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Abstract
We show that the components of finite energy solutions to general nonlinear Schrödinger
systems have exponential decay at infinity. Our results apply to positive or sign-changing
components, and to cooperative, competitive, or mixed-interaction systems. As an applica-
tion, we use the exponential decay to derive an upper bound for the least possible energy of
a solution with a prescribed number of positive and nonradial sign-changing components.

Mathematics Subject Classification 35B40 · 35B45 · 35J47 · 35B06 · 35J10

1 Introduction

Consider the nonlinear Schrödinger system
⎧
⎪⎪⎨

⎪⎪⎩

−�ui + Vi (x)ui =
�∑

j=1

βi j |u j |p|ui |p−2ui ,

ui ∈ H1(RN ), i = 1, . . . , �,

(1.1)
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where N ≥ 1, Vi ∈ L∞(RN ), βi j ∈ R and 1 < p < 2∗
2 . Here 2

∗ is the usual critical Sobolev
exponent, namely, 2∗ := 2N

N−2 if N ≥ 3 and 2∗ := ∞ for N = 1, 2.
Systems of this type occur as models for various natural phenomena. In physics, for exam-

ple, they describe the behavior of standing waves for a mixture of Bose-Einstein condensates
of different hyperfine states which overlap in space [13]. The coefficients βi j determine the
type of interaction between the states; if βi j > 0, then there is an attractive force between ui

and u j , similarly, if βi j < 0, then the force is repulsive, and if βi j = 0, then there is no direct
interaction between these components. Whenever all the interaction coefficients are positive,
we say that the system is cooperative. If βi i > 0 and βi j < 0 for all i �= j , then the system is
called competitive. And if some βi j are positive and others are negative for i �= j , then we
say that the system has mixed couplings. All these regimes exhibit very different qualitative
behaviors and have been studied extensively in recent years, see for instance [5, 6, 8–12, 17,
19–24, 26] and the references therein.

System (1.1) has a variational structure, and therefore a natural strategy is to find weak
solutions by minimizing an associated energy functional on a suitable set, under additional
assumptions on the matrix (βi j ) and on the potentials Vi . Using this approach, several kinds
of solutions have been found in terms of their signs and their symmetries. However, there
seems to be no information available about the decay of these solutions at infinity. In this
paper, we show that finite energy solutions must decay exponentially at infinity, and a rate
can be found in terms of the potentials Vi . Our main result is the following one.

Theorem 1.1 Assume that, for every i = 1, . . . , �,

(V1) Vi : R
N → R is Hölder continuous and bounded,

(V2) there exists ρ ≥ 0 such that

σi := inf
RN �Bρ(0)

Vi > 0.

Let (u1, . . . , u�) ∈ (H1(RN )
)�

be a solution of (1.1) and let μi ∈ (0,
√

σi ). Then, there is
C > 0 such that

|ui (x)| ≤ Ce−μi |x | for all x ∈ R
N and i = 1, . . . , �. (1.2)

Furthermore, if Vi ≡ 1 for every i = 1, . . . , �, then (1.2) holds true with μi = 1.

We emphasize that each component may have a different decay depending on each poten-
tial Vi . The main obstacle to showing (1.2) is to handle the possibly sublinear term |ui |p−2ui

for p ∈ (1, 2) (which is always the case for N ≥ 4). To explain this point in more detail,
assume that (u1, . . . , u�) is a solution of (1.1) and write the i-th equation of the system as

−�ui + (ai (x) − ci (x)|ui (x)|p−2)ui = 0, ai := Vi − βi i |ui |2p−2, ci :=
�∑

j �=i

βi j |u j |p.

(1.3)

Since every u j ∈ H1(RN ) ∩ C0(RN ), we know that ai and ci are bounded in R
N , but

|ui |p−2 → ∞ as |x | → ∞ and it is also singular at the nodal set of a sign-changing solution.
As a consequence, one cannot use directly previously known results about exponential decay
for scalar equations, such as those in [1, 3, 18]. In fact, one can easily construct a one-
dimensional solution of a similar scalar equation that has a power-type decay. For instance,
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let w ∈ C2(R) be a positive function such that w(x) = |x |−2/3 for |x | > 1 and let

c(x) := −w′′(x) + w(x)

w(x)
1
2

, x ∈ R.

Then, w ∈ H1(R) is a solution of −w′′ + w = c w
1
2 in R, c(x) → 0 as |x | → ∞, and w

decays as a power at infinity.
This shows that the proof of the exponential estimate in Theorem 1.1must rely on a careful

study of the system structure. In other words, although the sublinear nonlinearity |ui |p−2ui

appears in (1.1), the system is not sublinear. As a whole, it is always superlinear.
With this in mind, we adapt some of the arguments in [1, 18] preserving at each step the

system structure of the problem. These arguments rely basically on elliptic regularity and
comparison principles.

The exponential decay of solutions is a powerful tool in their qualitative study. As an
application of Theorem 1.1, we derive energy bounds of solutions having prescribed positive
and nonradial sign-changing components. For this, power type decay would not be enough.

To be more precise, we consider the autonomous system
⎧
⎪⎪⎨

⎪⎪⎩

−�ui + ui =
�∑

j=1

βi j |u j |p|ui |p−2ui ,

ui ∈ H1(RN ), i = 1, . . . , �.

(1.4)

where the βi j ’s satisfy the following condition:

(B1) The matrix (βi j ) is symmetric and admits a block decomposition as follows: For some
1 ≤ q ≤ � there exist 0 = �0 < �1 < · · · < �q−1 < �q = � such that, if we set

Ih := {i ∈ {1, . . . , �} : �h−1 < i ≤ �h}, h ∈ {1, . . . , q},
then βi i > 0, βi j ≥ 0 if i, j ∈ Ih , and βi j < 0 if i ∈ Ih, j ∈ Ik and h �= k.

According to this decomposition, a solution u = (u1, . . . , u�) to (1.1) may be written in
block-form as

u = (u1, . . . , uq) with uh = (u�h−1+1, . . . , u�h ), h = 1, . . . , q.

We say that u is fully nontrivial if every component ui is different from zero.
Set Q := {1, . . . , q}. Given a partition Q = Q+ ∪ Q− with Q+ ∩ Q− = ∅ we look for

solutions such that every component of uh is positive if h ∈ Q+ and every component of
uh is nonradial and changes sign if h ∈ Q−. To this end, we use variational methods in a
space having suitable symmetries. As shown in [11, Section 3], to guarantee that the solutions
obtained are fully nontrivial we need to assume the following two conditions:

(B2) For each h ∈ Q, the graph whose set of vertices is Ih and whose set of edges is
Eh := {{i, j} : i, j ∈ Ih, i �= j, βi j > 0} is connected.

(B3) If q ≥ 2 then, for every h ∈ {1, . . . , q} such that �h − �h−1 ≥ 2, the inequality

(
min{i, j}∈Eh

βi j

)

⎡

⎢
⎢
⎢
⎣

min
h=1,...,q

max
i∈Ih

βi i

∑

i, j∈Ih

βi j

⎤

⎥
⎥
⎥
⎦

p
p−1

> C∗
q∑

k=1
k �=h

∑

i∈Ih
j∈Ik

|βi j |

holds true, where C∗ = C∗(N , p, q, Q+) > 0 is the explicit constant given in (3.7)
below.
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In [11] it is shown that, for any q , the system (1.1) has a fully nontrivial solution satisfying
the sign requirements described above. Furthermore, an upper bound for its energy is exhib-
ited, but only for systems with at most two blocks, i.e., for q = 1, 2. Here we use Theorem
1.1 to obtain an energy bound for any number of blocks.

For each h = 1, . . . , q , let R
Ih := {s = (s�h−1+1, . . . , s�h ) : si ∈ R for all i ∈ Ih} and

define

μh := inf
s∈R

Ih
s �=0

⎛

⎜
⎜
⎝

∑
i∈Ih

s2i
(∑

i, j∈Ih
βi j |si |p|s j |p

) 2
2p

⎞

⎟
⎟
⎠

p
p−1

. (1.5)

For any � ∈ N, we write ‖u‖ for the usual norm of u = (u1, . . . , u�) in (H1(RN ))�, i.e.,

‖u‖2 :=
�∑

i=1

∫

RN
(|∇ui |2 + |ui |2).

We prove the following result.

Theorem 1.2 Let N = 4 or N ≥ 6, and let Q = Q+ ∪ Q− with Q+ ∩ Q− = ∅. Assume
(B1), (B2), and (B3). Then, there exists a fully nontrivial solution u = (u1, . . . , uq) to the
system (1.4) with the following properties:

(a) Every component of uh is positive if h ∈ Q+ and every component of uh is nonradial
and changes sign if h ∈ Q−.

(b) If q = 1, then

‖u‖2 = μ1‖ω‖2 if Q = Q+ and ‖u‖2 < 10μ1‖ω‖2 if Q = Q−.

(c) If q ≥ 2 the following estimate holds true

‖u‖2 <

⎛

⎝min
k∈Q

(
akμk +

∑

h∈Q�{k}
bhμh

)
⎞

⎠ ‖ω‖2, (1.6)

where ak := 1 if k ∈ Q+, ak := 12 if k ∈ Q−, bh := 6 if h ∈ Q+, bh := 12 if h ∈ Q−, and
ω is the unique positive radial solution to the equation

− �w + w = |w|2p−2w, w ∈ H1(RN ). (1.7)

To proveTheorem1.2,we follow the approach in [11] and impose on the variational setting
some carefully constructed symmetries which admit finite orbits. This approach immediately
gives energy estimates but it requires showing a quantitative compactness condition which
needs precise knowledge about the asymptotic decay of the components of the system. Here
is where we use Theorem 1.1.

The paper is organized as follows. Section 2 is devoted to the proof of the exponential decay
stated in Theorem 1.1. The application of this result to derive energy bounds is contained in
Section 3, where we also give some concrete examples.

2 Exponential decay

This section is devoted to the proof of Theorem 1.1. As a first step, we extend the argument
in [2, Lemma 5.3] to systems. Let Br denote the ball of radius r in R

N centered at zero. Let
σi and βi j as in (V2) and (1.1), then we let σ := (σ1, . . . , σ�) and β := (βi j )

�
i, j=1.
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Lemma 2.1 Let Vi ∈ L∞(RN ) satisfy (V2) and let u = (u1, . . . , u�) be a solution of (1.1).
Set

ξi (r) :=
∫

RN �Br

(|∇ui |2 + |ui |2
)

and ξ(r) := (ξ1(r), . . . , ξ�(r)).

Then, there are positive constants C = C(u, σ ,β, N , ρ, p) and ϑ = ϑ(σ ), with ρ and σi

as in (V2), such that

|ξ(r)|1 :=
�∑

i=1

ξi (r) ≤ Ce−ϑr for every r ≥ 0.

Proof Let χ : R
N → R be given by χ(r) := 0 if r ≤ 0, χ(r) := r if r ∈ (0, 1) and

χ(r) := 1 if r ≥ 1. Let ur
i (x) := χ(|x | − r)ui (x) for r ≥ 0, x ∈ R

N , and i = 1, . . . , �.
Then ur

i ∈ H1(RN ) and

ur
i (x) = (|x | − r)ui (x), ∇ur

i (x) = (|x | − r)∇ui (x) + x

|x |ui (x), if x ∈ Br+1 � Br .

Set δ := min{σ1, . . . , σ�, 1}. Using that |ui
x
|x | · ∇ui | ≤ 1

2 (|∇ui |2 + |ui |2) we obtain
∫

RN

(∇ui · ∇ur
i + Vi ui u

r
i

) ≥ δξi (r + 1) +
∫

Br+1�Br

[
(|x | − r)

(|∇ui |2 + Vi u2
i

)+ ui
x

|x | · ∇ui

]

≥ δξi (r + 1) − 1

2

∫

Br+1�Br

(|∇ui |2 + |ui |2
)

≥ (δ + 1
2 )ξi (r + 1) − 1

2 ξi (r) if r + 1 ≥ ρ. (2.1)

As u solves (1.1) we have that

∣
∣
∣
∣

∫

RN
∇ui · ∇ur

i + Vi ui u
r
i

∣
∣
∣
∣ =
∣
∣
∣
∣
∣
∣

∫

RN

�∑

j=1

βi j |u j |p|ui |p−2ui u
r
i

∣
∣
∣
∣
∣
∣

≤
�∑

j=1

∫

RN �Br

|βi j ||u j |p|ui |p−2|ui |2 =
�∑

j=1

|βi j |
∫

RN �Br

|u j |p|ui |p

and since |um |p ≤
(∑�

k=1 |uk |2p
)1/2

for every m = 1, . . . , �, we obtain

∣
∣
∣
∣

∫

RN
∇ui · ∇ur

i + Vi ui u
r
i

∣
∣
∣
∣ ≤
⎛

⎝
�∑

j=1

|βi j |
⎞

⎠
�∑

k=1

∫

RN �Br

|uk |2p.

Given that uk ∈ H1(RN ) for all k = 1, . . . , �, LemmaA.1 implies the existence of a constant
C1 = C1(N , p) > 0 such that

∣
∣
∣
∣

∫

RN
∇ui · ∇ur

i + Vi ui u
r
i

∣
∣
∣
∣ ≤ C1

⎛

⎝
�∑

j=1

|βi j |
⎞

⎠
�∑

k=1

(∫

RN �Br

(|∇uk |2 + |uk |2
)
)p

(2.2)
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for every r ≥ 1 and i = 1, . . . , �. Set C2 := C1
∑�

i, j=1 |βi j |. From (2.1) and (2.2), assuming
without loss of generality that ρ ≥ 2 and adding over i , we get

2δ + 1

2
|ξ(r + 1)|1 − 1

2
|ξ(r)|1 ≤ C2

�∑

k=1

|ξk(r)|p =: C2 |ξ(r)|p
p if r + 1 ≥ ρ.

Therefore,

|ξ(r + 1)|1
|ξ(r)|1 ≤ 1

2δ + 1

(

1 + 2C2
|ξ(r)|p

p

|ξ(r)|1

)

≤ 1

2δ + 1

(
1 + 2C2|ξ(r)|p−1

1

)
=: γ (r) if r + 1 ≥ ρ.

(2.3)

Since |ξ(r)|1 → 0 as r → ∞, there is r0 = r0(u, p,β, ρ) ∈ N such that r0 ≥ ρ and
γ (r) ≤ γ −1

0 for all r ≥ r0 with γ0 := 2δ+1
δ+1 > 1. Then, for r > r0 + 1,

|ξ(r)|1 ≤ |ξ(�r�)|1 = |ξ(r0)|1
�r�−1∏

k=r0

|ξ(k + 1)|1
|ξ(k)|1 ≤ |ξ(r0)|1γ r0−�r�

0 ≤ ‖u‖2γ r0−r+1
0 ,

where �r� denotes the floor of r . Since |ξ(r)|1 ≤ ‖u‖2 ≤ ‖u‖2γ r0−r+1
0 for r ≤ r0 + 1 we

have that

|ξ(r)|1 ≤ ‖u‖2γ r0−r+1
0 = ‖u‖2γ r0+1

0 e− ln(γ0)r for every r ≥ 0,

as claimed. ��
Lemma 2.2 Assume (V1) and let u = (u1, . . . , u�) be a solution of (1.1). Then ui ∈
W 2,s(RN ) ∩ C2(RN ) for every s ≥ 2 and i = 1, . . . , �.

Proof Let N ≥ 3. The argument for N = 1, 2 is similar and easier. For each i = 1, . . . , � set

fi :=
l∑

j=1

βi j |u j |p|ui |p−2ui . (2.4)

Since |uk | ≤ |u| :=
√

u2
1 + · · · + u2

� for every k = 1, . . . �, we have that

| fi | ≤
�∑

i, j=1

|βi j ||u j |p|ui |p−1 ≤
⎛

⎝
�∑

j=1

|βi j |
⎞

⎠ |u|p|u|p−1 ≤
⎛

⎝
�∑

i, j=1

|βi j |
⎞

⎠ |u|2p−1. (2.5)

Therefore, fi ∈ Ls1(RN ) for s1 := 2∗
2p−1 > 1 and, by the standard L p-elliptic regularity

theory, ui ∈ W 2,s1(RN ) for all i = 1, . . . , � (see, e.g., [14, Chapter 9] or [25, Section
3.2]). Using a bootstrapping argument, we conclude the existence of s > max{ N

2 , 2} such
that ui ∈ W 2,s(RN ) for all i = 1, . . . , � and thus, by the Sobolev embedding theorem,
ui ∈ C1,α(RN ). Since Vi is Hölder continuous and bounded, applying the Schauder estimates
repeatedly, we deduce that ui is of class C2 (see [15, Section 1.3]). ��

In the rest of the paper, we write | · |t for the norm in Lt (RN ), 1 ≤ t ≤ ∞. If u =
(u1, . . . , u�) ∈ [L∞(RN )]�, then |u|∞ := ∑�

i=1 supRN |ui |. Moreover, for a proper open
subset � of R

N we denote the usual Sobolev norm in H1(�) by ‖ · ‖H1(�), i.e.,

‖u‖2H1(�)
:=
∫

�

(|∇u|2 + |u|2).
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Lemma 2.3 Assume (V1). Let u = (u1, . . . , u�) be a solution of (1.1), s > max{2, N
2 }

and � > 0 be such that |Vi |∞ ≤ � for i = 1, . . . , �. Then there is a constant C =
C(β, N , p,�, s) > 0 such that, for any x ∈ R

N ,

‖ui‖W 2,s (B 1
2
(x)) ≤ C

⎛

⎝|ui |
s−2

s∞ ‖ui‖
2
s
H1(B1(x))

+ |u|
2ps−(s+2)

s∞
( �∑

j=1

‖u j‖2H1(B1(x))

) p
s

⎞

⎠ ,

where BR(x) is the ball of radius R centered at x.

Proof Since ui ∈ W 2,s(RN ) ⊂ L∞(RN ), we have that

|ui |s = |ui |s−2|ui |2 ≤ |ui |s−2∞ |ui |2.
Set fi as in (2.4). By (2.5), there is a constant C2 = C2(β) such that

| fi |s ≤ Cs
2|u|(p−1)s |u|ps = Cs

2|u|(p−1)s+p(s−2)(u2
1 + · · · + u2

�)
p

≤ Cs
2|u|2ps−(s+2)∞ �p(u2p

1 + · · · + u2p
� ),

where |u| :=
√

u2
1 + · · · + u2

� and (p − 1)s + p(s − 2) > 0. Then, by [14, Theorem 9.11],
there is a positive constant C1 = C1(s, N ,�) such that

‖ui‖W 2,s (B 1
2
(x)) ≤ C1

(|ui |Ls (B1(x)) + | fi |Ls (B1(x))

)
for any x ∈ R

N .

From the previous inequalities we derive

‖ui‖W 2,s (B 1
2
(x)) ≤ C1

⎛

⎝|ui |
s−2

s∞ ‖ui‖
2
s
H1(B1(x))

+ C2�
p
s C3|u|

2ps−(s+2)
s∞
( �∑

j=1

‖u j‖2H1(B1(x))

) p
s

⎞

⎠ ,

where C3 = C3(N , p) is the constant given by the Sobolev embedding H1(B1) ⊂ L2p(B1).
��

Lemma 2.4 Assume (V1) − (V2), let u = (u1, . . . , u�) be a solution of (1.1) and let fi be as
in (2.4). Then, there are constants η > 0, C1 > 0, and C2 > 0 such that

|ui (x)| ≤ C1e−η|x |, | fi (x)| ≤ C2e−(2p−1)η|x |, for all x ∈ R
N and i = 1, . . . , �.

Proof For x ∈ R
N with |x | ≥ 2, set r := 1

2 |x |. Then, B1(x) ⊂ R
N

� Br and, by Lemma
2.1, there are positive constants K1 = K1(u, σ ,β, N , ρ, p) and ϑ = ϑ(σ ), with ρ and σi

as in (V2), such that

‖u j‖2H1(B1(x))
≤ ‖u j‖2H1(RN �Br )

= ξ j (r) ≤
�∑

i=1

ξi (r) ≤ K1e
−ϑr for every j = 1, . . . , �.

Fix s > max{ N
2 , 2}. By Lemma 2.3 there are positive constants K2 = K2(u,β, N , p,�, s)

and K3 = K3(u, σ ,β, ρ, N , p, s) such that

‖ui‖W 2,s (B 1
2
(x)) ≤ K2

⎛

⎝‖ui‖
2
s
H1(B1(x))

+
( �∑

j=1

‖u j‖2H1(B1(x))

) p
s

⎞

⎠ ≤ K2K3e
− ϑ

s r .

Therefore,

|ui (x)| ≤ |ui |L∞(B 1
2
(x)) ≤ K4‖ui‖W 2,s (B 1

2
(x)) ≤ K2K3K4e

− ϑ
2s |x | for every x ∈ R

N
� B2,

123
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where K4 is the positive constant given by the embedding W 2,s(B 1
2
) ⊂ L∞(B 1

2
). Since ui

is continuous, we may choose C1 ≥ K2K3K4 such that |ui (x)| ≤ C1e− ϑ
s for every x ∈ B2.

So, setting η := ϑ
2s , we obtain

|ui (x)| ≤ C1e
−η|x | for every x ∈ R

N .

The estimate for fi follows immediately from (2.5). ��
The following result is a particular case of [18, Theorem 2.1]. We include a simplified

proof for completeness.

Lemma 2.5 Assume that V : R
N → R satisfies σ := infRN �Bρ(0) V > 0 for some ρ ≥ 0.

Let w be a classical solution of −�w + V w = f in R
N such that

|w(x)| ≤ Ce−η|x | and | f (x)| ≤ Ce−δ|x | for all x ∈ R
N

and for some constants C > 0, η ∈ (0,
√

σ) and δ ∈ (η,
√

σ ]. Then, for any μ ∈ (η, δ),
there is M = M(μ, δ, ρ, σ, C) > 0 such that

|w(x)| ≤ Me−μ|x | for all x ∈ R
N .

Proof Let ρ, σ, η, δ, μ, and C be as in the statement. Set v(x) := e−μ|x | for x ∈ R
N . Then,

�v(x) = v(x)h(|x |) for x ∈ R
N

� {0}, where h(r) := μ2 − (N − 1)
μ

r
.

In particular, V (x) − h(|x |) ≥ σ − μ2 =: ε > 0 for |x | > ρ. Fix t ∈ R satisfying

t >
C

ε
e(μ−δ)ρ and w(x) < tv(x) for |x | = ρ. (2.6)

We claim that w(x) ≤ tv(x) for all |x | > ρ. Indeed, let z := w − tv and assume, by
contradiction, that m := sup|x |≥ρ z(x) > 0. Since lim|x |→∞ z(x) = 0, there is R > ρ such
that z(x) ≤ m

2 for |x | ≥ R. Let � := {x ∈ R
N : ρ < |x | < R and z(x) > 0}. Then z ≤ m

2
on ∂� and, by (2.6),

−�z(x) = −�w(x) + t�v(x) = f (x) − V (x)w(x) + tv(x)h(|x |)
= f (x) − V (x)z(x) + tv(x)(h(|x |) − V (x))

< Ce−δ|x | − εtv(x) = Ce−δ|x | − εte−μ|x | < 0 for every x ∈ �.

Then, by the maximum principle, m = max� z = max∂� z ≤ m
2 . This is a contradiction.

Therefore m ≤ 0, namely, w(x) ≤ te−μ|x | for all |x | ≥ ρ. Arguing similarly for −w and
using that w ∈ L∞(RN ) we obtain that |w(x)| ≤ Me−μ|x | for all x ∈ R

N , as claimed. ��
We are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Iterating Lemmas 2.4 and 2.5, using that 2p − 1 > 1, one shows that,
for any μi ∈ (0,

√
σi ), there is C > 0 such that |ui (x)| ≤ Ce−μi |x | for all x ∈ R

N and for
all i = 1, . . . , �.

Now, assume thatVi ≡ 1 for every i = 1, . . . , � and letμ ∈ (0, 1)be such that (2p−1)μ >

1. By Lemma 2.4, we have that | fi (x)| ≤ C2e−(2p−1)μ|x | for all x ∈ R
N . The claim now

follows from [1, Theorem 2.3(c)]. ��
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3 Energy estimates for seminodal solutions

In this section we prove Theorem 1.2. Consider the autonomous system (1.4) where N ≥ 4,
1 < p < N

N−2 and βi j satisfy the assumption (B1) stated in the Introduction. According to
the decomposition given by (B1), a solution u = (u1, . . . , u�) to (1.4) may be written in
block-form as

u = (u1, . . . , uq) with uh = (u�h−1+1, . . . , u�h ), h = 1, . . . , q.

u is called fully nontrivial if every component ui is different from zero. We say that u is
block-wise nontrivial if at least one component in each block uh is nontrivial.

Following [11], we introduce suitable symmetries to produce a change of sign in some
components. Let G be a finite subgroup of the group O(N ) of linear isometries of R

N and
denote by Gx := {gx : g ∈ G} the G-orbit of x ∈ R

N . Let φ : G → Z2 := {−1, 1} be a
homomorphism of groups. A function u : R

N → R is called G-invariant if it is constant on
Gx for every x ∈ R

N and it is called φ-equivariant if

u(gx) = φ(g)u(x) for all g ∈ G, x ∈ R
N . (3.1)

Note that, if φ ≡ 1 is the trivial homomorphism and u satisfies (3.1), then u is G-invariant.
On the other hand, if φ is surjective every nontrivial function satisfying (3.1) is nonradial and
changes sign. Define

H1(RN )φ := {u ∈ H1(RN ) : u is φ-equivariant}.
For each h = 1, . . . , q , fix a homomorphism φh : G → Z2. Take φi := φh for all i ∈ Ih and
set φ = (φ1, . . . , φ�). Denote by

Hφ := H1(RN )φ1 × · · · × H1(RN )φ� ,

and let J φ : Hφ → R be the functional given by

J φ(u) := 1

2

�∑

i=1

‖ui‖2 − 1

2p

�∑

i, j=1

βi j

∫

RN
|ui |p|u j |p.

This functional is of class C1 and its critical points are the solutions to the system (1.4)
satisfying (3.1). The block-wise nontrivial solutions belong to the Nehari set

N φ := {u ∈ Hφ : ‖uh‖ �= 0 and ∂uhJ φ(u)uh = 0 for every h = 1, . . . , �}.
Note that

∂uhJ φ|K (u)uh = ‖uh‖2 −
�∑

k=1

∑

(i, j)∈Ih×Ik

βi j

∫

RN
|ui |p|u j |p,

and that J φ(u) = p−1
2p ‖u‖2 if u ∈ N φ . Let

cφ := inf
u∈N φ

J φ(u).

If s = (s1, . . . , sq) ∈ R
q and u = (u1, . . . , uq) ∈ Hφ we write su := (s1u1, . . . , sq uq).

The following facts were proved in [8].

Lemma 3.1 (i) cφ > 0.
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(ii) If the coordinates of u ∈ Hφ satisfy

q∑

k=1

∑

(i, j)∈Ih×Ik

∫

RN
βi j |ui |p|u j |p > 0 for every h = 1, . . . , q, (3.2)

then there exists a unique su ∈ (0,∞)q such that suu ∈ N φ . Furthermore,

J φ(suu) = max
s∈(0,∞)q

J φ(su).

Proof See [8, Lemma 2.2] or [11, Lemma 2.2]. ��
Lemma 3.2 If cφ is attained, then the system (1.4) has a block-wise nontrivial solution u =
(u1, . . . , u�) ∈ Hφ . Furthermore, if ui is nontrivial, then ui is positive if φi ≡ 1 and ui is
nonradial and changes sign if φi is surjective.

Proof It is shown in [8, Lemma 2.4] that any minimizer of J φ on N φ is a block-wise
nontrivial solution to (1.4). If ui �= 0 and φi is surjective, then ui is nonradial and changes
sign. If φi ≡ 1 then |ui | is G-invariant and replacing ui with |ui | we obtain a solution with
the required properties. ��

Set Q := {1, . . . , q} and fix a decomposition Q = Q+ ∪ Q− with Q+ ∩ Q− = ∅. From
now on, we consider the following symmetries. We write R

N ≡ C × C × R
N−4 and a point

in R
N as (z1, z2, y) ∈ C × C × R

N−4.

Definitions 3.3 Let i denote the imaginary unit. For each m ∈ N, let

Km := {e2π i j/m : j = 0, . . . , m − 1},
Gm be the group generated by Km ∪ {τ } ∪ O(N − 4), acting on each point (z1, z2, y) ∈
C × C × R

N−4 as

e2π i j/m(z1, z2, y) := (e2π i j/m z1, e
2π i j/m z2, y), τ (z1, z2, y) := (z2, z1, y),

α(z1, z2, y) := (z1, z2, αy) if α ∈ O(N − 4),

and θ : Gm → Z2 be the homomorphism satisfying

θ(e2π i j/m) = 1, θ(τ ) = −1, and θ(α) = 1 for everyα ∈ O(N-4).

Define φh : Gm → Z2 by

φh :=
{
1 if h ∈ Q+,

θ if h ∈ Q−.
(3.3)

Due to the lack of compactness, cφ is not always attained; see e.g. [11, Corollary 2.8(i)].
A sufficient condition for this to happen is given by the next lemma. We use the following
notation. If Q′ ⊂ Q := {1, . . . , q} we consider the subsystem of (1.4) obtained by deleting
all components of uh for every h /∈ Q′, and we denote by J φ

Q′ and N φ

Q′ the functional and
the Nehari set associated to this subsystem. We write

cφ

Q′ := inf
u∈N φ

Q′
J φ

Q′(u).

If Q′ = {h} we omit the curly brackets and write, for instance, cφ
h or J φ

h .
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Lemma 3.4 (Compactness) Let N �= 5, m ≥ 5 and φh : Gm → Z2 be as in (3.3). If, for
each h ∈ Q := {1, . . . , q}, the strict inequality

cφ <

{
cφ

Q�{h} + mμh
p−1
2p ‖ω‖2, if h ∈ Q+,

cφ
Q�{h} + 2mμh

p−1
2p ‖ω‖2, if h ∈ Q−,

(3.4)

holds true, then cφ is attained, where ω is the positive radial solution to (1.7) and μh is given
by (1.5).

Proof This statement follows by combining [11, Corollary 2.8(i i)] with [11, Equation (5.1)].
��

To verify condition (3.4) we introduce a suitable test function. Fix m ≥ 5 and let Km be
as in Definitions 3.3. If h ∈ Q+, we take ζh := ( 1√

2
, 1√

2
, 0) and, for each R > 1, we define

σ̂h R(x) :=
∑

g∈Km

ω(x − Rgζh), x ∈ R
N .

If h ∈ Q− we take ζh := (1, 0, 0) and we define

σ̂h R(x) :=
∑

g∈G ′
m

φh(g) ω(x − Rgζh), x ∈ R
N ,

where ω is the positive radial solution to (1.7) and G ′
m is the subgroup of Gm generated by

Km ∪ {τ }. Note that σ̂h R(gx) = φh(g)̂σh R(x) for every g ∈ Gm , x ∈ R
N . Let

σh R := th R σ̂h R, (3.5)

where th R > 0 is chosen so that ‖σh R‖2 =
∫

RN
|σh R |2p .

Lemma 3.5 If m ≥ 5, then, for each h ∈ {1, . . . , q}, there exist th = (t�h−1+1, . . . , t�h ) ∈
(0,∞)�h−�h−1 and C0, R0 > 0 such that thσh R := (t�h−1+1σh R, . . . , t�h σh R) ∈ N φ

h and

J φ
h (thσh R) ≤ |Gmζh | μh

p−1
2p ‖ω‖2 − C0e

−Rdm for every R ≥ R0,

where |Gmζh | is the cardinality of the Gm-orbit of ζh, i.e., |Gmζh | = m if h ∈ Q+ and
|Gmζh | = 2m if h ∈ Q−, and

dm := |1 − e2π i/m |. (3.6)

Proof Take th = (t�h−1+1, . . . , t�h ) ∈ (0,∞)�h−�h−1 such that
∑

i∈Ih

t2i =
∑

i, j∈Ih

βi j t
p
j t p

i = μh

and apply [11, Proposition 4.1(i) and Lemma 4.4]. ��
Proof of Theorem 1.2 Assume (B1) and let φh : Gm → Z2 be given by (3.3). For q = 1 and
m ≥ 5 it is proved in [11, Corollary 4.2 and Proposition 4.5] that cφ is attained at u ∈ N φ

satisfying

‖u‖2 = μ1‖ω‖2 if Q+ = {1} and ‖u‖2 < 2m μ1‖ω‖2 if Q− = {1}.
Taking m = 5 gives statement (b).
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Fix m = 6. We claim that cφ is attained and that the estimate (c) holds true for every
q ≥ 2. To prove this claim, we proceed by induction. Assume it is true for q − 1 with q ≥ 2.

We will show that the compactness condition (3.4) holds true. Using a change of
coordinates, it suffices to argue for h = q . By induction hypothesis there exists w =
(w1, . . . , wq−1) ∈ N φ

Q�{q} such that J φ
Q�{q}(w) = cφ

Q�{q}. For each R > 1 let σq R be

as in (3.5) and take tq ∈ (0,∞)�−�q−1 as in Lemma 3.5. Set wh R = wh for h = 1, . . . , q −1
and wq R = tqσq R , and define wR = (w1R, . . . , w�R) := (w1R, . . . , wq R). Then, as

w ∈ N φ
Q�{q} and the interaction between the components of w and σq R tends to 0 as

R → ∞, we have that wR satisfies (3.2) for large enough R and, as a consequence, there
exist R1 > 0 and (s1R, . . . , sq R) ∈ [1/2, 2]q such that (s1Rw1R, . . . , sq Rwq R) ∈ N φ if

R ≥ R1. Set uR = (u1R, . . . , u�R) := (s1Rw1R, . . . , sq Rwq R). Using that w ∈ N φ
Q�{q} and

tqσq R ∈ N φ
q , from the last statement in Lemma 3.1(i i) and Lemma 3.5 we derive

J φ(uR) = 1

2

�∑

i=1

‖ui R‖2 − 1

2p

�∑

i, j=1

βi j

∫

RN
|ui R |p|u j R |p

≤ J φ
Q�{q}(w) + J φ

q (tqσq R) − 1

p

q−1∑

h=1

∑

(i, j)∈Ih×Iq

βi j

∫

RN
|sh Rwi R |p|sq Rw j R |p

≤ cφ
Q�{q} + |Gmζh | μq

p−1
2p ‖ω‖2 − C0e

−Rdm + C1

q−1∑

h=1

∑

i∈Ih

∫

RN
|wi R |p|σq R |p,

if R ≥ max{R0, R1}, where C0 and C1 are positive constants and dm is given in (3.6).
It is well known that |ω(x)| ≤ Ce−|x | and, as w solves a subsystem of (1.4), Theorem 1.1

asserts that
|wi R(x)| ≤ Ce−|x | for every i ∈ Ih with h = 1, . . . , q − 1.

Therefore, for every g ∈ Gm ,
∫

RN
|wi R |p|ω( · − Rgζh)|p ≤ C

∫

RN
e−p|x | e−p|x−Rgζh | dx ≤ Ce−Rp.

So, if p > dm , we conclude that

cφ < cφ
Q�{q} + |Gmζh | μq

p−1
2p ‖ω‖2

and, by Lemmas 3.4 and 3.2, cφ is attained at a block-wise nontrivial solution u of (1.4) such
that every component of uh is positive if h ∈ Q+ and every component of uh is nonradial
and changes sign if h ∈ Q−. Furthermore, since we are assuming (B2) and (B3) with C∗ as
in (3.7) below, [11, Theorem 3.3] asserts that u is fully nontrivial.

Finally, note that p > 1 = dm becausem = 6.As |Gmζh | = 6 if h ∈ Q+ and |Gmζh | = 12
if h ∈ Q−, the estimate in statement (c) follows by induction. ��

Remark 3.6 If m = 5 and p > dm we arrive to a similar conclusion, where, in this case,
the constant bh in statement (b) is 5 if h ∈ Q+ and it is 10 if h ∈ Q−. Note, however, that
numbers p satisfying d5 = 2 sin π

5 < p < N
N−2 exist only for N ≤ 13.
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Remark 3.7 For φh as in (3.3), the constant C∗ > 0 appearing in (B3) depends on N , p, q ,
and Q+. It is explicitly defined in [11, Equation (3.1)] as

C∗ :=
⎛

⎜
⎝

pdφ

(p − 1)S
p

p−1
φ

⎞

⎟
⎠

p

, (3.7)

where

dφ := p − 1

2p
inf

(v1,...,vq )∈Uφ

q∑

h=1

‖vh‖2

with Uφ := {(v1, . . . , vq) : vh ∈ H1(RN )φh � {0}, ‖vh‖2 = |vh |2p
2p, vhvk = 0 if h �= k},

and

Sφ := min
h=1,...,q

inf
v∈H1(RN )φh �{0}

‖v‖2
|v|22p

.

Remark 3.8 In the proof of Theorem 1.2 we use [1, Theorem 2.3], which also characterizes
the sharp decay rate for positive components by providing a bound from below. This kind of
information can be useful to show uniqueness of positive solutions for some problems, see
[4, Section 8.2].

To conclude, we discuss some special cases.

Examples 3.9 Assume (B1) and let p ∈ (1, 2∗
2 ).

(a) If q = 1 the system (1.4) is cooperative and more can be said. Indeed, it is shown in [11,
Corollary 4.2 and Proposition 4.5] that, if (B2) is satisfied, then (1.4) has a synchronized
solution u = (t1u, . . . , t�u), where (t1, . . . , t�) ∈ (0,∞)� is a minimizer for (1.5) and u
is a nontrivial φ-equivariant least energy solution of the equation

−�u + u = |u|2p−2u, u ∈ H1(RN )φ. (3.8)

Here, if Q+ = {1}, then φ ≡ 1 (and therefore u = ω) and ‖u‖2 ≤ μ1‖ω‖2. On the other
hand, if Q− = {1}, then φ : Gm → Z2 is the homomorphism θ given in Definitions 3.3
and ‖u‖2 ≤ 10μ1‖ω‖2.

(b) If q = � ≥ 2 the system (1.4) is competitive, i.e., βi i > 0 and βi j < 0 if i �= j .

Assumptions (B2) and (B3) are automatically satisfied and, asμi = β
− 1

p−1
i i , the estimate

in Theorem 1.2(c) becomes

‖u‖2 <

⎛

⎝min
j∈Q

(
a jβ

− 1
p−1

j j +
∑

i∈Q�{i}
biβ

− 1
p−1

i i

)
⎞

⎠ ‖ω‖2

≤
⎧
⎨

⎩

(
6 |Q+| + 12 |Q−| − 5

)
β

− 1
p−1

0 ‖ω‖2 if Q+ �= ∅,

12 |Q−|β− 1
p−1

0 ‖ω‖2 if Q+ = ∅,

where |Q±| denotes the cardinality of Q± and β0 := min{β11, . . . , β��}.
(c) Similarly, for any q ≥ 2, the estimate in Theorem 1.2(c) yields

‖u‖2 ≤
{(

6 |Q+| + 12 |Q−| − 5
)

μ∗‖ω‖2 if Q+ �= ∅,

12 |Q−| μ∗‖ω‖2 if Q+ = ∅.
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where μ∗ = max{μ1, . . . , μq}.
Assumptions (B2) and (B3) guarantee that u is fully nontrivial. Note that the left-hand
side of the inequality in (B3) depends only on the entries of the submatrices (βi j )i, j∈Ih ,
h = 1, . . . , q , whereas the right-hand side only depends on the other entries. So, if the
former are large enough with respect to the absolute values of the latter, (B3) is satisfied.
For example, if we take � = 2q and the matrix is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ λ β13 β14 β15 . . . β1�

λ λ β23 β24 β25 . . . β2�

β31 β32 λ λ β35 . . . β3�

β41 β42 λ λ β45 . . . β4�
...

...
. . .

...

β�−1 1 . . . β�−1 �−2 λ λ

β�1 . . . β� �−2 λ λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

with λ > 0 and β j i = βi j < 0, then (B1) and (B2) are satisfied. If, additionally,

λ > 4
2p−1
p−1 (q − 1)C∗ and |βi j | ≤ 1,

then, for any h = 1, . . . , q ,

(
min{i, j}∈Eh

βi j

)

⎡

⎢
⎢
⎢
⎣

min
h=1,...,q

max
i∈Ih

βi i

∑

i, j∈Ih

βi j

⎤

⎥
⎥
⎥
⎦

p
p−1

= λ

[
λ

4λ

] p
p−1

> C∗4(q − 1) ≥ C∗
q∑

k=1
k �=h

∑

i∈Ih
j∈Ik

|βi j |

so (B3) is satisfied.
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A An auxiliary result

Lemma A.1 For every r ≥ 1 there is a linear operator Er : H1(RN
� Br ) → H1(RN ) such

that, for every u ∈ H1(RN
� Br ),
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(i) Er u = u a.e. in R
N

� Br ,
(i i) |Er u|22 ≤ C1|u|2

L2(RN �Br )
,

(i i i) ‖Er u‖2 ≤ C1‖u‖2
H1(RN �Br )

,

for some positive constant C1 depending only on N and not on r. As a consequence, given
p ∈ (1, 2∗

2 ) there is a positive constant C depending only on N and p such that

|u|L2p(RN �Br )
≤ C‖u‖H1(RN �Br )

for every u ∈ H1(RN
� Br ) and every r ≥ 1.

Proof Fix a linear (extension) operator E1 : H1(RN
� B1) → H1(RN ) and a positive

constant C1 satisfying (i), (i i) and (i i i) for r = 1; see e.g. [16, Theorem 2.3.2]. For r > 1,
set û(x) := u(r x) and, for u ∈ H1(RN

� Br ), define

(Er u)(y) := (E1û)
( y

r

)
.

Then, Êr u = E1û. Clearly, Er satisfies (i). Note that |̂u|2
L2(RN �B1)

= r−N |u|2
L2(RN �Br )

and
that

‖û‖2H1(RN �B1)
= r−N

(∫

RN �Br

(
r2|∇u|2 + |u|2

))

.

Similar identities hold true when we replace R
N

� B1 and R
N

� Br with R
N . Therefore,

r−N |Er u|22 = |̂Er u|22 = |E1û|22 ≤ C1‖û‖2L2(RN �B1)
= r−N C1|u|2L2(RN �Br )

,

which yields (i i). Furthermore,

r−N
(∫

RN

(
r2|∇(Er u)|2 + |Er u|2

))

= ‖̂Er u‖2 = ‖E1û‖2

≤ C1‖û‖2H1(RN �B1)
= r−N C1

(∫

RN �Br

(
r2|∇u|2 + |u|2

))

.

This inequality, combined with (i i), yields

r2‖Er u‖2 =
∫

RN

(
r2|∇(Er u)|2 + |Er u|2

)
+ (r2 − 1)

∫

RN
|Er u|2

≤ C1

∫

RN �Br

(
r2|∇u|2 + |u|2

)
+ C1(r

2 − 1)
∫

RN �Br

|u|2 = r2C1‖u‖2H1(RN �Br )
,

which gives (i i i).
For p ∈ (1, N

N−2 ) let C2 = C2(N , p) be the constant for the Sobolev embedding

H1(RN ) ⊂ L2p(RN ). Then, for any u ∈ H1(RN
� Br ), using statements (i) and (i i i)

we obtain

|u|2L2p(RN �Br )
≤ |Er u|22p ≤ C2‖Er u‖2 ≤ C2C1‖u‖2H1(RN �Br )

,

as claimed. ��
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