Calc. Var. (2023) 62:138

https://doi.org/10.1007/500526-023-02476-9 Calculus of Variations
()

Check for
updates

Stochastic homogenization of degenerate integral
functionals with linear growth

Matthias Ruf'@® - Caterina Ida Zeppieri?

Received: 10 November 2022 / Accepted: 31 March 2023 / Published online: 21 April 2023
© The Author(s) 2023

Abstract

We study the limit behaviour of sequences of non-convex, vectorial, random integral func-
tionals, defined on W!-!, whose integrands are ergodic and satisfy degenerate linear growth
conditions. The latter involve suitable random, scale-dependent weight-functions. Under min-
imal assumptions on the integrand and on the weight-functions, we show that the sequence
of functionals homogenizes to a non-degenerate deterministic functional defined on BV

Mathematics Subject Classification 49J45 - 49J55 - 60G10

1 Introduction

The stochastic homogenization of non-degenerate integral functionals is by now well-
understood. The first result in the nonlinear Sobolev setting dates back to [13, 14], where,
using the language of I'-convergence, Dal Maso and Modica analyse the limit behaviour of
sequences of random integral functionals depending on a small parameter ¢ > 0 and sat-
isfying standard growth conditions of order p > 1. More precisely, for a given a complete
probability space (€2, F, IP), Dal Maso and Modica consider functionals of the type

Fe(w)(u) = / f(o, %, Vu)dx, (1.1
A

where A ¢ R isan open, bounded, Lipschitz set, f: Q xRIxRY — [0, +00) is measurable
in (w, x), convex in the gradient-variable, and for every (w, x, &) € Q X RY x R4 satisfies

als|” < fo,x,§) < BUEI" + D), (1.2)
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for p > land @, B > 0. In (1.1) the functionals F, depend on the random parameter w € 2
through f, which is then to be interpreted as an ensemble of integrands. This means that in
this setting only the statistical specification of f is known.

For homogenization to take place f needs to be stationary or periodic in law, which
amounts to saying that the statistics of f are translation invariant. The stationarity of f can
be quantified in terms of a measure-preserving group-action {7} g« defined on (2, F, P),
by requiring that

f(a)!x—i_Z’é:):f(TZwaxvé)v (13)

for every z € R?, and for every (w, x, £) €  x R? x R?. We notice that periodicity is a
particular instance of stationarity. Indeed choosing € = [0, 1)? and P = £¢ lf0.1)¢> We have
that 7,0 = w + z (mod 1) defines a P-preserving group-action on €2 (cf. Definition 2.1).
Then any (0, 1)?-periodic function g: © x R? — [0, +00) corresponds to the stationary f
given by

flw,x,8) =glw+x,§).

It is easy to check that quasi-periodicity is a special case of stationarity as well (see e.g. [20]).
Under the assumptions as above, Dal Maso and Modica [14] prove that the random func-
tionals F;(w) I'-converge almost surely to a random functional of the form

Fhom (@) (1) = /A Jhom (@, Vu) dx, (1.4)

where, P-a.s., fhom satisfies (1.2) (with the same constants «, 8) and is given by
1
Jhom(w,§) = lim — inf {/ flo,x,Vu+&)dx: ue WOI’P(QI(O))} , (1.5)
>+t 0:(0)

where Q,(0) is the open cube of R? centred at zero and with side-length ¢ > 0. Moreover,
under the additional assumption of ergodicity, which loosely speaking means that the statistics
of f decorrelate over large distances, the integrand fon, is actually deterministic and is given
by the expected value of the random variable fhom(, &).

Although the formula defining fom is formally analogous to the asymptotic cell-formula
of periodic homogenization (cf. [6]), the reason why the limit in (1.5) exists (almost surely)
and defines a spatially homogeneous quantity is nontrivial, contrary to the deterministic
periodic case. In fact, as observed for the first time by Dal Maso and Modica in their seminal
work [14], the well-posedness and x-homogeneity of (1.5) in this case is obtained by showing
that, for fixed & € R4, the map

(w, A) > inf{/ flw,x,Vu+&)dx: ue W&-P(A)’,
A

defines a so-called subadditive process on Q x A (cf. Definition 2.3), where A denotes the class
of open, bounded, Lipschitz subsets of R?, and then invoking the pointwise ergodic Theorem
of Akcoglu and Krengel [2]. Once the existence of fjom is established, the homogenization
result for F¢(w) can be proven either appealing to the integral representation result in [12]
or using a more modern approach based on the Fonseca and Miiller blow-up method [19].
The Dal Maso and Modica proof-strategy is flexible enough to be adapted to the vectorial
setting both in the case of superlinear (p > 1) [24] and of linear (p = 1) [1] standard growth
conditions in the gradient variable. However, we notice here that when f grows linearly in the
gradient variable, the homogenized functional Fyony, has a different structure with respect to
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the functionalin (1.4) (see [1]). In fact, in the linear case sequences (i;) C W1 (A) with equi-
bounded energy F;(w) are precompact only in BV (A), the space of functions of bounded
variation and therefore in this case homogenization and relaxation occur simultaneously.
Then, the limit functional is of the form

. dD*u s
Fhom (@) () = / Jhom (@, Vu) dx +/ Jhom <0) 7) d[D"ul, (1.6)
A A d|Dful

where fhom is given by (1.5) choosing p = 1 and f% denotes the recession function of
Jhom that is, the slope of fhom at infinity. Moreover, we recall that Vu dx and D*u represent,
respectively, the absolutely continuous and the singular part of the (finite) measure Du with
respect to the Lebesgue measure in RY. Loosely speaking, (1.6) shows that in the linear
setting the homogenization can be performed before the relaxation takes place. We also refer
to [8] for analogous effects when the heterogeneous random functionals F¢(w) are defined
on the space of special functions of bounded variation, BV, instead of W11,

Recently, the homogenization theory of random integral functionals of type (1.1) has
been extended to the case of degenerate integrands. By degenerate integrands we mean that
[ satisfies growth conditions where the gradient variable is weighted by a non-homogeneous,
random coefficient which is not necessarily bounded. This then leads to “nonstandard” upper
and lower bounds of the form

alfAw, 0| < flo,x,§) < EA (0, 1)|” + Mo, x), (1.7)

where A is a diagonal matrix-valued function, and both A and A are stationary.
The case p > 1 has been firstly studied in [25] where the authors establish a homogeniza-
tion result for discrete functionals of the form

Fe@@ = Y > folo 2 05u@),

zeeZdNA be&y

where the variable u takes values in R™, & is a finite set of interaction-edges, and 9;, represents
a discrete derivative along the scaled edge (z, z + €b). The stationary, ergodic interaction
potentials f;, are assumed to satisfy an estimate as in (1.7), but with a different scalar-valued
weight-function Aj for each edge b € £y (which corresponds to a diagonal matrix A if one
considers edge-derivatives as partial derivatives) satisfying the moment condition

E[Ap(-, 0|71+ E[|A, ' (-, 0)]7P/P7D] < too. (1.8)

Moreover, in the scalar case m = 1 an additional convexity assumption at infinity is imposed,
while in the vectorial case m > 1 the proof relies on the integrability assumption

1
E[|Ap(-, 0)|"P] +E[|A;1(~, 0)|*P] < 400 for some r > 1 andssuch that — +
r

which is strictly stronger than (1.8). Under these assumptions the I'-limit of F(w) is also
of type (1.4) (and deterministic due to ergodicity) and the homogenized integrand satisfies
standard p-growth conditions, similarly as in the non-degenerate case.

In the more recent [27] the I"-convergence of F¢(w) as in (1.1), with integrand satisfying
(1.7), is proven under the sole integrability condition (1.8). In this case the I"-limit is a non-
degenerate homogeneous functional of the form (1.4), moreover condition (1.8) is shown to
be the optimal one to obtain a non-degenerate limit integrand. To avoid the more restrictive
condition in (1.9), in [27] the authors rely on a vectorial truncation-argument combined with
an ad hoc variant of the Birkhoff additive Ergodic Theorem (cf. Theorem 2.2 in Sect.2). In

@ Springer



138 Page4of 36 M. Ruf, C. 1. Zeppieri

the proof of the vectorial truncation-result, it is of crucial importance that the matrix-valued
coefficient A has a diagonal structure. We observe that this choice still allows to cover the
case of anisotropically degenerate integrands.

Finally, in [16] the I'-convergence of general integral functionals defined on scale-
dependent weighted Sobolev Spaces is analysed without requiring any stationarity of the
integrands. In this case, under suitable uniform integrability assumptions on the (scalar)
weight functions A, which also need to belong to a Muckenhoupt class, the functionals are
shown to I'-converge (up to subsequences) to a degenerate integral functional defined on a
“limit” weighted Sobolev space.

In the present paper we consider random integral functionals F,(w) of type (1.1) with
integrand f satisfying degenerate /inear growth conditions of type

A (@, 0)] = flw,x,§) < [§A (@, x)| + Ao, x), (1.10)
where the stationary functions A and A satisfy the moment conditions
IAG,0),A(,0) € L'(Q) and |A(,0)7"| € L™(Q), (1.11)

with A being a diagonal matrix-valued function.

Apart from joint measurability, we make no further regularity assumption on the realiza-
tions of the random integrand f. Then, under stationarity of f and of the coefficient-functions
A, A (cf. Assumption 1) in Theorem 3.1 we prove that, almost surely, the functionals F;(w)
homogenize to a random functional Fyom (w) which is spatially homogeneous and determin-
istic if ergodicity is additionally assumed. Similarly as in [1], the limit functional is finite on
BV (A, R™) where it is of the same form as (1.6) with fyom given by

fhom (@, §) = lim ldinf{/ f@,x,Vu+&dx:ue W&’l(Q,(O),R’”)}.
t—>+00 0:(0)
(1.12)
Moreover, in the ergodic case there holds
fhom(g) = E[fhom('ﬂi:)]
= lim iE[inf{/ FCox,Vu+&dx:ue WOI’I(Q,(O),R'”)”,
0:(0)

t—+oo td

with fhom satisfying the following standard linear growth conditions

acolél < faom (&) < Colél + Ci, (1.13)
with constants
o =IAC O %y Coi=sup  ElnAC, 0], andCi :=E[(,0)].
neRm*d |p|=1

It is worth noticing already here that the integrability conditions in (1.11) are the optimal
ones for (1.13) to hold true. Namely, in Remark 3.3 we show that in general the upper bound
in (1.13) implies the finite first moment condition |A(-, 0)| € L'(2), while the bound from
below in (1.13) is violated if |[A(-,0)"!| ¢ L%°(L). In fact, in our example there is a loss
of BV -compactness which makes it possible to approximate some non-BV -functions at no
cost.

The proof of the stochastic homogenization result, Theorem 3.1, follows the general strat-
egy of Dal Maso and Modica [ 14]. Namely, the asymptotic homogenization formula in (1.12)
is established by applying a suitable variant of the Akcoglu and Krengel pointwise ergodic
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Theorem (cf. [2, Theorem 2.7]). Then, the almost sure I"-convergence of the random function-
als F (w) is proven in two main steps. In the first step we show that the upper-bound inequality
for the I'-limit holds true. The proof of this inequality combines an explicit construction of
a recovery sequence for W' !-target functions with a relaxation argument. Although the
construction of the recovery sequence is rather classical, in this degenerate setting a new
argument is needed to construct sequences (u.) matching the right linear boundary condi-
tions, in order to determine the limit functional on BV starting from its knowledge on W11,
This argument is based on a standard vectorial-truncation result (cf. Lemma 5.2) and a new,
ad hoc, fundamental estimate for random degenerate integral functionals (see Lemma 5.3
and Remark 5.4).

The proof of the lower bound inequality for the I"-limit is more delicate and is based on
an adaptation to the BV -setting (cf. [3]) of the Fonseca and Miiller blow-up method [19].
In this case for any sequence (1) C whl(A, R™) with equi-bounded energy and such that
ue — uin L'(A, R™), the set function vy (@, -) := F.(w)(ug, -) is interpreted as a (random)
Radon measure on .4. By assumption, up to subsequences, v — v, for some limit (random)
Radon measure v. Then, if we write

v(w, A)=/ f(w, x)dx +1°(w, A),
A

with v* singular with respect to the Lebesgue measure, the idea of the blow-up method is to
perform a local analysis to establish that, almost surely, the following two inequalities hold
true

f(@, %) > from(w, Vu(x)) foraex € A, (1.14)
dv’(w, x) dDu
e fhogm(w, m(x)) for [D’ul-a.e. x € A. (1.15)

Eventually the lower-bound inequality for the I"-limit follows by integrating (1.14) and (1.15).

Structure of the paper. This paper is organised as follows. In Sect.2 we introduce some
notation, collect some useful facts on BV -functions, and recall some basic Ergodic Theory.
In Sect. 3 we state the main result of this paper, Theorem 3.1, which establishes an almost sure
homogenization result for the functionals F; (w) under linear degenerate growth conditions.
In this section we also discuss the optimality of our assumptions (see Remark 3.3). Eventually,
in Sect. 3, a homogenization theorem for the functionals F; (w) subject to Dirichlet boundary
conditions is also stated (see Theorem 3.4).

Then, Sect. 4 is entirely devoted to the proof of the existence of the homogenized integrand
fhom and of its main properties (see Lemma 4.1).

Section 5 contains the proof of Theorem 3.1. This proof is based on the preliminary
technical results Lemma 5.2 and Lemma 5.3 and then achieved in two main steps carried out
in Proposition 5.5 and Proposition 5.6.

Eventually, in Sect. 6 the case of Dirichlet boundary conditions is considered and Theo-
rem 3.4 is proven, while in the short Appendix some measurability issues are addressed (see
Lemma A.1).
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2 Notation and preliminaries
2.1 General notation

Throughout the paper d, m € N are fixed with d, m > 2. Given a measurable set A C R,
|A| denotes its d-dimensional Lebesgue measure. The Euclidean norm of x € R? is denoted
by |x| and B,(xo) 1= {x € R?: |x — xo| < p} denotes the open ball with radius p > 0
centred at xo. Given xo € R? and p > 0 we set Qp(x0) :=x0 + (—p/2, p/2)d.
For £ € R"™* fixed, L denotes the linear function with gradient &, that is £¢ (x) := &x.
We define D, to be the set of diagonal matrices in R4 For a measurable set A with
positive measure, we define fA = IT}\ f 4~ We use standard notation for L”-spaces and

Sobolev spaces W -7, The Borel o-algebra on R? is denoted by B¢, while we use £¢ for the
o -algebra of Lebesgue-measurable sets.

Throughout the paper, the parameter ¢ > 0 varies in a strictly decreasing sequence of
positive real numbers converging to zero.

The letter C stands for a generic positive constant which may vary from line to line, within
the same expression.

2.2 BV-functions

In this section we recall some basic facts and notation concerning the space of functions
of bounded variation. For a systematic treatment of this subject we refer the reader to the
monograph [4].

Let A c R? be an open set. A function u € L'(A, R™) is a function of bounded variation
if its distributional derivative Du is a finite matrix-valued Radon measure on A; in this case
we write u € BV (A, R™). The space BV (A, R™) is a Banach space when endowed with
the norm ||ull gy (a,rm) := [lull 114 gmy + |Dul(A), where |[Du| denotes the total variation
measure of Du. If A is a bounded Lipschitz domain, then BV (A, R™) is compactly embedded
in LY9(A,R™) for ¢ < 1™ := d/(d — 1). We say that a sequence (u;) converges weakly™ in
BV (A,R™) to u if uy — u in L1(A, R™) and Du,,—*\Du in the sense of measures.

Ifu € BV (A, R™) the structure of Du can be characterised. To this end, we need to recall
some further concepts and notation. A function u € L' (A, R™) has an approximate limit at
x € A whenever there exists z € R? such that

. 1
lim 7/ lu(y) —z|dy = 0.
p=0t 0% JB,(x)

Next we introduce the so-called approximate jump points of u. Given x € A and n € S9!
we set
By (x.,n):={y € By(x): (y—x)-n>0}

We say that x € A is an approximate jump-point of u if there exista # b € R” andn € S9!
such that

1 1
lim 7/ lu(y) —aldy = lim 7/ lu(y) —b|dy =0.
By (x,n) p=0" % JB, (x,n)

The triplet (a, b, n) is unique up to the change to (b,a,—n) and is denoted by
(ut(x), u(x), n,(x)), moreover we let J, be the set of approximate jump-points of u. The
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triplet (u™, u™, n,) can be chosen as a Borel function on the Borel set J,. Then, denoting
by Vu the approximate gradient of u, we can decompose the measure Du as

Du(B) :/ Vudx+/ wt —u)@n, dH ' +DYu(B),
B JuNB

for every B € B?, where Du is the Cantor part of Du and DYVu = (ut —u™) ®
n,HA VL J, is its jump-part, with H?~! being the (d — 1)-dimensional Hausdorff measure.
The total variation |Du| can then be decomposed as

dD©
|Du|(B>=/ IVuldx+/ ut —u | dH?! +/ —— D],
B J.NB 5 d|D@y|

In this paper we mostly use the simpler decomposition Du(B) = fB Vu(x)dx + D°u(B),
where D*u denotes the part of the measure Du which is singular with respect to the Lebesgue
measure, thus DSu = DWWy + D@y,

2.3 Ergodic theory

Let (2, F, IP) be a complete probability space. As it is customary in probability theory, we
use the shorthand “almost surely” (also a.s.) for “P-almost everywhere”.
Below we recall some basic definitions and some useful results from ergodic theory.

Definition 2.1 (Measure-preserving group-action) A measure-preserving group-action on

(2, F,P) is a family t := {r;},cge of measurable mappings 7, : 2 —  satisfying

the following properties:

(1) (joint measurability) the map (@, z) — T;(®) is (F ® £4, F)-measurable for every
zeRY;

(2) (invariance) P(t,E) = P(E), for every E € F and every z € RY;

(3) (group property) 1o = id- and 1,4, = T, o T, forevery z1, 22 € R4,

If, in addition, {z;},c g« satisfies the implication
P(r,EAE)=0 VzeR! = P(E) € {0, 1},
then 7 it is called ergodic.

Throughout the paper we frequently use a variant of the Birkhoff Ergodic Theorem which is
useful for our purposes. Before stating it, we need to fix some additional notation.

Let g be a measurable function on (2, F, P); E[g] denotes the expected value of g, that
is

Elg] :=/ g(w)dP.
Q

Forevery g € L' () and forevery o-algebra 7' C F, we denote with E[g| F’] the conditional
expectation of g with respect to F'. We recall that E[g|F'] is the unique L'(£2)-function
satisfying

/ Elg]7)(w)dP = / ¢(@)dP
E E
for every E € F'.

We recall the following version of the Additive Ergodic Theorem which can be found in
[27, Lemma 4.1].
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Theorem 2.2 (Additive ergodic theorem) Let g € L'(Q), let T be a measure-preserving
group-action on (2, F, P), and let F; denote the o-algebra of t-invariant sets. Then there
exists a set Q' € F with P(Q) = 1 such that for every w € Q' and for every measurable
bounded set B C R with |B| > 0 there holds

lim g(r;w)dz = E[g|F: (). 2.1)
B

t—>+00 J;

If moreover t is ergodic, then F; reduces to the trivial o-algebra, therefore (2.1) becomes

lim g(t,w)dz = E[g].
B

t—>+00 J;

For later purposes we also need to recall the definition of subadditive process.
In all that follows A denotes the collection of all open and bounded subsets of R with
Lipschitz boundary.

Definition 2.3 (Subadditive process) Let t be a measure-preserving group-action on
(2, F, P). A subadditive process is a function u : @ x A — [0, 400) satisfying the
following properties:

(1) forevery A € A, u(-, A) belongs to L'();
(2) foreveryw e Q,A € A,and z € R4

w(w, A+2) = p(ro, A);

(3) forevery w € Q, for every A € A, and for every finite family (A;);c; C A of pairwise
disjoint sets such that A; C A forevery i € I and |A\ U;j¢; A;| = 0, there holds

w, A) < Y p(, A).
iel

Moreover, if 7 is ergodic then p is called a subadditive ergodic process.

We now state a version of the Subadditive Theorem proven by Akcoglu and Krengel [2,
Theorem 2.7].

Theorem2.4 Let 1 : @ x A — [0, +00) be a subadditive process. Then there exist a
F-measurable function ¢ : Q — [0, +00) and a set Q' € F with P(Q) = 1 such that

MOND) _ ),

neN, n—+oo |I’lQ|

for every w € Q' and for every cube Q := Qi (xo) with xo € Z% and k € N.

3 Setting of the problem and statements of the main results

In this section we introduce the family of random functionals we are going to study and state
the main results of the paper.
Below we define the class of admissible random integrands we consider throughout.

Assumption 1 (Admissible integrands) The function f : Q x RY x R™>xd 5 |0, +00) is
(F ® £4 ® B™*?)-measurable and satisfies the following assumptions:
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(A1) (degenerate growth conditions) There exist & > 0 and (F ® £%)-measurable functions
A QxRS Dy, a: QxRE— [0, +00) with [AC, 0)], A(-,0) € LY(Q) and
IA(-, 0)~1| € L®(), such that for every w € 2, x € R?, and every & € R"*¢ there
holds

alfA(w,x)| = fo,x,8) < [§M(w, 0)] + A@, X). @3.D

(A2) (ergodicity) There exists a measure-preserving, ergodic group-action T = {t;},cga such
that

f(rza),x, E) = f(wvx +Z»‘§)7
A(t,w, x) = Aw, x + 2),
Mo, x) = Mo, x + 2),

for every z € R and every (w, x, £) € Q x R? x R"*4,

Fore > 0and w € 2, we consider the integral functionals F¢ () : Llloc(Rd, R™)yx A —>
[0, +00] defined as

ff(a), L Vuydx ifu e Wh(A,R™),
A

Fe(o)(u, A) := (3.2)

+00 otherwise,

with f satisfying Assumption 1.
The following theorem establishes a homogenization result for the random functionals F;
and is the main result of this paper.

Theorem 3.1 (Stochastic homogenization) Let f satisfy Assumption 1; for every ¢ > 0 and
every w € Q2 let Fo(w) be as in (3.2). Then, there exists Q € F with IP’(Q) =1 such that:

i. (Existence of the homogenized integrand) For every w € Q, xo € R p > 0, and every
£ € R4 the following limit exists, is spatially homogeneous, and deterministic

. 1 . 1.1
lim ———inf / flw,x,Vu)dx : ue€ls + Wy, (tQ,(x0), R™) ¢ .
i—+20 |10 (x0)] { 10 x0) £ o
3.3)

ii. (Properties of the homogenized integrand) For every & € R™*4 set

1
from(®) := Tim S |:inf {/Q o FCx, Vuydx : u e s + Wol'l(Q,(O),R’")” :
(3.4)

then fiom is continuous, quasiconvex, and for every & € R"™*? it satisfies the following
standard linear growth conditions

acolé] = fhom() < Colé| + Cy,
with

o =IACO kg, Co:=sup  EllnAC, 0], andCy:=E[r(,0)].
nERde,|T[|=1

(3.5)
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iii. (Almost sure T'-convergence) For every w € Q and every A € A the functionals
Fe(®)(-, A) T-converge in Ll (R, R™) to Fhom(-, A) With Fhom: Ll (RY R™) x
A — [0, +o00] given by

o dD’u s ) m
From (1) = /Afhom(Vu) dx +/Afhom <7d|DSu|> d|D*u| ifu e BV(A, R )(3.6)

+00 otherwise,

where fi  denotes the recession function of fuom i.e., for every & Rm*d
Jhom (§) = lim sup — fhom (1€).
t—+oo I

The two following remarks are in order.

Remark 3.2 (Assumptions on f) Below we comment on the requirements on the integrand
f as in Assumption 1.

a) The growth condition in (3.1) can be replaced by the weaker condition
al§A(w, x)| — Mo, x) < f(o,x,§) < [§A (0, X)] + Mo, x),

for every w € Q, x € R4, and & € R™*d_Indeed the integrand f(a),x,*;‘) =
f(w, x, &) + AMw, x) satisfies Assumption 1 with A replaced by 2A. Therefore for such
an integrand Theorem 3.1 gives the same I'-limit as in (3.6) up to the additive constant
E[A(, 0)]IA].

b) The integrability assumptions on A (-, 0) and A (-, 0) together with (A2) and Fubini’s The-
orem imply that almost surely there holds: |A(w, )|, AMw, -) € LllOC (R?). Furthermore
the L>°(£2)-bound on |A (-, 0)|~! combined with [20, Lemma 7.1] gives that, for P-a.e.
w € Q, |Aw, )" e L®°[RY) with a bound uniform with respect to w. Therefore,
in particular, for P-a.e. w € Q the following holds true: there exists a (deterministic)
constant C > 0 such that for a.e. x € R and for every £ € R"*¢ we have

C
&l < [EA (@, 0)I|A@, 1) < CIEA(0, )| < o /(@ X 8). (3.7

¢) In (A2) the ergodicity assumption on t can be dropped. In fact if f, A, and A are only
stationary, that is, they satisfy (A2) with respect to a measure-preserving group-action t
which is not necessarily ergodic, then an almost sure homogenization result for F; (@) can
still be established. However in this case the homogenization is not “effective” meaning
that fhom is still a random variable. Namely, we have

N
from(@, §) == lim —dmf{/ f(@.x, Vu)dx : ueﬁg—l—WOI’l(Qt(O),Rm)};
t—>+oo t 0,(0)

moreover, in this case fhom satisfies the following bounds

acolé] < fhom(§) < Co(w)|§] + Ci(w),
with ¢g as in (3.5) and

Co(w) := sup E[nA(,0)[|F], Ci(w) = E[A(, 0)|F].
neRm>d, |n|=1
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Remark 3.3 (Optimality of the assumptions on A(-, 0)) Both the assumption |A(:,0)| €
L'(Q) and |A(-,0)"!| € L®(Q) are optimal in the sense that if we drop one of the two
we can either get fhom (&) = 400 on a subspace of R”*? or a loss of compactness in BV,
meaning that even some non-BV-functions can be approximated at zero cost.

Both these effects can be shown by adapting an example in [25, Remark 3.7] of a discrete
laminate-like structure to our setting. For the sake of the exposition we treat here the case
m = 1 and consider a sequence (ai)kez : 2 — (0, +00) of i.i.d. random variables. For
every x € R4 we define the piecewise constant interpolation corresponding to (ax)kez as

alw,x) =ar(w) ifxelk,k+1), kelZ.

On the product space 7 one can define a stationary, ergodic group-action which turns a into a
Z-stationary, ergodic function. (If one is interested in an R?-stationary, ergodic example, one
can turn a into a stationary and ergodic function with respect to all translations on the extended
probability space T x €2, where T is the torus in R4, by setting a((z, w), x) := a(w, z + x),
thus preserving the piecewise-constant structure. See [20, p. 236] for more details.)

For x := (x1,x") € R? define flw,x, &) = |la(w, x1)&], so that A(w, x) = a(w, x1)14,
where I, is the identity matrix in R?*¢, Assume that E[a(-, 0)] = 400 so that |A(-, 0)| ¢
L'() and for k € Nletu € Wy ' (kQ), with Q := (—1/2,1/2)". Defining the lower
dimensional cube Q' := (—1/2, 1/2)‘1_1, for a.e. x; € (—k/2, k/2) it holds that u(xy, -) €
Wy (kQ') and

k/2

][ la(w, x1)(Vu(x) + &) dx 2][ a(w,m)][ IVeu(xr, x") + (52, ..., &) |dx" dx;.
kQ —k/2 kQ’

The inner integral on the right-hand side is minimal for u (xy, -) = 0 due to Jensen’s Inequality.
Hence

k/2
inf {]EQ la(w, x)(Vu(x) +€)|dx : u € Wol’l(kQ)} > |(52,...,gd)|][k/2a(w,x1)dx].

Combining a truncation of the weight @ with the Ergodic Theorem 2.2, for £ ¢ Re; it follows
that a.s.

from(®) = Tim_inf {][ la(w, x)(Vu(x) + &)|dx : u € Wol’l(kQ)} = +00. (3.8)
— 400 kQ

Next we consider the case when a(-,0)~! ¢ L%°(2) and show that we can approximate a
function which is not in BV paying zero energy. By assumption, for every § > O there exists
a set Qs with positive probability such that |ag(w)| < § for all @ € 25. In particular, by
stationarity this implies that P(|ax| < §) = ps > Oforall k € N. Moreover, the independence
yields

+o0 oo =
1 — — _ n+1
P <{o‘§}<2n jax = a]) =Y P(llax| 2 8 forall 0 <k <)) = Y (1= py)"*! < +o0.
n=0 n=0 n=0

Hence the Borel-Cantelli Lemma implies that a.s. there exists ks = ks () such that |a,; (w)| <
8. For ¢ > 0 we define the piecewise affine function u,(x) := max{0, min{l, ey — ks}}
(this sequence has to be slightly shifted if we work on the extended probability space).
Clearly, u,;(x) = 0 for x; < eks and u.(x) = 1 for x; > (ks + 1)e. Hence uy — x{x, <0} in
LllOC (RY) and Vu, is concentrated on the stripe {x € R?: kse < x1 < (ks + 1)¢}, where the
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weight-function is smaller than § by construction. Therefore we have

e(ks+1)
Fo(@)(us, Q) < / 56~ dxy — 6,

cks

thus by the arbitrariness of § > 0 we deduce that
- lim Fe(w)(X(x; <0, Q) = 0.
e—01
Since F;(w)(-, Q) is positively one-homogeneous and translation invariant, we get that

- lim Fg(w)(u, Q) =0 3.9)
e—0F

for all u of the form u = ax(x, <0} + bx{x,>0; Witha, b € R.
To deal with the case where u jumps on hyperplanes of type x; = r with » € Q, we can
invoke again a Borel-Cantelli-type argument now applied to the events

{Oglklgn |a[""+k| 2 6} s

whose probabilities do not depend on r thanks to stationarity. Since the constructions are local,
we easily obtain that (3.9) holds for all functions of the form u(x) = Z,N: 1 Ci X(arai41) (X1),
forsome N € Nanda;,c; € Qforalli =1,...,N + 1.

Eventually, by a standard density and lower semicontinuity argument, we get that (3.9)
holds for all functions u of the form u(x) = g(x;) with g € L'(—1/2,1/2). If now
ge L' (—=1/2,1/2\BV(—1/2,1/2) the corresponding u does not belong to BV (Q); since
however (3.9) is satisfied, the BV -compactness of energy-bounded sequences fails.

3.1 Dirichlet boundary conditions

In this subsection we state a homogenization result for the functionals F.(w) subject to
Dirichlet boundary conditions. To this end, we need to define a class of admissible boundary
data. Since the weight function A(w, -) only belongs to LllOC (Rd), we need to consider
sufficiently regular boundary data.

Assumption 2 (Adm1s51ble boundary data) The function u belongs to WhI(R?, R™). More-
over there exists § € F with ]P’(Q) = 1 such that for every w € Q the sequence of functions
(M (w)), defined as

M (@) (x) := [Vug(x) Alw, DI + luo()]|A(w, ) (3.10)
is locally equi-integrable on R?.

We notice that in view of Theorem 2.2 Lipschitz-functions with compact support satisfy
(3.10) and hence are admissible boundary data. However, fixing a bounded, open set A with
Lipschitz boundary, this restricts the boundary value ug|4 also to Lipschitz-functions.

Since |A(w, )| only belongs to LlloC (RY), the request in (3.10) is necessary in order to
have at least one competitor for the minimization problem with Dirichlet boundary condition
uo.

On the other hand, (3.10) can be relaxed when |A(:, 0)| has higher stochastic moments.
In fact, Holder’s Inequality ensures that M, () is always locally equi-integrable on R¢ when
ug € WHP(RY, R™) and |A(-, 0)| € LP/P=D () for some p € [1, +00).
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Let A € A and consider the functionals defined as

w, % Vu)dx ifu € ug + A A, R™),
Fl()(u, A) := /Af( eV 0% Wor (4. K%
400 otherwise inL1 (A, R™),

(3.11)

where f satisfies Assumption 1 and u¢ satisfies Assumption 2. The following I"-convergence
result holds true.

Theorem 3.4 (Stochastic homogenization with Dirichlet boundary conditions) Let f sat-
isfy Assumption 1 and let uq satisfy Assumption 2. Then, almost surely, the functionals
Fi%w)(-, A) defined in (3.11) T-converge in LY (A, R™) 10 the deterministic functional
Fuo (-, A) given by

om

Fiton 0, A)

dD*u
/ fhom(Vu) dx —|—/ fhogm ( " ) d|D5u| +/ fhooom ((M(J)r —u) ®I’laA) defl
A A d|Dsu| 9A

- ifu € BV(A,R™),

+00 otherwise inL! (A, R™),
forevery A € A.

We observe that in the statement of Theorem 3.4 the boundary integral

/ e (ud —u™) @nga) dH™!
0A

represents the energy contribution of the function u x4 + uo(1 — x4) restricted to dA and
penalises the violation of the boundary constraint u = uo on d A, meant in the sense of traces.

Remark 3.5 (Linear forcing terms) Let ¢ > d and let (g.) C LI (R4, R™) be such that

loc

g:—g weakly in L;IOC (R4, R™), for some g € L;IOC (R4, R™). Consider the linear functionals

Gg(u, A) ::/ggudx and G(u, A) ::/gudx
A A

and the perturbed functionals F (w)(:, A) + G¢(-, A). By assumption G, can be regarded as
a continuously converging perturbation, therefore it is immediate to check that Theorem 3.1
also yields the almost sure I"-convergence of F(w)(:, A)+ G (-, A) to From (-, A)+G(:, A),
for every A € A. An analogous result can be proven for the functionals Fe®(w)(-, A) +
Ge(-, A).

4 Existence of fi,om

This section is devoted to proving the existence of the spatially homogeneous and determin-
istic integrand fhom. The proof of this result will be achieved by following a classical strategy
introduced in [14] and based on the Subadditive Ergodic Theorem [2, Theorem 2.7].

Lemma 4.1 (Homogenization formula) Let f satisfy Assumption I then, there exists Q' € F

with P() = 1 such that for every w € S, xo € R4, p > 0, and every & € R"*4 there
exists
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. 1 . 1,1
lim ——— inf / S, x,Vu)dx : u € lg + Wy (1Q,(x0), R™)
t=+o00 |10, (x0)| ! 1Q,(x0) : ° ’

= lim idlE [inf{/ fCx, Vuyde : u € b +W0"1(Q,(0),Rm)” = fhom (£).
f=+oo 0:(0)
A.1)

The homogeneous and deterministic function fnom is continuous and for every & € R™"*4 it
satisfies the following standard linear growth conditions

acol§] < fhom(§) < Colé| + Cy,
with

0= AC.0O 7k g. Co= sup  E[gAC.O)]. and Cy = E[L(,0)].
neRm*d |n|=1

Proof Let & € R"™*? be fixed. For every w € Q and A € A set
pe(w, A) :=inf {/ flo,x,Vu)dx : u € g + Wé»l(A, Rm)} . 4.2)
A

We claim that ji¢ is a subadditive process, i.e., g satisfies properties (1)-(3) in Definition 2.3.

We start observing that for every A € A the F-measurability of g (-, A) follows by
Lemma A.1 in the appendix. By the non-negativity of f, to prove the integrability of jg (-, A)
it suffices to bound E[ug (-, A)] from above. To this end, let w € Q and A € A be fixed and
arbitrary; choosing u = £ as a test function in the definition of pg (w, A), by (3.1) we readily
deduce that

,ug(w,A)S/f(w,x,E) dxg/ (1€ Aw, x)| + A(w, x)) dx. 4.3)
A A

Therefore Tonelli’s Theorem gives

E[ue(. A)] < [AIE[I%‘A(‘, Ol +E[AC. )] dx
— (BIIEAC 0)[1| + E[(- 0)]) 4]

< (_sup ElnAC. )| + EL(. 0141, (4.4)
r]:

where the equality follows from a change of variables in 2 and the stationarity of A and X.
Next, we check that for every w € Q2, A € A,and z € R4
ne(w, A+ 2) = pe(ro, A). “4.5)

Indeed, given v € £¢ + Wg'l(A, R™), the function v(x) := v(x — z) + £g(2) belongs to
Le + W(}’l (A + z, R™) and by (A2) and the translation invariance in v we get

f(w,x,VT))dx:/ f(w,x—l—z,Vv)dx:/ f(r;w, x, Vv) dx,
A A

A+z

then (4.5) follows by taking the inf in the above equality.
We now prove the subadditivity of j¢ as a set function. Let w € Q2 and A € A be fixed
and let (A;)ic; C A be a finite family of pairwise disjoint sets such that A; C A for every
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i €land |A\Ujc;A;| = 0.Let > 0; forevery i € T letv; € € + W' (A;, ") be such
that

/ flw,x, Vu)dx < pg(w, Aj) + 1. (4.6)
A;

Define v := Zi o7 ViXa;; clearly v € £ + W(}’l (A, R™), therefore by additivity and locality
we get

ne(w, A) < / f(w,x,Vv)dx = Z/ f(w, x, Vv;) dx,
A iez 7 Ai
thus the subadditivity is an immediate consequence of (4.6). Thus, for every fixed & € R?*™,
g 1s a subadditive process as claimed.

Hence we can appeal to Theorem 2.4 to deduce the existence of Q¢ C Q with Q¢ € F,
P(Q2¢) = 1 and of a 7-measurable function ¢¢ such that for every w € ¢ there holds

g (w, nQk(x0)) i pe(w, 0n(0)
SRS = lim S = g (o),
neN, n—400 [nQ(x0)| neN, n—+o00 n
for every xg € 74 and every k € N. Then the existence of this limit for cubes O, (xo) with
non-integer centres xo € R and side-lengths p > 0, and along positive diverging sequences
(tn), follows by a standard approximation argument as in the proof of [27, Lemma 4.3].
Therefore, we eventually get
e, 10 ,(x0))
t=+oo |1Qp(xo)|

for every w € Qg, every xg € R4, and every p > 0.

Now set
Q= ﬂ Qg
ge(@mxd
clearly P(Q") = 1 and in view of (4.7), for every w € Q' the function ¢¢ is well defined for
S e med'
We now claim that for every @ € Q' the limit in (4.7) exists for every & € Rm>d We
introduce the auxiliary functions ¢;f, ¢, : Q' x R4 x R"*4 5 [0, 400) defined as

= ¢¢ (), .7

. , tx)) _ . pe(w, Qpr(Ex))
+ =1 M =1 fUs =pt VA
¢, (@, x,8) gfgf 7 . 9, (w0, x, ) lim inf od1d

By definition we have that
¢ (@.x.8) = ¢, (@.x.§) = de (), 4.8)

forevery w € @', x e R?, & € Q"¢ and p > 0.
Let § € (0, 1) be fixed; we then have

Qp1-5)(tx) CC Qpr(tx) CCT Qpa4s)(tx).
Moreover let & € R"™*4 and ¢j) C Q"*4 be such that & — &,as j — 4o00. Consider

v € Le + Wy (Qpi(1x), R™) arbitrary and extend it to R? by setting v = ¢ in R\ 0,5, (1x).
Letp € C° (R4, [0, 1]) be a cut-off function such that

g=1on Qu(tx), ¢=0o0nRN\ Qpiistx), Vel oma) < 5
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Define § := v + (1 — @), clearly, 7 € b, + Wy (Qp(148y (1), R™).
By definition of v and (3.1), setting k := |A| + X we have

e, (@, Q14 (1)) < f flw, y, Vo) dy

Op(1+8) (1x)

< / f(w,y,Vv)dy—l—/ (IVIl|A(@, )| + Aw, y)) dy
O pi(tx) Qp(148) (tX)\Q py (x)

sf f(w,x,w)dx+c/ @, ) (Volle — &1yl + €] + &1 + 1) dy
Qi (tx) Qp1+8) T\ Qpr (tx)

N
<[ jwyvoac| e, (€ =&l 3+ g1+ 18] +1) dy.
th(tx) (9]

p(1+8)t (1X)\ Q pr (1X)

Since § < 1, we have that |y| < Vd(p + |x))r in Op(1+8): (tx). Then, we can pass to the inf
over v to deduce that

pe; (@, Qp(i48) (1)) = pg (@, Qpr(1x))

+C(”:' e - s,|+|5|+|s,|+1>fg (@, y) dy.

o148 (1X)\Q pr (1X)

Then, dividing both sides of the expression above by (pr)?, passing to the liminf as t — 400,
and invoking Theorem 2.2 we get

1488, (0. 755086) <9, @.x.8)

+c<p:|x|ls s,|+|5|+|s,|+1><(1+‘”d‘1)E[“("°” “

(we notice here that in principle Theorem 2.2 holds in a set of probability one, say ", which
can be smaller than €'. However since clearly P(' N Q") = 1 with a little abuse of notation
we still denote with €’ this intersection). Analogously we can prove that

b @.x.6) = (1= 89 (0. . &)

+C<p:|X||‘§ §/|+|§|+|§/|+1> (1—(1—8)’1)[[2[;((.’0)]' (4.10)
Hence since (£;) C Q"% thanks to (4.8) we have

0y (0 1 581) = 0F (0 1 5-8) = 9, @), @.11)

forevery w € @', x € R4, j € N, and p > 0. Therefore, gathering (4.9)-(4.11), passing to
the liminf as j — +oo0 and as § — 0" we get

liminf gg, (@) < ¢ (0, 2. €) < ¢, (@, 2, &) < liminf ¢, (@),
J—+0oo Jj—+oo

hence

05 (@, x,8) = 9 (@, x,§) = lim inf ¢, (@),

for every w € 2, x € RY, & € R"*¢ and p > 0. Note that in particular all the terms in the
above equalities do not depend on x and p. Then, by the definition of qﬁf we have that for
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every w € € and every £ € R”*? the following limit exists and does not depend on x and
onp >0

pe(w,1Qp(x))

i>to0 |00
We then set
o e o me@,00,0) . pe(, 0,(0)

¢s(@) = ¢, (@, %, §) = ¢, (0, x,§) = lim Tho,ml dm —— .

(4.12)
Then, for every & € R™*4 the function w ¢z (w) is F-measurable on ' while by (4.9),
(4.10), and (4.12) the function & > ¢¢ (w) is continuous for every w € Q'

We now prove that ¢ is actually deterministic. By the ergodicity of {t;},.ga, this is
equivalent to proving that

¢e () = ¢z (Tz0), (4.13)

for every &€ € R”*? and z € R? (cf. [10, Corollary 6.3]). Let w € Q, & € R"*? and 7z € R?
be fixed. By stationarity we have

we (T, 1Q) = pg(w, 1(Q + 2/1)), 4.14)

forevery t > 0, where Q := Q,(xp). Given Q' and Q" open cubes with Q' CC Q cc Q”,
for ¢t > 0 large enough we have

Q' cO+z/tcQ".
By the subadditivity of g and (4.3) we get
pe(@, 1@ +2/0) _ pe(@,10) | 1

[2Q| - o 1201 Jio+z/0\n 0

- e (@,1Q") n (|5|+1)f Kk (w, x) dx
tQ'| ol Jignig '

In view of (4.14), passing to the limsup as t — +o00, and invoking Theorem 2.2 we infer
that

(IEA(w, )| + M@, x)) dx

. pe (1,0, 10) 10" - 10|
lim sup =272 < ¢z (@) + (5] + DE[« (-, 0)] ———.
1—+00 |1 Q| 10|
Then, letting Q' # Q and Q" \( Q gives
, 1
lim sup Ke(1:0.10) < ¢¢(w).
t—+00 Q|
Analogously it can be proven that
t
¢,§ () < liminf M
t—>+00 [t Q|

which allows us to conclude both that ;@ € Q' and that (4.13) holds true, so that ¢ is
deterministic as claimed. Eventually, we define fhom (&) := ¢g, forevery & e R7*d,
We now show that fi,om satisfies the desired bounds.
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Thanks to the Fatou Lemma we have that

. 1
Jhom(§) = E[ fhom (§)] = liminf —=E[us (-, 1Q)] = sup E[InA(-, 0)[11§] + E[A (-, 0)],
t—>+o0 |t Q| Inl=1
where to establish the last inequality we have used (4.4). Hence, the upper bound on fjon is
achieved.
To prove the lower bound, we observe that for any v € £¢ + Wol o1 (O, R™) we have

A(, 0 |l
/ Vuvdx 5/ [Vu|dx < HAC, 0z (Q)/ f(w,x, Vv)dx,
170) tQ 1Q

o
where in the last estimate we used (3.7) with the actual constant C = |||A(-, 0)~!]| L(Q)-
Therefore by the arbitrariness of v, dividing by | Q| and passing to the limit as t — 400 we
get

lrQl1§] =

A O Ik g 1E] < from €,

thus the desired lower bound.
Eventually, (4.1) follows by [21, Theorem 2.3], hence the proof is accomplished. O

5 IN-convergence

In this section we prove the I"-convergence statement in Theorem 3.1. To do so, we start by
establishing a compactness result for sequences (u#.) with equi-bounded energy F;.

Lemma 5.1 (Domain of the I'-limit) Let A € A and let (ug) C LllOC (R?, R™) be such that

suI()) (”MEHLI(A’RM) + Fe(w)(ue, A)) < 4-o00.
£>

Then there exists u € BV (A, R™) such that, up to subsequences, ug—*\u in BV(A,R™).

Proof In view of (3.7) the sequence (u;) is equi-bounded in the Wwh1(A, R™)-norm. There-
fore the claim follows by well-known compactness properties of BV -functions. O

Below we prove two technical results which will be needed in what follows. The first one
is a classical vectorial truncation result.

Lemma 5.2 (Vectorial truncation) Let A € A and let u, € L] (RY, R™) N W1 (A, R™) be
such that ug — u in L}OC(Rd, R™), as ¢ — O0T. Then for every n > O there exists a constant
C, > 0 and a function ug; € Llloc(Rd,]R’") N WLLA, R™) such that Uey = Ug a.e. in
{luel <n~'}, and

g ] < |uel, lug | < Cy foraex € RY,
Moreover, there holds

Fe(@)(ugn, A) < (1 +n)Fe(w)(us, A) + 1,
for every ¢ > 0 small enough.

Proof The proof is identical to that of [27, Lemma 4.6] up to replacing the exponent p with
1 and noting that the energy bound in [27, Lemma 4.6] can be obtained simultaneously for
all open sets A € A. O
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Next we show that the functionals F; satisfy a so-called fundamental estimate, uniformly in
e.

Lemma 5.3 (Fundamental estimate) Let F; be asin (3.2). Let A, A’, A”, B € Awith A’ CC
A" C Aandlet u,v € WHI(A,R™). For every 8§ > 0 there exists ¢ € CX(A”, [0, 1])
(depending on 8, A’ and A" ) with ¢ = 1 in a neighbourhood of A’ such that for every & > 0
there holds

Fe(w)(pu + (1 —@)v, AU B) < (1 + 5)(Fg(w)(u, A") + Fe(o)(v, B))

4
+$§afaﬁiém—mmwnawx+§£M@§mL 5.1)

where S := (A" \ A’) N B.

Proof Let$ > O andlet A, A’, A”, B and S be as in the statement. Let N = N(§) € N be
such that

1 1
—max[—,ll <5 (5.2)
N a

Set R := %dist(A/, 0A”) > 0.Fori =0, ..., N define
A= [x € A" dist(x, A) < ZNR},
we have

A=Ay CC A CC...CCAycCcCA”.

and fori =0, ..., N - 1let g; € C°(A, [0, 1]) be such that suppg; C A;j+1and ¢; = 1in
aneighbourhood of A;. We notice that ¢ can be chosen in a way such that | Vg;|lco <2N/R.
By virtue of the nonnegativity of f, for every ¢ > O and fori =0,..., N — 1 we have

Fe(w)(@iu + (1 —¢i)v, A"U B)
= F(@)(u, (A" U B) N A;) + F} (@) (v, B\ Ai11)
+ Fe(@)(giu 4 (1 = ¢i)v, (Ai11 \ A;) N B)
< Fe(@)(u, A") + +Fe (0) (v, B) + Fe(0)(giu + (1 — ¢i)v, Sp), (5.3)

where F;* denotes the extension of Fy to the Borel subsets of R? and Si == (A1 \AT~) N B.
‘We now estimate the last term in (5.3). Since

V(piu+ (1 — g)v) = Vo; @ (u — v) + ¢; Vu + (1 — ¢;) Vv,
by the upper bound in (3.1) we get

Fe(w)(giu + (1 — @i)v, Si)f/ (IV(wiu+(1—<pi)v)A(w, DN+ Mo, 7 )dx

i

2N
< /S (7“‘ —ollA@, D)+ [Vuh @, DI+ VoA, D] + i@, D) dr,
Now appealing to the lower bound in (3.1) we obtain
1
Fe@) @i+ (1= g0, 5) =~ (F@)@. ) + F@.S))

2N i i
+/S,- (?m —llA@, D)+ i@, D)) dx, (5.4)
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foreverye > Oandforeveryi =0, ..., N—1.Henceby (5.4) thereexistsi* € {0, ..., N—1}
such that
N-1
1
Fe(o)(giru 4+ (1 — ¢i+)v, §i+) = — Z Fe(w)(giu+ (1 —@i)v, Si)

< NL<F (w)(u, S) + Fe(w)(v, S) /|u—v||A(a) )|dx+%/s}»(w, f)dx.

Finally, thanks to (5.2), the definition of R, and (5.3) the desired estimate follows by choosing
¢ = @i o

Remark 5.4 Let A, A’, A”, B € A be as in the statement of Lemma 5.3. Let (i), (ve) C
WA, R™) be such that (s, ve) — (1, v) in L' (A, R™) x L'(A, R™). Assume moreover
that (u.), (ve) are uniformly bounded in the L*°(A, R™)-norm. Then, there exists a set
Q7 € F with P(”) = 1 such that for every v € Q" and for every § > 0 there exists a
sequence (wg 5) C Wh1(A, R™) with we 5 = u, in A" and w, 5 = v, on dA” such that

liminf Fu(@)(we5, AU B) < (1 + 6) liminf (Fg (@) (e, A") + Fo(@)(ve, B))
e—0t e—0T

4E[IAC, 0]

S A — v dx + SE[A(, O)]|[(A” \ A)) N B, 55
Tt AT, 9A7) S V1 T OERC OTIATA 4D N B (5.5)

Moreover, the same estimate holds true if we replace lim inf by lim sup.

In fact, up to a subsequence, |u, — v, | converges a.e. to |# — v| and is uniformly bounded in
the L°°(A, R™)-norm. Moreover, due to Theorem 2.2 we know that, almost surely, |A(w, )]
and Ao, )g‘) converge weakly in L'(A) to E[|A(-, 0)|] and E[A(-, 0)], respectively. By [18,
Proposition 2.61] we then have that, almost surely,

lue — vel|Aw, 2)I ~E[AC, 0)[]|lu — vl
weakly in L! (A). Therefore (5.5) follows by Lemma 5.3 setting wg 5 := @ug + (1 — @)vg.

We are now in a position to establish the I"-convergence result for the functionals F;. This
is done by proving the liminf and limsup inequalities separately. We start with the limsup-
inequality whose proof relies on a density and relaxation argument.

PropOSItlon 5.5 Let F, and Fnom be as in (3.2) and (3.6), respectively. Then, there exists
Q € F with IP’(Q) = 1 such that for every w € Q, every u € Lloc(Rd R™), there exists a
sequence (ug) C LIOC(R‘I R™) withus — u in LIOC(R‘I R™) satisfying
lim sup F; (@) (ug, A) < Fhom(u, A), (5.6)
e—0F

forevery A € A.

Proof Letu € LllOc (Rd, R™) and A € A, moreover assume that u € BV (A, R™), otherwise
there is nothing to prove.

We recall that (5.6) is equivalent to proving that for every u € BV (A, R™) and every
A € A there holds

F//(w)(”’ A) < Fhom(u, A), 5.7
where F” () : Llloc(]R", R™) x A —> [0, +0o0] is defined as
F"(w)(u, A) := inf{lim sup Fe(w) (e, A) : ue — uin L (RY, R™)}. (5.8)
e—>071
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Moreover, it is well-known that F”(w)(-, A) is LlloC (R4, R™)-lower semicontinuous.

Let ', Q" € F be the sets of full probability whose existence is established by Lemma 4.1
and Remark 5.4, respectively. Set Q := Q' N Q”; clearly P(Q) = 1. Throughout the proof w
is arbitrarily fixed in Q.

We achieve the proof of (5.7) in three steps.

Step 1: Proof of (5.7) for u € Wh(4, R™).

Let A € A be fixed; in this step we show that

F/ (@), A) < / From (Vi) dx, (5.9)
A

forallu € Wh1(A, R™). Since A has Lipschitz boundary, it is not restrictive to assume that
ue WHI(RY R™).

We observe that by the continuity and the linear growth of fhom (cf. Lemma 4.1) the
functional in the right-hand side of (5.9) is continuous with respect to strong whica, R™)-
convergence. Then, by standard density arguments it suffices to prove (5.9) for (continuous)
piecewise affine functions. That is, we can assume that u is continuous and that there exists a
locally finite triangulation {7;};cn of R? in non-degenerate (d + 1)-simplices such that u|z;
is affine for every i € N.

To construct a recovery sequence (u,) for such a u we first construct it locally, in each 7;,
in a way so that u’s =gl €u+ Wol’ ! (T;, R™), foralli € N. Then, thanks to the continuity
of u, the locally defined sequences (u}) can be “glued” together to obtain a recovery sequence
(1) defined on the whole R9.

To this end, we first focus on a single simplex 7; and write u|7, = {¢ + b;, for some
& € R™* and b; € R™. For § > 0 small, we consider the family of pairwise disjoint open
cubes of side-length é contained in 7; defined as

Q) =(0% = Qs02): z €2, Q° C T3}

and the inner approximation of 7; defined as T’ := Jys.gs Q°. We define the sequence
(u') separately in each cube in Q7. Then, for ¢ > 0 and Q° € Q? fixed let vi 0 € Le, +
Wol’l(s’l 0% rR™) satisfy

/ o5 fl@,x, V0] ) dx < pg (0,671 Q) +e,
-

where pg is as in (4.2) with & replaced by &. Set u! €

Wol‘l(zz’l Q% R™). We then define u! on T; as

i i
Ve, 08 L, thus u

0 = 0’

up () = ulr + ) eul 5(x/8)xgo ();
0%eQ!
we notice that u/, depends also on §. A _
Thanks to the boundary conditions satisfied by u’s os We clearly have that u, € u +

Wy (T;, R™).
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By the upper bound in (3.1), we can estimate the energy of u’. on the simplex 7; as follows

F@u =Y / fl. 2.Vl 5 (x )+sl)dx+/ S, % E)dx
QzS Qrﬁ ’\Tt
<Y e f @,y Vo p)dy + e / (I8 11A @, )] + Mw, ) dy
Q"er & e (T\T

—1 6
= YOI e [ (sl @, )]+ A, ) dy + o)
phea! e=10° eI (T\TY)

as & — 0T, where to establish the last inequality we have used the definition of vi 0"

Since w € 5, Lemma 4.1 ensures that

e (w, 671 Q%)
e—0t _d|Q(S

fhom (51

while Theorem 2.2 applied to |A| + X yields

e—0F

lim & /—I(T\T% |A(@, Y|+ Mw, y)dy = |T; \ TP E[JAC, 0)] + A, 0)].

Therefore we get

1imsgp Fo(o)(ul, T;) < E 10°| from &) + (&1 + DITi \ TP | E[|AC, 0)] + A(-, 0)]
e—0
0°eQ?

Shom(Vu) dy + o(1), (5.10)
T;

as 8§ — 0T. Set

&

ul inT;, ifTiNA#0
Ug i=
¢ u  otherwise inR?:

appealing to (5.10) we have that

lim sup Fy (@) (e, A) < Y limsup Fe(@)(ul, T;) < ) /fhom(VM)dx-‘r-O(l)

e—=>0F it TnAzp £=0F it TNA#D
/ Jhom(Vu) dx + Z / Jhom (Vu) dx + o(1), (5.11)
i TNOA#D
as§ — 0t.

We now analyse the asymptotic behaviour of u.; to this end we recall that u, also depends
on §. In view of (5.11) we can combine Poincaré’s Inequality and Lemma 5.1 to infer that u,
is bounded in Wl-1(A, R™), uniformly in . Hence, also taking into account the definition of
ug up to a subsequences (not relabelled) u; — us in LllOC (R4, R™), with us € Wh1(A, R™).
We now estimate the difference between us and the target function u in L! (T;, R™), for every
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i such that 7; N A # @. By the Poincaré Inequality on the cubes Q° Q‘?, we have

||u5—u||L1(T)— 11m > / gQa( )|dx<C811m1nf > / 8’Q5(§)|dx

BQE (SQB

= C8 | I&11Ti| + lim in > / |6 + Vul s (3)] dx
0°eQ;

<Cs (l&-llTil +liminf/ |w5;|dx>.
e—01 T;

Using (3.7) we then have

lus — ull 17,y < C3 (|s,~||Tl~| + lim sup Fe () (ul., m) :
e—>0t
Thanks to (5.10) the term inside the parenthesis above is finite, and therefore we conclude
that us — u in L'(7;, R™) as 8 — 0 and analogously, also taking into account the definition
of u, we have that us — u in L]IOC(]Rd, R™).
Eventually, by the L] (R?, R™)-lower semicontinuity of F”(w)(-, A) and by (5.11) we
obtain

F'(w)u), A < hm mf F"(w)(ug, A) < lim sup lim sup F; (o) (ug, A)

§—0t e—0t

< [ fonar + 3 / from (Var)dx,

it T,NAH-D

hence the claim follows by a standard diagonal argument also refining the triangulation
{T:}ien by choosing simplices of arbitrarily small diameter.

Step 2: Quasiconvexity of fhom-

In this step we prove that the function f,om is quasiconvex, that is, we show that

1Ol fhom (§) =< /thom(é + Vu)dx, (5.12)

forevery & € R™*d and every u € C&(Q, R™), where Q := Q,(xo) C R4 is an open cube.

Since £g + u € L*®(Q,R™), Lemma 5.2 together with Step 1 ensure that for n > 0
small enough there exists (u, ;) C wbl(o, R™), with lugyl < Cy ae.in Q, such that
ey — Le +uin L'(Q, R™), and

lim sup Fe(w) (e, Q) < (1+ n)/ Jhom(§ + Vu) dx + 1.
e—0T 9]

Set Q1—y := Q1) (x0); we notice that since u € C{°(Q, R™), then u = 0 on Q\ Q1.

for n > 0 small enough. We now invoke Remark 5.4 to modify u, ; in a neighbourhood of

9 Q. Namely, choosing u, = uz,, ve = g, A" = Q1—;, A” = Q,and B = Q\ Q1 for

every § > 0 we get a sequence wg s € £g + WOI’I(Q, R™) such that wg ;.5 = e, on Q1—y,

whereas by (5.5) there holds

lim sup Fe (@) (e, .5, ©) < (14 ) limsup e (@)t ©) + Fe(@)(te, 0\ Q1))

e—0F e—0t

+CS1Q\ Q1 (5.13)
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Since w € Q by combining (3.1) and Theorem 2.2 we get

lim sup Fe (@) (€, Q \ Q1-y) < limsup(|§] + 1) [A(@, DI+ Mo, 7)dx
e—0t e—0t O\Q1—y
= (E1+ DE[AC O+ AC 01O\ Q1 (5.14)
moreover, by a change of variables and Lemma 4.1 we have
101 from (&) = 1lim &/ (@, £7' Q) < lim sup Fe (@) (we.p.5, Q). (5.15)
e—>07" e—>0F

Finally, gathering (5.13)-(5.15) gives
|Q|fhom(§)
=1+ ((1 + n)/Q Jhom( + Vu)dx +n+ (151 + DE[AC, 0]+ 2, 0] [0\ QH;I)

+ C81Q\ Q1]

Therefore (5.12) follows by letting § — 0 and n — 0.

Step 3: Proof of (5.7) by relaxation.

Since fhom 1S Non-negative, quasiconvex, and satisfies the upper bound fhom (§) < Colé|+
C| we can invoke [3, Theorem 4.1] to deduce that for A € A the LllOC (R4, R™)-lower
semicontinuous envelope of

WELAR™) 5 u > / Fhom (V) dx
A

on BV (A, R™) is given by

( )_/f (Y7 )d /foo (]l)su | N |
I u, A u)dx + S Te— d|D’ul.
hom hom hom 1|D5 |

Therefore (5.7) follows by taking the LlloC (R?, R™)-lower-semicontinuous envelope of both
sides in (5.9). O

We now show that the liminf inequality holds true. In this case the proof is achieved by
resorting to the Fonseca and Miiller blow-up method [19] (see also [3]).

Proposmon 5.6 Let F. and Fyom be as in (3.2) and (3.6), respectively. Then, there exists
Q e F with ]P’(Q) 1 such that for every o € Q every u € LIOC(Rd R™), and every
sequence (ug) C LY (RY, R™) withu, — u in Ll (]Rd R™) there holds

loc

Fhom (1, A) < lim (i)gf Fe(w)(ug, A), (5.16)
e—
forevery A € A.

Proof Let Q', Q" € F be the sets of probability one whose existence is established by
Lemma 4.1 and Remark 5.4, respectively. Set 2 := Q' N Q"; clearly P(2) = 1. Throughout
the proof w is arbitrary, fixed, and belongs to .

Letu € L}, (R?,R™) andlet (u;) C L} .(R?, R™)besuchthatu, — uin L] (R, R™).
Let A € A and suppose that

lim illf Fe(w)(ug, A) < 400 (5.17)
=0
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(otherwise there is nothing to prove). Moreover, up to subsequences, we can also assume
that the liminf in (5.17) is actually a limit. Thanks to (5.17), we immediately deduce that
(ug) € WhI(A, R™), moreover by Lemma 5.1 we know that u € BV (A, R™).

The proof of (5.16) is carried out in two main steps.

Step 1: Proof of (5.16) for sequences (u.) equi-bounded in L*°(A, R™).

Assume that there exists M < +o0o such that for every ¢ > 0

lugllLoo(a,rmy < M. (5.18)

For w € 2 fixed and for every Borel subset B of A we define the finite Radon-measures v,
as

ve(w, B) ::/ f, %, Vue)dx.
B

By (5.17) the total variation of the sequence (v, ) is equi-bounded, therefore, up to subse-

* . .
quences, we have that v, —v, for some nonnegative finite Radon measure v. By the Lebesgue
Decomposition Theorem, we can write v = v¥ +v*, where v and v* are, respectively, abso-
lutely continuous and singular with respect to the Lebesgue measure. We then have

v = f(a), x)dx,

for some nonnegative integrable function f.
Since A is open, the weak* convergence of v, to v implies that

liminf Fg(w)(ug, A) = liminf vy (w, A) > v(w, A) = f f(w, x)dx +1v¥(w, A).
e—>0t e—>0t A

We now separately estimate from below the integrand f and the measure v°. Since BZ‘ =
lgfsz‘ for |D*ul-a.e. xo € A, to prove (5.16) it suffices to show that for every w € Q
F(@,x0) = from(Vu(xg))  forae. xo € A, (5.19)
dv® dDu .
TGROE fh‘fm(m(xo)) for |D*ul-ae. xo € A, (5.20)

where fhom is as in Lemma 4.1 and f,°°  denotes its recession function.

hom
Substep 1.1: Proof of (5.19).

Let xp € A and let r > 0 be so small that Q,(xg) C A. Since v is a finite Radon
measure, it follows that v(w, 0, (xp)) = 0 except for a countable number of radii. Then,
the Besicovitch Differentiation Theorem [18, Theorem 1.153] and the Portmanteau Theorem
imply that for a.e. xo € A (along a suitable sequence r — 07) we have

Fl@,x0) = lim 2@ 2@y iy L@ OrGo))
Y r—0* rd r—0t =0t rd ’
Therefore to prove (5.19) it suffices to show that for a.e. xop € A we have

lim inf liminf][ fe(w, f, Vue)dx > fhom(Vu(xo)). (5.21)
r—0t e=0" Jo,(xo)
Let xo be a Lebesgue point of # and Vu and set Ly, y, (x) := u(xo) + Vu(xo)(x — xo).
Due to (5.18) we can invoke Remark 5.4 to modify u, close to dQ,(xp). Namely,
Remark 5.4 applied to the sequences u, and ve = L, x, € L°°(A, R") and to the open sets
A" = Q4 (x09), with s € (0,1), A” = OQ,(x0), and B = Q, (x0)\ Qs (x0), for every § > 0
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provides us with w; 5 € Wh1(A, R™) satisfying We s = Ug ON Qg (x0) and we s = Ly x, ON
00, (xp). Moreover, (5.5) now reads as

lim inf Fy (@) (we.5, Or (o)) < (1 + 8) lim inf
=0t e—01

(Fe@) e, 07 (o)) + Fo(@) (L g 0 (50) \ O (x0) )
),

(1 =97 Jo, o\ Qs (x0)

where used that dist(Qy, (x0), 80y (x0)) = % (1 — s)r.

Since wy s is admissible as test function in the minimisation problem defining the ergodic
Process [y (xy) and @ € 2, invoking Lemma 4.1 gives

lu(x) = Ly (x)|dx + C8[Qr(x0) \ Qsr(x0)|.  (5.22)

liminf Fe (@) (we.s, Or(x0)) = lim e vy (@, 7101 (x0)) = fhom (Vi (x0))r?.
e—0t e—0t

(5.23)
Moreover by (3.1), appealing to Theorem 2.2 we get
lim sup Fe (@) (Ly x> Or(x0) \ Qsr(x0)) < llm
e—>0F
(IVu(xo) + 1) (1A (@, H + Mo, 2)) dx
O (x0)\ Qs (x0)
= (IVu(xo)| + DE[IA(, 0)] + A(-, 0)]1Qr (x0) \ Qsr(x0)]- (5.24)
Gathering (5.22)-(5.24) yields
d
T+ 5 Jhom(Vu(xo)) < 11m mf Fe()(ue, Qr(x0)) + C81Qr(x0) \ Qsr(x0)]
C
+ 1 —sr /Qr(xo) [t (x) — Ly x(x)] dx.

We now divide the above inequality by r¢; then recalling that due to [17, Theorem 1, p. 228]

. 1
r1~1>1})1+ prESy /Q‘(xo) i (x) — Ly,xo (x)] dx =0,

for a.e. xo € A, we first let § — 07, then r — 0T, and eventually s — 1~ thus getting for
ae.xg €A

oo ]
Jhom (Vu(xp)) < hmg}_f llm(l)f_}_f era () (ue, Or(x0)),
r— e—

and thus the claim.
Substep 1.2: Proof of (5.20).

Thanks to [3, Theorem 2.3], for |D*ul|-a.e. xo € A the following properties hold true:

() & d‘Du‘ " (xg) = n(xo) ® n(xg) for some n(xg) € R™ and n(xp) € RY with [n(xg)| =
[n(xo)| = 1;

(ii) setting Cr(x0) = xg +rC, for r > 0 and C a bounded, convex, open set with 0 € C,
there holds

Du(C; (x0)) n(x0) ® 1(x0). lim PHI(Cr (x0))

50+ IDul(Cr(x0)) P30+ rd too (5:25)
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(iii) defining w, € BV (C,R™) as
d

r -1
wr(y) = ——r <u(xo +ry) —][ u(xg +rx) dx) , (5.26)
' IDu|(Cr (x0)) c

there exist a subsequence r, — 0%, as h — +o00, and a function w € BV (C, R™) such that
wy, — win L(C, R™). Moreover, w can be represented as

w(y) = ¥ ((y, n(x0)))n(xo),

where ¥ : (a, b) — R is a non-decreasing function with
a:=inf{{y,n(x0)) : y € C},  b:=sup{(y,n(xo)): y € C}.

We notice that in the proof of (iii) the passage to subsequences is only needed when
using the compactness properties of bounded sequences in BV and of bounded measures.
Therefore, we can apply (iii) along a further subsequence of radii which we choose below,
to invoke Portmanteau’s Theorem.

Let xo € A be fixed and such that properties (i)-(iii) hold true.

Setn = n(xg) € S971; we complete the vector n to an orthonormal basis ny, ..., ng_1, n
of R?. In the same spirit as in the proof of [5, Lemma 3.9], we choose the convex set C to
be:

Cki={x eRY: [(x,n)] < 12, [{x,ni)| <k/2 foralll <i<d— 1},

for k € N. With this choice there holds that a = —% and b = % Moreover set Cf (xg) :=
rCk(xp) = xo + rC* and let wf be as in (5.26) with C replaced by C*.
Again invoking the Besicovitch Differentiation Theorem [18, Theorem 1.153], also using
(5.25), and the Portmanteau Theorem we can assume that along a sequence r;, — 07
dv* v, Cp(x0) v, Cf (x)

(w, x0) = lim = lim lm ——.
d|Du| h—+00 |Du|(th(xo)) h—+00 g0t |Du|(Cﬁh(x0))

Hence, in view of (i) to get (5.20) it suffices to show that

1
lim sup lim sup lim inf

—_— fl@, %, Vue(x))dx > fis (n ® n).
k——+o0 hotoo e—0% |Dul(CE (x0)) ck (xo) e o

(5.27)

Up to refining the subsequence r, — 07T, by (iii) we find a function wk e BV (Ck, R™)
such that wf, — w* in L' (C'R™); furthermore w* can be represented as

w* () = ¥y, n(x0))n(xo),

for some non-decreasing function VAR (—%, %) — R. Since |17(x9) ® n(xg)| = 1, by slicing
we have

Dwk|(CF o) = K7 (vHE ) —vh=4D). (5.28)

As shown in the proof of [3, Theorem 2.3], the measure IDwk | coincides with the weak™-limit
of the measures |Dwfh |. Thanks to [23, Lemma 5.1] we get IDw*|(C*(xp)) = 1, which by
(5.28) yields

(v = vr 1) = (5.29)
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Moreover, since w* has zero mean-value we get that

1/2
y* (@) dr = 0. (5.30)
—-1/2
Du|(Ck
Set 1} = M By (5.25) we have that
Jim 1 = +o0. (5.31)

Moreover, thanks to (5.18), we can apply (5.5) choosing the functions u,,

k(L7 4 gk _1t
v (x) == t,]: (kl_dn(n,x—xo)—l—rhnw G )+¥ (=3 ))+][Ck( )u(y)dy,
7, (0

2

where 1 := n(xg), and the sets

A" =C} (x0), B=C} (x0), A =C} (x0)\Ck  (x0).

rn,s rn,s

where for s € (0, 1) we define the anisotropic annular set

Cf,s(xo) = X0

+ ({x eck: [ max {(x, )} > (k= 9)r/2}U{x € ck:x,n) > (1 —s)r/Z}) .
<i<d-
Since w € $ and Vg, = t,’l‘kl‘dn ® n, from Lemma 4.1 we deduce that for any § > 0

€5, (50 from (1K'~ n @ n) < (1 4+ 8) lim inf (Fguu)(us, CF (x0)) + Fe() (vx. th,s(xo))>

C
+ — lu — vg|dx + Cé. (5.32)
th,s(xo)

Furthermore, (3.1) and Theorem 2.2 give

lim sup Fy (@) (v, C¥ ((x0)) < Ctfk' ™ @ n| + 1DICE (x0)]

Fp,S
e—0t

< Ciyk'~s|CF, (xo),

where we also used that t;,‘k]_d > 1 for h = h(k) large enough.
By the arbitrariness of § > 0 in (5.32), appealing to the rank-one convexity of fyom (see
Step 2 in the proof of Proposition 5.5) and to (5.31) we deduce

. Jhom (K Ty @ n)
o0 —
Jrom( @ 1) = hEToo thk1—d
<limsupliminf ——
h>too e—>0F tFK1=4|Ck (x0)]|
4 lim inf ¢ / | |d
imin U — Vgl dx.
h—+00 [Z‘hkl—d|th(x0)|SV CF, s (xo)

Fe (@) (ug, CY, (x0)) + Cs

By definition of t,’: there holds
thk'=4|CL (x0)| = IDu|(C}, (x0)k' =4 |C* (x0)| = [Du|(C}, (x0)).

r'n
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therefore (5.27) follows if we show that
1

lim sup lim sup lim inf —/ lu — vg|dx = 0. (5.33)
k—>too 50+ h—+oo [Dul(CE (x0))sra (x0)

To prove (5.33) we start observing that C f =rC ’f 4> hence by a change of variables we get

u(xo +ry) — vg(xo +ry)
r

1 d
et
DUl CECoNsT Jer IDul(CECxo)s Jot

Moreover, in view of the definition of v; we have

rd u(xg +ry) — vi(xo +ry)

IDu|(CF (x0)) r
d

N A | B
- |D”|(Cf(x0))r (u(xo ) ]{:{‘ u(xo +rx) dx)

— (kl‘dmn y) + nwk({) + Wk(—;r))

2

kA +wk<—;+)>
5 .

=w,(y) — (kl‘dn(n, y)+n

Then, if we replace r with the sequence (rj,) chosen as above, we obtain that
.. 1
lim inf T
h—+o0 th le.s

Yr(n, y)n — (k‘dnm, y)+1

u(xo +rpy) — vk (xo +riny)
rh

dy

vk +x/xk<—;*>>
2

Il
© | =
T

dy, (5.34)

AT gk 1*))
2

1 -
f/ v (v - (k1 Yn, y) +
s ey,
where we also used that |n| = 1.

We now estimate (5.34). To do so we split the domain of integration in two (non-disjoint)
subsets by writing C]f,s = Alf,s U B{(,s with

={yecCt: (max (.l > (k= )/2),

={yecCt: |<y,n>| > (1—1s)/2}.

Then, the idea to conclude is as follows: the measure of A’f,s is of order (d — 1)sk9~2 while

the integrand decays like k! ~?; on the other hand, in B{"S the quantity (n, y) is close to +=1/2
and, by construction, the integrand vanishes at these points.
Rigorously, since

d—1
= U CFniy: Ky ni)l > (k—s)/2)

we get that |A’IJ| < (d — 1)sk?72, where we have used the fact that the vectors (n,');iz_l1 and
n form an orthonormal basis. Moreover, (5.29), the monotonicity of ¥, and (5.30) imply
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that [y (¢)] < k'~ forall t € (—1/2, 1/2). Hence

1 / vEAT) + w’%—;*))
- +
S All(,s 2

C C
dy < Sjak -4 < &
y_s|1”| =%

vE((n, y) — (kl—"m, y)

(5.35)

uniformly for s € (0, 1). We now estimate the contribution coming from the integration on
B{‘ ;- By an orthogonal change of variables we get

1 kL7y pogpk— Lt
;/Bk v (n, y) = (k‘—d<n,y>+ v G ) 21/f (=5 &
Ls
kd—l 71%& wk(lf)_i_wk(_lJr)
- /1 w"(t)—<1<1d,Jr 2 ! ) .
N -3 5
d-1 - o
+kT ; wk(t)_<kldt+w . HZW 2 )> dr=: I + 1
2

Due the monotonicity of ¢ we find a sequence of positive numbers (ySk)Do with
lim_, o+ y* = 0 such that

‘w"(z) - 1//"(-%5‘ <k forall -1 <1< 158,

ko — v A0 < vk forall i <1 < .

Hence we can estimate the last two integrals as follows:

- e 8 K - K4 v + vk Eh
Iy + I8 <k 1V3k+§+T V(-3 )-(— 5+ 2 3 2
k=1 _ K1—d k(L7y gk 1t
2 2 2

By (5.29) the last two terms equal zero and we obtain

lim sup (I,;S + I]:S) < lim sup (kd_l)/sk n %) —0.
s—0t s—0t
By combining the latter with (5.35) and (5.34) we get (5.33) and hence the claim.
Step 2: Proof of (5.16) for general sequences (u;).
Let (u;) ¢ WU1(A,R™) be as in (5.17). For ¢ > 0 and n > 0 fixed let u,, €
WLI(A, R™) be the function given by Lemma 5.2; therefore

1
lim inf F, JA) > liminf F, LA — 1. 5.36
182(1)2 e(@)(ug, A) > T lgrg(l)g e(@) (g, A) — 1 (5.36)

n

Since |ug, | < Cya.e.in A, thanks to (5.36) we can invoke Lemma 5.1 to deduce the existence
of a subsequence (not relabelled) such that u, ; — u, in LY(A,R™), as ¢ — 0T, for some
uy € BV(A,R™). Moreover, Step 1 implies that

. 1
hgrg(l)gf Fe(w)(ue, A) > thom(”na A) —n. (5.37)
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Thanks to [3, Theorem 4.1] the functional Fhom (-, A) is L1 (A, R™)-lower semicontinuous
on BV (A, R™). Therefore, in view of (5.37), to conclude it suffices to show that u, — u in
L'(A, R™).

By Lemma 5.2 and the L' -convergence of ug , to u, it follows that |u,| < |u| a.e. on A;
moreover by construction u, = u a.e. on {ju| < n~'}. Hence the Dominated Convergence
Theorem yields u,, — u as n — 07 and thus the claim. O

By combining the results proven in this section together with those in Sect.4 we are now
able to prove Theorem 3.1.

Proof of Theorem 3.1 Lemma 5.1 shows that the domain of the I'-limit of Fy(w)(-, A) is
BV (A, R™). Then, statements in i. and ii. are proven in Lemma 4.1 and in Proposition 5.5,
Step 2. Eventually, the almost sure I"-convergence of the functionals F;(w)(-, A), statement
iii., follows by Propositions 5.5 and 5.6. O

6 -convergence with Dirichlet boundary conditions

This short section is devoted to the proof of Theorem 3.4.

Proof of Theorem 3.4 Let © € F be as in Theorem 3.1 and € be such that the sequence
of functions (M, (w)). defined in (3.10) is locally equl integrable in R, for every w € Q.
Throughout the proof w is arbitrarily fixed in QnQ.

We start by proving the liminf-inequality. To this end, fix A € Aandlet (u;) C L'(A, R™)
and u € L'(A, R™) be such that u, — u in L1 (A, R™). Without loss of generality, we can
assume that

sup F0(w)(ug, A) < 400,

>0

therefore (ug) C up+ WOI’I(A, R™). We then extend u, to the whole R? by setting u. := ug
onR7\ A.

For r € (0, 1) given, consider the sets A, := {x € RA\A : dist(x, A) < r). By (3.1) we
get

Fe(@)(ue, AUA;) < FO (@) (e, A) + F*(0)(uo, Ar) < F%(w)(ue, A)
+/ (Me(0)(x) + A, 2)) dx.
Ay

By virtue of the equi-integrability of M. () and A(w, -/¢) (cf. Theorem 2.2), given § > 0,
there exists r5 > 0 such that for every r € (0, rs)

/ (Me(w)(x) + A(a) )dx <3,

for every ¢ > 0. Then, setting &t := ysu + (1 — x4)uo, by applying Theorem 3.1 in the open
set AU A, (notice that A U A, € A, for r small) we obtain

dD%u
~ o0 s~ g uo
/AUA, Jhom(Vit) dx +fAUA, Jhom (d|DSzZ|> dID%a| < lim inf F(w)(ue, A) + 3,

for every r € (0, rs). Therefore letting first 7 — 07 and then § — 0T, we infer that

dD*u (~ . "
/fhom(vu)dx+/ from <d|D5 |> d| D] Slgénggo(w)(ua,A),
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hence the claim follows by the one-homogeneity of the recessions function f and by [4,
Corollary 3.89].

We now turn to the proof of the limsup-inequality.

We start observing that it is not restrictive to assume that target function u € BV (A, R™)
satisfies # = uo in a neighbourhood of 0 A. Indeed, this can be achieved by the following
approximation argument. Foru € BV (A, R™) fixed, define &t := yau + (1 — x4)uo; then by
combining [26, Theorem 1.2] and [22, Theorem 3] we can deduce the existence of a sequence
(un) C up + CX(A, R™) such that u, — i in L' (RY, R™) and

lim  Fhom (n, A/) = Fhom (#, A/)a
n—-+00
for every A’ € A with A C A’. Now assume that the I'-limsup inequality holds true for u,,,
that is
(F)" (@) (un, A) < Fyop (ttn, A),

hom

for every n € N, where (F“0)" denotes the T'-limsup of F¢° (cf. (5.8)). Then by the lower
semicontinuity of (F“0)”(w) we get

(F"Y(w)(u, A) < liminf (F"°)"(w)(u,, A) < lim inf Flf‘gm(u,,, A)
n——+00 n——+00

< ETOO Foo (un, A') = Fyo (i1, A').
Then, the claim follows by letting A’ \, A, again using the one-homogeneity of Sy and
[4, Corollary 3.89].

Hence we only need to prove the upper bound inequality for those target functions u
belonging to up + C°(A, R™). To do so, we need to modify a recovery sequence given by
Theorem 3.1 close to d A, in order to satisfy the correct trace-constraint.

Let n > 0, Lemma 5.2 applied to a recovery sequence (u.) for u yields a sequence (i, ;)
which is bounded in L®(R?, R™) uniformly in & and such that u, , = u, on {|u,| < n~ 1.
Moreover, it satisfies

lim sup Fe (@) (ue,p, A) < (1 + 1) Fhom (u, A) + 1, (6.1)

e—01

where we have also used the limsup-inequality in Theorem 3.1. Next we apply Lemma 5.3
withu = ue ,, v = ug, A” = Aand B = A\A’, where A’ € Aissuchthatu = ugin A\ A’.
Hence, for any § > 0 we obtain a sequence (wg j,5) such that wg ; 5 = ug in a neighbourhood
of 9A, we p s = Ue  in A, and

lim sup F'° (w)(wg, .5, A) = lim sup Fy(w) (we, .5, A)

e—01 e—01
<1+ 6)((1 + 1) Fhom (4, A) + 1 + lim sup Fe (w)(uo, A \W))
e—0t
+ i ¢ / | [|A(w, 2)1d
msup —— u —u w, =)|dx
e ! dist(A”, 9A) Jap om0 g
+ CSIA\ A]. (6.2)

where we tacitly used that |9 A’| = 0. Since

lim sup F (w) (1o, A \ A’) < lim sup/
A

=0t e—0F

(Me(0)(x) + Mo, ¥)) dx,

\AY
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the equi-integrability of M. (®) + A(w, ;) again implies that the term above becomes arbi-
trarily small when A’ 7 A, independently of 1 and .

We now estimate the integral in (6.2). Choosing a subsequence which realises the lim sup,
Lemma 5.1 together with (6.1) implies that (up to a further subsequence) there holds u, , —
uy in LY(A,R™) and a.e. in A, for some uy € L*(A, R™) satisfying u, = u = ug a.e. on
{luo] < n~'y N A\ A’. We claim that Assumption 2 implies that (along that subsequence)

lue,y — uol|Alw, D)I=E[AC, 0)]luy — uol, (6.3)

in L'(A). Indeed, for k € N set L; := {|ug| < k}; then the sequence |ug , — ugl| is bounded
in L*°(ANLy) and converges a.e. to |u, —ug|, while by Theorem 2.2 the sequence | A (w, I

converges weakly in L'(ANLy) to E[|A(-, 0)|]. Hence from [18, Proposition 2.61] we infer
that

lite,y — uol|A(w, 2)=E[|AC, 0)]|u, — uol in L' (A N Ly).
Moreover, since

e,y — uoll Aw, D) < sup llug,yll Lo Alw, D) + Me (@) (x),
&

Assumption 2 and Theorem 2.2 imply that |u, , — uol|A(w, §)| is bounded in L'(A) and
equi-integrable.

Therefore, since by definition of Ly we have that |A\L;| — 0 when k — +o00, we can
easily deduce (6.3). Hence, we obtain that

1 C
limsup%/ _Nuey — uol|Aw, §)|dx < ———F [ _ luy —uoldx.
eo+ dist(A’,9A) A\A dist(A’, 0A) A\A
Recalling that on A \ A’ we have luy| < lul = |ug|, the Dominated Convergence Theorem

ensures that the right-hand side in the expression above vanishes as n — 07.
Eventually, letting first § — 0T, then n — 0T, and finally A’ 7 A in (6.2), we obtain

lim sup lim sup lim sup F%(w)(wg, 5,6, A) < Fhom(u, A) = F}l:gm(”’ A).
n—0 §—0 e—0

In order to conclude we need to estimate the difference between u and wg ;5. To this
end, we recall that we , s is given by a convex combination of u, , and uo with a cut-off
function and that w, ;5 = u,,, in A’. Then, arguing as above it can be easily shown that
lim,, o+ lim sup,_, g+ llue,y — ull 114y = 0. Hence we have

lim sup lim sup || — we 51l 114y < limsuplimsup [[ue ) — we n.slL1(4)
n—0t e—07t n—0t -0t

< lim sup lim sup ||u¢,, — ”0||L1(A\?) = |lu — u0||L1(A\?) =0.
n—0t -0t

Hence by a standard diagonal argument we get

(F*) (@), A) < F

hom

(u, A),

and hence the limsup-inequality. O
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Appendix A: Measurability

Let £ € R™*? and A € A be fixed; this last section is devoted to the proof of the F-
measurability of w — g (w, A), defined as in (4.2).

Lemma A1 Let f satisfy Assumption I and for € € R"*4 Jet Wg be defined as in (4.2). Then
o > g (w, A) is F-measurable for every § € R”™*4 and for every A € A.

Proof Leth : @ x R? x R"*4 _ R be F® £ ® B"*4-measurable; assume moreover that
it is bounded and continuous in its last variable. For every & € R”* consider the functional
He 1 Q2 x WOI‘I(A,R’”) — R defined as

(0, @) = / h(w, x, & + V) dx.
A

Let B(W&’I(A, R™)) denote the Borel o-algebra on WOI’I(A, R™). We claim that Hg is

F® B(WOI‘1 (A, R™))-measurable, for every & € R™*4 Indeed, for fixed ¢ € WOI‘I(A, R™)
the measurability of @ + Hg(w, @) is a consequence of Fubini’s Theorem. On the other
hand, due to the continuity and boundedness of £, for fixed w € €2 the map ¢ — He(w, @)
is continuous with respect to the strong convergence of Wol o1 (A, R™). Hence the joint mea-
surability follows by the separability of Wol’1 (A, R™).

We now appeal to a Monotone Class Theorem for functions in order to remove the conti-
nuity assumption on 4. To this end consider the classes of functions defined as

Ci={h: QxR xR 5 R, h(w, x,&) = hi(w)ha(x)g(€), hi, ha, g bounded,

hi F -measurable, h; [,d-measurable, g continuous}
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and

R :={h:Q x R? x R™*¢ — R, h bounded and F ® £¢ ®@ B"* -measurable,
such that Heg isF ® l’fo’(Wol‘1 (A, R™))-measurable}.

We notice that if & € C then h is F ® £¢ ® B"*4_measurable, thus the argument above
shows that C C R. We also observe that R contains the constant functions, it is a vector
space of bounded functions, and it is closed under uniformly bounded, increasing limits;
moreover, C is closed under multiplication. Then [15, Chapter I, Theorem 21] ensures that R
contains all bounded functions that are measurable with respect to the o -algebra generated
by C. On its turn, the very definition of C ensures that this o-algebra coincides with F ®
£4 @ pmxd, Eventually, we can deduce the 7 ® B (Wo1 o1 (A, R™))-measurability of the map
(w,0) = Hye(w, @) = f 4 f(w,x,& + Vo) dx by a simple truncation argument applied
to the integrand f which allows us to obtain H s ¢ as the pointwise limit of a sequence of
measurable functions.

Having the joint measurability of s ¢ at hand, we can prove the measurability of the
infimum problem defining 1¢ via the measurable Projection Theorem. Indeed, we observe
that for £ € R”* fixed and for every t > 0

[@ @) e@x Wi AR Hrew.0) <t} e FRBWS AR, (©64)

We recall that by assumption (€2, F,P) is a complete probability space; then, since
Wol’1 (A, R™) is a complete, separable, metric space, the Projection Theorem [18, Theorem
1.136] allows us to deduce the F-measurability of the projection of (6.4) onto 2. Therefore
we have

weR: inf Hre(w,u) =pug(w, A) <ty € F,
ueW, ' (A,Rm)
which proves the F-measurability of jg (-, A) and hence the claim. O
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