of the boundary of the ambient
manifold (which implies (P)), because we want it to be an open property with respect to the
class of smooth metrics.

Remark 1.2 Li in [23] studies the free boundarymin–max problemwithout curvature assump-
tions on the ambient manifold M . However, as remarked in [9, Appendix A] (see also [9, pp.
5]), there are problems in defining the Morse index for free boundary minimal surfaces that
are not properly embedded in M . Moreover, the compactness results in [1], which we use
for example in Appendix B, need property (P). That is another good reason why we require
(P) to hold in this paper.

Remark 1.3 Here we assume the group G to be finite, but it is due mentioning that the
equivariant min–max theory has been developed also in the case of a compact connected Lie
group with cohomogeneity not 0 or 2 in [24] and in the Almgren–Pitts setting with a compact
Lie group of cohomogeneity greater or equal than 3 in [37].

In what follows, we denote by I n = [0, 1]n the product of n-copies of the unit interval.
Moreover,whenwe say that�m is ahypersurface (or surface ifm = 2) in an ambientmanifold
Mm+1, we mean that � is smooth, complete and properly embedded, i.e., ∂� = � ∩ ∂ M .

Definition 1.4 A family {�t }t∈I n of subsets of a three-dimensional Riemannian manifold M
is said to be a generalized family of surfaces if there are a finite subset T of I n and a finite
set of points P of M such that:

(i) t �→ �t is continuous in the sense of varifolds;
(ii) �t is a surface for every t /∈ T ∪ ∂ I n ;
(iii) for t ∈ T \ ∂ I n , �t is a surface in M \ P .

Moreover, the generalized family {�t }t∈I n is said to be smooth if it holds also that:

(iv) t �→ �t is smooth for t /∈ T ∪ ∂ I n ;
(v) for t ∈ T \ ∂ I n , �s → �t smoothly in M \ P as s → t .

Finally, we say that {�t }t∈I n is a G-sweepout if it is a smooth generalized family of
surfaces and �t is G- equivariant for all t ∈ I n , i.e., h(�t ) = �t for all h ∈ G and t ∈ I n ,
and orientable for all t ∈ I n \ T .

Remark 1.5 Slightly different variations of this definition are given in several references (see
for example [7, Definition 1.2], [14, Definition 0.5], [11, pp. 2836]). In order to have the
regularity and the index bound on the resulting surface, it is sufficient to consider generalized
families of surfaces, however smoothness is needed for the genus bound (see [14, Definition
0.5]).

Definition 1.6 We say that a smooth map � : I n × M → M is a G-equivariant isotopy if
�t := �(t, ·) ∈ DiffG(M) for all t ∈ I n , namely �t : M → M is a diffeomorphism such
that �t ◦ h = h ◦�t for all h ∈ G, t ∈ I n .

Definition 1.7 Given a G-sweepout {�t }t∈I n , we define its G-saturation as

� := {{�t (�t )}t∈I n : � : I n × M → M is a G-equivariant isotopy with �t = id for t ∈ ∂ I n}.
Then the min–max width of � is defined as

W� := inf{�t }∈�
sup
t∈I n

H 2(�t ).
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Remark 1.8 Note that here we consider isotopies � such that �t : M → M is a diffeomor-
phism of the ambient manifold. This choice does not coincide with the definition in [23],
where outer isotopies are considered (see also Remark 1.2).

Remark 1.9 Note that the uniform bound on the “bad points” (the points belonging to P in
Definition 1.4), which is required in [7, Remark 1.3] (see also [14, Remark 0.2]), is trivially
satisfied for the G-saturation of a G-sweepout.

1.2 Main result

We obtain the following equivariant min–max theorem, which is the combination of regular-
ity, genus bound and equivariant index bound, the latter being the main object of this paper.
Indeed, the regularity and the genus bound were addressed in [20, Theorem 3.2] (see also
[19, Theorem 1.3], where Ketover dealt with the closed case, for which many arguments are
similar).

Theorem 1.10 Let (M3, γ ) be a three-dimensional Riemannian manifold with strictly mean
convex boundary and let G be a finite group of orientation-preserving isometries of M. Let
{�t }t∈I n be a G-sweepout and let � be its G-saturation. Assume that

W� > sup
t∈∂ I n

H 2(�t ).

Then there exist a minimizing sequence {{� j
t }t∈I n } j∈N ⊂ � (i.e., lim j→∞ supt∈I n H 2(�

j
t ) =

W�) and a sequence {t j } j∈N ⊂ I n such that {� j = �
j
t j
} j∈N is a min–max sequence (i.e.,

lim j→∞H 2(� j ) = W�) converging in the sense of varifolds to � := ∑k
i=1 mi�i , where

�i are disjoint free boundary minimal surfaces and mi are positive integers.
Moreover, the G-equivariant index of the support spt(�) =⋃k

i=1 �i of � is less or equal
than n, namely

indG(spt(�)) =
k∑

i=1
indG(�i ) ≤ n,

and the following genus bound holds
∑

i∈O
genus(�i )+ 1

2

∑

i∈N
(genus(�i )− 1) ≤ lim inf

j→+∞ lim inf
τ→t j

genus(� j
τ ),

where O is the set of indices i ∈ {1, . . . , k} such that �i is orientable and N is the set of
indices i ∈ {1, . . . , k} such that �i is nonorientable.

The precise definition of equivariant index is given in Sect. 3, but it is just what one would
expect, i.e., the maximal dimension of a linear subspace of the G-equivariant vector fields
where the second variation of the area functional is negative definite.

Remark 1.11 The assumptions that M has dimension 3 and that G consists of orientation-
preserving isometries are required in [19, 20], which we use for the regularity and genus
bound in Propostion 5.9 (see also Remark 5.11). In this paper, such assumptions are used
only in Sect. 4. Elsewhere the arguments work for any finite group of isometries G and any
ambient dimension 3 ≤ m + 1 ≤ 7.

Remark 1.12 The equivariant index estimate in Theorem 1.10 implies the analogous result
in the closed case, since, if we repeat the proofs forgetting about the boundary, everything
works in the same way (actually more easily).
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1.3 Applications

As a direct application, we deduce that the family of free boundary minimal surfaces in B3

constructed in [10] have dihedral equivariant index equal to one.
Let us briefly recall the geometry of these surfaces in order to better appreciate the theorem

below. Fixed any g ≥ 1, recall that the dihedral group Dg+1 acting on B3 is defined as the
subgroup of Euclidean isometries generated by the rotation of angle 2π/(g + 1) around the
vertical axis ξ0 := {(0, 0, r) : r ∈ [−1, 1]} and by the rotations of angle π around the g+ 1
horizontal axes ξk := {(r cos(kπ/(g + 1)), r sin(kπ/(g + 1)), 0) : r ∈ [−1, 1]} (see also
[10, pp. 1]). Then the free boundary minimal surface Mg ⊂ B3 constructed in [10, Theorem
1.1] is Dg+1-equivariant, has genus g and connected boundary. Moreover, Mg contains the
horizontal axes ξ1, . . . , ξg+1 and intersects ξ0 orthogonally.

Theorem 1.13 For all g ≥ 1, we can assume that the free boundary minimal surface Mg ⊂
B3 constructed in [10, Theorem 1.1] has Dg+1-equivariant index equal to 1.

Remark 1.14 Note that the phrase “we can assume” in the statement is due to the fact that in
Theorem 1.10 we prove the existence of a surface with a bound on the equivariant index, but
we do not show that every surface obtained from the min–max procedure has this property.
Therefore, Theorem 1.10 has to be applied in place of the min–max theorem used at the
beginning of Section 4 in [10].

Remark 1.15 Even if, for simplicity, we state the result only for the surfaces Mg constructed
in [10, Theorem 1.1], Theorem 1.10 can be applied to any surface obtained via an equivariant
min–max procedure fitting the framework defined above. See Remark 8.2 for further details
on this matter.

Besides its own interest, Theorem 1.13 is meant to be a first step toward the computation
of the (nonequivariant) Morse index of the family of surfaces Mg (or possibly any another
family arising from an equivariant min–max procedure, even with multiple parameters in
play). This would be particularly relevant, as the only free boundary minimal surfaces in B3

for which we know the index are the equatorial disc (with index 1) and the critical catenoid
(with index 4, see [13, 35, 36]). The idea is that the equivariant index gives information on the
index of any of the isometric parts (which are 2(g + 1) in the case of Mg) of the equivariant
surface. This problem will be addressed elsewhere.

2 Basic notation

Let (Mm+1, γ ) be a compact Riemannian manifold with boundary and let �m ⊂ M be a
hypersurface. Then we denote by:

• X(M) the set of vector fields on M tangent to ∂ M , namely X ∈ X(M) if and only if
X(x) ∈ Tx∂ M for all x ∈ ∂ M . In what follows, we consider (tangent) vector fields in
X(M) often omitting the adjective “tangent”.

• X⊥ ∈ �(N�) the normal component to� of a vector X ∈ X(M), where�(N�) denotes
the sections of the normal bundle of �.

• D the connection on M , ∇ the induced connection on � and ∇⊥ the induced connection
on the normal bundle of �.

• RicM the Ricci curvature of M .
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• η the outward unit conormal vector field to ∂�.
• η̂ the outward unit conormal vector field to ∂ M (which coincides with η along ∂� when

� satisfies the free boundary property).
• II∂ M = γ (DX Y , η̂) the second fundamental form of ∂ M ⊂ M .
• A(X , Y ) = (DX Y )⊥ the second fundamental form of � ⊂ M and |A|2 its Hilbert-

Schmidt norm.

3 Equivariant spectrum

In this section (Mm+1, γ ) denotes a compact Riemannian manifold with boundary and G
denotes a finite group of isometries of M .

Definition 3.1 A (tangent) vector field X ∈ X(M) is G-equivariant if h∗X = X for all
h ∈ G. We denote by XG(M) the set of all G-equivariant vector fields.

Definition 3.2 Given avarifoldV in M ,wedenote by‖V ‖ theRadonmeasure in M associated
with V . Moreover, we say that a varifold V in M is G-equivariant if h∗V = V for all h ∈ G.
We denote by V2

G(M) the set of 2-dimensional G-equivariant varifolds supported in M ,
endowed with the weak topology. Recall that V2

G(M) is metrizable and we denote by F a
metric metrizing it (see [31, pp. 66] or [26, pp. 703]).

Observe that all themetrics on a compactmanifolds are equivalent, hence the spaceV2
G(M)

does not depend on G. Therefore, we can also assume to fix a metric F independently of the
metric on M .

Remark 3.3 Given a G-equivariant vector field X ∈ XG(M), let � : [0,+∞) × M → M
be the associated flow. Then, if V is a G-equivariant varifold, (�t )∗V is G-equivariant as
well for all t ∈ [0,+∞). Indeed, � : [0,+∞) × M → M is a G-equivariant isotopy (see
Definition 1.6).

Definition 3.4 Given a varifold V in M and a vector field X ∈ X(M), we denote by δV (X)

the first variation of the area of V along X , namely

δV (X) = d

dt

∣
∣
∣
t=0‖(�t )∗V ‖(M),

where � : [0,+∞)× M → M is the flow generated by X . If V ∈ V2
G(M) is G-equivariant,

we say that V is G-stationary if δV (X) = 0 for all G-equivariant vector fields X ∈ XG(M).

Remark 3.5 By the principle of symmetric criticality by Palais (see [30], or [19, Lemma 3.8]
for the result in this setting), we have that V ∈ V2

G(M) is G-stationary if and only if it is
stationary.

Now, let�m ⊂ M be a compact G-equivariant hypersurface and let� : [0,+∞)×M →
M be the flow associated to a G-equivariant vector field X ∈ XG(M), then we have that

d

dt

∣
∣
∣
t=0H

m(�t (�)) = −
∫

�

〈H , X〉 dH m +
∫

∂�

〈η, X〉 dH m−1 = 0,

where η is the outward unit conormal vector field to ∂�. Moreover, if� is stationary (namely
a free boundary minimal hypersurface), we have

d2

dt2

∣
∣
∣
t=0H

m(�t (�)) = Q�(X⊥, X⊥),
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where

Q�(X⊥, X⊥)

:=
∫

�

(|∇⊥X⊥|2 − (RicM (X⊥, X⊥)+ |A|2|X⊥|2)) dH m +
∫

∂�

II∂ M (X⊥, X⊥) dH m−1.

Let �G(N�) denote the sections of the normal bundle of � obtained as restriction to �

of G-equivariant vector fields in M . Then, the G-equivariant (Morse) index indG(�) of �

is defined as the maximal dimension of a linear subspace of �G(N�) where Q� is negative
definite.

Remark 3.6 Note that, given a G-equivariant submanifold �, any G-equivariant vector field
defined along � can be extended to a G-equivariant vector field on the ambient manifold M .
Indeed, we can first extend it to a vector field X̃ ∈ X(M) (not necessarily G-equivariant) and
then define

X = 1

|G|
∑

h∈G

h∗ X̃ .

3.1 Equivariant index for two-sided hypersurfaces

If �m ⊂ Mm+1 is two-sided, given a G-equivariant section Y ∈ �G(N�) of the normal
bundle, we can write it as Y = uν, where u ∈ C∞(�) and ν is a choice of unit normal to �.
Then, the second variation of the volume of � along Y is given by

Q�(Y , Y ) = Q�(u, u)

:=
∫

�

(|∇u|2 − (RicM (ν, ν)+ |A|2)u2) dH m +
∫

∂�

II∂ M (ν, ν)u2 dH m−1

= −
∫

�

uL�u dH m +
∫

∂�

(u∂ηu + II∂ M (ν, ν)u2) dH m−1,

where L� := �+ RicM (ν, ν)+ |A|2 is the Jacobi operator associated to �.
Now let us further assume that � is connected. Note that, if Y = uν is G-equivariant, for

all h ∈ G we must have

h∗(uν) = uν �⇒ u(h(x))ν(h(x)) = dhx [u(x)ν(x)]
= u(x)dhx [ν(x)] = sgn�(h)u(x)ν(h(x)),

where sgn�(h) = 1 if h∗ν = ν and sgn�(h) = −1 if h∗ν = −ν. Indeed, h∗ν is equal
to ν or −ν, because h is an isometry and h(�) = � (hence h∗(N�) = N�), and � is
connected (thus the sign does not depend on the point on �). Note that sgn�(h1 ◦ h2) =
sgn�(h1) sgn�(h2). This leads to the following definition.

Definition 3.7 Given a compact connected Riemannian manifold �m , a finite group G of
isometries of � and a multiplicative function sgn� : G → {−1, 1}, we define the spaces

C∞G (�) := {u ∈ C∞(�) : u ◦ h = sgn�(h)u ∀h ∈ G},
L2

G(�) := C∞G (�)
‖·‖L2 ,

H1
G(�) := C∞G (�)

‖·‖H1
.
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Remark 3.8 Observe that L2
G(�) is a Hilbert space endowed with the scalar product

(u, v)L2 = ∫
�

uv dH m and C∞G (�) is dense in L2
G(�).

The G-equivariant (Morse) index of � coincides with the maximal dimension of a sub-
space of C∞G (M) where Q� is negative definite. Moreover, thanks to Theorem A.3, the
elliptic problem

{
−L�ϕ = λϕ in �

∂ηϕ = − II∂ M (ν, ν)ϕ in ∂�

admits a discrete spectrum λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . → +∞ with associated L2
G(�)-

orthonormal basis of eigenfunctions (ϕk)k≥1 ⊂ C∞G (�) of L2
G(�). The G-equivariant index

equals the number of negative eigenvalues.

Remark 3.9 Note that the assumption of connectedness of � is not restrictive. Indeed, if �

consists of several connected components �1, . . . , �k for some k ≥ 2, then we can consider
each connected component separately and indG(�) =∑k

i=1 indG(�i ).

3.2 Equivariant index for one-sided hypersurfaces

If �m ⊂ Mm+1 is one-sided, the elliptic problem
{
−�⊥�Y − Ric⊥M (Y , ·)− |A|2Y = λY in �

∇⊥η Y = −(II∂ M (Y , ·))� in ∂�,
(3.1)

on the G-equivariant sections �G(N�) of the normal bundle, admits a discrete spectrum
λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . → +∞ and the G-equivariant index coincides with the number
of negative eigenvalues. This follows from the two-sided case applied to the double cover
of �. Indeed, let us consider the double cover π : �̃ → �, then every isometry h ∈ G
lifts to two isometries h̃1, h̃2 of �̃, where h̃1 ◦ h̃−12 is given by the isometric involution
i : �̃ → �̃ associated to the universal cover. We denote by G̃ the finite group generated by
these isometries. Every Y ∈ �G(N�) lifts to a vector field Ỹ ∈ �(N �̃) and we can write
it as Ỹ = uν̃, where ν̃ is a global unit normal to �̃ and u ∈ C∞

G̃
(�̃). Vice versa, for all

u ∈ C∞
G̃

(�̃), the vector field Y := π∗(uν̃) is well-defined and belongs to �G(N�). Hence

we can just apply Theorem A.3 to �̃ and G̃ (as we did in the previous subsection) to obtain
the desired properties on the spectrum of problem (3.1).

4 Free boundaryminimal surfaces with bounded equivariant index

In this section, roughly speaking, we prove that a limit of free boundary minimal surfaces
with bounded equivariant index satisfies the same bound on the equivariant index.

Throughout the section, we assume (M3, γ ) to be a three-dimensional compact Rie-
mannian manifold with boundary satisfying property (P), G to be a finite group of
orientation-preserving isometries of M and S ⊂ M to be the singular locus of G, namely

S := {x ∈ M : ∃ h ∈ G \ {id}, h(x) = x}.
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Moreover, given a free boundary minimal surface �2 ⊂ M and an open subset U ⊂ M , we
let μ1(� ∩U ) denote the first eigenvalue of the problem

⎧
⎪⎨

⎪⎩

−�⊥�Y − Ric⊥M (Y , ·)− |A|2Y = μY in � ∩U

∇⊥η Y = −(II∂ M (Y , ·))� in ∂� ∩U

Y = 0 in ∂(� ∩U ) \ ∂�

(4.1)

on the sections �(N (� ∩ U )) of the normal bundle. Furthermore, if � and � ∩ U are
G-equivariant, let λ1(� ∩ U ) be the first eigenvalue of the same problem (4.1) on the G-
equivariant sections �G(N (� ∩U )) of the normal bundle (see Sect. 3).

Remark 4.1 We stress the fact that we use the letters λ and μ to denote the eigenvalues
respectively taking and not taking into account the symmetry group.

Lemma 4.2 (cf. [19, Proposition 4.6]) In the setting above, let �2 ⊂ M be a G-equivariant
free boundary minimal surface in M and fix x ∈ � \ S. Then, there exists ε0 > 0 such that,
for all 0 < ε < ε0, the G-equivariant subset Uε(x) := ⋃

h∈G h(Bε(x)) consists of exactly
|G| disjoint balls {Bε(h(x))}h∈G, and it holds

μ1(� ∩ Bε(x)) = μ1(� ∩Uε(x)) = λ1(� ∩Uε(x)).

Proof First, note that Bε(h(x)) = h(Bε(x)) since every h ∈ G is an isometry. Moreover, if
ε0 is sufficiently small (in particular smaller than half of the distance between x and h(x) for
all h ∈ G), then we have that h(Bε(x)) ∩ Bε(x) = Bε(h(x)) ∩ Bε(x) �= ∅ for some h ∈ G
if and only if h(x) = x , which implies that h = id because x /∈ S. In particular, we get that
the subset Uε(x) :=⋃

h∈G h(Bε(x)) consists of exactly |G| disjoint balls.
Now, we let ε > 0 be sufficiently small such that � ∩ Bε(x) is two-sided. Then, we

can write any section X ∈ �(N (� ∩ Bε(x)) of the normal bundle as X = uν, where
u ∈ C∞(� ∩ Bε(x)) and ν is a choice of unit normal, as in Sect. 3.1. Consider the first
nonnegative eigenfunction ϕ ∈ C∞(� ∩ Bε(x)) relative to the eigenvalue μ1(� ∩ Bε(x)),
and define ϕ̃ ∈ C∞(� ∩Uε(x)) as

ϕ̃(h(x)) := sgn�(h)ϕ(x)

for all h ∈ G. Note that ϕ̃ is well-defined and G-equivariant, i.e., ϕ̃ ∈ C∞G (� ∩ Uε(x)).
As a result, since ϕ̃ ∈ C∞G (� ∩ Uε(x)) is nonnegative and G-equivariant, we obtain that
ϕ̃ is the first eigenfunction relative to the eigenvalue μ1(� ∩ Uε(x)), and also relative to
λ1(� ∩ Uε(x)). This implies that the three numbers μ1(� ∩ Bε(x)), μ1(� ∩ Uε(x)) and
λ1(� ∩Uε(x)) actually coincide. ��
Theorem 4.3 In the setting above, let {�k}k∈N be a sequence of G-equivariant free boundary
minimal surfaces in M, with uniformly bounded area, such that indG(�k) ≤ n for some fixed
n ∈ N. Then (up to subsequence) �k converges locally graphically and smoothly, possibly
with multiplicity, to a free boundary minimal surface �̃ ⊂ M\(S ∪ Y) in M\(S ∪ Y),
where S ⊂ M is the singular locus of G and Y is a finite subset of M with |Y| ≤ n|G|.
Furthermore, if there exists a G-equivariant free boundary minimal surface � ⊂ M such
that �̃ = � \ (S ∪ Y) (namely if �̃ extends smoothly to M), then indG(�) ≤ n.

Remark 4.4 The previous theorem holds even when �k is a free boundary minimal surface
with respect to a G-equivariant Riemannian metric γk on M , for all k ∈ N, and the sequence
{γk}k∈N converges smoothly to γ .
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Proof Let us consider the set

Y :=
{

x ∈ M \ S : ∀ε > 0, lim sup
k→∞

μ1(�k ∩ Bε(x)) < 0

}

⊂ M \ S.

By Theorems 18 and 19 in [1], having uniformly bounded area, the surfaces�k converge (up
to subsequence) locally graphically and smoothly in M \ (S ∪ Y) with finite multiplicity to
a free boundary minimal surface �̃ ⊂ M \ (S ∪ Y).

Assume by contradictions that Y contains n′ := n|G| + 1 distinct points x1, . . . , xn′ ∈
M\S. Then, there exists ε > 0 sufficiently small, such that the balls Bε(x1), . . . , Bε(xn′) ⊂
M\S are disjoint and (up to subsequence)μ1(�k∩Bε(xi )) < 0 for all k sufficiently large and
i = 1, . . . , n′. Now, defining the G-equivariant subsetsUi = Uε(xi ) :=⋃

h∈G h(Bε(xi )) for
all i = 1, . . . , n′ as in Lemma 4.2 (taking ε possibly smaller), we have that λ1(�k ∩Ui ) =
μ1(�k ∩ Bε(xi )) < 0. Moreover, Ui ∩ U j �= ∅ for some i, j ∈ {1, . . . , n′} if and only if
Ui = U j . Note that, fixed i ∈ {1, . . . , n′}, there are at most |G| values of j ∈ {1, . . . , n′} such
that Ui = Uε(xi ) = Uε(x j ) = U j . Therefore, at least n + 1 = � n′

|G| �, say U1, . . . , Un+1, of
the setsU1, . . . , Un′ are disjoint. In particular, this contradicts the assumption indG(�k) ≤ n,
since �k ∩U1, . . . , �k ∩Un+1 are disjoint G-equivariant G-unstable subsets of �k . Hence,
we have that |Y| ≤ n|G|.

Let us now suppose that �̃ extends smoothly to � in M , and assume by contradiction that
indG(�) > n. Then, there exist G-equivariant vector fields X1, . . . , Xn+1 ∈ �G(N�) on
� such that

∑n+1
i=1 ai Xi is a negative direction for the second variation of the area of � for

all (a1, . . . , an+1) ∈ R
n+1\{0}. Since the isometries in G are orientation-preserving, � ∩ S

consists of a finite unionS0 of isolated points and of a finite unionS1 = (�∩S)\S0 of smooth
curve segments (see [12, Theorem 2.4] and [19, Lemmas 3.3, 3.4 and 3.5]). In particular,
by Lemmas 3.4 and 3.5 in [19], for all x ∈ S1 there exists h ∈ G such that h(x) = x and
h∗ν = −ν, where ν is a choice of unit normal to � at the point x . Therefore, by equivariance
of X1, . . . , Xn+1 ∈ �G(N�), we have that Xi = 0 on S1 for all i = 1, . . . , n + 1. As a
result, thanks to a standard cutoff argument, we can assume without loss of generality that
X1, . . . , Xn+1 are compactly supported in M \ (S ∪ Y). Indeed, we can first suppose that
X1, . . . , Xn+1 are compactly supported in M \ S1, because every continuous function on a
surface that is zero along a smooth curve can be approximated in the H1-normwith functions
that are zero in a neighborhood of such curve (see e.g. the proof of Theorem 2 in [15, Section
5.5]). Secondly, we can suppose that X1, . . . , Xn+1 are zero in a neighborhood of the finite
setS0∪Y using a standard log-cutoff argument. Observe that all these operations can bemade
in an equivariant way, because both S1 and S0 ∪ Y are G-equivariant. Since �k smoothly
converges (possibly with multiplicity) to� in M\(S∪Y), we thus get that indG(�k) > n for
k sufficiently large, which contradicts our assumption. This proves indG(�) ≤ n, as desired.
��

5 Outline of the proof of regularity and genus bound

In this section, we outline the results about the regularity and the genus bound for the surface
obtained via a Simon–Smith equivariant min–max procedure. Besides being interesting on
its own, we also need to unfold some of those arguments for the proof of Theorem 1.10.
Indeed, we do not prove that the surface obtained from themin–max procedure has controlled
equivariant index, but we show that it is possible to properly modify the proof in order to
obtain a surface with the desired bound on the equivariant index.
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We also include some detailed proofs for completeness, even if they are very similar to
existing ones. This is because sometimes we need slight variations of existing results (for
example here we consider n-dimensional sweepouts) or the proofs are split in many different
references.

Definition 5.1 In the setting of Theorem 1.10, given a minimizing sequence of sweepouts
� j = {� j

t }t∈I n ∈ for j ∈ N (namely such that lim j→∞ supt∈I n H 2(�
j
t ) = W�), we define

its critical set as

C({� j } j∈N)

= {V ∈ V2
G(M) such that ∃ jk →+∞, t jk ∈ I n with F(�

jk
t jk

, V )→ 0, ‖V ‖(M) = W�}.

5.1 Min–max sequence converging to a stationary varifold

The first step is to show that there exists a min–max sequence converging to a stationary
varifold, as stated in the following proposition.

Proposition 5.2 (cf. [19, Proposition 3.9]) In the setting of Theorem 1.10, given a minimizing
sequence {� j } j∈N = {{� j

t }t∈I n } j∈N, there exists another minimizing sequence {� j } j∈N =
{{� j

t }t∈I n } j∈N such that, if {� j
t j
} j∈N is a min–max sequence, then (up to subsequence) �

j
t j

converges in the sense of varifolds to a stationary varifold. Moreover, it holds C({� j } j∈N) ⊂
C({� j } j∈N).

Proof We include the proof for completeness. However, the argument is the same as in the
proof of [8, Proposition 2.1], given the suitable modifications to the equivariant setting.

We first restrict to the compact space

X := {V ∈ V2
G(M) : ‖V ‖(M) ≤ 2W�}

and we denote by V∞ the subspace of G-stationary varifolds of X , which coincides with the
subspace of stationary varifolds by Remark 3.5, and we define Y := X\V∞. Now, for every
V ∈ Y , consider a G-equivariant smooth vector field ξV ∈ XG(M) such that δV (ξV ) < 0.
Up to rescaling, we can assume without loss of generality that ‖ξV ‖Ck ≤ 1/k, whenever
F(V , V∞) ≤ 2−k and k ≥ 1 is any positive integer.

Then, for every V ∈ Y , let 0 < ρ(V ) < F(V , V∞)/2 be such that δW (ξV ) < 0 for every
W ∈ BF

ρ(V )(V ). Note that {BF
ρ(V )(V )}V∈Y is a cover of Y and thus it admits a subordinate

partition of unity {ϕV }V∈Y . Therefore, for every V ∈ Y , we can define the smooth G-
equivariant vector field

HV :=
∑

W∈Y
ϕW (V )ξW .

Note that themapY � V �→ HV ∈ XG(M) is continuous.Moreover, observe that δV (HV ) <

0 for every V ∈ Y and that, if F(V , V∞) ≤ 2−k−1 for some positive integer k ≥ 1, then
‖HV ‖Ck ≤ 1/k. This last property follows from the fact that, if F(V , V∞) ≤ 2−k−1 for some
positive integer k ≥ 1 and ϕW (V ) > 0 for some W ∈ Y , then F(W , V∞) ≤ 2F(V , V∞) ≤
2−k and therefore ‖ξW ‖Ck ≤ 1/k.

As a result, the map V �→ HV defined on Y can be extended to a continuous function
X → XG(M) by setting it identically equal to 0 on V∞. Then, for every V ∈ X , the
flow �V : [0,+∞)→ Diff(M) generated by HV is a G-equivariant isotopy. Since the map
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V ∈ X �→ HV ∈ XG(M) is continuous, then also the map V �→ �V is continuous. In
particular the function V �→ δ(�V (s, ·)�V )(HV ) is continuous as well for all s ≥ 0 and
�V (0, ·)�V = V . Hence, for every V ∈ Y , let 0 < τ(V ) ≤ 1 be the maximum such that

δ(�V (s, ·)�V )(HV ) ≤ 1

2
δV (HV ) < 0 for all s ∈ [0, τ (V )].

The map τ : Y → [0, 1] is continuous, hence we can redefine HV multiplying it by τ(V )

in Y , i.e., we reset it to be equal to τ(V )HV in Y and equal to 0 elsewhere. Note that this
gives a well-defined vector field X � V �→ HV ∈ XG(M), because τ is bounded in Y and
therefore the newly-defined HV is continuous if we set it equal to 0 in V∞. As a result, we
also redefine the flow �V and it holds

δ(�V (s, ·)�V )(HV ) < 0 for all V ∈ Y and s ∈ [0, 1].

Now let {� j } j∈N = {{� j
t }t∈I n } j∈N ⊂ � be a minimizing sequence and define the G-

equivariant surface �̃
j
t := �

�
j
t
(1,� j

t ) for all j ∈ N and t ∈ I n . Observe that the map

(t, x) �→ �̃ j (t, x) := �
�

j
t
(1, x) is C1 in the parameter t ; however, it is not necessarily

smooth, hence {�̃ j
t }t∈I n is not necessarily contained in �. Therefore, for all j ∈ N, let

us define a smooth map (t, x) �→ � j (t, x) by convolving �̃ j with a smooth kernel in the
parameter t ∈ I n in such a way that

‖� j (t, ·)− �̃ j (t, ·)‖C1 ≤ 1

j + 1
. (5.1)

Note that� j (t, ·) isG-equivariant, becausewe are convoluting in the parameter t and �̃ j (t, ·)
is G-equivariant. Then, define the G-equivariant surface �

j
t := � j (t,� j

t ) for all j ∈ N and
t ∈ I n . By smoothness of the map t �→ � j (t, ·), we have that {� j

t }t∈I n ∈ � for all j ∈ N.
Moreover, by (5.1), it holds that

lim
j→+∞ sup

t∈I n
F(�

j
t , �̃

j
t ) = 0. (5.2)

As a result, using that H 2(�̃
j
t ) = H 2(�

�
j
t
(1,� j

t )) ≤ H 2(�
j
t ), we have that

m0 ≤ lim sup
j∈N

sup
t∈I n

H 2(�
j
t ) = lim sup

j∈N
sup
t∈I n

H 2(�̃
j
t ) ≤ lim sup

j∈N
sup
t∈I n

H 2(�
j
t ) = m0,

thus, a posteriori, all the inequalities are equalities; in particular
lim sup j∈N supt∈I n H 2(�

j
t ) = m0.

Our aim now is to prove that the minimizing sequence {� j } j∈N = {{� j
t }t∈I n } j∈N has the

properties claimed in the statement. Let t j ∈ I n be such that {� j
t j
} j∈N is amin–max sequence.

Up to subsequence, � j
t j
converges in the sense of varifolds to a varifold V , which coincides

with the limit in the sense of varifolds of �̃
j
t j
by (5.2). Possibly passing to a subsequence,

we can also assume that � j
t j
converges in the sense of varifolds to some varifold W and, by

continuity of the map �, we have that �W (1, ·)�W = V .

123



Equivariant index bound for min–max free boundary minimal... Page 13 of 28 201

First consider the case when W is not stationary. Then ‖W‖(M) = m0, but on the other
hand it holds

m0 = lim
j→+∞H 2(�̃

j
t j
) = ‖V ‖(M) = ‖�W (1, ·)�W‖(M)

= ‖W‖(M)+
∫ 1

0
δ(�W (s, ·)�W )(HW ) ds < m0,

which is a contradiction. As a result W is stationary and therefore W = �W (1, ·)�W = V ,

which implies that V is stationary, as desired. Moreover, since �
j
t j
→ W = V , we also get

that C({� j } j∈N) ⊂ C({� j } j∈N). ��

5.2 Min–max sequence G-almost minimizing in annuli

The second step is to prove that we can further assume that the min–max sequence found
in the previous section has a certain “regularizing property”, namely that of being G-almost
minimizing in suitable subsets. The precise statements and definitions are given below.

Definition 5.3 Given δ, ε > 0, a G-equivariant open set U ⊂ M (namely h(U ) = U for all
h ∈ G), and a G-equivariant surface � ⊂ U , we say that � is (G, δ, ε)-almost minimizing
in U if there does not exist any G-equivariant isotopy � : [0, 1] → Diff(M) supported in U
such that

• H 2(�(s, �)) ≤ H 2(�)+ δ for all s ∈ [0, 1];
• H 2(�(1, �)) ≤ H 2(�)− ε.

A sequence {� j } j∈N is said to be G-almost minimizing in U if there exist sequences of
positive numbers δ j , ε j > 0 with ε j → 0 such that � j is (G, δ j , ε j )-almost minimizing in
U .

Definition 5.4 We say that a subset An ⊂ M is a G-equivariant annulus if there are x ∈ M
and 0 < r < s such that An = ⋃

g∈G g(An(x, r , s)), where An(x, r , s) = Bs(x) \ Br (x) is
the open annulus of center x , inner radius r and outer radius s. Note that, for r , s sufficiently
small

⋃
g∈G g(An(x, r , s)) consists of a finite union of disjoint open annuli (note that some

annuli in the union could possibly overlap). Given x ∈ M , we denote by AN G
r (x) the

union of all G-equivariant annuli
⋃

g∈G g(An(x, r1, r2)) as the radii r1, r2 vary in the range
0 < r1 < r2 ≤ r .

We say that a family of G-equivariant annuli is L-admissible for some positive integer L , if
it consists of L G-equivariant annuli An1, . . . ,AnL such that Ani =⋃

g∈G g(An(x, ri , si ))

for some x ∈ M and ri , si > 0 with ri+1 > 2si for all i = 1, . . . , L − 1.

Definition 5.5 We say that a surface � ⊂ M is (G, δ, ε)-almost minimizing in an L-
admissible familyA ofG-equivariant annuli if it is (G, δ, ε)-almostminimizing in at least one
G-equivariant annulus ofA.Moreover, we say that a sequence {� j } j∈N isG-almostminimiz-
ing in an L-admissible family A of G-equivariant annuli if there exist sequences δ j , ε j > 0
with ε j → 0 such that � j is (G, δ j , ε j )-almost minimizing in A; equivalently, {� j } j∈N is
G-almost minimizing inA if it is G-almost minimizing in at least one G-equivariant annulus
of A.

Lemma 5.6 (cf. [11, Lemma A.1]) Let {� j } j∈N = {{� j
t }t∈I n } j∈N be a minimizing sequence

obtained from Proposition 5.2, then there exists t j ∈ I n for all j ∈ N such that {� j
t j
} j∈N is a
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G-equivariant min–max sequence that is G-almost minimizing in every L-admissible family
of G-equivariant annuli, where L = (3n)3

n
.

Proof Let {� j } j∈N be the minimizing sequence given by Proposition 5.2. Fixed any J > 0,

we prove that there exist j > J and t j ∈ I n such that �
j
t j
is (G, 1/(2n+2 J ), 1/J )-almost

minimizing in every L-admissible family of G-equivariant annuli andH 2(�
j
t j
) ≥ m0−1/J .

To this purpose, consider any j > J and define K := {t ∈ I n : H 2(�
j
t ) ≥ m0 − 1/J }.

Assume that for all t ∈ K there exists an L-admissible family At = {An1t , . . . ,AnL
t } of

G-equivariant annuli where �
j
t is not (G, 1/(2n+2 J ), 1/J )-almost minimizing, namely for

all t ∈ K and i = 1, . . . , L there exists a G-equivariant isotopy � i
t : [0, 1] → Diff(M)

supported in Ani
t such that

• H 2(� i
t (s, �

j
t )) ≤ H 2(�

j
t )+ 1/(2n+2 J ) for all s ∈ [0, 1];

• H 2(� i
t (1, �

j
t )) ≤ H 2(�

j
t )− 1/J .

By continuity in the sense of varifolds of the map t �→ �
j
t , for every t ∈ K we can find a

neighborhood Ut ⊂ I n such that

• H 2(� i
t (s, �

j
r )) ≤ H 2(�

j
r )+ 1/(2n+1 J ) for all s ∈ [0, 1], r ∈ Ut ;

• H 2(� i
t (1, �

j
r )) ≤ H 2(�

j
r )− 1/(2J ) for all r ∈ Ut .

Since {Ut }t∈K is an open cover of K and K is compact, we can extract a finite subcover
U . We now want to find another cover O of K and for every O ∈ O we want to choose a
G-equivariant annulus AnO such that

(i) for all O ∈ O there exists Ut ∈ U such that O ⊂ Ut and AnO = Ani
t for some

i = 1, . . . , L;
(ii) for all O1, O2 ∈ O with nonempty intersection we have that AnO1 ∩ AnO2 = ∅.

To this purpose, we follow [31, Chapter 4]). For all m ∈ N, let I (1, m) be the
CW complex structure, supported on the 1-dimensional interval I 1 = [0, 1], whose 0-
cells are [0], [3−m], [2 · 3−m], . . . , [1 − 3−m], [1] and whose 1-cells are the intervals
[0, 3−m], [3−m, 2 ·3−m], . . . , [1−3−m, 1]. Then consider the CW complex structure I (n, m)

on the n-dimensional interval I n , whose p-cells for 0 ≤ p ≤ n can be written as
σ1 ⊗ σ2 ⊗ . . . ⊗ σn , where σ1, . . . , σn are cells of the CW complex I (1, m) such that∑n

i=1 dim(σi ) = p.
For every cell σ = σ1 ⊗ σ2 ⊗ . . . ⊗ σn ∈ I (n, m), let T (σ ) be the open subset of In

defined as T (σ ) := T (σ1)× T (σ2)× . . .× T (σn), where

T (σi ) :=
{

(x − 3−m−1, x + 3−m−1) if σi = [x] is a 0-cell
(x, y) if σi = [x, y] is a 1-cell.

Note that {T (σ ) : σ ∈ I (n, m), T (σ )∩ K �= ∅} is an open cover of K . Then define O to be
such an open cover for some m sufficiently large such that 3−m√n is less than the Lebesgue
number of U , thus O has diameter less than the Lebesgue number of U for all O ∈ O. Then,
for all O ∈ O, let AO be an L-admissible family of G-equivariant annuli in M such that
there exists Ut ∈ U with O ⊂ Ut and AO = At .

Now, note that T (σ1)∩ T (σ2) �= ∅ for some σ1, σ2 ∈ I (n, m) if and only if σ1 and σ2 are
faces (possibly of different dimension) of a cell in I (n, m). We can thus exploit the following
proposition to associate to every O = T (σ ) ∈ O a G-equivariant annulus AnO ∈ AO .

123



Equivariant index bound for min–max free boundary minimal... Page 15 of 28 201

Proposition 5.7 ([31, Proposition 4.9]) For every σ ∈ I (n, m), let A(σ ) be an L-admissible
family of G-equivariant annuli in M with L = (3n)3

n
. Then for every σ ∈ I (n, m) it is

possible to choose a G-equivariant annulus An(σ ) ∈ A(σ ) such that An(σ1)∩An(σ2) = ∅
for every σ1 �= σ2 ∈ I (n, m) that are faces of a cell in I (n, m).

Hence, for all O = T (σ ) ∈ O, let us define AnO := An(σ ), where An(σ ) is given from
Proposition 5.7. This proves the existence of the open cover O of K with properties (i) and
(ii) above. Moreover, by definition of U and O, for all O ∈ O there exists a G-equivariant
isotopy �O : [0, 1] → Diff(M) supported in AnO such that

• H 2(�O(s, � j
r )) ≤ H 2(�

j
r )+ 1/(2n+1 J ) for all s ∈ [0, 1], r ∈ O;

• H 2(�O(1, � j
r )) ≤ H 2(�

j
r )− 1/(2J ) for all r ∈ O .

Now, for all O ∈ O choose a C∞ function ϕO : I n → [0, 1] supported in O , such that
for all s ∈ K there exists O ∈ O such that ϕO(s) = 1. Then, given any t ∈ I n , consider the
function �t ∈ Diff(M) defined as

�t (x) :=
{

�O(ϕO (t), x) if x ∈ AnO for someO ∈ O with t ∈ O,

x if t /∈ O for all O ∈ O.

Observe that �t is well-defined since AnO1 ∩ AnO2 = ∅ whenever O1, O2 ∈ O are not
disjoint.Moreover, t �→ �t is a G-equivariant isotopywith�t = id for t ∈ ∂ I n . Indeed, note
that d(K , ∂ I n) > 0, hence we can choose m possibly larger in such a way that O ∩ ∂ I n = ∅
for all O ∈ O. Therefore, we can define �̃

j
t = �t (�

j
t ) and we have that {�̃ j

t }t∈I n ∈ �.
Now note that, for every t ∈ K , there exists O ∈ O such that ϕO(t) = 1, moreover t ∈ O
for at most other 2n − 1 sets O ∈ O. As a result, we can estimate

H 2(�̃
j
t ) ≤ H 2(�

j
t )− 1

2J
+ 2n − 1

2n+1 J
= H 2(�

j
t )− 1

2n+1 J

for all t ∈ K , and

H 2(�̃
j
t ) ≤ H 2(�

j
t )+ 2n

2n+1 J
< m0 − 1

2J

for all t ∈ I n\K . By arbitrariness of j , thiswould give lim inf j→+∞ supt∈I n H 2(�̃
j
t ) < m0,

which is a contradiction. This proves that, for every J > 0, there exists j > J and t j ∈ I n

such that �
j
t j
is (G, 1/(2n+2 J ), 1/J )-almost minimizing in every L-admissible family of

G-equivariant annuli and H 2(�
j
t j
) ≥ m0 − 1/J . In particular, we have that {� j

t j
} j∈N is a

G-equivariant min–max sequence that is G-almost minimizing in every L-admissible family
of G-equivariant annuli. ��
Remark 5.8 Observe that the min–max sequence that we obtain is (G, 1/(2n+2 J ), 1/J )-
almost minimizing. This coincides with the result obtained in [7] (see Definition 3.2 therein)
in the case of 1-parameters sweepouts, i.e., n = 1.

5.3 Regularity and genus bound as a consequence of G-almost minimality

The third and final step is to show that the properties of the min–max sequence obtained in
the previous sections are sufficient to prove that this sequence converges to a G-equivariant
free boundary minimal surface (possibly with multiplicity) for which the genus bound in
Theorem 1.10 holds.
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Proposition 5.9 In the setting of Theorem 1.10, given a G-equivariant min–max sequence
{� j } j∈N that is G-almost minimizing in every L-admissible family of G-equivariant annuli
for L = (3n)3

n
(as the one obtained in Lemma 5.6), there exists a G-equivariant function

r : M → R
+ such that (up to subsequence) {� j } j∈N is G-almost minimizing in An ∈

AN G
r(x)(x) for all x ∈ M. Moreover, {� j } j∈N converges in the sense of varifolds as j →+∞

to � = ⋃k
i=1 mi�i , where �i is a G-equivariant free boundary minimal surface and mi is

a positive integer for all i = 1, . . . , k, and the genus bound in Theorem 1.10 holds.

Proof Thanks to [11, Lemma A.3], we have that there exists a G-equivariant function
r : M → R

+ such that (up to subsequence) {� j } j∈N is G-almost minimizing in every
An ∈ AN G

r(x)(x) for all x ∈ M . Indeed, the only difference in the proof is that, instead
of considering annuli An(x, r , s) centered at some point x ∈ M , here we have to consider
G-equivariant annuli

⋃
g∈G g(An(x, r , s)) “centered” at some point x ∈ M .

At this point the proof of the second part of the statement follows using the G-almost
minimality of {� j } j∈N. Indeed, given a G-equivariant min–max sequence {� j } j∈N that is
G-almost minimizing in An ∈ AN G

r(x)(x) for all x ∈ M , we get that (up to subsequence)

� j converges as j → +∞ to �, which is a finite union of G-equivariant free boundary
minimal surfaces (possibly with multiplicity), and the genus bound in Theorem 1.10 holds.
The proof of the regularity of � can be found in [7, Theorem 7.1] for the closed case and in
[23, Proposition 4.11] for the free boundary case. The proof of the genus bound is instead
contained in [14, 21]. The adaptations to the equivariant setting are the object of [19, Section
4, after Proposition 4.12] and [20, Section 7.2]. ��
Remark 5.10 Note that in the references above about the regularity and the genus bound
(namely, [7, 14, 19–21, 23]) the definition of almost minimizing sequence (corresponding to
Definition 5.3 in this paper) requires δ j = ε j/8. However, the relation between δ j and ε j in
the definition of almost minimality is not important in the proof of Proposition 5.9.

Remark 5.11 Observe that the difficulties in the equivariant setting arise around the points
in the singular locus of G, i.e., points x ∈ M such that there exists h ∈ G with h(x) = x .
Since we required the isometries in G to be orientation-preserving, we have that the limit
surface can intersect the singular locus only in a point where, locally, the symmetry group
is conjugate to Zk or Dk for some k ≥ 2 (see [12, Theorem 2.4] or [19, Lemma 3.3]). This
is the reason why we add the assumption of “orientation-preserving” to the isometries in G,
namely to exclude the case in which locally the singular locus is a plane.

6 Deformation theorem

In this section we prove that, in the setting of Theorem 1.10, it is possible to modify a
minimizing sequence in a way that, so to say, it avoids a given free boundary minimal
surface with G-equivariant index greater or equal than n + 1. The deformation theorem,
Theorem 6.5, is the analogue of Deformation Theorem A in [27]. Before presenting it, we
recall three lemmas contained in [27] that are needed in the proof.

Lemma 6.1 Let (M3, γ ) be a three-dimensional Riemannian manifold with strictly mean
convex boundary and let G be a finite group of isometries of M. Given a finite union
�2 ⊂ M of G-equivariant free boundary minimal surfaces (possibly with multiplicity)
with indG(spt(�)) ≥ n + 1, there exist 0 < c0 < 1, δ > 0 and a smooth family
{Fv}v∈B

n+1 ⊂ DiffG(M) of G-equivariant diffeomorphisms with:
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(i) F0 = id, F−v = F−1v for all v ∈ B
n+1

;

(ii) for any V ∈ B
F
2δ(�), the smooth function AV : B

n+1 → [0,+∞) given by

AV (v) = ‖(Fv)#V ‖(M)

has a unique maximum at m(V ) ∈ Bn+1
c0/
√
10

(0) and it satisfies −c−10 id ≤ D2AV (v) ≤
−c0id for all v ∈ B

n+1
.

Proof Using that indG(spt(�)) ≥ n + 1, we can find G-equivariant normal vector fields
X1, . . . , Xn+1 on spt(�) such that

Qspt(�)

(
n+1∑

i=1
ai Xi ,

n+1∑

i=1
ai Xi

)

< 0

for all (a1, . . . , an+1) �= 0 ∈ R
n+1. These vector fields can be extended to G-equivariant

vector fields defined in all M (see Remark 3.6). Furthermore recall that, given the flow
� : [0,+∞)× M → M of a G-equivariant vector field Y , we have that �t ∈ DiffG(M) for
all t ∈ [0,+∞) (see Remark 3.3). Given these observations, the proof follows exactly as in
[27, Proposition 4.3], see also [27, Definition 4.1]. ��

The following two lemmas coincide exactly with [27, Lemmas 4.5 and 4.4], since the
G-equivariance does not play any role in these two results. We report them here for the sake
of expository convenience.

Lemma 6.2 ([27, Lemma 4.5]) In the setting of Lemma 6.1, for every G-equivariant varifold

V ∈ B
F
2δ(�), let �V : [0,+∞) × B

n+1 → B
n+1

be the one-parameter flow generated by
the vector field

u �→ −(1− |u|2)∇AV (u), u ∈ B
n+1

,

as defined also in [27, pp. 476]. Then, for all 0 < η < 1/4, there is T =
T (η, δ,�, {Fv}v∈B

n+1 , c0) ≥ 0 such that, for all V ∈ B
F
2δ(�) and v ∈ B

n+1
with

|v − m(v)| ≥ η, we have

AV (�V (T , v)) < AV (0)− c0
10

and |�V (T , v)| > c0
4

.

Remark 6.3 Note that �V is smooth since AV is. Moreover, for all u ∈ B
n+1

, the map
s �→ AV (�V (s, u)) is nonincreasing.

Lemma 6.4 ([27, Lemma 4.4]) There exists η = η(δ,�, {Fv}v∈B
n+1) > 0 such that, for any

G-equivariant varifold V ∈ (BF
δ (�))c with

‖(Fv)#V ‖(M) ≤ ‖V ‖(M)+ η

for some v ∈ B
n+1

, we have F((Fv)#V ,�) ≥ 2η.

Theorem 6.5 (Deformation theorem) Let {� j } j∈N = {{� j
t }t∈I n } j∈N be a minimizing

sequence in the setting of Theorem 1.10. Moreover, assume that

(i) �2 is a finite union of G-equivariant free boundary minimal surfaces (possibly with
multiplicity) with indG(spt(�)) ≥ n + 1;

(ii) H 2(�) = W�;
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(iii) K is a compact set of varifolds such that � /∈ K and �
j
t /∈ K for all j ∈ N, t ∈ I n.

Then there exist ε > 0 and another minimizing sequence {� j } j∈N = {{� j
t }t∈I n } j∈N ⊂ �

such that �
j
t ∩ (B

F
ε (�) ∪ K ) = ∅ for all j sufficiently large.

Proof As aforementioned, the result is the analogue of Deformation Theorem A in [27] and
the idea of the proof is to exploit the fact that we havemany negative directions for the second
variation of the area along �, hence it is possible to push the minimizing sequence {� j } j∈N
away from �, keeping the fact that it is a minimizing sequence. Indeed, the sweepout is
n-dimensional, while we have n + 1 negative directions.

Since spt(�) has G-equivariant index greater or equal than n+1, we can apply Lemma 6.1
and obtain 0 < c0 < 1, δ > 0 and the family {Fv}v∈B

n+1 ⊂ DiffG(M) given by the lemma.
Moreover, up to modifying δ and {Fv}v∈B

n+1 , we can assume that

F(�, Fv(�̃)) ≤ F(�, K )/2 for all �̃ ∈ B
F
2δ(�) and v ∈ B

n+1
. (6.1)

Fixed j ∈ N, define the open subset U j ⊂ I n given by

U j := {t ∈ I n : F(�,�
j
t ) < 7δ/4}.

Consider the continuous function m j : U j → Bn+1
c0/
√
10

(0) given by m j (t) = m(�
j
t ), where

the function m is defined in Lemma 6.1. Since dimU j = n < n + 1 = dim(Bn+1
c0/
√
10

(0)), by

the transversality theoremgiven e.g. in [17, Theorem2.1], there exists m̃ j : U j → Bn+1
c0/
√
10

(0)

such that m̃ j (t) �= 0 and |m̃ j (t)−m j (t)| < 2− j for all t ∈ U j . Hence, consider the function
a j : U j → Bn+1

2− j (0) given by a j (t) = m j (t) − m̃ j (t) and note that a j (t) �= m j (t) for all
t ∈ U j . In particular, we can assume that there is η j > 0 such that |a j (t)−m j (t)| ≥ η j for
all t ∈ U j (possibly taking δ, and so U j , smaller).

Now, for all t ∈ U j , consider the one-parameter flow {�t, j (s, ·)}s≥0 = {��
j
t (s, ·)}s≥0 ⊂

Diff(B
n+1

) defined in Lemma 6.2 and

Tj = T (η j , δ,�, {Fv}v∈B
n+1 , c0) ≥ 0

given by the lemma. Then, given a nonincreasing smooth function ρ : [0,+∞)→ [0, 1] that
is 1 in [0, 3δ/2] and 0 in [7δ/4,+∞), we define the continuous function

v j : I n → B
n+1

, v j (t) =
{

�t, j (ρ(F(�,�
j
t ))Tj , ρ(F(�,�

j
t ))a j (t)) for t ∈ U j

0 for t /∈ U j ,

and then set

�
j
t =

{
Fv j (t)(�

j
t ) for t ∈ U j

�
j
t for t /∈ U j .

Note that� j
t is G-equivariant since�

j
t is G-equivariant and Fv j (t) ∈ DiffG(M). However, a

priori {� j
t }t∈I n is not contained in �, since (t, x) �→ Fv j (t)(x) is not necessarily smooth but

only continuous. Anyway, let us first show that lim j→+∞ supt∈I n H 2(�
j
t ) ≤ W� and that

�
j
t ∩ B

F
ε (�) = ∅ for all t ∈ I n , for j sufficiently large, where 0 < ε < δ has to be chosen.

Later, we will describe a regularization argument to get a sequence of sweepouts with the
same properties of {� j } j∈N, but also contained in �.
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Observe that H 2(�
j
t ) = H 2(�

j
t ) for t /∈ U j and, for t ∈ U j , we have

H 2(�
j
t ) = H 2(Fv j (t)(�

j
t )) ≤ H 2(F

ρ(F(�,�
j
t ))a j (t)

(�
j
t )).

However |ρ(F(�,�
j
t ))a j (t)| ≤ 2− j , which implies that

lim
j→+∞max

t∈I n
H 2(�

j
t ) ≤ lim

j→+∞max
t∈I n

H 2(�
j
t ) = W�.

Now let us prove that� j
t ∩ B

F
ε (�) = ∅ for all t ∈ I n , for j sufficiently large. Up to taking

δ > 0 possibly smaller (note that Lemma 6.1 still holds for δ smaller), we can assume that

|H 2(�̃)−H 2(�)| ≤ c0/20 for all �̃ ∈ B
F
2δ(�). Then, let us distinguish three cases:

• If t ∈ I n is such that F(�,�
j
t ) ≥ 7δ/4, then �

j
t = �

j
t and therefore F(�,�

j
t ) =

F(�,�
j
t ) ≥ 7δ/4 > ε.

• If t ∈ I n is such that F(�,�
j
t ) ≤ 3δ/2, then we have v j (t) = �t, j (Tj , a j (t)) and

therefore, by Lemma 6.2, it holds

H 2(�
j
t ) = H 2(Fv j (t)(�

j
t )) = A�

j
t (�t, j (Tj , a j (t)))) < A�

j
t (0)− c0

10

= H 2(�
j
t )− c0

10
≤ H 2(�)− c0

20
,

where the last inequality holds for j sufficiently large. Hence, it is possible to choose
ε > 0 possibly smaller (depending on� and c0) such that this implies thatF(�,�

j
t ) > ε

(indeed note that c0 does not depend on ε).
• If t ∈ I n is such that 3δ/2 ≤ F(�,�

j
t ) ≤ 7δ/4, then we apply Lemma 6.4. Indeed,

given η = η(δ,�, {Fv}v∈B
n+1) as in the lemma, for j sufficiently large it holds that

H 2(�
j
t ) = H 2(Fv j (t)(�

j
t )) ≤ H 2(F

ρ(F(�,�
j
t ))a j (t)

(�
j
t )) ≤ H 2(�

j
t )+ η,

since |ρ(F(�,�
j
t ))a j (t)| ≤ 2− j → 0. This implies that F(�

j
t ,�) ≥ 2η. Choosing

ε < 2η, we then get that F(�
j
t ,�) > ε for j sufficiently large, as desired.

To conclude the proof, we need to address the regularity issue. For all j ∈ N, let ṽ j : I n →
B

n+1
be a smooth function such that ṽ j = 0 on I n\U j and |ṽ j (t) − v j (t)| ≤ 2− j for all

t ∈ U j . Then, define

�̃
j
t =

{
Fṽ j (t)(�

j
t ) for t ∈ U j

�
j
t for t /∈ U j .

Note that {�̃ j
t }t∈I n ∈ � for all j ∈ N. Moreover, supt∈I n F(�̃

j
t ,�

j
t ) → 0 as j → +∞,

which implies that

lim
j→+∞ sup

t∈I n
H 2(�̃

j
t ) = lim

j→+∞ sup
t∈I n

H 2(�
j
t ) ≤ W�,

and that �̃
j
t ∩ B

F
ε (�) = ∅ for all t ∈ I n , for j sufficiently large (possibly taking ε > 0

smaller).
Finally note that, thanks to (6.1), for all t ∈ U j it holds that �̃

j
t = Fṽ j (t)(�

j
t ) /∈ K , since

�
j
t ∈ B

F
2δ(�) and ṽ j (t) ∈ B

n+1
. Moreover, for all t ∈ I n\U j , we have �̃

j
t = �

j
t /∈ K .

Hence {�̃ j
t }t∈I n also avoids K and thus satisfies the desired properties. ��
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7 Proof of themain theorem

We now have all the tools to prove Theorem 1.10. Inspired by the proofs of [27, Theorems 6.1
and 1.2], the idea consists in repeatedly applying Theorem 6.5 in order to obtain aminimizing
sequence in � that stays away from the G-equivariant free boundary minimal surfaces with
G-equivariant index greater than n.

Proof of Theorem 1.10 First of all, let us assume that the metric γ on the ambient manifold
M is contained in B∞G , defined in Definition B.1, i.e., it is bumpy. Let us consider the set
Vn+1 of finite unions (possibly with multiplicity) of G-equivariant free boundary minimal
surfaces in M with area W� and whose supports have G-equivariant index greater or equal
than n + 1. We want to prove that there exists a minimizing sequence {� j } j∈N ⊂ � such
that C({� j } j∈N) ∩ Vn+1 = ∅. First note that, since γ ∈ B∞G , the set Vn+1 is at most
countable thanks to Proposition B.3 (because Vn+1 consists of finite unions with integer
multiplicities of G-equivariant free boundary minimal surfaces). Therefore, we can write
Vn+1 = {�1,�2, . . .}. Now, the idea is to repeatedly apply Theorem 6.5 in order to avoid
all the elements in Vn+1.

Let us consider a minimizing sequence {� j } j∈N and apply Theorem 6.5 with � = �1.
Thenwe get that there exist ε1 > 0, j1 ∈ N and anotherminimizing sequence {�1, j } j∈N ⊂ �

such that �
1, j
t ∩ B

F
ε1

(�1) = ∅ for all j ≥ j1 and t ∈ I n . Moreover, we can assume

that no �k belongs to ∂ BF
ε1

(�1). Let us now consider �2: if it belongs to B
F
ε1

(�1), we
choose ε2 = ε1 − F(�1,�2) > 0 (here we use that �2 /∈ ∂ BF

ε1
(�1)); otherwise we apply

Theorem 6.5 with � = �2 and K = B
F
ε1

(�1). In both cases, we get ε2 > 0, j2 ∈ N and

another minimizing sequence {�2, j } j∈N ⊂ � such that �
2, j
t ∩ (B

F
ε1

(�1) ∪ B
F
ε2

(�2)) = ∅
for all j ≥ j2 and t ∈ I n . Moreover, we can assume again that no �k belongs to ∂ BF

ε2
(�2).

Then we proceed inductively for all �k’s and we have two possibilities:

• The process ends in finitely many steps. In this case there exist m > 0, a minimizing
sequence {�m, j } j∈N ⊂ �, ε1, . . . , εm > 0 and jm ∈ N such that

�
m, j
t ∩ (B

F
ε1

(�1) ∪ . . . ∪ B
F
εm

(�m)) = ∅
for all j ≥ jm and t ∈ I n and Vn+1 ⊂ BF

ε1
(�1) ∪ . . . ∪ BF

εm
(�m).

• The process continues indefinitely. In this case for all m > 0 there exist a minimizing

sequence {�m, j } j∈N ⊂ �, εm > 0 and jm ∈ N such that �
m, j
t ∩ (B

F
ε1

(�1) ∪ . . . ∪
B
F
εm

(�m)) = ∅ for all j ≥ jm and t ∈ I n and no �k belongs to ∂ BF
ε1

(�1) ∪ . . . ∪
∂ BF

εm
(�m).

In the first case we define�i = �m,i , while in the second casewe set�i = �i,li for all i ∈ N,
for some li ≥ ji such that {�i }i∈N ⊂ � is a minimizing sequence and C({�i }i∈N)∩Vn+1 =
∅. Hence, we can apply Proposition 5.2, Lemma 5.6 and Proposition 5.9 to conclude the
proof in the case of γ ∈ B∞G .

Now, consider the case of an arbitrary metric γ and let {γk}k∈N be a sequence of metrics
in B∞G converging smoothly to γ , which exists because of Theorem B.4. Thanks to the first
part of the proof (in particular applying Proposition 5.2 and Lemma 5.6 to the minimizing
sequence found in the first part of the proof with respect to γk), for every k ∈ N there
exist a G-equivariant min–max sequence {�(k), j

t j
} j∈N ⊂ � (i.e.,H 2

γk
(�

(k), j
t j

)→ W�,γk , the
width of � with respect to the metric γk) that is G-almost minimizing (with respect to γk)
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in every L-admissible family of G-equivariant annuli with L = (3n)3
n
and that converges

in the sense of varifolds to a finite union �k of G-equivariant free boundary minimal (with
respect to γk) surfaces (possibly with multiplicity). Moreover, it holds indG(spt(�k)) ≤ n
and H 2

γk
(�k) = W�,γk .

Note that W�,γk converges to the width W� = W�,γ (the proof is the same as in the
Almgren–Pitts setting, for which one can see [18, Lemma 2.1]). Hence, since the varifolds
�k have uniformly bounded mass, up to subsequence �k converges in the sense of varifolds
to a varifold � with mass equal to W�. Moreover, taking a suitable diagonal subsequence
of {�(k), j

t j
} j,k∈N we can obtain a min–max sequence {� j } j∈N for � with respect to γ ,

converging in the sense of varifolds to � and which is G-almost minimizing (with respect
to γ ) in every L-admissible family of G-equivariant annuli. More precisely, we can get the
min–max sequence {� j } j∈N in such a way that � j is (G, ε j/2n+3, 2ε j )-almost minimizing
in every L-admissible family of G-equivariant annuli, for some sequence of positive numbers
ε j → 0. Indeed, given ε j > 0, if γk is sufficiently close (depending on ε j ) to γ , and � j is
(G, ε j/2n+2, ε j )-almost minimizing in every L-admissible family of G-equivariant annuli
with respect to γk , then � j is (G, ε j/2n+3, 2ε j )-almost minimizing in every L-admissible
family of G-equivariant annuli with respect to γ .

Now, given the min–max sequence {� j } j∈N, we can apply Proposition 5.9, and obtain
that � is a disjoint union of G-equivariant free boundary minimal surfaces (possibly with
multiplicity) and the genus bound in the statement holds. One can look at Fig. 1 for a scheme
of the argument.

Note that, thanks to Theorem 4.3 (see also Remark 4.4), up to extracting a further sub-
sequence, we can assume that spt(�k) converges smoothly (possibly with multiplicity) to a
free boundary minimal surface away from the singular locus S and, possibly, from finitely

...

Λ(k),j
tj

Λ(k),j+1
tj+1

Λ(k),j+2
tj+2

...

Ξk

spt(Ξk)

F

...

Λ(k+1),j
tj

Λ(k+1),j+1
tj+1

Λ(k+1),j+2
tj+2

...

Ξk+1

spt(Ξk+1)

F

...

Λ(k+2),j
tj

Λ(k+2),j+1
tj+1

Λ(k+2),j+2
tj+2

...

Ξk+2

spt(Ξk+2)

F

. . .

. . .

. . .

. . .

Ξ

spt(Ξ)

F

smoothly in
M \ (S ∪ Y)

(multiplicity possible)

. . .

F

diagonal sequence,
G-almost minimizing in
L-admissible families

of G-annuli

Fig. 1 Scheme of the convergence argument in the proof of Theorem 1.10
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many additional points Y . This free boundary minimal surface coincides with the limit of
spt(�k) in the sense of varifolds, which is spt(�), in M \ (S ∪ Y). In particular, we get that
indG(spt(�)) ≤ n, which concludes the proof. ��

8 Equivariant index of some families of (free boundary) minimal
surfaces

In this section, we want to make use of Theorem 1.10 to compute the equivariant index of
some families of minimal surface in S3 and free boundary minimal surfaces in B3. Let us
start by proving Theorem 1.13.

Proof of Theorem 1.13 First note that, applying Theorem 1.10, we can assume that the surface
Mg in [10, Theorem 1.1] has Dg+1-equivariant index less or equal than 1. We want to prove
that the Dg+1-equivariant index is exactly 1. To do so, it is sufficient to construct a test
function on which the associated quadratic form attains a negative value.

Recall that Mg contains the horizontal axes of symmetry ξ1, . . . , ξg+1.Hence, sgnMg
(h) =

−1 for all h ∈ Dg+1 given from a rotation of angle π around any horizontal axis. Observe
that these isometries generate all Dg+1, because the composition of the rotations of angle
π around ξ1 and ξ2 is equal to the rotation of angle 2π/(g + 1) around ξ0. Hence, we can
infer the sign of all the elements of the group. In particular, we obtain that the function
u(x1, x2, x3) = x3 on Mg belongs to C∞G (Mg) for all g ∈ Dg+1. Moreover, one can compute
that

QMg (u, u) = −
∫

Mg

|A|2u2 dH 2 < 0

(see [13, Lemma 6.1]). This proves that the Dg+1-equivariant index of Mg is exactly 1. ��
Remark 8.1 Note that the function x⊥ = 〈x, ν〉 is in C∞G (Mg) and Q(x⊥, x⊥) = 0.

Remark 8.2 Similarly to what we did for the surfaces Mg constructed in [10], we can apply
Theorem 1.10 to any other surface obtained via an equivariant min–max procedure. To our
knowledge, the known equivariant min–max constructions so far are:

• The minimal surfaces in S3 of [19, Sections 6.2, 6.3, 6.5, 6.6 and 6.7].
• The minimal surfaces in S3 of [22, Theorem 3.6].
• The free boundary minimal surfaces in B3 of [20, Theorems 1.1, 1.2 and 1.3].
• The free boundary minimal surfaces in B3 of [10, Theorem 1.1], discussed above.

For all these surfaces we get that the equivariant index (with respect to the corresponding
symmetry group) is less or equal than 1. Then, one has to find a suitable equivariant test
function to get the equality, on a case-by-case basis. However, in most of the cases above the
constant function 1 is such a test function. Indeed, the constant 1 is a negative direction for
the second variation of the area functional for every minimal surface in S3 and every free
boundary minimal surface in B3. Moreover, if the unit normal is equivariant (i.e., h∗ν = ν

for all h in the symmetry group, where ν is a choice of unit normal), the constant function is
also equivariant.

In other cases some more work is needed, as in the proof of Theorem 1.13. This last claim
applies for example to the surfaces in B3 constructed in [20, Theorem 1.1], for which a good
test function is again u(x1, x2, x3) = x3.
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Appendix A: Spectrum of elliptic operators with Robin boundary condi-
tions

In this appendix we consider an elliptic operator with Robin boundary conditions in presence
of a symmetry group and we prove that it admits a discrete spectrum. The proof is very
similar to the one in the case without equivariance (see for example the notes [4]), but we
report it here for completeness.

Lemma A.1 Let �m be a compact Riemannian manifold with boundary ∂� �= ∅. Then there
exists a constant C > 0 such that

‖u‖2L2(∂�)
≤ C‖u‖L2(�)‖u‖H1(�)

for all u ∈ H1(�).

Proof The result is a slight variation of the standard trace inequality ‖u‖L2(∂�) ≤ C‖u‖H1(�).
Indeed, one can look at the proof of [6, Lemma 9.9] where � = R

m+ = {(x1, . . . , xm) ∈
R

m : xm ≥ 0} and note that, integrating the second last line and applying Cauchy–Schwarz
inequality, we get that there exists a constant C > 0 such that

‖u‖2L2(∂�)
≤ C‖u‖L2(�)‖u‖H1(�)

for all u ∈ C1
c (Rm). Then the proof of the lemma follows from a standard partition argument.

��

Lemma A.2 Let V , H be Hilbert spaces such that there exists a compact (continuous) embed-

ding j : V
d

↪−→ H with dense image. Let a : V × V → R be a bounded symmetric H-elliptic
form, i.e., assume that there exist ω ∈ R and c > 0 such that

a(u, u)+ ω‖ j(u)‖2H ≥ c‖u‖2V
for all u ∈ V . Moreover, let A : D(A) ⊂ V → H be the operator associated with the
symmetric form a, i.e., given x ∈ V and y ∈ H we have x ∈ D(A) and Ax = y if and only
if a(x, u) = (y, j(u))H for all u ∈ V . Then the operator A + ωid : D(A) ⊂ V → H is
invertible with bounded compact inverse (A + ωid)−1 : H → D(A) ↪→ H.
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Proof We briefly sketch the proof. Let us consider the operator b : V × V → R given by
b(u, v) := a(u, v)+ ω( j(u), j(v))H . Since b is bounded and coercive, we can apply Lax–
Milgram theorem (cf. [6, Corollary 5.8]) and obtain that B : V → V ∗ defined as B�(v) :=
b(u, v) is an isomorphism. Finally one can prove that the operator j ◦ B−1 ◦ k, where
k : H → V ∗ is given by k(y) = (y, j(·))H , coincides with (A + ωid)−1. ��
Theorem A.3 Let �m be a compact connected Riemannian manifold with boundary ∂� �= ∅,
G be a finite group of isometries of � and sgn� : G → {−1, 1} be a multiplicative function.
In particular we can define C∞G (�), L2

G(�), H1
G(�) as in Definition 3.7. Let α : � → R and

β : ∂� → R be smooth G-equivariant functions, i.e., α ◦h = α and β ◦h = β for all h ∈ G.
Then there exists an orthonormal basis (ϕk)k≥1 ⊂ C∞G (�) of L2

G(�) and a nondecreasing
sequence (λk)k≥1 ⊂ R diverging to +∞ such that

{
−�ϕk − αϕk = λkϕk in �

∂ηϕk + βϕk = 0 in ∂�.

Proof Let us consider the quadratic form a : H1
G(�)× H1

G(�)→ R defined as

a(u, v) :=
∫

�

(∇u · ∇v − αuv) dH m

+
∫

∂�

βuv dH m−1.

Note that a is continuous, because

|a(u, v)| ≤ ‖∇u‖L2(�)‖∇v‖L2(�) + ‖α‖L∞(�)‖u‖L2(�)‖v‖L2(�)

+ ‖β‖L∞(∂�)‖tr u‖L2(∂�)‖tr v‖L2(∂�),

and the trace tr : H1
G(�)→ L2

G(∂�) is continuous. Moreover, a is L2
G(�)-elliptic, i.e.,

a(u, u)+ ω‖u‖2L2(�)
≥ c‖u‖2H1(�)

for all u ∈ H1
G(�), for some c > 0 and ω ∈ R. Here we used that Lemma A.1 implies

‖β‖L∞
∫

∂�

|u|2 dH m−1 ≤ c1‖u‖L2(�)‖u‖H1(�) ≤
1

2
‖u‖2H1(�)

+ c1
2
‖u‖2L2(�)

for some c1 > 0.
Hence, since the embedding j : H1

G(�)→ L2
G(�) is compact, we can apply Lemma A.2

with H = L2
G(�) and V = H1

G(�), and obtain that A+ωid : D(A) ⊂ H1
G(�)→ L2

G(�) is
invertible with bounded compact inverse (A + ωid)−1 : L2

G(�) → D(A) ⊂ L2
G(�), where

A : D(A) ⊂ L2
G(�) → L2

G(�) is the operator associated with the symmetric form a, as in
the statement of the lemma.

Now we want to prove that A = −�− α and D(A) = DR , where

DR :=
{

u ∈ H1
G(�) : �u ∈ L2

G(�),
∫
�

(�u)v + ∇u · ∇v dH m

= − ∫
∂�

βuv dH m−1 ∀v ∈ H1
G(�)

}

.

Let u ∈ D(A) and f ∈ L2
G(�) be such that Au = f , then

∫

�

(∇u · ∇v − αuv) dH m +
∫

∂�

βuv dH m−1 =
∫

�

f v dH m
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for all v ∈ H1
G(�). In particular, if we consider v ∈ C∞G (�)with compact support in int(�),

we get that �u ∈ L2
G(�) and −�u − αu = f . Exploiting this equation we obtain
∫

�

(�u)v + ∇u · ∇v dH m = −
∫

∂�

βuv dH m−1

for all v ∈ H1
G(�). This proves that u ∈ DR and Au = −�u − αu. Conversely, given

u ∈ DR , we can easily show that u ∈ D(A).
Now observe that the bounded compact operator (A + ωid)−1 : L2

G(�) → L2
G(�) is

positive definite. Therefore, by the spectral theorem, there exists an orthonormal basis (ϕk)k∈N
of L2

G(�) of eigenvectors of (A+ωid)−1 with corresponding eigenvalues (μk)k∈N such that
μ0 ≥ μ1 ≥ μ2 ≥ . . . → 0. Then note that ϕk ∈ DR and it is an eigenvector of A with
corresponding eigenvalue λk := 1/μk − ω for all k ∈ N. Finally, the fact that ϕk ∈ C∞G (�)

follows from standard regularity theory and, from the fact that ϕk ∈ DR , we obtain also that
∂ηϕk + βϕk = 0 in ∂�. ��

Appendix B: Bumpyness isG-generic

In this section, let Mm+1 be a smooth, compact, connected manifold with boundary and let
G be a finite group of diffeomorphisms of M . Moreover, let q be a positive integer ≥ 3 or
q = ∞.

Definition B.1 [cf. [1, Theorem 9]] Denote by �
q
G be the set of G-equivariant Cq metrics on

M endowed with the Cq topology. Moreover, let Bq
G ⊂ �

q
G be the subset of metrics γ ∈ �

q
G

such that no compact, smooth, G-equivariant manifolds with boundary that are Cq properly
embedded as free boundary minimal hypersurfaces in (M, γ ), and no finite covers of any
such hypersurface, admit a nontrivial Jacobi field.

Remark B.2 Note that we do not require the Jacobi field in the previous definition to be
G-equivariant.

Proposition B.3 Let γ ∈ B∞G be such that (M, γ ) satisfies property (P). Then (M, γ ) con-
tains countably many G-equivariant free boundary minimal hypersurfaces.

Proof This follows from Theorem 5 in [1], similarly to Corollary 8 therein. ��
Theorem B.4 The subset Bq

G defined in Definition B.1 is comeagre in �
q
G.

Remark B.5 In [38, Theorem 2.1], White proved a stronger result in the closed case, namely
that a generic, G-equivariant, Cq Riemannian metric on a smooth closed manifold is bumpy
in the following sense: no closed, minimal immersed submanifold has a nontrivial Jacobi
field. We decided to state Theorem B.4 only for properly embedded G-equivariant submani-
folds, since White’s generalization requires more technical work and we do not need it here.
However a similar proof should work also in the case with boundary.

Before proceeding to the proof of Theorem B.4, we need to introduce some notation,
which are the adaptations to the G-equivariant setting to the ones given in [1, pp. 22].
Consider a compact, connected, smooth manifold �m with boundary and fix any α ∈ (0, 1).
For w ∈ Cq−1,α(�, M), let

[w] := {w ◦ ϕ : ϕ ∈ Diff(�)}.

123



201 Page 26 of 28 G. Franz

Then define

PEq
G := {[w] : w ∈ Cq−1,α(�, M) is a proper embedding with G-equivariant image}

and

Sq
G := {(γ, [w]) ∈ �

q
G × PEq

G : w is a free boundary minimal proper embedding w.r.t. γ }.
Finally denote by π

q
G : Sq

G → �
q
G the projector onto the first factor, namely πq(γ, [w]) = γ .

Given these definitions, we can now state the main ingredient to prove Theorem B.4.
This is a structure theorem, whose first version was discovered by White in [39], stating the
relation between critical points of πq and degenerate minimal hypersurfaces that underlies
any bumpy metric theorem.

Theorem B.6 (Structure Theorem, cf. [38, Theorem 2.3] and [1, Theorem 35] In the setting
described above, Sq

G is a separable C1 Banach manifold and π
q
G : Sq

G → �
q
G is a C1

Fredholm map of Fredholm index 0. Furthermore, (γ, [w]) is a critical point of π
q
G if and

only if w(�) admits a nontrivial G-equivariant Jacobi field.

Remark B.7 Theorem 2.3 in [38] is the version of the theorem in the case without boundary,
while Theorem 35 in [1] is the case with boundary but where no group of symmetries is
considered.

Proof As observed by White in the proof of [38, Theorem 2.3], the proof of the Structure
Theorem works the same in the equivariant case replacing “metric” with “G-equivariant
metric”, “functions” with “G-equivariant functions” and working on a G-equivariant hyper-
surface instead of on any hypersurface. In fact, the reader can follow the proof of the Structure
Theorem in the case with boundary contained in [1, Section 7.2] with these modifications.
In particular note that:

• Here we used Mm+1 for the ambient manifold and �m for the embedded hypersurface,
instead of N n+1 and Mn as in [1].

• The background metric γ∗ shall be chosen G-equivariant. This way, the exponential
map with respect to γ∗ induces a diffeomorphism between V r (as defined in [1]*pp.
25) and a G-equivariant open neighborhood of w(�). Then a class [w] such that w ∈
Cq−1,α(�, M) is a proper embeddingwithG-equivariant image corresponds to a function
u ∈ Cq−1,α

G (�, V ) with G-equivariant symmetry (cf. Definition 3.7).
• As observed in Remark 3.5, being G-stationary is the same as being stationary. Hence

[1, Proposition 41] does not require modifications.
• The computations in [1, Proposition 45] are the same. The only change that we need

is in point (2), where the operator L(γ, u) should be consider between the spaces
Cq−1,α

G (�, V ) and Cq−3,α
G (�, V ) × Cq−2,α

G (∂�, V ). Then, similarly as in [1], one can

prove that L(γ, u) : Cq−1,α
G (�, V ) → Cq−3,α

G (�, V ) × Cq−2,α
G (∂�, V ) is a Fredholm

operator of Fredholm index 0.
• Finally, [1, Proposition 46] and the final proof of Structure Theorem itself (at [1, pp. 31])

can be modified accordingly to fit the equivariant setting. Just note that the functions in
ker L(γ, u), where L(γ, u) is seen as a map between the equivariant spaces, correspond
exactly to the G-equivariant Jacobi fields.

��
Proof of Theorem B.4 Given Theorem B.6, the proof is exactly the same as the proof of Theo-
rem 9 in [1, Section 7.1] substituting�q , Sq ,Bq with�

q
G , S

q
G ,B

q
G . In fact, the only difference
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in the proofs is hidden in the application of [38, Lemma 2.6], which is the point where the
Structure Theorem (in the different variants: Theorem B.6, [38, Theorem 2.3] or [1, Theorem
35]) is used. However, White in [38] works in the equivariant setting as we do here, hence
the argument there can be applied in our context without changes, since the presence of the
boundary does not play a role in this lemma, as observed also in [1, pp. 24]. As said above
(in the proof of Theorem B.6), the reader should pay attention to the fact that here we used
Mm+1 for the ambient manifold and �m for the embedded hypersurface, instead of N n+1
and Mn as in [1]. ��
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